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ABSTRACT

The development of foundation models for functional magnetic resonance imaging (fMRI) time se-
ries holds significant promise for predicting phenotypes related to disease and cognition. Current
models, however, are often trained using a mask-and-reconstruct objective on small brain regions.
This focus on low-level information leads to representations that are sensitive to noise and tem-
poral fluctuations, necessitating extensive fine-tuning for downstream tasks. We introduce Brain-
Semantoks, a self-supervised framework designed specifically to learn abstract representations of
brain dynamics. Its architecture is built on two core innovations: a semantic tokenizer that aggregates
noisy regional signals into robust tokens representing functional networks, and a self-distillation ob-
jective that enforces representational stability across time. We show that this objective is stabilized
through a novel training curriculum, ensuring the model robustly learns meaningful features from
low signal-to-noise time series. We demonstrate that learned representations enable strong perfor-
mance on a variety of downstream tasks even when only using a linear probe. Furthermore, we
provide comprehensive scaling analyses indicating more unlabeled data reliably results in out-of-
distribution performance gains without domain adaptation.

1 INTRODUCTION

The investigation of brain dynamics has been a cornerstone of neuroscience, progressing our understanding of human
cognition, disease, and aging. Functional magnetic resonance imaging (fMRI) has been an instrumental modality in
this endeavor; its blood-oxygen-level-dependent (BOLD) measurement relates to local changes in brain activity, and
its non-invasive nature has made it a primary tool across numerous research fields (Ogawa et al. [1990; Logothetis|
2008). Despite being extremely high-dimensional, fMRI data is often collected in limited samples, which can severely
constrain the potential insights (Button et al.| 2013} |Poldrack et al., 2017). This challenge motivates a shift towards
data-driven representation learning, where progress in self-supervised learning (SSL) can enable the training of highly
capable ’foundation” models from large quantities of unlabeled data, promising a new way forward for neuroimaging
analysis.

Current fMRI foundation models, however, adapt reconstruction-centric paradigms from NLP and vision, such as
masked signal prediction (Caro et al., [2023; |Wang et al.,|2025). While latent-space reconstruction (e.g., JEPA; |Dong
et al.| (2024)) avoids modeling the substantial noise in the BOLD signal, these models still focus on low-level, regional
information. We argue this objective is misaligned with predicting stable, high-level phenotypes, as the resulting repre-
sentations require extensive fine-tuning for such tasks, reducing the utility of a foundation model. This dependency is
particularly problematic for fMRI, where transfer is challenged by significant variations across datasets in participant
cohorts, hardware, and acquisition protocols.

To address these issues, we hypothesize that effectively predicting stable phenotypes requires a shift from reconstruc-
tion to abstraction. The goal should not be to perfectly encode the BOLD signal, but to abstract away from it to find
the underlying phenotypic signature. We propose Brain-Semantoks, a foundation model built on a strong neurosci-
entific inductive bias to learn such abstract representations. Our approach starts at the input level, recognizing that
self-attention mechanisms, central to modern transformers, perform best on sequences of low-noise, semantic tokens,
akin to words in natural language. Time series of individual, small regions are poor tokens in this regard as they are
noisy and lack high-level meaning. We therefore introduce a semantic tokenizer, which aggregates information from
regions within a functional brain network (e.g., default mode network) into a single, robust token. This creates a
shorter, more computationally efficient, and semantically meaningful sequence for the transformer to operate on.

With these semantic tokens, we then shift the learning objective itself. Instead of focusing on the reconstruction of
masked signals, Brain-Semantoks is trained using a self-distillation objective to produce a stable, summary represen-
tation across different temporal views of the same scan (Grill et al., 2020; |Caron et al., 2021). This explicitly trains
the model to capture a stable, high-level representation of an individual’s brain dynamics, which we expect to transfer



better across data distributions. However, while conceptually highly suitable, we found that applying this objective to
low signal-to-noise fMRI data can lead to training instability, where the model converges on a poor, simple solution.
To solve this, we introduce a Teacher-guided Temporal Regularizer (TTR), a novel training curriculum active only at
the start of training. This regularizer guides the model to first learn the time-averaged signature of each network before
modeling more complex temporal variations, ensuring robust and meaningful pretraining convergence. The resulting
representations are particularly powerful for linear probing, indicating they are well-disentangled and broadly useful
without task-specific fine-tuning.

Contributions. Our contributions are threefold. First, we propose a new pre-training approach that prioritizes abstract
representations over signal reconstruction, enabled by a novel semantic tokenizer and a Teacher-guided Temporal
Regularizer (TTR) to stabilize training. Second, we introduce Brain-Semantoks, a foundation model trained with
this method that achieves state-of-the-art performance on diverse downstream tasks under a rigorous linear probing
protocol. Finally, we provide the first detailed scaling analysis for fMRI foundation models, showing consistent out-
of-distribution performance gains without domain adaptation.

2 RELATED WORK

Self-Supervised Learning for MRI. Much early self-supervised learning work focused on reconstruction using auto-
encoders (Han et al.,2019; Pinaya et al., 2019; |Kim et al., 2021)), using relatively limited data. The first effort to build
an fMRI foundation model similarly adapted reconstruction-based objectives popular in other domains. BrainLM
(Caro et al., |2023)) employs a masked modeling objective to reconstruct the BOLD signal in input space. While ef-
fective, this approach risks modeling the substantial noise inherent in fMRI data. More recent work like Brain-JEPA
(Dong et al. 2024) mitigates this by predicting masked representations in a latent space, thereby learning to ig-
nore noise. Concurrent preprint NeuroSTORM operates on 4D voxel data, performing spatio-temporal reconstruction
(Wang et al., 2025). However, all these methods remain fundamentally focused on predicting low-level information.
In contrast, models like BrainMass learn from static functional connectivity matrices (Yang et al.| [2024), ignoring the
rich temporal dynamics central to our work.

Self-Distillation Learning. Self-distillation has proven highly effective for learning semantic features, improving
upon contrastive learning methods (Chen et al.| 2020). Seminal works include MoCo (He et al., 2020), BYOL (Grill
et al.,[2020), and DINO (Caron et al., [2021} (Oquab et al.,|2023; |Siméoni et al.,|2025) demonstrated that a student net-
work can learn powerful, linearly separable representations by matching the output of a teacher network (a momentum-
updated version of itself) across different views of a sample. This approach avoids “representational collapse” without
requiring negative samples or a reconstruction loss. The iBOT framework (Zhou et al.,|2021) further advanced this by
integrating a masked-token prediction objective within the distillation framework, enabling the model to learn both a
global summary representation as well as rich, context-aware local features. Recent work by Wu et al|(2025) makes
important progress in understanding what is necessary to prevent collapse and significantly simplifying the approach,
reducing the number of hyperparameters.

3 METHOD: BRAIN-SEMANTOKS

Our proposed framework, Brain-Semantoks, learns abstract and temporally stable representations from fMRI time
series. The methodology is built upon three core innovations designed to address the unique challenges of fMRI data.
First, we introduce a paradigm performing self-distillation across time, that explicitly trains for high-level representa-
tions suitable for transfer learning. Second, we develop a semantic tokenizer with a strong neuroscientific inductive
bias to create a robust and meaningful input space for our encoder model. Finally, we introduce a training curricu-
lum that stabilizes the learning objective, ensuring convergence on low signal-to-noise data. The framework uses a
student-teacher architecture, as depicted in Figure

3.1 A SELF-DISTILLATION FRAMEWORK FOR SEMANTIC REPRESENTATIONS

The primary goal of a foundation model is to learn representations that are broadly applicable without requiring task-
specific fine-tuning. To achieve this with fMRI, a model must learn to capture the stable, underlying phenotypic
signature of a subject, abstracting away from transient noise and acquisition-specific artifacts.

Input Data and Augmentation: We represent a subject’s fMRI time series as matrix X € R where C is the
number of brain regions of interest (ROIs) and 7" is the number of time points. To generate different views of the
same underlying brain dynamics we create two long temporal segments of length T¢,.,,, < T resulting in two views,

X and X(?), Unlike computer vision, a large set of intuitive augmentations are not available for fMRI. We therefore
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Figure 1: Brain-Semantoks. A student-teacher architecture is used to learn stable brain dynamics representations
across time by aligning long temporal views. The semantic tokenizer (&) is used to produce robust tokens of func-
tional brain networks, which serve as input to a transformer encoder (f). Three losses are used during pretraining:
a temporary regularisation loss for stability (L7 r), a within-view, latent space prediction loss of masked tokens
(L7ok), and a global cross-view loss to learn a high-level, semantic representation (Lo g).

mainly rely on self-distillation across time and only lightly further augment the views with corrupting transformations:
we randomly select a fraction of channels (7.) and contiguous timepoints (7;) and set them to zero, add gaussian noise
sampled with ¢ = 0 and o = 7, and finally scale the time series amplitude X 7.

Student-Teacher Framework: We use a student-teacher architecture to enforce representational consistency across
these two views. The student network f5 (), is trained to match the output of the teacher network f;(6;). The teacher
provides a stable regression target as its weights are an exponential moving average (EMA) of the student’s weights:
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where the momentum coefficient o gradually increases during training. This forces the student to learn high-level
representations which are stable across time.

3.2 SEMANTIC TOKENIZER

We posit that standard tokenization such as a direct linear projection of ROI signals is suboptimal for fMRI data.
This approach creates overly long sequences of noisy, low-level tokens that hinder a transformer’s ability to learn
meaningful long-range dependencies. Our innovation is a semantic tokenizer, G(®), that addresses this by creating
a compact and robust input space grounded in a core neuroscientific prior: the brain’s organization into functional
networks. For a given fMRI scan X (*), our tokenizer uses N parallel, network-specific modules, g,,, each operating
on the time series of a single network, M,, ® X (), to produce a sequence of P semantically rich, D-dimensional

tokens, Z'%).

To model the BOLD signal’s complex temporal structure, each module g,, first divides its input time series into
P relatively large patches, x,,, inspired by the temporal stability of macro-scale brain dynamics (Allen et al., 2014;
Vidaurre et al.,[2017). Within each patch, a multi-scale convolutional filter bank, composed of a standard convolutional
branch, Convgq(+), and a structured convolutional branch, Convy,(+) (Li et al., 2022), captures hierarchical temporal
patterns. The Convgg branch uses short kernels for local, cross-ROI dependencies, while the parameter-efficient
Convy, branch uses longer, decaying kernels to enforce a temporal inductive bias absent in standard ViT architectures.

A final D-dimensional token embedding for each patch is generated via the transformation: token =
LayerNorm (AvgPool (GELU ([Convyq(z,); Convg(z,)]))). The complete token tensor is then formed by concate-

nating the outputs from all network modules, Z(*) = [Zg”); R Z(Nv)], resulting in a final tensor of shape RV*F>D,
This approach yields a compact and semantically rich input that provides the transformer encoder with a better starting
point for learning, which is crucial for the stability of the self-distillation framework.



3.3 TRANSFORMER ENCODER AND MASKING

The sequence of network-tokens Z() is flattened into a sequence of length N x P. We add sinusoidal positional
embeddings to encode the temporal order of the patches and a learnable network-specific embedding for each of the N
networks to encode their identity. Finally, a learnable [CLS] token is prepended to the sequence, yielding a sequence
of length N x P + 1.

The student and teacher models each consist of two core components: a transformer encoder backbone, f(6), and a
projection head, h(v)). The backbone, f, processes the input token sequence to produce network and [CLS] embed-
dings. These embeddings are then processed by the projector, h, into the space where the distillation loss is minimized.
The projector is used only during pre-training and is discarded thereafter, while the transferable representations are
the outputs from the teacher’s encoder backbone, f:(6;).

The student network, f,(6;), receives a masked version of the token sequence. Masking is determined by a binary
mask B(*) ¢ {0,1}¥*F which replaces tokens with a learnable mask embedding. The teacher network always
receives the full, unmasked sequence. To reduce the degree to which the model can rely on simple, interpolative
relationships to predict masked tokens, we perform ’slice masking’. Specifically, we treat the input network-tokens
as a 2D matrix of size NV x P (networks by temporal patches) and mask about entire ’slices’ rather than random
individual tokens. We randomly select one of two strategies on a sample-level to increase data diversity. The first,
network slicing, masks entire rows, hiding all temporal data for one or more selected networks. Second, temporal
slicing masks a contiguous block of entire columns, hiding information from all networks for a specific period. By
masking large, contiguous parts of data, we force the model to learn more complex relationships between networks
and across time.

3.4 PRETRAINING OBJECTIVE

Finally, we propose a multi-component objective function that includes a curriculum to ensure stable training. All
loss components are computed using the outputs of the projection heads (hs and h;), which are denoted as zs and
z¢. Following recent work simplifying DINO (Wu et all 2025), we regularize with a coding rate term to prevent
representation collapse.

Global Loss To learn a high-level, stable representation of the brain time series, we enforce consistency between the
[CLS] tokens across two views. The loss is bidirectional and regularized:

Lors =E [d(zscis1), zeeise) + d(zs,cus@)s 2e,cus(1))] — veusRe (Covzs cus)) 2

where d is the squared Euclidean distance, the expectation [E is taken over the data, R, is the total coding rate regu-
larizer, and -y is a hyperparameter governing the regularization strength. R, is a differentiable measure related to the
determinant of the feature covariance matrix. Minimizing its negative forces the covariance matrix to have a large
determinant, which prevents the learned features z from collapsing into a lower-dimensional subspace.

Network Token Loss To promote the model learning rich, temporally-sensitive representations, we apply an auxiliary
distillation loss on the network tokens that were masked in the student’s input, guided by the 2D mask matrix B(*)
(Zhou et al.||2021). This loss is computed within each view:
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Due to the semantic tokenizer, this task is performed on a more semantic network-level, rather than on a noisier, lower
region-level.

Teacher-guided Temporal Regularizer

Although our tokenization strategy significantly improves pretraining effectiveness, we found that a direct application
of these distillation objectives can still lead to poor solutions with noisy fMRI time series. We therefore develop a
principled stabilizing curriculum based on this observation.

Specifically, as we observe that a more compact token sequence aided convergence and yielded representations with
better predictive performance, we guide the student network to first learn the time-averaged representation of each
network. Conceptually, this constrains the token space N x P + 1 towards N + 1, which helps find a good initial
representation which can thereafter be refined with temporal variability. This can be directly adopted in the distillation



framework by using the teacher model to provide the network-specific targets. The summary token for each network
n is computed by averaging its P patch embeddings from the transformer output:
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The regularisation loss is then applied across views to these N summary tokens:
N N
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Total Loss Function

The final training objective is a weighted sum of the three hierarchical loss components:

Lrotat = Lors + Aok LTok + ATTRLTTR (6)

where Ao and Aprp are scalar hyperparameters balancing the contributions of different levels of self-supervision.
Following training, the student weights are discarded while the teacher weights are used for downstream evaluation.

4 EXPERIMENTAL SETUP

4.1 DATASETS

Pretraining Data

We leveraged the largest 3T resting-state fMRI corpus available for unlabeled pretraining. Specifically, we use 39139
preprocessed recordings from the UKBioBank as well as the participant age and sex variables (UKB; [Miller et al.
(2016); application number [withheld for anonymous review], We held out 1625 recordings for downstream evaluation.

We extract parcel-wise time series using the cortical Schaefer-400 atlas (Schaefer et al.,2018)), subcortical Tian-III atlas
(Tian et al., [2020), and cerebellar Buckner-7 atlas (Buckner et al., [2011])), yielding 457 total ROIs. Data normalization
is a crucial step to aid transfer learning. Whereas prior work has relied on robust scaling, which preserves ROI-specific
'DC’ offsets resulting from the fMRI scanner, it impairs transferability to datasets which have less or no such offsets.
We therefore applied z-scoring to each ROI per scan. As the UKB’s temporal resolution (0.735s) is higher than most
available datasets, we temporally downsample to 2s, resulting in 180 timepoints for the 6 minute recordings. Both
normalization and resampling happen on the parcellated time series, meaning these are light operations that can be
performed online during data loading and thereby ease transferability.

Downstream Tasks

For downstream prediction, we construct a varied set of tasks with differing sample sizes in order to evaluate consis-
tency across contexts (Appendix Table[§). We transform continuous targets into multi-class targets to facilitate direct
comparisons between linear probing and finetuning performance, as linear probes can be inadequate for regression
problems. We perform internal evaluation using sex and age prediction on the UKB dataset. For age, we construct
five age-ranges with equal sample sizes and perform five-class classification. We leverage multiple additional datasets
for external evaluation. SRPBS is a Japanese cohort of patients with schizophrenia, major depressive disorder, and
healthy controls (Tanaka et al.| 2021). We perform binary classification versus healthy controls for each disorder.
ABIDE includes participants with autism-spectrum disorder (ASD) and healthy participants, enabling binary predic-
tion (Craddock et al., [2013} D1 Martino et al., [2014). Healthy Brain Network (HBN) is a pediatric, clinical cohort
for which we predict scores on language (measured by the CELF) and cognitive (WISC) scales using three bins with
matched sample sizes (Alexander et al.,2017). We furthermore use this dataset to test out-of-distribution demographic
prediction, as this dataset has no overlap in age with the UKB data. Next, LEMON is a German cohort of healthy
participants; we predict scores on a personality scale (MDBF) and two cognitive tasks (CVLT, TMT) again following
the construction of three bins with equal sample sizes (Babayan et al., [2019). For comparisons with baselines, we
therefore use four demographic prediction tasks, three clinical diagnoses, three cognitive and language scores, and
one personality score. To further contrast in- and out-of-distribution scaling performance, we additional use the de-
mographic data from SRPBS and the pediatric ADHD200 dataset (Bellec et al.,[2017). Critically, these datasets differ
in terms of the participant cohort, acquisition hardware and protocols, as well as data processing. The only time series
standardization are the aforementioned z-scoring and resampling (to 2s) transformations.



4.2 IMPLEMENTATION

Training and Model Architecture

We sample temporal views of length T, = 100 timepoints. At a sample level, we apply light augmentations by
randomly zeroing out a fraction of channels 7. ~ 1[0, 0.1] and contiguous timepoints 73 ~ [0, 0.3], adding Gaussian
noise with o = 7, = 0.1, and scaling the amplitude by 75 ~ U/[0.8,1.2]. The semantic tokenizer G maps an input
time series X € RE*Teror to a token tensor Z € RY*P*Ds with a patch length of 20. We define N = 9 functional
networks, based on the Yeo 7-network parcellation for the cortex (Yeo et al. 2011), with two additional networks
comprising all subcortical and cerebellar ROIs, respectively. Within each network-specific tokenizer g,,, the standard
and structured convolutional branches each output features of dimension D f/ 2, which are then concatenated. The
standard convolution uses a kernel size of 3. The structured, depthwise-separable convolutions use a base kernel size
of 4 across 3 scales with a decay rate of 0.5, creating a receptive field of 16 timepoints. A subsequent linear layer
projects the network-specific ROI features to the target dimension for the structured convolutional branch.

The transformer encoder f uses a dimensionality D; = 768 with 8 layers. The projection head h is an MLP with 2
hidden layers (D}, = 1024) and an output layer projecting down to 128 dimensions and applying ¢2-normalization.
The head is shared across all three distillation objectives. We find it suffices to set Ayrg = 0.5 (i.e., weighting
of Lrrr) and cosine-decay this weighting to zero over the first 5% of training steps. We use slice-masking with
Aror = 0.5 (weighting-factor) and a high masking ratio sampled from 2/[0.65, 0.85]. Following Wu et al.| (2025), we
sety = (Dy + B)/(D;B) where Dy is the feature dimension and B is the batch size. We provide the complete set of
optimization hyperparameters in Appendix Table 0] The semantic tokenizer allows pretraining in under two hours on
a single GPU with less than 20 GB of memory.

Evaluation

We evaluate representations in two settings: linear probing and full fine-tuning. For linear probing, we freeze the
pretrained teacher encoder and train a single linear layer on top of its outputs to assess raw representation quality. For
fine-tuning, the entire model is updated to provide a comparison with supervised baselines. All evaluations use a 10-
fold cross-validation procedure while stratifying on the target. At test time, we average predictions of 8 equally-spaced
temporal crops for all methods. For Brain-Semantoks evaluations and ablations, we pretrain using three random seeds
and average their scores for each fold to improve reliability.

The linear probing setup is standardized across models (Appendix Table 0). For Brain-Semantoks, the input to the
linear layer is the concatenation of the teacher’s [CLS] token and the average of all network-patch tokens. For
the linear probing comparisons, we omit the LEMON dataset as we only have access to filtered, preprocessed data.
The ROI-specific offsets that BrainLM and Brain-JEPA were pretrained on are therefore not present, and we observe
chance-level performance of these models on this dataset. We note that our normalization strategy is universally
applicable however.

Baselines

The two main baselines we compare against are BrainLM (Caro et al., |2023) and Brain-JEPA (Dong et al.| [2024),
which are both fMRI time series foundation models using parcellated data. Importantly, both models are pretrained
solely on the UKB, which is necessary for informative comparisons. We further compare against strong supervised
approaches. The most widely-used method for prediction with fMRI is to compute pairwise Pearson correlations be-
tween ROI time series as a measure of *functional connectivity’ (FC) and use a support vector machine for prediction.
We select the regularisation strength using the validation set (C' = {1073,1072,1071, 1,10, 10%,103}). Additionally,
BolT is a Transformer-based architecture that classifies fMRI time series by using a novel fused window attention
mechanism to hierarchically build representations from local to global temporal scales (Bedel et al., [2023)). Finally,
Brain Network Transformer (BNT) utilizes ROI connection profiles for positional encoding and introduces an Or-
thonormal Clustering Readout mechanism. This novel pooling function learns cluster-aware embeddings by grouping
functionally similar brain regions to improve graph-level predictions (Kan et al., [2022).

5 RESULTS

We evaluated Brain-Semantoks on a diverse set of downstream tasks, assessing its performance via linear probing
against state-of-the-art foundation models and fully supervised methods. We then conducted extensive scaling and
ablation studies to validate our architectural and training choices, and finally leveraged our model’s unique properties
for built-in interpretability.



Table 1: Comparison of mean balanced accuracy (%) for fMRI time series foundation models using linear probes.
Values are presented as mean =+ standard deviation across ten folds.

Model ABIDE HBN CELF HBN WISC HBN Age HBN Sex UKB Age UKB Sex SRPBS MDD  SRPBS SZ
BrainLM 53.84 £3.00 42.03+341 3826+4.11 43894212 6544+1.72 30.16+141 86.71+0.63 57.61+4.14 5572+6.62
Brain-JEPA 5292 +£3.53 4150+5.16 38344342 39.814+208 6396+1.45 30.60+2.12 8323+1.26 52.72+4.18 57.63+3.75

Brain-Semantoks  65.13 = 2.14 42.18 £2.80 40.87+243 39.16+0.81 69.52+093 31.15+1.15 87.524+0.52 62.60+479 69.26 + 3.98

Table 2: Model Performance Comparison with fully supervised and finetuned baselines (Balanced Accuracy (%)).

Model UKB-Age UKB-Sex HBN-Age HBN-Sex HBN-CELF HBN-WISC

FC 27.04 £1.51 80.63 £+ 0.89 41.81 +1.36 66.51 + 1.42 42.41 £+ 2.91 39.79 £ 2.91

BNT 20.48 £+ 1.08 77.91 + 3.37 22.59 + 4.31 61.74 £+ 9.69 42.40 + 3.98 38.53 £ 2.94

Bolt 26.85 + 1.59 80.30 £ 0.91 37.67 £ 1.41 65.22 + 1.23 42.45 +1.78 39.53 + 4.42

BrainLM 30.26 £+ 1.66 85.75 £ 0.77 39.31 £ 2.02 64.37 £+ 2.32 39.27 £ 4.46 35.34 £+ 3.61

Brain-JEPA 30.60 £ 1.60 86.70 £+ 1.20 41.91 £+ 2.00 65.57 £+ 2.28 39.60 £ 3.50 35.20 £+ 3.10

Brain-Semantoks 31.15+1.15 87.52 +£ 0.52 39.16 £+ 0.81 69.52 + 0.93 42.18 + 2.80 40.87 + 2.43

+ Finetune 33.91 £ 0.87 87.13 £ 0.57 39.41 £ 3.77 69.31 +£0.71 4259 + 1.34 40.82 + 1.51
Model LEMON-CVLT LEMON-MDBF LEMON-TMT ABIDE SRPBS-MDD SRPBS-SZ Avg
FC 39.49 + 8.32 32.29 £+ 6.09 41.14 + 6.58 65.12 + 2.98 60.30 £+ 4.65 71.59 + 5.84 50.68
BNT 36.76 £+ 4.90 37.90 £ 5.12 33.86 £ 6.13 58.38 £ 6.51 57.60 £ 4.57 66.59 + 5.09 46.23
Bolt 39.54 +£4.71 37.98 £ 5.82 40.30 £ 7.52 64.89 + 4.08 59.50 £ 4.52 67.12 £+ 6.23 50.11
BrainLM 37.81 £ 6.91 34.05 £ 1.84 35.33 £ 3.78 53.91 £ 2.23 54.29 + 2.38 60.10 £ 5.79 47.48
Brain-JEPA 30.94 + 6.20 32.26 £+ 6.58 35.48 + 9.58 52.20 £ 4.00 54.00 £ 4.00 60.50 £ 4.40 47.08

Brain-Semantoks 42.10 £ 4.72 40.23 + 5.74 42.88 + 4.05 65.13 + 2.14 62.60 + 4.79 69.26 £ 3.98 52.72
+ Finetune 44.36 £+ 3.36 38.58 + 4.65 39.21 £1.91 6544 + 1.16 63.60 + 2.56 71.05 + 4.39 52.95

5.1 DOWNSTREAM PERFORMANCE

A primary goal for a foundation model is to produce representations that are directly useful for downstream tasks
without extensive fine-tuning. We therefore prioritize evaluation using a rigorous linear probing protocol, where the
pretrained model weights are frozen.

As shown in Table [T} Brain-Semantoks consistently and significantly outperforms existing fMRI foundation models,
BrainLLM and Brain-JEPA, which are based on reconstruction objectives. Our model achieves the highest mean bal-
anced accuracy on eight of the nine tasks, often by a large margin. The improvements are particularly striking on
challenging out-of-distribution clinical datasets, where Brain-Semantoks achieves large performance gains for pre-
dicting ASD, Schizophrenia, and MDD.

We next compared the linear probing performance of Brain-Semantoks to fully fine-tuned models and strong super-
vised baselines in Table[2] With only a linear probe, Brain-Semantoks outperforms all baselines on eight diverse tasks.
The ability to surpass fully supervised models, which are trained end-to-end on task-specific data, highlights the utility
of the representations learned by our pretraining objective.

5.2 SCALING LAWS OF SEMANTIC FMRI REPRESENTATIONS

We conducted the first detailed scaling analysis for fMRI foundation models under a linear probing protocol to under-
stand how performance varies with pretraining data size. We trained Brain-Semantoks on subsets of the UKB dataset
and evaluated on both in-distribution (UKB hold-out) and out-of-distribution tasks.

As shown in Figure 2] performance on nearly all tasks improves predictably with the logarithm of the pretraining data
size, following a power-law relationship characteristic of foundation models in other domains. Critically, we observe
strong scaling laws for out-of-distribution (OOD) generalization. For age and sex prediction (N¢rqin prove = 500),
which enable comparisons for matched prediction tasks, we observe consistent performance increases with more
pretraining data. Remarkably, we note strong and reliable scaling for HBN, which has an age gap of more than 20
years with the UKB (HBN: up to 22, UKB: from 44 years old). Across the majority of tasks, we observe no plateau in
OOD scaling.

Yet, in contrast to fields such as language processing, downstream probing performance is not only affected by scaling,
but also by the baseline performance. We found that this starting point is significantly increased due to the neurosci-
entific inductive biases in Brain-Semantoks: a randomly initialized Brain-Semantoks model significantly outperforms
a randomly initialized baseline with a ROI-level projection layer by up to 12%.
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Figure 2: Scaling performance of linear probing following pretraining on increasing sample sizes. We compare within
and out-of-distribution scaling. RW: Random weights. ROI: We compare to using a linear layer for projecting single-
ROI timeseries instead of our semantic tokenizer.
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Figure 3: We investigate the predictive performance of individual network representations by performing all-but-one
network masking using linear probing.

5.3 INTERPRETABILITY

A common challenge for interpreting deep models is that post-hoc analyses, like input masking, shift the data out of
the training distribution, potentially yielding unreliable results. Our distillation pretraining with slice-masking directly
addresses this. Because the model is trained to predict global information from seeing only a subset of brain networks,
we can probe its learned dependencies in an “in-distribution” manner.

We assessed the importance of each of the 9 functional networks for various downstream tasks by masking all but
one network and evaluating linear probing performance (Figure [3). This reveals which individual networks contain
the most predictive information for a given phenotype. Multiple findings align well with neuroscientific research such
as the importance of the default-mode network for ASD and subcortical regions for MDD (Ramasubbu et al., 2014).
Interestingly, whereas the default-mode network has dominated MDD research, we find that cerebellar activity is more

predictive, which is a more recent hypothesis (Wang et al., 2023).

6 ABLATIONS

We perform ablation studies on core aspects of the Brain-Semantoks framework. We average linear probing per-
formance across ten downstream task, omitting HBN-Age and HBN-Sex to reduce the influence of demographic
prediction on the total score. First, we compare using a linear projection layer operating on single ROIs (as in Brain-
JEPA), instead of our semantic tokenizer (Figure[dJA). We observe unstable training dynamics, as the cosine similarity
between the student’s reconstructed tokens and teacher tokens (i.e., the negative of the token-level loss) to quickly
reach 0.95 and stabilize there (Figure[d[C). This indicates partial collapse where the learned representations are simple
and can be predicted at high accuracy immediately, which is associated with poor downstream performance. Indeed,
we find large gains in downstream performance by adopting the semantic tokenizer, which also results in improved
training dynamics, although instability still exists early in training. By including Teacher-guided Temporal Regulari-
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Figure 4: Tokenizer Ablations. A) Linear probing performance comparison after pretraining with our semantic to-
kenizer vs (minus) a linear projection layer applied to ROIs individually. B) We ablate aggregating into different
numbers of 'networks’ or spatial tokens. Grey lines indicate individual downstream tasks. C) Pretraining dynamics
visualised by the cosine similarity between the teacher tokens and reconstructed student tokens. D) Temporal patch
size ablation. TTR: Teacher-guided Temporal Regularizer

Table 3: Convolution Table 4: TTR  Table 5: Masking Type Table 6: Loss Compo- Table 7: Masking
type for tokenizer Duration nents Ratio
Masking Type  Score

Kernel Score Duration  Score Random 51.03 CLS Maskw  Score Ratio Score
Full kernel (20)  48.28 0% 50.88 Block . ‘S‘g-gé No 1.0 4732 [0.1,0.9] 5033
Short Kernel (3)  50.50 5% 52.39 Network : Yes 0.0 50.10 [0.45,0.55]  51.23
Structured Conv ~ 52.19 100% 49.60 Temporal Slice  51.50 Yes 0.5 5239 [0.5,0.75]  51.88
Short + Struct  52.39 — Slice 52.39 Yes 1.0 51.62 [0.65,0.85]  52.39

Ablation studies using average balanced accuracy for linear probing across ten downstream tasks. w: Weight on
masking loss. TTR Duration is noted as pretraining period during which TTR is active.

sation (TTR), which we decay to zero in the first 5% of training, we observe stable pretraining dynamics and strong
downstream performance. We find using TTR for the entirety of pretraining to be overly restrictive (Table ).

We furthermore ablate the choice of nine functional networks for the semantic tokenizer and we compare to spatially
aggregating more aggressively (into 1 spatial token per temporal patch) or less so (20 or 58 spatial tokens; Figure [AB;
see appendix Table |10| for a detailed description). We observe a significant bias for most downstream tasks towards
fewer spatial tokens, with the best overall performance for the nine network solution. We also ablate the temporal patch
size and convolutional filter bank for the tokenizer, finding that relatively long patches and structured convolutions are
important (Table 3).

Finally, we provide ablations on masking. We find that the influence of the mask loss should not be too high (Table[6),
masking types which reduce interpolation learning are most effective (Table [5), combined with a high masking ratio
(Table[7).

7 DISCUSSION

This paper presents Brain-Semantoks, a novel foundation model for fMRI that marks a significant shift to learning ab-
stract, semantic representations of brain dynamics. By introducing a neuroscientifically-grounded semantic tokenizer
and employing a self-distillation objective, the model effectively learns high-level phenotypic signatures. The results
demonstrate the strength of this approach, achieving state-of-the-art performance under a rigorous linear probing pro-
tocol and often surpassing supervised methods on diverse tasks. This indicates the learned representations are broadly
applicable without domain adaptation.

Future work may benefit from including task-based fMRI data, as our approach here only relied on resting-state data.
Furthermore, while we find that using neuroscience-based functional networks is effective for many downstream tasks,
follow-up research will explore learning how to group ROIs from data rather than having them fixed. Finally, investi-
gations to understand which distribution shifts between pretraining and downstream data are particularly harmful may
help explain why Brain-Semantoks performs better or worse on some tasks and provide insight in how to best address
them.
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Table 8: Summary of datasets, tasks, and sample sizes for downstream evaluations. “Tr/V/T” stands for
Train/Validation/Test.

Dataset  Task Classes Total Size Split Ratio (Tr/V/T) Train Size
UKB Sex 2 1625 0.31/0.08/0.61 500
UKB Age 5 1625 0.31/0.08/0.61 500
HBN Sex 2 1870 0.27/0.27/0.46 500
HBN Age 5 1870 0.11/0.11/0.78 200
HBN WISC FSIQ 3 884 0.60/0.20/0.20 530
HBN CELF Total 3 1005 0.60/0.20/0.20 603
LEMON CVLT 3 212 0.60/0.20/0.20 127
LEMON TMT B-A 3 212 0.60/0.20/0.20 127
LEMON MDBF 3 213 0.60/0.20/0.20 127
SRPBS Schizophrenia 2 291 0.60/0.20/0.20 174
SRPBS MDD 2 499 0.60/0.20/0.20 299
ABIDE  Autism 2 974 0.60/0.20/0.20 584

Table 9: Hyperparameter settings for all experimental stages.

(a) Pre-training (b) Fine-tuning (c) Linear Probing
Hyperparameter Value Hyperparameter Value Hyperparameter Value
Optimizer AdamW Head Type Linear Layer Head Type BN + Linear
Base LR 0.0007 Optimizer AdamW Optimizer SGD
Epochs 100 Base LR 0.0001 Momentum 0.9
Patch Size 20 Epochs 50 Learning Rate Fixed (best sel.)?
Crop Length 100 LR Schedule Cosine Decay LR Schedule None
Teacher Momentum  0.99 Warmup None Epochs 50
Weight Decay 0.05— 0.3 Batch Size 16 Batch Size min(256,n/8)
Batch Size 512 Weight Decay 0.05
Warmup Ratio 3% (Linear) LR Decay Rate 0.9
LR Schedule Cosine Decay
Layer Scale Init 0.1

4 We fit a linear layer for each of the
following learning rates in parallel
and choose the best one based on the
validation data for test set evaluation:
{0.03, 0.01, 0.003, 0.001, 0.0003,
0.0001}

Table 10: Ablation of Spatial Token Aggregation Strategies

Spatial Tokens | Aggregation Strategy
1 All 457 ROIs are aggregated into a single group.
9 7 Yeo networks + 1 subcortical group + 1 cerebellum group.
20 17 Yeo networks + 2 manually split subcortical groups + 1 cerebellum group.
58 17 Yeo networks (each split 3 times) + 6 manually split subcortical groups + 1 cerebellum group.*

*Note: The cerebellum was not split as the atlas contains only 7 ROIs for this region.

13



	Introduction
	Related Work
	Method: Brain-Semantoks
	A Self-Distillation Framework for Semantic Representations
	Semantic Tokenizer
	Transformer Encoder and Masking
	Pretraining Objective

	Experimental Setup
	Datasets
	Implementation

	Results
	Downstream Performance
	Scaling Laws of Semantic FMRI Representations
	Interpretability

	Ablations
	Discussion
	Appendix

