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Abstract

Pretrained large language models (LLMs) are sur-
prisingly effective at performing zero-shot tasks,
including time-series forecasting. However, un-
derstanding the mechanisms behind such capa-
bilities remains highly challenging due to the
complexity of the models. We study LLMs’
ability to extrapolate the behavior of dynamical
systems whose evolution is governed by prin-
ciples of physical interest. Our results show
that LLaMA 2, a language model trained pri-
marily on texts, achieves accurate predictions
of dynamical system time series without fine-
tuning or prompt engineering. Moreover, the
accuracy of the learned physical rules increases
with the length of the input context window,
revealing an in-context version of neural scal-
ing law. Along the way, we present a flexible
and efficient algorithm for extracting probabil-
ity density functions of multi-digit numbers di-
rectly from LLMs. The code and data supporting
this study are available at: https://github.
com/AntonioLiu97/llmICL.

1. Introduction
Since the introduction of the transformer architec-
ture (Vaswani et al., 2017), Large language models (LLMs)
have shown a variety of unexpected emergent properties,
such as program execution (Nye et al., 2021) and multi-step
reasoning (Cobbe et al., 2021; Wei et al., 2022; Suzgun
et al., 2022).
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Despite the empirical success of LLMs, how they compress
vast amounts of information and implement complex algo-
rithms within their architecture is not readily discoverable.
To this end, recent studies used representation probes to de-
cipher how concepts and functions are encoded in the layers
of trained neural networks (Akyürek et al., 2022; Gurnee &
Tegmark, 2023; Marks & Tegmark, 2023; Park et al., 2023;
Hendel et al., 2023).

Figure 1. Evolution of the loss function for the predicted next state
by LLaMA-13b with respect to the number of observed states
in various physical systems. We employ the Bhattacharyya dis-
tance as a loss function for stochastic systems (solid lines), and
the squared deviations from the mean (SDM) for deterministic
systems (dashed lines). Brownian motion and geometric Brownian
motion deviate significantly from power law scaling, which can be
explained by their lack of stationary distributions (Appendix A.8).

Our work explores LLMs’ ability to model the world by
proposing a new perspective and empirical approach. In-
spired by the recent observations that LLMs are capable of
in-context time series extrapolation without specific prompt-
ing or fine-tuning (Gruver et al., 2023; Jin et al., 2023a),
we aim to quantify LLMs’ ability to extrapolate stochastic
dynamical systems. We find that, as the number of ob-
served time steps increases, an LLM’s statistical prediction
consistently converges to the ground truth transition rules
underlying the system; leading to an empirical scaling law,
as observed in Figure 1.

Our main contributions are as follows:
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• demonstrating LLMs’ zero-shot ability to model the evolu-
tion of dynamical systems without instruction prompting;

• implementing a computationally efficient framework
called Hierarchy-PDF to extract statistical information of
a dynamical system learned by a transformer-based LLM;

• discovering a scaling law between the accuracy in the
learned transition rules (compared to ground truth) and
the context window length.

2. Background and related work
In-context learning refers to LLM’s emergent ability to learn
from examples included in the prompt (Brown et al., 2020).
One example of in-context learning is zero-shot time series
forecasting (Gruver et al., 2023).

The work of (Gruver et al., 2023) aims to forecast empirical
time series and introduces a tokenization procedure to con-
vert a sequence of floating point numbers into appropriate
textual prompts for LLMs. This led to several subsequent
studies on the application of LLMs for time series forecast-
ing (Chen et al., 2023; Jin et al., 2023b;a; Dooley et al.,
2023; Schoenegger & Park, 2023; Wang et al., 2023; Xu
et al., 2023).

Unlike these prior studies, our work does not focus on fore-
casting real-world time series, such as weather data or elec-
tricity demand, where the underlying model generating the
sequence is unavailable or undefined. Instead, we aim to ex-
tract the learned transition rules from the probability vector
generated by the LLM and compare them against the ground
truth rules (chaotic, stochastic, discrete, continuous, etc.)
governing the input time series.

3. Methodology
Our methodology for testing LLMs’ ability to learn physical
rules from in-context data consists of three steps:
1. Sample a time series {xt}t≥0 from a given dynamical

system governed by Markovian transition rules Pij .
2. Prompt the LLM with this time series to extract the

learned probability densities for subsequent digits P̃ij .
3. Measure the discrepancy, between the ground truth Pij

and learned P̃ij , using Bhattacharyya distance. 1

3.1. Prompt generation

Markov processes. Most of our testing data may be mod-
eled as discrete-time Markov chains, where the probability
distribution function (PDF) of the next state at time t + 1
depends solely on the previous state xt at time t:

P (Xt+1|x1, . . . , xt) = P (Xt+1|xt).
1Other loss functions may be appropriate depending on whether

the dynamical system is stochastic or deterministic, see Ap-
pendix A.1

This models either discrete iterative systems or continuous
dynamical systems after time-discretization.

Time series tokenization. An input time series typically
consists of (∼ 103) time steps, each represented as a real
number. We first rescale each number and represent it using
n digits (typically, n = 3). Each time series is rescaled to
the interval [1.50, 8.50] so that the number of digits never
changes throughout the series. We then follow the scheme
introduced in (Gruver et al., 2023) to serialize the time series
as strings and tokenize them.

3.2. Extraction of transition rules

Discrete state space. When the Markov process is discrete
and has a finite state space, each state can be represented
by a single token. We employ tokens corresponding to the
ten number strings: 0, . . . , 9. We find that even the most
sophisticated LLaMA model (LLaMA-70b) can only learn
up to 9 discrete states. Therefore, we do not attempt to go
beyond 9 distinct states by extending to non-number tokens
(see Appendix A.3.3 for more details).
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Figure 2. Extracting learned transition rules of systems with dis-
crete state space.

Figure 2 illustrates our framework for learning discrete
Markov chains with LLMs. First, we randomly sample an
n× n transition matrix (Pij). We then generate a Markov
chain according to Pij , tokenize the time series and pass
to an LLM with no additional “prompt engineering”. The
length of the series is chosen such that the tokenized repre-
sentation does not exceed the length of the LLM’s context
window. We extract the LLM’s prediction for the next state
by performing a softmax operation on the output logits cor-
responding to the n allowed states and discarding all other
logits.

Continuous state space. Many stochastic processes, such
as the Brownian motion (Einstein, 1905; Perrin, 1909), are
supported on continuous state space. For these processes,
we represent the value of each state as a multi-digit number
and separate each state using the comma symbol “,”. As
observed in (Jin et al., 2023a), an LLM prediction of multi-
digit values can be naturally interpreted as a hierarchical
softmax distribution (Mnih & Hinton, 2008; Challu et al.,
2023).
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Specifically, let u denote a multi-digit string representing
the value of a state at a given time-step, then the LLM’s
softmax prediction for the ith digit, ui, provides a histogram
of ten bins of width 0.1i. Subsequently, the prediction of the
(i+ 1)th digit goes down one level into the hierarchical tree
by refining one of the bins into ten finer bins of width 0.1i+1,
and so on until the last digit is processed (see Figure 3). The
top right of the figure shows an example of a time series
serialized as an input string.
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Figure 3. An example of hierarchical transition rules extracted
from LLaMa-13b. The PDF bins are color-coded based on resolu-
tions, which in this example are more refined near the mode. The
height of P̃ (xt+1|xt) is shown in log scale.

Hierarchy-PDF algorithm. While a single pass through
the LLM yields a discretized PDF represented by bins of
various widths, we can refine the PDF by querying each
coarse bin. For example, to furnish a maximal resolution
PDF of a 3-digit number, we need to query all 102 combina-
tions of the first two digits of that number. Suppose a time
series consists of S values (steps), each represented as n
digits. Obtaining a maximal resolution PDF for each value
of the entire sequence requires 10n−1S forward passes of
the LLM. This daunting process could be significantly sim-
plified because most of the 10n−1S inputs differ only in
the last tokens, and thus one can recursively cache the key
and value matrices associated with the shared tokens. The
computation can be further reduced by refining only the
high-probability bins near the mode, which dominate the
loss functions, as shown in Figure 3. Algorithm 1 outlines
the Hierarchy-PDF algorithm used to recursively refine the
PDF associated with a multi-digit value in a time series
(more details available in Appendix A).

4. Experiments and Results
This section reports empirical in-context learning results on
two example systems: discrete Markov chain and stochastic
logistic map. We defer discussion of other systems, reported
in Figure 1, to Appendices A.3 and A.4. The experiments
are repeated ten times with trajectories initiated by different
random seeds.

Model choice. All numerical experiments reported in this
section are performed using the open-source LLaMA-13b
model. While we observe that larger language models, such

Algorithm 1 Hierarchy-PDF
Input: Unrefined PDF, current depth Dc, target depth Dt

Procedure: RecursiveRefiner(PDF, Dc, Dt)
if Dc = Dt then

end the recursion
else if current branch is refined then

Alter the last digit to launch 9 recursive branches
RecursiveRefiner(PDF, Dc, Dt)

else if current branch is unrefined then
refine PDF with new logits
if Dc + 1 < Dt then

Append the last digit to launch 10 recursive
branches
RecursiveRefiner(PDF, Dc + 1, Dt)

end if
end if

Output: Refined PDF

as LLaMA-70b, may achieve lower in-context loss on some
dynamical systems (Appendix A.3.3), they do not display
qualitative differences and affect our conclusions.

4.1. Markov chains with discrete states

The transition rules of a time-independent Markov chain
with n states consist of a stochastic matrix (Pij)1≤i,j≤n,
defined as

Pij = P (Xt+1 = j|Xt = i), 1 ≤ i, j ≤ n.

Using the testing procedures elaborated in Section 3.2, we
generate 10 Markov chains, each from a distinct and ran-
domly generated transition matrix of size n = 4.

Figure 4. Markov chain in-context loss curves decay rapidly with
respect to the input time series length. The average loss is obtained
from 10 individual loss curves.

The corresponding loss curves between the LLM predictions
and the ground truth are displayed in Figure 4. The LLM
formulates remarkably accurate statistical predictions as
more time steps are observed in context, even though the
transition rules are synthesized completely at random. These
conclusions hold for larger transition matrices (n > 4)
and more sophisticated LLMs, such as LLaMA-70b (see
Appendix A.3.3).
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4.2. Noisy logistic map

The logistic map, first proposed as a discrete-time model
for population growth, is one of the simplest dynamical
systems that manifest chaotic behaviors (Strogatz, 2015). It
is governed by the following iterative equation:

xt+1 = f(xt) = rxt(1− xt), x0 ∈ (0, 1),

where r ∈ [1, 4) is a parameter. The logistic map system
becomes stochastic when one introduces small Gaussian
perturbations of variance at each step, resulting in modified
iterative equation:

xt+1 = f(xt + ε),

where ε i.i.d∼ N (0, σ2). In this case, the ground truth distribu-
tion of the next state, xt+1, conditioned on the current state
xt is Gaussian with mean f(xt) and variance (σf ′(xt))

2:

Xt+1|{Xt = xt} ∼ N
(
f(xt), (σf

′(xt))
2
)
. (1)

The first derivative of f measures how sensitive the local
dynamics are to external perturbations. This intuitively
explains why the standard deviation of the conditional dis-
tribution should be proportional to f ′. We note that the
approximation in Equation (1) assumes a small perturbation
compared to the second derivative, that is σ2 � 1/f ′′(x).

Figure 5. Stochastic logistic map in-context loss curves.

We again observe a power-law-like decay of the in-context
loss function with respect to the length of the observed time
series in Figure 5. To achieve low in-context loss, the LLM
must learn to predict not only the mean, but also the variance
of future steps. This is shown in Figure 6 and discussed
further in Appendix A.9.

5. Discussion and conclusion
Data leakage. The possibility that LLMs’ accurate predic-
tions of the next time step value are merely due to memo-
rization seems extremely unlikely. A sequence of even one
thousand numerical values, encoded with three digits, may
cover 103000 particular instances, which is well beyond the
∼ 1012 tokens of the training corpus (Touvron et al., 2023).

In-context neural scaling law. Neural scaling laws (Kaplan
et al., 2020) are power laws that characterize how the loss

Figure 6. Noisy logistic map standard deviation as a function of
the state value xt, learned by the LLM, along with the ground
truth.

of trained neural networks vary with respect to parameters
of the model, such as model size, dataset size, and com-
putational resources. To the best of our knowledge, neural
scaling laws have so far only been observed in the training
procedure, which updates the weights of neural networks
using an explicit algorithm, such as stochastic gradient de-
scent and Adam (Kingma & Ba, 2014). The loss curves
observed in the different numerical experiments (see Fig-
ures 1 and 18) reveal an additional in-context scaling law
for LLMs zero-shot learning of dynamical systems. Further
analysis of these scaling laws are resented in Appendix A.6.

Main conclusions. We showed that, with increasing cardi-
nality in tokenization, and given sufficient context, LLMs
can accurately extrapolate not just deterministic trajectories
(Appendix A.4), but also chaotic and stochastic sequences
governed by specific transition rules. In the latter case, the
extrapolation accuracy is measured in a statistical sense.
This suggests that large language models can in-context
learn dynamical systems’ time series and predict future
states in a manner that maintains fidelity with the underlying
principles governing the system’s evolution. Moreover, this
behavior is observed without the use of any fine-tuning or
“prompt engineering”. Our results suggest that a transformer,
trained primarily on textual data, can extract governing prin-
ciples of numerical sequences observed in-context.

Future directions. The in-context neural scaling law hints
at a learning algorithm that LLMs implicitly implement
during inference, such as gradient descent (Von Oswald
et al., 2023). Characterizing such an algorithm is an open
question of broad interest (Shen et al., 2023). Another
exciting future direction is to study the generalization of
the observed in-context neural scaling laws for other LLMs,
such as GPT4 (OpenAI, 2023), and the newly proposed state
space models (Gu & Dao, 2023).

Software and Data
The code and data supporting this study are available at:
https://github.com/AntonioLiu97/llmICL.
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A. Appendix
A.1. Loss Functions

Once the learned transition rules, P̃ (Xt+1|Xt), have been extracted, we quantify the deviation from the ground truth
P (Xt+1|Xt). Depending on the nature of the system, one of the following two loss functions may be more appropriate (see
Section 4).

Bhattacharyya distance. For stochastic time series, we use the Bhattacharyya distance to characterize the distance between
learned and ground truth transition functions. The Bhattacharyya distance between P and P̃ , on a domain X is defined
as (Bhattacharyya, 1943; 1946; Kailath, 1967):

DB(P, P̃ ) = − ln

(∫
X

√
p(x)p̃(x)dx

)
, (2)

and has been widely employed by feature selection and signal extraction methods (Choi & Lee, 2003; Kailath, 1967).
Since P̃ (Xt+1|Xt) takes the form of a hierarchical PDF, one may approximate the integral in Equation (2) via a discrete
quadrature rule as

DB(P, P̃ ) = − ln

(∑
x

√
p(x)p̃(x)∆x

)
, (3)

where ∆x denotes the length of the sub-interval containing x in the partition of X .

Squared deviations from the mean. For deterministic systems, the true transition functions become delta-functions. As a
result, the discretized Bhattacharyya distance from Equation (3) reduces to (see Equation (5) in Appendix A.2)

DB(δ(x− xtrue), P̃ ) = −1

2
ln(p̃(xtrue)) + C,

which is proportional to the negative log-likelihood (NLL) assigned to the true data by the LLM, plus a constant C2. NLL
references only the finest bins in the hierarchical PDF and is thus unstable as in-context loss. As an alternative, we use the
squared deviations from the mean (SDM) (Kobayashi & Salam, 2000) as the in-context loss for deterministic systems:

SDM(xtrue, P̃ ) =

(
xtrue −

∑
x∈X

p̃(x)x∆x

)2

,

where the mean µP̃ =
∑
x p̃(x)x∆x is extracted from the hierarchical PDF. Note that unlike the Bhattacharyya distance,

which references the model prediction p̃ only at xtrue, the SDM takes into account the entire support x ∈ X . Our numerical
experiments suggest that SDM is more stable and better captures the in-context learning dynamics of deterministic systems
(see Appendix A.4).

A.2. Additional loss functions

KL-divergence. The KL-divergence between two PDFs, P and P̃ , is defined as

DKL(P, P̃ ) =
∑
x∈X

P (x) log

(
P (x)

P̃ (x)

)
. (4)

Although commonly used as the training loss for a variety of machine learning systems, this loss function may suffer from
numerical instabilities as the learned transition function P̃ are often close to zero, as shown in Figures 8 and 13, where the
probability density is concentrated in small regions of the support.

Discretized Bhattacharyya distance for deterministic systems. For deterministic systems, the ground truth transition
function is a delta function. Therefore, the Bhattacharyya distance between it and the Hierarchy-PDF prediction only
references the finest bin associated with the true value xtrue.

DB(δ(x− xtrue), P̃ ) = − ln

(∑
x

√
δ(x− xtrue)p̃(x)∆x

)
= −1

2
ln(p̃(xtrue))− ln ∆x

= −1

2
ln(p̃(xtrue)) + constant.

(5)

2This constant is determined by the base B of the system, and the number of digits n as C = − ln ∆x = n logB.
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As a result, the Bhattacharyya distance is reduced to an affine-transformed negative log-likelihood assigned to data by the
LLM. Such local sensitivity on p̃(xtrue) explains the wild fluctuations seen in the Bhattacharyya loss in Appendix A.4.

Higher moments and kurtosis. While the Bhattacharyya distance and SDM measure the agreement between the extracted
transition rules P̃ and the ground truth distribution P , they do not explicitly characterize the type of the distribution (e.g.,
Gaussian or uniform). We employ the kurtosis as an additional measure to assess whether the LLM recovers the correct
shape of P . The kurtosis of a distribution P is defined as (Joanes & Gill, 1998)

Kurt(P ) =
Ex∼P [(x− µP )4]

Ex∼P [(x− µP )2]2
=

µ4

(σ2)2
, (6)

where σ2 and µ4 are the second and fourth central moments, which can be approximated using a hierarchical PDF as

σ2(P ) =
∑
x

p(x)(x− µp)2∆x, µ4(P ) =
∑
x

p(x)(x− µp)4∆x. (7)

The kurtosis is equal to 3 for a Gaussian distribution and 9/5 for bounded uniform distributions. Figure 7 shows the kurtosis
of Brownian motion transition rules learned by LLM, which converges to 3 as the context length increases.

Figure 7. Kurtosis of Brownian motion transition rules with respect to the input length. Blue: kurtosis of LLM predicted PDF. Red:
ground truth kurtosis, which is 3 for all Gaussian distributions.

A.3. Additional Experiments: stochastic time series

A.3.1. BROWNIAN MOTION

Brownian motion is an example of a continuous-time stochastic process (Einstein, 1905), and is described by a stochastic
differential equation (SDE):

dXt = µdt+ σdWt, (8)

where Xt represents the state of the system at time t, µ is the drift coefficient, σ is the volatility coefficient, and dWt is the
increments of a Wiener process (Revuz & Yor, 2013), modeling the randomness of motion.

To simulate trajectories of Brownian motion, we use the Euler–Maruyama method (Platen, 1999), which discretizes
Equation (8) as Xt+∆t = Xt+µ∆t+σ

√
∆tZ, where ∆t is the time resolution, and Z ∼ N (0, 1) is a random variable that

follows a standard Gaussian distribution. The Euler–Maruyama method may also be written as a conditional distribution:

Xt+∆t|{Xt = xt} ∼ N (xt + µ∆t, σ2∆t),

which is the ground truth transition function visualized in Figure 8. Indeed, the ground truth next state is described as a
Gaussian distribution, and we observe in Figure 8 that the LLM prediction agrees well with the true, underlying distribution.
Additionally, as shown in Figure 8, the LLM displays the correct Gaussian shape for the PDF, converging to a measured
kurtosis of 3 (see Appendix A.2). We then simulate ten different trajectories using random seeds for Z and report the
resulting LLM learning curves in Figure 9, measured in the Bhattacharyya distance.
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Figure 8. Next state prediction of Brownian motion. Top: Input stochastic time series shown in black, and the state to be predicted is
highlighted in red. Bottom: The LLM’s prediction, along with the ground truth distribution.

Figure 9. Bhattacharyya distance between the LLM predicted PDF and the ground truth transition function of Brownian motion with
respect to the input length.

A.3.2. GEOMETRIC BROWNIAN MOTION

Geometric Brownian motion (GBM) (Oksendal, 2013) is a stochastic process that is commonly used in mathematical finance
to model the trajectories of stock prices and other financial assets (Hull, 2021). A GBM is governed by the following SDE:

dXt = µXtdt+ σXtdWt, (9)

where Xt models the price of an asset at time t, and the fluctuation term σXtdWt is proportional to the current asset price
Xt. The Euler–Maruyama discretization of the GBM reads Xt+∆t = Xt + µXt∆t+ σXt

√
∆tZ, and leads to the ground

truth transition function:
Xt+∆t|{Xt = xt} ∼ N (xt + µxt∆t, (σxt)

2∆t). (10)

We simulate ten different GBM trajectories using random seeds and report the corresponding learning curves in Figure 10.

Figure 10. Geometric Brownian motion in-context loss curve.
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We perform an additional numerical test to verify that the LLM is learning the correct relationship between the variance of
the GBM and the state value Xt (see Equation (10)). To investigate this, we display in Figure 11 the expected standard
deviation along with the learned one, extracted from the Hierarchy-PDF using Equation (7), across all predicted states.
We find that the LLM respects the ground truth standard deviation of the GBM, as prescribed by the underlying transition
function.

Figure 11. Evolution of the geometric Brownian motion standard deviation with respect to the state value xt (see Equation (10)), along
with the predicted standard deviation extracted from the LLM at each time step.

A.3.3. MARKOV CHAINS WITH LLAMA-70B

Our experiments show that LLMs generally achieve lower in-context loss for Markov chains with fewer discrete states n, as
shown in Figure 12. For both LLaMA-13b and LLaMA-70b, the in-context loss curves cease to decrease significantly for
numbers of states n ≥ 9.

Figure 12. In-context loss curves for LLaMA-13b (left) and LLaMA-70b (right) with respect to the number of states in the transition
matrix.

A.4. Additional Experiments: deterministic time series

A.4.1. LOGISTIC MAP

The logistic map, first proposed as a discrete-time model for population growth, is one of the simplest dynamical systems
that manifest chaotic behavior (Strogatz, 2015). It is governed by the following iterative equation:

xt+1 = f(xt) = rxt(1− xt), x0 ∈ (0, 1), (11)

which may also be written using conditional distributions to reflect the deterministic nature of the system as Xt+1|{Xt =
xt} ∼ δf(xt), where δ denotes the Dirac delta distribution. This conditional distribution is the ground truth transition
function displayed in red in Figure 13. The parameter r ∈ [1, 4) controls the behavior of the system and is set to r = 3.9. At
this value, the dynamics are naturally confined within the interval (0, 1), and the system has no stable fixed points. Due to
the chaotic nature of the system, two initial nearby trajectories diverge exponentially in time. This property allows us to
sample multiple uncorrelated trajectories by using different initial conditions x0, sampled uniformly in (0, 1).

Figure 13 displays one of the ten tested trajectories and an LLM’s prediction of the last state. The PDF of the next state
prediction is extracted using the Hierarchy-PDF algorithm described in Section 3.2. We find that the LLM prediction is
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Figure 13. Next state prediction of the logistic map. Top: Input chaotic time series shown in black, and the state to be predicted is
highlighted in red. Bottom: The LLM’s statistical prediction for the last state. The ground truth distribution is delta-distributed, which is
shown as a vertical red line.

close to the ground truth, except for minor deviations manifested by small, but non-zero, probability densities in neighboring
values. While the extracted prediction is only reported for the last time step in the bottom panel of Figure 13, we also extract
the model prediction at every time step for all tested trajectories and report the corresponding Bhattacharyya and SDM
losses in Figure 14.

Figure 14. Logistic map in-context loss curves. For deterministic systems, Bhattacharyya loss is subject to large fluctuations while SDM
loss is more stable.

As foreshadowed in Section 3, the Bhattacharyya loss suffers from large fluctuations with deterministic systems such as the
logistic map, while the SDM loss better captures the in-context learning dynamics. In particular, the SDM loss decreases
rapidly with the number of observed states, without any fine-tuning nor prompt engineering of the LLM. This suggests that
the LLM can extract the underlying transition rules of the logistic map from in-context data.

A.4.2. LORENZ SYSTEM

The Lorenz system (Lorenz, 1963) is a three-dimensional (3D) dynamical system derived from a simplified model of
convection rolls in the atmosphere. It consists of a system of three ordinary differential equations:

ẋ(t) = σ(y − x), ẏ(t) = x(ρ− z)− y, ż(t) = xy − βz,

where σ = 10, ρ = 28 and β = 8/3 are parameters dictating the chaotic behavior of the system. We compute ten 3D
trajectories using a first-order explicit time-stepping scheme. All trajectories share the same initial conditions in y and z,
and differ only in the x-coordinate, which is uniformly sampled in (0, 0.3). The chaotic nature of the system guarantees that
the sampled trajectories quickly diverge from one another. We prompt the LLM with the x-component of the simulated
series and extract the next predicting values.

When the x, y, and z components are observed, the system is deterministic and Markovian; in the sense that a state vector
~st = (xt, yt, zt) at time t fully determines the next state ~st+1. However, if the x-component is the only one observed, then
the system ceases to be Markovian but remains deterministic if one expands the state vector to include information from
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Figure 15. Loss curves for predicting the x-component of the Lorenz system with respect to the number of observed time steps.

earlier states. Hence, Takens’ embedding theorem (Takens, 2006) guarantees that the observation of at most seven states of
the series x0:t is sufficient to predict xt+1. Finding the optimal number of states to reconstruct the system’s trajectory is an
area of active research (Strogatz, 2015). Despite this apparent difficulty, LLaMA-13b can formulate increasingly accurate
predictions of the series as it observes more states, as evidenced by the decaying loss curves plotted in Figure 15.

A.5. Continuous State Space Visualization

One may naively remark upon the possibility that the in-context learning task for the Lorenz system and the logistic map
could be rendered trivial if xt+1 always falls close to xt, in which case the LLM only needs to learn a static noisy distribution
in order to decrease the loss. This is not the case with our experiments. In this section, we demonstrate the non-triviality of
the learning tasks in Figures 16 and 17. In both cases, it is clear that the LLM has successfully learned to actively predict
the expected mean position of the next state, and, in the logistic map example, the variance of the next state distribution as
well. We note that the Lorenz system is simulated deterministically, hence the true next-state distribution is represented as a
delta-function.

A.6. In-context neural scaling law

Neural scaling laws (Kaplan et al., 2020) describe how the performance of trained neural networks, particularly language
models, scales with changes in key factors such as model size (N ), dataset size (D), and computational resources used for
training (C). These laws are often observed as power-law relationships in the following form:

L(N) =

(
N

Nc

)αN

, L(D) =

(
D

Dc

)αD

, L(C) =

(
D

Cc

)αC

,

where L represents the loss or performance metric of the model. The characteristic factors (Nc, Dc, and Cc), and power
coefficient (α) are extracted empirically from training curves. The fitted quantities depend on the distribution of data, the
model architecture, and the type of optimizer used for training. Such power-law relations appear in log-log plots as straight
lines, whose slopes correspond to the parameter α. Our loss curves from learning dynamical systems (see Figure 1) reveal
an additional neural scaling law that applies to in-context learning:

L(Din) =

(
Din

Dc

)α
,

where Din stands for the length of time series observed in the prompt (in-context). In Figure 18, we display the fitted power
laws to the in-context loss curves.

A.7. Baselines for noisy logistic map and Markov chains

In this section, we compare LLM’s predictions against baseline models of known architectures, in order to understand the
difficulty of the in-context learning task and make better sense of the Bhattacharyya loss. Specifically, we consider the
following baseline models: unigram and bi-gram models for discrete Markov chains, and linear and non-linear autoregressive
models with 1-step memory (AR1) for noisy logistic maps. The bi-gram model for the Markov chain has an unfair advantage
since it is designed to model Markovian processes where the probability distribution of a token depends only on the previous
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Figure 16. 4 consecutive states in a noisy logistic map. Ground
truth is shown in red and LLaMA predictions in blue.

Figure 17. 4 consecutive states in a Lorenz system trajectory.
Ground truth is shown in red and LLaMA predictions in blue.

Figure 18. In-context loss curves from LLaMA-13b fitted with power law, with fitted power coefficient α shown in legend. Left: loss of
stochastic series measured in Bhattacharyya distance. Right: loss of deterministic series measured in SDM.
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token, ie., inferring the values of the transition matrix. The unigram model, on the other hand, models all tokens as drawn
i.i.d. from the same distribution.

Figure 19. LLM in-context loss curves against the baseline model loss curves. The coefficient α denotes the fitted scaling exponent.

The neural network AR1 model takes a state xt−1 as input, and outputs prediction for next state xt as a Gaussian distribution
parameterized by mean and variance: fθ : xt → N (µθ(xt), σθ(xt)). As such, it also has the unfair advantage of hard-coded
Gaussianiety. LLaMA, on the other hand, must infer the correct distribution family from data. Despite this intrinsic
disadvantage, LLaMA still outperforms the neural network AR1 model in the large context limit. The NN used in the
non-linear AR1 models features three fully connected hidden layers of widths 64, 32, and 16. We found that simpler neural
networks are easily trapped in local minima, leading to unstable performance. The loss curves in Figure 19 are obtained
by training an independent copy of this neural network to convergence at each context length, and predict the next state
distribution using the trained NN. The training loss is defined as the negative log-likelihood of the observation data:

L(data, θ) = −
∑

xt−1,xt∈data

logP (xt;µθ(xt−1), σθ(xt−1))

=
∑

xt−1,xt∈data

log σθ(xt−1)− 1

2

(
xt − µθ(xt−1)

σθ(xt−1)

)2

.

Furthermore, the ensemble of NNs allows us to visualize the learned transition functions P (xt+1|xt) at each context length.
In Figure 20, we show how the transition rules learned by the NNs gradually converge to the ground truth as context length
increases. Since at large context length, the LLMs achieve similar loss as the NN-based AR1 model, it is reasonable to
expect the LLM to have learned a transition function of similar accuracy as shown in the 5th plot in Figure 20. However, it
is difficult to visualize the full transition rules P (xt+1|xt), for xt ∈ [0, 1], as learned by an LLM, because doing so would
require appending an array of xts at the end of a training sequence, which would render the training sequence incorrect.

A.8. Invariant measure and the early plateauing of in-context loss

While most datasets are well-described by the power laws, two loss curves — the Brownian motion and geometric Brownian
motion — plateau early at a context length of about 102, as shown in Figure 18. We attribute this early plateauing to the fact
that the Brownian and geometric Brownian motions “wander out of distribution” at large time t, while all other dynamical
systems studied in this paper converge to stable distributions (i.e., the invariant measure). A Markovian system (stochastic
or deterministic) governed by a transition rule P (xt+1|xt) is said to have an invariant measure π if

π(xt+1) =

∫
X
π(xt)P (xt+1|xt) dxt, xt+1 ∈ X . (12)

If a system is initialized by π(x) and evolves according to P , then the distribution of states at the next step will still follow
π(x). This property makes π an invariant or stationary distribution for the system. It has been shown that the logistic map
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Figure 20. Noisy logistic map transition rules, P (xt|xt − 1), learned by a neural network-based AR1 model against the ground truth
transition rule.

and Lorenz systems in the chaotic regime converge almost surely to their respective invariant measure, regardless of the
initialization (Strogatz, 2015).

For discrete Markov chains governed by a transition matrix p, the stationary distribution is defined as a discrete probability
mass function, denoted by ~π, such that

~π = p~π, (13)

which is analogous to the continuous case described by Equation (12). By definition, any non-negative right eigenvector
of p with eigenvalue λ = 1 is a stationary distribution of p. (Sethna, 2021) showed that a valid transition matrix has at
least one stationary distribution. On the other hand, neither the Brownian nor the geometric Brownian motion has invariant
distributions3 on unbounded domains (e.g., when X = R). This can be seen from the marginalized distribution P (xt) at time
t. For the Brownian motion defined in Equation (8), the marginalized distribution of xt at time t is a normal distribution:

P (xt) =
1√

2πσ2t
exp

(
− (xt − µt)2

2σ2t

)
, (14)

while for the geometric Brownian motion defined in Equation (9), the marginalized distribution of xt is a log-normal
distribution (Crow & Shimizu, 1987):

P (xt) =
1

xt
√

2πσ2t
exp

(
−

(log( xt

x0
)− µt− σ2

2 t)
2

2σ2t

)
. (15)

Both Equations (14) and (15) are time-dependent and do not converge to a stationary distribution in the limit t→∞. For
the Brownian and geometric Brownian motions, the LLM might decide to only consider the most recent segment of time
steps, and ignore the earlier data, which are in some sense “out of distribution”. This could explain the early plateauing
of loss curves. Indeed, the classical neural scaling laws can be improved or broken if the scheduling of the training data
shifts in distribution, as shown in (Sorscher et al., 2023). Different from (Sorscher et al., 2023; Lu et al., 2022), which alter
the scheduling of data to achieve better learning curves that decrease faster with the size of training data, our experiments
consider time series with pre-determined transition laws. We cannot tamper with the scheduling of our data to make it
stationary without altering the underlying transition rules.

3For stochastic systems, the invariant measure is sometimes referred to as the stationary distribution.
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A.9. Temperature and variance

The temperature T is a hyper-parameter that controls the variance of the softmax output layer. Although most LLMs are
trained at T = 1, it is common practice to tune the temperature in the interval T ∈ [0.8, 1.2] during inference. Then, one can
opt for increased diversity (high T ), or better coherence (low T ) in the generated output. The temperature hyper-parameter
affects the uncertainty, or variance, in the Hierarchy-PDF extracted from the LLM. Figures 21 and 22 show how different
temperatures change the shape of the Hierarchy-PDF. In both cases, higher temperature leads to higher variance in the PDF.

Figure 21. Next state prediction for Geometric Brownian motion.
Topmost: Input stochastic time series (black), and the state to be
predicted (red). Rest: The Hierarchy-PDF prediction extracted from
LLaMA-13b evaluated at different temperatures ranging from T =
0.3 to 3, along with ground truth PDF (red).

Figure 22. Next state prediction for the noisy logistic map. Topmost:
Input stochastic time series (black), and the state to be predicted (red).
Rest: The Hierarchy-PDF prediction extracted from LLaMA-13b
evaluated at different temperatures ranging from T = 0.3 to 3, along
with ground truth PDF (red).

We highlight the different refinement schemes used in these figures: for GBM, the PDF is refined to the last (third) digit
near the mode, and left coarse elsewhere. This is because the true variance for GBM can span two orders of magnitude
(see Figure 11), with most data points trapped in the low-variance region at small Xt. Hence, we require high precision to
resolve these small variances in Figure 23. On the other hand, the noisy logistic map time series does not suffer from this
issue, and thus we uniformly refine its PDF only up to the second digit.

While the loss curves in our paper are calculated at T = 1, the predicted σ shown in Figures 6 and 11 are extracted at
T = 0.7. We performed a grid search on the temperature ranging from T = 0.3 to T = 3 (see Figures 24 and 25), and
observed that T = 0.7 consistently results in better prediction quality of the variance.
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Figure 23. Most data points in GBM are trapped in low variance region with small Xt. The hierarchy-PDF must be very refined to resolve
these minuscule variances.

LLM temperature = 0.3

LLM temperature = 0.7

LLM temperature = 1

Figure 24. GBM standard deviation σ as a function of state value
Xt, learned by the LLM, along with the ground truth. The LLM
prediction is evaluated at temperatures ranging from T = 0.3 to 1.

LLM temperature = 0.3

LLM temperature = 0.7

LLM temperature = 1

Figure 25. Noisy logistic map standard deviation σ as a function of
state value Xt, learned by the LLM, along with the ground truth. The
LLM prediction is evaluated at temperatures ranging from T = 0.3
to 1.
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A.10. Hierarchy PDF

This section documents all three parts of the Hierarchy-PDF algorithm. We refer to the GitHub repository for further details.

Algorithm 2 Refine Each State in a Stochastic Sequence
Input:
- Straj: A string representing a sampled stochastic trajectory whose states are separated by commas.
- LPDF: List of unrefined PDFs for each state.
- KVcache: Key-value cache of running model.forward(Straj).
for each state and PDF in Straj and LPDF do
PDF← RecursiveRefiner(True, state, Dc, Dt, KVcache)

end for

Algorithm 3 Detailed Hierarchy-PDF Recursive Refiner
Input: Object multi PDF representing unrefined PDF using bins of various widths
Procedure: RecursiveRefiner(mainBranch, sequence, Dc, Dt, KVcache)

if Dc = Dt then
return {Terminate if target refinement depth is reached}

end if
if mainBranch is True then
{Launch 9 recursive branches if the current sequence is refined}
Lnew ← Form 9 new sequences by changing the last digits
for each sequence in Lnew do

RecursiveRefiner(False, sequence, Dc, Dt,KVcache)
end for

else
{Collect refined logits}
newLogits, newKVcache← NextTokenProbs(sequence,KVcache)
Refine multi PDF using newLogits

end if
if Dc + 1 < Dt then
{Launch 10 more branches if Dt not met}
Lnew ← Form 10 new sequences by appending digits
for each sequence in Lnew do

RecursiveRefiner(False, sequence, Dc + 1, Dt,newKVcache)
end for

end if

Algorithm 4 Extract Next Token Probabilities
function NextTokenProbs(sequence, KVcache, model)
NextTokenLogit← model.forward(sequence, KVcache)[last] {Extract distribution of next token}
Update KVcache

return NextTokenLogit, KVcache
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