
Learning Generalized Policy Automata

for Relational Stochastic Shortest Path Problems

Rushang Karia, Rashmeet Kaur Nayyar, Siddharth Srivastava
School of Computing and Augmented Intelligence

Arizona State University
Tempe, AZ 85281

U.S.A.
{Rushang.Karia,rmnayyar,siddharths}@asu.edu

Abstract

Several goal-oriented problems in the real-world can be naturally expressed as
Stochastic Shortest Path problems (SSPs). However, the computational complex-
ity of solving SSPs makes nding solutions to even moderately sized problems
intractable. State-of-the-art SSP solvers are unable to learn generalized solutions
or policies that would solve multiple problem instances with different object names
and/or quantities. This paper presents an approach for learning Generalized Policy
Automata (GPAs): non-deterministic partial policies that can be used to catalyze
the solution process. GPAs are learned using relational, feature-based abstractions,
which makes them applicable on broad classes of related problems with different
object names and quantities. Theoretical analysis of this approach shows that it
guarantees completeness and hierarchical optimality. Empirical analysis shows that
this approach effectively learns broadly applicable policy knowledge in a few-shot
fashion and signicantly outperforms state-of-the-art SSP solvers on test problems
whose object counts are far greater than those used during training.

1 Introduction

Goal-oriented Markov Decision Processes (MDPs) expressed as Stochastic Shortest Path problems
(SSPs) have been the subject of active research since they provide a convenient framework for
modeling the uncertainty in action execution that often arises in the real-world. Recently, research
in deep learning has demonstrated success in solving goal-oriented MDPs using image-based state
representations (Tamar et al., 2016; Groshev et al., 2018). However, such methods require signicant
human-engineering effort in nding transformations like grayscale conversion, etc., to yield repre-
sentations that facilitate learning. Many practical problems however, are more intuitively expressed
using relational representations and have been widely studied in the literature.

As an example, consider a planetary rover whose mission is to collect all rocks of interest from a
planet’s surface and deliver them to the base for analysis. Such a problem objective is not easily
described in an image-based representation (e.g., visibility is affected by line of sight) but can be easily
described using a relational description language such as rst-order logic. Finding suitable image-
based representations for such problems would be counter-productive and difcult. Furthermore,
image-based deep learning methods often require large amounts of training data and/or are unable to
provide guarantees of completeness and/or convergence.

Many real-world problems such as the rover example above can be readily expressed as SSPs using
symbolic descriptions that can be solved in polynomial time in terms of the state space. SSP algorithms
use a combination of pruning strategies (e.g., heuristics (Hansen and Zilberstein, 2001)) that can
eliminate large parts of the search space from consideration thereby reducing the computational effort

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

expended. In spite of such optimizations, a major hurdle is the “curse-of-dimensionality” since the
state spaces grow exponentially as the total number of objects increases. Existing SSP solvers would
have difculty scaling to rover problems with many locations and/or rocks. The pruning strategies
employed by these SSP solvers do not scale well because they do not use knowledge that could
have been exploited from solving similar problems. One solution to this problem is to compute a
simple generalized policy: move the rover to the closest available location with an interesting rock,
try loading the rock until it succeeds, navigate back to the base, unload it, and reiterate this process
until all interesting rocks are at the base. This generalized policy can be used to solve any rover
instance with larger numbers of locations and rocks sharing a similar goal objective.

Related work in Generalized Planning addresses the problem of computing generalized policies by
learning reliable controllers for broad classes of problems (Srivastava et al., 2008; Bonet et al., 2009;
Aguas et al., 2016). Recently, Deep Learning based approaches have been shown to successfully learn
such policies (Toyer et al., 2018; Garg et al., 2020; Karia and Srivastava, 2022). A key limitation of
such methods is the lack of interpretability and theoretical guarantees of the learned policy. In this
paper, we show that interpretable, generalized policies can be learned with guarantees of completeness
and hierarchical optimality using solutions of very few, small problems with few objects.

The primary contribution of this paper is a novel approach for few-shot learning of Generalized
Policy Automata (GPAs) using solutions of SSP instances with small object counts. GPAs are non-
deterministic partial policies that represent generalized knowledge that can be applied to problems
with different object names and larger object counts. This process uses logical feature-based ab-
stractions to lift instance-specic information like object names and counts while preserving the
relationships between objects in a way that can be used to express generalized knowledge. GPAs
learned using our approach can be used to accelerate any model-based SSP solver by pruning out large
sets of actions in different, related, but larger SSPs with many objects. We prove that our approach
is complete and guarantees hierarchical optimality. Empirical analysis on a range of well-known
benchmark domains shows that our approach few-shot learns GPAs using as few as three training
problem instances and convincingly outperforms existing state-of-the-art SSP solvers and does so
without compromising the quality of the solutions found.

The rest of this paper is organized as follows: The next section provides the necessary background.
Sec. 3 describes our approach for using example policies in conjunction with abstractions to learn
GPAs and using them for solving SSPs. We present our experimental setup and discuss obtained
results in Sec. 4. Sec. 5 provides a description of related work in the area. Finally, Sec. 6 states the
conclusions that we draw upon from this work followed by a brief description of future work.

2 Background

Our problem setting considers SSPs expressed in a symbolic description language such as the
Probabilistic Planning Domain Denition Language (PPDDL) (Younes et al., 2005). Let D = ⟨P ,A⟩
be a problem domain where P and A are nite sets of predicates and parameterized actions. Object
types, such as those used in PPDDL, can be equivalently represented using unary predicates. A
relational SSP problem instance for a domain D with a goal formula g over P and a nite set of
objects O is dened as a tuple P = ⟨O,S,A, T, C, s0, g⟩. A fact is the instantiation of a predicate
p ∈ P with the appropriate number of objects from O. A state s is a set of true facts and the state
space S is dened as all possible sets of true facts derived using D and O. Similarly, the action
space A is instantiated using A and O. T : S × A × S → [0, 1] is the transition function and
C : S × A × S → R

+ is the cost function. An entry t(s, a, s′) ∈ T denes the probability of
executing action a ∈ A in a state s ∈ S and ending up in a state s′ ∈ S, and c(s, a, s′) ∈ C indicates
the cost incurred while doing so. Naturally,


s′ t(s, a, s

′) = 1 for any s ∈ S and a ∈ A. Note that a
refers to the instantiated action a(o1, . . . , on), where o1, . . . , on ∈ O are the action parameters. We
omit the parameters when it is clear from context. s0 ∈ S is a known initial state. A goal state sg
is a state such that sg |= g. For any action a ∈ A and any goal state sg ∈ S, c(sg, a, sg) = 0 and
t(sg, a, sg) = 1. Additionally, termination (reaching a state s such that s |= g) in an SSP is inevitable
making the length of the horizon unknown but nite (Bertsekas and Tsitsiklis, 1996).

Running example: The planetary rover example can be expressed using a domain that consists of
predicates connected(lx, ly), interesting(rx), rover-at(lx), in-rover(rx), rock-at(rx, lx), and param-
eterized actions load(rx, lx), unload(rx, lx), and move(lx, ly). Object types can be denoted using

2

unary predicates location(lx) and rock(rx). lx, ly , and rx are parameters that can be instantiated with
different locations and rocks thus allowing for an easy way to express different problems. Action
dynamics are described using closed-form probability distributions (e.g., loading a rock could be mod-
eled so that the rover picks up the rock with a probability of 0.8) and this forms the transition function.
A simplied SSP problem that ignores connectivity and consists of two locations, a base location, and
two rocks can be described using a set of objectsO = {l1, l2, lbase, r1, r2}. A state in this SSP seg that
describes the situation where r2 is being carried by the rover and r1 is at l2 can be written as
seg = {location(l1), location(l2), location(lbase), rock(r1), rock(r2), in-rover(r2), rock-at(r1, l2)}.
The goal of delivering all the rocks to the base can be expressed as ∀x rock(x) =⇒ rock-at(x, lbase).
Executing any action can be assumed to expend some fuel and as a result, the objective is to deliver
all the rocks to the base in a way that minimizes the total fuel expended.

A solution to an SSP is a deterministic policy π : S → A, that is a mapping from states to actions.
A proper policy is one that is well-dened for all states. A complete proper policy is one for which
termination is guaranteed from all possible states. By denition, SSPs must have at least one complete
proper policy (Bertsekas and Tsitsiklis, 1996). This can be overly limiting in practice since such a
formulation does not model dead end states: states from which the goal is reachable with probability
0. A weaker formulation of an SSP stipulates that the goal must be reachable with a probability of 1
from s0 i.e. whose solution is a partial proper policy that is well-dened for every state reachable
from s0. As such, we focus on a broader class of relaxed SSPs called Generalized SSPs (GSSPs)
(Kolobov et al., 2012) that only require the existence of at least one partial proper policy. Henceforth,
we use the term SSPs to refer to GSSPs and focus only on partial proper policies.

The value of a state s when using a policy π is the expected cost of executing π(s) when starting
in s and following π thereafter: V π(s) =


s′∈S t(s,π(s), s′)[c(s,π(s), s′) + V π(s′)] (Sutton and

Barto, 1998). Naturally, V π(s0) = ∞ if π is not a partial proper policy. V is known as the value
function. V ∗ is the optimal value function and can be described using the Bellman optimality equation:
V ∗(s) = mina∈A


s′∈S t(s, a, s′)[c(s, a, s′) + V ∗(s′)]

In this paper, we focus on optimality w.r.t. a given initial state. The optimal policy π∗ for an SSP P

w.r.t. s0 is a policy that is better than or equal to all other policies i.e. V π∗

(s0) ≤ V π(s0) for any
policy π. SSP solvers iteratively apply the Bellman optimality equation starting from s0 to compute a
policy, and under certain conditions, have been proved to converge to a policy that is ϵ-consistent
with π∗ (Hansen and Zilberstein, 2001; Bonet and Geffner, 2003).

Let Fα and Fβ be two sets of features. We use feature-based abstractions to lift problem-specic
characteristics like object names and numbers in order to facilitate the learning of generalized
knowledge that can be applied to problems irrespective of differences in such characteristics. Given

any SSP P , we dene state abstraction as a function α : Fα, S → S that transforms the concrete

state space S of P into a nite abstract state space S. Similarly, action abstraction β : Fβ , S, A → A

transforms the action space to a nite abstract action space. Typically, |S| ≤ |S| and |A| ≤ |A|. We
use s = α(Fα, s) and a = β(Fβ , s, a) to represent abstractions of a concrete state s and action a.
In this paper, we utilize feature sets automatically derived using canonical abstraction (Sagiv et al.,
2002) to compute such feature-based representations of s and a. This is described in Sec. 3.1.

3 Our Approach

Our objective is to exploit knowledge from solutions of SSP instances with small object counts to
learn Generalized Policy Automata (GPAs) that allow effective pruning of the search space of related
SSPs with larger object counts. We accomplish this by using solutions to a small set of training
instances that are easily solvable using existing SSP solvers, and using feature-based canonical
abstractions to learn a GPA that encodes generalized partial policies and serves as a guide to prune
the set of policies under consideration. We provide a brief description of canonical abstraction in
Sec. 3.1, dene GPAs in Sec. 3.2, and describe our process to learn a GPA in Sec. 3.2.1. We then
describe our method (Alg. 1) for solving SSPs and state its theoretical properties in Sec. 3.3.

3.1 Canonical Abstraction

Canonical abstractions, commonly used in program analysis, have been shown to be useful in
generalized planning (Srivastava et al., 2011; Karia and Srivastava, 2021). Canonical abstractions

3

Figure 1: An example of how canonical abstraction can be used to lift problem-specic characteristics like
object names and numbers. s1 and s2 are example states of two different problems.

group together multiple objects in a state using object roles. Given a concrete state s and an object o,
the set of unary predicates that o satises is known as the role of o. 0-ary predicates are represented
as unary predicates with a default ‘phantom’ object.

Let ψ be a role. Then we dene φψ(s) as a function that returns the set of objects that map to ψ in a
concrete state s. Similarly, for any given predicate pn ∈ P where n is the arity, φpn(ψ1,...,ψn)(s) is
dened as the set of all n-ary predicates in s that are consistent with the roles composing the predicate
pn(ψ1, . . . ,ψn), i.e., φpn(ψ1,...,ψn)(s) = {pn(o1, . . . , on)|pn(o1, . . . , on) ∈ s, oi ∈ φψi

(s)}.

The value of a role ψ in a concrete state s is given as max(2, |φψ(s)|) to indicate whether there are
0, 1, or more than 1 objects satisfying ψ. Since relations between objects become imprecise when
grouped as roles, the value of pn(ψ1, . . . ,ψn) in s is determined using three-valued logic and is 0 if
φpn(ψ1,...,ψn)(s) = {}, 1 if |φpn(ψ1,...,ψn)(s)| = |φψ1

(s)| × . . .× |φψn
(s)|, and 1

2 otherwise.

Let Ψ be the set of all possible roles and Pi be the set of predicate names p ∈ P of arity i for a

domain D, then Pi = Pi × [Ψ]i is the set of all possible relations of arity i between roles. We

dene the feature set for state abstraction as Fα = Ψ ∪N
i=2 Pi where N is the maximum arity of

any predicate in D. We dene state abstraction α(Fα, s) for a given concrete state s to return an
abstract state s as a total valuation of Fα using the process described above. Similarly, we dene
the feature set for action abstraction as Fβ = Ψ. The action abstraction β(Fβ , s, a) for a concrete
action a(o1, . . . , on) when applied to s returns an abstract action a(ψ1, . . . ,ψn) where the action
name a ≡ a and ψi is the role of the parameter oi, i.e., oi ∈ φψi

(s) for any ψi ∈ Ψ.

Fig. 1 provides an intuitive example of how canonical abstraction can be used to lift instance-specic
information. The gure describes two concrete states s1 and s2 from two different problems. s1
contains 2 rocks and 3 locations whereas s2 contains 6 rocks and 4 locations. There are four roles in
s. For example, in s1, r1 maps to the the role for a rock ψ1, and r2 maps to the role for an interesting
rock ψ2, i.e., φψ1

(s1) = {r1} and φψ2
(s1) = {r2}. The abstract relation rock-at(ψi,ψj) provides

the three-valued representation of values between different roles. For example, rock-at(ψ1,ψ3) is
interpreted as the set of rocks that are at some location, while rock-at(ψ2,ψ4) is interpreted as the set
of interesting rocks that are at the base. Since rock-at(r1, l2) does not appear in s1, rock-at(ψ1,ψ3)
evaluates to 0.5 to indicate that there are some rocks that are at some, but not all, locations. Similarly,
since all interesting rocks are at the base location, rock-at(ψ2,ψ4) evaluates to 1.

The key aspect of abstraction comes from the observation that the relation rock-at(ψi,ψj) remains
the same for s2 even though s2 has many more objects than s1. The same high-level interpretations
of the relations are captured while lifting low-level information like object names and numbers.

3.2 Generalized Policy Automata

We introduce Generalized Policy Automata (GPAs) as compact and expressive non-deterministic nite-
state automata that encode generalized knowledge and can be represented as directed hypergraphs.

4

GPAs impose hierarchical constraints on the state space of an SSP and prune the action space under
consideration, thus reducing the computational effort of solving larger related SSP instances.

Denition 3.1 (Generalized Policy Automaton). Let S and A be a set of abstract states and actions.

A Generalized Policy Automaton (GPA) G = ⟨V, E⟩ is a non-deterministic nite-state automaton that

can be represented as a directed hypergraph where the set of vertices V = S. E ⊆ V ×P(V) \∅×A,

where P(V) is the powerset of V , is a set of directed hyperedges s.t. each hyperedge e ∈ E is a tuple
(esrc, edest, eact) representing a start vertex, a set of result vertices, and an action label.

Denition 3.2 (GPA Consistent Policy). A policy π for an SSP P is dened to be consistent with a

GPA G iff for any states s, s′ ∈ S and any action a ∈ A whenever π(s) = a and t(s, a, s′) > 0 there

exists a hyperedge e ≡ (esrc, edest, eact) ∈ E where s = esrc, s′ ∈ edest, and a = eact.

Denition 3.3 (Hierarchically Optimal Policy). A policy π given a GPA G is hierarchically optimal

for an SSP P iff π is minimal among all possible policies π′ that are GPA consistent w.r.t. G, i.e.,

V π(s0) ≤ V π′

(s0).

3.2.1 Learning GPAs

GPA Merged GPA

Figure 2: A high-level overview of how we merge different GPAs.
All edges with the same color represent a hyperedge. For example,
the blue colored hyperedge in G is (s1, {s0, s1, sg}, a1).

It is well-known that solutions to
small problems can be used to con-
struct generalized control structures
that can assist in solving larger prob-
lems. We adopt a similar strategy of
the learn-from-small-examples ap-
proach (Wu and Givan, 2007; Karia
and Srivastava, 2021, 2022) and
compute GPAs iteratively from a
small training set containing solu-
tions of similar SSP instances.

To form our training set, we
use a library of solution policies
Π = {π1, . . . ,πn} for small SSPs
P1, . . . , Pn that can be easily (and
optimally) computed by existing
SSP solvers. We use the transition
function for Pi to convert each pol-
icy πi ∈ Π to a set of transitions τi = {(s, a, s′)|s, s′ ∈ Si, a ∈ Ai,πi(s) = a, ti(s, a, s

′) > 0}. We
then construct our training set T = τ1 ∪ . . . ∪ τn as a set of concrete transitions.

The GPA GΠ learned from a nite set of concrete transitions T is dened as follows. We
rst initialize a GPA GΠ = ⟨{}, {}⟩. Next, we convert T into an abstract transition set T =
{(α(Fα, s),β(Fβ , s, a),α(Fα, s

′))|(s, a, s′) ∈ T }. We then form the vertex set by using all abstract

states in T , i.e., V = V∪{s, s′} for every (s, a, s′) ∈ T . Similarly, we convert each abstract transition

into a hyperedge and add it to the edge set, i.e. E = E ∪ (s, {s′}, a) for every (s, a, s′) ∈ T . Finally,

we compress GΠ by replacing edges in E that have the same start nodes and labels but different destina-

tions with a single edge that combines the destinations of the edges, i.e., for any two edges e1, e2 ∈ E

s.t. e1src = e2src, e1dest ̸= e2dest, and e1act = e2act, E = E \ {e1, e2} ∪ {(e1src, e1dest ∪ e2dest, e1act)}.
Fig. 2 provides a high-level overview of our procedure for merging GPAs. Henceforth, we drop the

subscript Π from GΠ when it is clear from context.

3.3 Solving SSPs using GPAs

The key intuition behind our method is to use the GPA to prune policies that are not consistent with
the GPA from the search process. We accomplish this by solving a GPA constrained problem that
satises the constraints encoded by the GPA. We dene a GPA constrained problem as follows:

Denition 3.4 (GPA constrained problem). Let P = ⟨O,S,A, T, C, s0, g⟩ be an SSP for a domainD
and let G = ⟨V, E⟩ be a GPA. A GPA constrained problem P |G = ⟨O,S,A, T, C ′, s0, g⟩ is dened

with a cost function C ′ : S × A× S → R
+ such that C ′[s, a, s′] = C[s, a, s′] when there exists a

5

Algorithm 1 GPA acceleration for SSPs

Require: SSP P = ⟨O,S,A, T, C, s0, g⟩, GPA G = ⟨V, E⟩,
Feature Sets Fα, Fβ , Abstraction Functions α,β

1: C ′ = C {copy over the cost function of P}
2: for (s, a, s′) ∈ S ×A× S do

3: s, a, s′ ← α(Fα, s),β(Fβ , s, a),α(Fα, s
′)

4: if there is no edge e ∈ E s.t. esrc = s, s′ ∈ edest, and eact = a then
5: C ′[s, a, s′] = ∞
6: end if
7: end for
8: P ′ = ⟨O,S,A, T, C ′, s0, g⟩
9: V ∗

P ′ ← initializeValueFunction() {Typically using heuristics or randomly}
10: V ∗

P ′ ,π∗

P ′ ← optimallySolveSSP(P ′, V ∗

P ′) {Using the Bellman optimality equation}
11: if π∗

P ′ is a partial proper policy then
12: return π∗

P ′ {Return constrained policy}
13: else
14: VP ,πP ← optimallySolveSSP(P, V ∗

P ′) {Using the Bellman optimality equation}
15: return πP {Return partial proper policy for P}
16: end if

hyperedge e ≡ (esrc, edest, eact) ∈ E where s = esrc, s′ ∈ edest, and a = eact and C ′[s, a, s′] = ∞ if
there is no such hyperedge.

The goal of modifying the cost function is to prevent concrete transitions whose abstract translations
are absent in the GPA from being used when performing Bellman updates for P |G . Actions belonging
to such transitions cannot appear in π∗

P |
G

since their costs would be ∞. As a result, P |G is not an

SSP and the existence of a partial proper policy is not guaranteed in P |G . Note that every optimal

policy π∗

P |
G

for P |G is hierarchically optimal for an SSP P given a GPA G. Our overall objective is

to compute such hierarchically optimal policies in a way such that they are approximately as cost
effective as the optimal policy while requiring a fraction of the computational effort.

Given a GPA G, Alg. 1 works as follows. Lines 1-8 create a GPA constrained problem P ′. Next, line
10 optimally solves P ′ using any off-the-shelf SSP solver with a randomly initialized value function
(line 9). If the computed policy π∗

P ′ is a partial proper policy then it is returned immediately (lines
11-12) else Alg. 1 uses a new instance of the SSP solver to compute a policy for P using V ∗

P ′ as the
bootstrapped initial value function. Information such as whether a state is a dead end, etc., is not
carried over. Line 14 then optimally solves P using V ∗

P ′ as the initial value estimates and returns a
partial proper policy πP for P . Since V ∗

P ′ is only used as an initial bootstrapping estimate for P , an
SSP solver will only return a policy πP that is better than or equal to π∗

P ′ following standard results
on policy improvement for value iteration (Sutton and Barto, 1998). The following result shows that
Alg. 1 computes hierarchically optimal policies.1

Theorem 1. When Alg. 1 returns a constrained policy π∗

P ′ (line 12) for an SSP P given a GPA G
then π∗

P ′ is hierarchically optimal.

Proof (Sketch). Intuitively, Alg. 1 creates a new problem P ′ (lines 1-8) using the original cost
function of P . The cost function for a concrete transition (s, a, s′) ∈ S ×A× S is set to∞ iff the

corresponding abstract transition is not part of a hyperedge in G. As a result, P ′ ≡ P |G , and any

partial policy πP ′ for G is a GPA consistent policy. Since Alg. 1 optimally solves P ′ (line 10), the
returned policy is hierarchically optimal.

Alg. 1 computes π∗

P |
G

for P |G in the space of cross-product of the states of the GPA G with the states

of P , similar to HAMs (Parr and Russell, 1997). As seen in our empirical analysis in Sec. 4, we
observe that a small set of example policies are sufcient to capture rich generalized control structures
that are encoded by such hierarchically optimal policies. Alg. 1 computes such policies within a
fraction of the original computational effort and in most cases with costs comparable to π∗

P .

1Please see AppendixA.1 for the complete proof.

6

Theorem 2. Given a GPA G and an SSP P , Alg. 1 always returns a partial proper policy.

Proof. Alg. 1 only returns if it computes a partial proper policy at line 12 or a partial proper policy
for P at line 15, which by denition always exists.

The next result indicates that the output of Alg. 1 is hierarchically optimal or better in terms of the
expected value at s0.

Theorem 3. Let V π be the value function for a policy π returned by Alg. 1 for an SSP P using GPA

G. Let V ∗

P |
G

be the optimal value function for P |G , then V
π(s0) ≤ V ∗

P |
G

(s0).

Proof. If Alg. 1 nds a partial proper policy π∗

P |
G

for P |G then it returns it immediately (lines

11-12), in which case V π(s0) = V ∗

P |
G

(s0). If π
∗

P |
G

is not a partial proper policy then V ∗

P |
G

(s0) = ∞.

Since Alg. 1 is complete (Thm. 2), π is a partial proper policy where V π(s0) < ∞.

Corollary 3.1. If V ∗

P (s0) = V ∗

P |
G

(s0), then Alg. 1 returns the optimal policy for P .

The following result indicates that only a nite set of training examples are needed to learn a GPA
such that the constrained problem will always yield the optimal policy for a given domain D.

Theorem 4. Suppose D is a domain, g is a formula over the predicates in D’s vocabulary, GΠ∗ is a
GPA s.t. for every SSP instance P of D whose goal is g, there exists an optimal policy π∗

P that is

consistent with GΠ∗ . Then there exists a nite set of policies Π∗ from which GΠ∗ can be learned.

Proof. Since the sizes of the abstract state and action spaces S and A are nite, the size of GΠ∗

is nite and is bounded by |S| × |A| × |S|. For every e ∈ E at most |edest| different transitions are
needed to learn e. Since there is a nite number of edges, a nite amount of training data will sufce

for learning GΠ∗ .

In the worst case, the cost functions of P and P |G are similar and no savings are obtained. However,
in our empirical evaluation, we observed that typically very few and small training problems sufce

to learn a compact GPA G that allows efcient computation of solutions for problems that are
signicantly larger than those used during training. Finding the right set of examples Π∗ from which

GΠ∗ can be learned is an interesting and non-trivial research problem that we leave to future work.

4 Experiments

We conducted an empirical evaluation on ve well-known benchmark domains that were selected
from the International Planning Competition (IPC) (Long and Fox, 2003), International Probabilistic
Planning Competition (IPPC) (Younes et al., 2005), and robotic planning (Shah et al., 2020). As a
part of our analysis, we use the time required to compute a solution and measure the quality of the
solutions found to determine whether GPAs allow efcient solving of SSPs.

We chose PPDDL as our representational language, which was the default language in IPPCs until
2011, after which the Relational Dynamic Inuence Diagram Language (RDDL) (Sanner, 2010)
became the default. We chose PPDDL over RDDL since modern state-of-the-art solvers for PPDDL
are available and since RDDL does not allow specifying the goal condition easily.

For our baselines, we focus on complete solvers for SSPs. Deep Learning based approaches do
not guarantee completeness and thus are not directly comparable with our work. We used Labeled
RTDP (LRTDP) (Bonet and Geffner, 2003) and Soft-FLARES (Pineda and Zilberstein, 2019) which
are state-of-the-art (SOA), complete SSP solvers. These algorithms internally generate their own
heuristics for initializing the value function using the input domain and problem le. We used the
inadmissible FF heuristic (Hoffmann, 2001) as the internal heuristic function for all algorithms since
the baselines performed best using it.

We ran our experiments on a cluster of Intel Xeon E5-2680 v4 CPUs running at 2.4 GHz with 16 GiB
of RAM. Our implementation is a Python adaptation of mdp-lib (Pineda and Zilberstein, 2019).2

We utilized problem generators from the IPC and IPPC suites and those in Shah et al. (2020) for

2Our source code is available at https://github.com/AAIR-lab/GRAPL

7

Figure 3: Impact of learned GPAs on solver performance (lower values better). Left y-axes and bars show
solution times (in units of 1000 secs) for our approach and baseline SOA solvers (LRTDP and Soft-FLARES).
Right y-axes and points show cost incurred by the policy computed by our approach and the baselines. We use
the same SSP solver as the corresponding baseline in our approach. Error bars indicate 1 standard deviation
(SD) averaged across 10 runs. For clarity, we only report results for the largest test problems and omit error bars
from costs due to the low SDs. Open bars at the top indicate a timeout. A complete view of our empirical results
is available in Appendix B.

generating the training and test problems for all domains. We provide a brief description of the
problem domains below.
Rover(r, w, s, o) A set of r rovers need to take images of o objectives, and pickup and drop s samples
that are present at one of w waypoints. This is an IPC domain that was converted to a stochastic
version by modifying the pickup action to fail with a probability of 0.4 (leaving the state unchanged).
Gripper(b) A robot with two grippers is placed in an environment consisting of two rooms A and
B. The objective of the robot is to transfer all the b balls initially located in room A to room B. We
modied the gripper to be slippery so that picking a ball has a 20% chance of failure.
Schedule(C, p) is an IPPC domain that consists of a set of p packets, each belonging to one of C
different classes that need to be queued. A router must rst process the arrival of a packet in order to
route it. The interval at which the router processes arrivals is determined by probability 0.94.
Keva(P, h) A robot uses P keva planks to build a tower of height h. Planks are placed in a specic
order in one of two locations, preferring one location with probability 0.6. Despite this simple setting,
the Keva domain has been shown to be a challenging problem in robotics (Shah et al., 2020).
Delicate Can(c) An arrangement of c cans on a table of which one is a delicate can. The objective is
to pick up a specic goal can. Cans can obstruct the trajectory to the goal can and need to be moved.
They can be crushed with probability 0.1 (delicate cans with probability 0.8) and need to be revived.

Training Setup Our method learns GPAs in a few-shot fashion requiring little to no training data.
For forming our training set, we used a minimum of three and a maximum of ten different solution
policies (obtained using LAO∗ (Hansen and Zilberstein, 2001)) for each domain. The time required
to learn a GPA was less than 10 seconds in all cases of our experiments. Our training speed highlights
the advantages of GPAs that can be quickly learned in a few-shot setting. Moreover, compared to
neuro-symbolic methods, GPAs are not subject to catastrophic forgetting and new training data can
easily be merged with the existing GPA using the process described in Sec. 3.2.1.
Test Setup We xed the time and memory limit for each problem to 7200 seconds and 16 GiB
respectively. To demonstrate generalizability, our test set contains problems with object counts that
are much larger than the training policies used. The largest problems in our test sets contain at least
twice the number of objects than those used during training. For example, in the Keva domain, we
use training policies with towers of height up to 6 and evaluate on problems with towers of height up
to 14. The minimum and maximum number of problems that we used in our test set are 12 and 26
problems respectively. Additional information of our empirical setup such as problem parameters,
hyperparameters used for conguring baselines, etc., is included in Appendix B.

4.1 Results and Analysis

Our evaluation metric compares the time required to nd a partial proper policy. We also compare
the quality of the computed policies by executing the policies for 100 trials with a horizon limit of

8

100 and averaging the obtained costs. We report our overall results averaged across 10 different runs
and report results up to one standard deviation. Results of our experiments are illustrated in Fig. 3.

In four out of ve domains (Schedule, Rover, Keva, and Delicate Can), our approach takes signicantly
less time compared to the corresponding baseline. For example, in Schedule, the baselines timed out
for all of the large test problems reported. GPAs are able to successfully prune away action transitions
that are not helping, leading to large savings in the computational effort. The costs obtained for
executing these policies are also quite similar to each baseline (e.g., Keva), showing that GPAs are
capable of learning good policies much faster without compromising solution quality.

Our approach was unable to outperform the baselines in the Gripper domain. An interesting phe-
nomenon that we observed was that training policies returned by LAO∗ were different for the case
of even/odd balls due to tie-breaking and this led to the GPA not pruning actions as effectively.
Nevertheless, we expected the GPA to outperform the baselines. We performed a deeper investigation
and found that the FF heuristic used is already well-suited to prune away actions that the GPA would
have otherwise pruned. This results in additional overhead being added in our SSP solver from the
process of abstraction. However, heuristics that allow such pruning are difcult to synthesize, and in
many cases, are hand-coded by an expert after employing signicant effort.

There was a decrease in the gains observed in the Delicate Can domain between problem IDs 10 and
11. We investigated this issue and found that the GPA constructed was unable to effectively prune
transitions in problem ID 11. This is because the training policies that were used were not sufcient
to learn a GPA that could generalize well to larger problems in the Delicate Can domain. As a result,
π∗

P |
G

was not a partial proper policy for problem ID 11 and thus additional computation was required.

Finally, because of the xed timeout used, the maximum time of the baselines was bounded, making
the impact of GPAs appear smaller in larger problems. For example, in problem ID 25 (10) of the
Rover (Delicate Can) domain, the Soft-FLARES (LRTDP) baseline timed out in all our runs, but it
had found a policy that had comparable costs. However, when allowed to run to convergence, it took
over 15000 seconds in a targeted experiment that we performed for investigating this issue.

5 Related Work

There has been plenty of dedicated research to improve the efciency for solving SSPs. LAO∗

(Hansen and Zilberstein, 2001) computes policies by using heuristics to guide the search process.
LRTDP (Bonet and Geffner, 2003) uses a labeling procedure in RTDP wherein a part of the subtree
that is ϵ-consistent is marked as solved leading to faster ending of trials. SSiPP (Trevizan and
Veloso, 2012) uses short-sightedness by only considering reachable states up to t states away and
solving this constrained SSP. Soft-FLARES (Pineda and Zilberstein, 2019) combines labeling and
short-sightedness for computing solutions. These approaches are complete and can be congured to
return optimal solutions, however, they do not learn any generalized knowledge and as result cannot
readily scale to problems with a larger number of objects.

Determinization-based approaches (Yoon et al., 2007; Pineda and Zilberstein, 2014) build sparse
representations of SSP problems by reducing the branching factor in the “environment’s choices”
(the set of probabilistic effects of an action), while our approach uses abstraction to create abstract
controllers that generalize solutions to SSPs and reduces the branching factor in the agent’s choice
(the set of applicable actions). Our approach always considers all possible outcomes of every action.
This is a key advantage of our approach since GPAs are able to better handle unexpected outcomes
when executing an action in the policy that would otherwise require replanning.

Boutilier et al. (2001) utilize decision-theoretic regression to compute generalized policies for rst-
order MDPs represented using situation calculus. They utilize symbolic dynamic programming to
compute a symbolic value function that applies to problems with varying number of objects. FOALP
(Sanner and Boutilier, 2005) uses linear programming to compute an approximation of the value
function for rst-order MDPs while providing upper bounds on the approximation error irrespective
of the domain size. A key limitation of their approach is requiring the use of a representation of
action models over which it is possible to regress using situation calculus. API (Fern et al., 2006) uses
approximate policy iteration with taxonomic decision lists to form policies. They use Monte Carlo
simulations with random walks on a single problem to construct a policy. API offers no guarantees of
completeness or hierarchical optimality.

9

Parr and Russell (1997) propose the hierarchical abstract machine (HAM) framework wherein
component solutions from problem instances can be combined to solve larger problem instances
efciently. Recently, Bai and Russell (2017) extended HAMs to Reinforcement Learning (RL)
settings− where transition dynamics are not known− by leveraging internal transitions of the HAMs.
A key limitation of both these approaches is that the HAMs were hand-coded by a domain expert.

Related work in Generalized Planning focuses on the problem of computing generalized plans and
policies such as our GPAs (Srivastava et al., 2012). Bonet et al. (2009) automatically create nite-state
controllers for solving problems using a set of examples by modeling the search as a contingent
problem. Their approach is limited in applicability since it only works on deterministic problems
and the features they use are hand-coded. Aguas et al. (2016) utilize small example policies to
synthesize hierarchical nite state controllers that can call each other. However, their approach
requires all training data to be provided upfront. D2L (Francès et al., 2021) utilizes description logics
to automatically generate features and reactive policies based on those features. Their approach
comes with no guarantees for nding a solution and can only work on deterministic problems.

Deep Learning based approaches such as ASNets (Toyer et al., 2018) learn generalized policies for
SSPs using a neuro-symbolic approach. They use the action schema from PPDDL to create alternating
action and proposition layers. They do not learn generalized controllers and instead duplicate weights
in a post-processing step to represent the generalized policy. GRL (Karia and Srivastava, 2022) uses
Description Logic based feature evaluations of states as input to a neural network for computing
generalized policies in RL settings. A common limitation of such approaches is the lack of any
interpretability as well as theoretical guarantees of completeness or optimality. Furthermore, these
approaches can be susceptible to catastrophic forgetting. GPAs are interpretable, provide strong
theoretical guarantees, and do not lose any information when training data is presented as a stream.

Our approach differs from existing work in several aspects. Our approach constructs a domain-
dependent GPA automatically without any human intervention. Using canonical abstraction, we lift
problem-specic characteristics like object names and object counts in a domain-independent fashion.
Another key difference between other techniques is that our approach can easily incorporate solutions
from new examples into the GPA without having to remember any of the earlier examples. This
allows our learning to scale better and can naturally utilize leapfrog learning (Groshev et al., 2018;
Karia and Srivastava, 2021, 2022) when presented with a large problem in the absence of training
data. Finally, our approach comes with guarantees of completeness and hierarchical optimality given
the training data presented. This means that if a solution exists, our approach will nd it (Thm. 2) and
it will be guaranteed to be hierarchically optimal or better (Thm. 3).

6 Conclusions and Future Work

We show that non-deterministic Generalized Policy Automata (GPAs) constructed using solutions of
small example SSPs are able to signicantly reduce the computational effort for nding solutions
for larger related SSPs. Furthermore, for many benchmark problems, the search space pruned by
GPAs does not prune away relevant transitions thus allowing our approach to compute policies of
comparable cost in a fraction of the effort. Our approach comes with guarantees of hierarchical
optimality and also comes with the guarantee of always nding a solution to the SSP.

There are several interesting research directions for future work. Description Logics are more
expressive than canonical abstractions and have been demonstrated to be effective at synthesizing
memoryless controllers for deterministic planning problems (Bonet et al., 2019). Our approach
can easily utilize any relational abstraction and it would be interesting to evaluate the efcacy of
description logics. Finally, our approach is applicable when solutions have a pattern. We believe that
more intelligent training data generation methods could help improve performance in domains like
Delicate Can. We plan to investigate these directions of research in future work.

Acknowledgements

We would like to thank Deepak Kala Vasudevan for help with a prototype implementation of the
source code. We would like to thank the Research Computing Group at Arizona State University for
providing compute hours for our experiments. This work was supported in part by the NSF under
grants IIS 1909370 and IIS 1942856.

10

References

J. S. Aguas, S. J. Celorrio, and A. Jonsson. Hierarchical nite state controllers for generalized
planning. In Proc. IJCAI, 2016.

A. Bai and S. J. Russell. Efcient reinforcement learning with hierarchies of machines by leveraging
internal transitions. In Proc. IJCAI, 2017.

D. P. Bertsekas and J. N. Tsitsiklis. Neuro-dynamic programming. Athena Scientic, 1996. ISBN
1886529108.

B. Bonet and H. Geffner. Labeled RTDP: improving the convergence of real-time dynamic program-
ming. In Proc. ICAPS, 2003.

B. Bonet, H. Palacios, and H. Geffner. Automatic derivation of memoryless policies and nite-state
controllers using classical planners. In Proc. ICAPS, 2009.

B. Bonet, G. Francès, and H. Geffner. Learning features and abstract actions for computing general-
ized plans. In Proc. AAAI, 2019.

C. Boutilier, R. Reiter, and B. Price. Symbolic dynamic programming for rst-order mdps. In Proc.
IJCAI, 2001.

A. Fern, S. W. Yoon, and R. Givan. Approximate policy iteration with a policy language bias: Solving
relational markov decision processes. J. Artif. Intell. Res., 25:75–118, 2006.

G. Francès, B. Bonet, and H. Geffner. Learning general planning policies from small examples
without supervision. In Proc. AAAI, 2021.

S. Garg, A. Bajpai, and Mausam. Symbolic network: Generalized neural policies for relational mdps.
In Proc. ICML, 2020.

E. Groshev, M. Goldstein, A. Tamar, S. Srivastava, and P. Abbeel. Learning generalized reactive
policies using deep neural networks. In Proc. ICAPS, 2018.

E. A. Hansen and S. Zilberstein. Lao: A heuristic search algorithm that nds solutions with loops.
Articial Intelligence, 129(1-2):35–62, 2001.

J. Hoffmann. FF: the fast-forward planning system. AI Mag., 22(3):57–62, 2001.

R. Karia and S. Srivastava. Learning generalized relational heuristic networks for model-agnostic
planning. In Proc. AAAI, 2021.

R. Karia and S. Srivastava. Relational abstractions for generalized reinforcement learning on symbolic
problems. In Proc. IJCAI, 2022.

A. Kolobov, Mausam, and D. S. Weld. A theory of goal-oriented mdps with dead ends. In Proc. UAI,
2012.

D. Long and M. Fox. The 3rd international planning competition: Results and analysis. J. Artif. Intell.
Res., 20:1–59, 2003.

R. Parr and S. J. Russell. Reinforcement learning with hierarchies of machines. In Proc. NeurIPS,
1997.

L. E. Pineda and S. Zilberstein. Planning under uncertainty using reduced models: Revisiting
determinization. In Proc. ICAPS, 2014.

L. E. Pineda and S. Zilberstein. Soft labeling in stochastic shortest path problems. In Proc. AAMAS,
2019.

S. Sagiv, T. W. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic. ACM Trans.
Program. Lang. Syst., 24(3):217–298, 2002.

S. Sanner. Relational dynamic inuence diagram language (RDDL): Language description. http:
//users.cecs.anu.edu.au/~ssanner/IPPC_2011/RDDL.pdf, 2010.

11

S. Sanner and C. Boutilier. Approximate linear programming for rst-order mdps. In Proc. UAI,
2005.

N. Shah, D. K. Vasudevan, K. Kumar, P. Kamojjhala, and S. Srivastava. Anytime integrated task and
motion policies for stochastic environments. In Proc. ICRA, 2020.

S. Srivastava, N. Immerman, and S. Zilberstein. Learning generalized plans using abstract counting.
In Proc. AAAI, 2008.

S. Srivastava, N. Immerman, and S. Zilberstein. A new representation and associated algorithms for
generalized planning. Artif. Intell., 175(2):615–647, 2011.

S. Srivastava, N. Immerman, and S. Zilberstein. Applicability conditions for plans with loops:
Computability results and algorithms. Artif. Intell., 191-192:1–19, 2012.

R. S. Sutton and A. G. Barto. Reinforcement learning - an introduction. MIT Press, 1998. ISBN
978-0-262-19398-6.

A. Tamar, Y. Wu, G. Thomas, S. Levine, and P. Abbeel. Value iteration networks. In Proc. NeurIPS,
2016.

S. Toyer, F. W. Trevizan, S. Thiébaux, and L. Xie. Action schema networks: Generalised policies
with deep learning. In Proc. AAAI, 2018.

F. W. Trevizan and M. M. Veloso. Short-sighted stochastic shortest path problems. In Proc. ICAPS,
2012.

J. Wu and R. Givan. Discovering relational domain features for probabilistic planning. In Proc.
ICAPS, 2007.

S. W. Yoon, A. Fern, and R. Givan. Ff-replan: A baseline for probabilistic planning. In Proc. ICAPS,
2007.

H. L. S. Younes, M. L. Littman, D. Weissman, and J. Asmuth. The rst probabilistic track of the
international planning competition. J. Artif. Intell. Res., 24:851–887, 2005.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Sec. 4.1

(c) Did you discuss any potential negative societal impacts of your work? [N/A]

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]

(b) Did you include complete proofs of all theoretical results? [Yes] Complete proofs are
included in AppendixA.1.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] A link to the
public version of the source code has been added to the paper as a footnote.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] The main paper describes signicant details of training. Detailed
descriptions of the entire setup are included in Appendix B.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Fig. 3 shows error bars for the times. Standard deviations
for costs are included in Appendix B as is noted in the caption for Fig. 3.

12

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Sec. 4

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] We appropriately cite
the problem generators that we used in Sec. 4.

(b) Did you mention the license of the assets? [N/A]

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

