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Abstract

Learning semantically meaningful representations from unstructured 3D point
clouds remains a central challenge in computer vision, especially in the absence of
large-scale labeled datasets. While masked point modeling (MPM) is widely used in
self-supervised 3D learning, its reconstruction-based objective can limit its ability
to capture high-level semantics. We propose AsymDSD, an Asymmetric Dual
Self-Distillation framework that unifies masked modeling and invariance learning
through prediction in the latent space rather than the input space. AsymDSD builds
on a joint embedding architecture and introduces several key design choices: an
efficient asymmetric setup, disabling attention between masked queries to prevent
shape leakage, multi-mask sampling, and a point cloud adaptation of multi-crop.
AsymDSD achieves state-of-the-art results on ScanObjectNN (90.53%) and further
improves to 93.72% when pretrained on 930k shapes, surpassing prior methods.

1 Introduction

As domains such as robotics, autonomous driving, AR/VR, and remote sensing continue to grow, the
importance of three-dimensional (3D) data becomes increasingly pronounced. A central challenge
in 3D vision lies in learning semantically meaningful representations from unstructured 3D point
clouds. In contrast to 2D computer vision—where large labeled datasets like ImageNet [[1]] have
played a prominent role in driving progress—3D datasets remain limited in both scale and diversity
(see Fig.[I). This scarcity, which has been referred to as the data desert problem [2]], is exacerbated
by the difficulty of annotating 3D data, particularly at the point level [3]. Although recent efforts
such as Objaverse [4, 5] mark progress toward web-scale 3D data collection, they still lag behind
the scale achieved in 2D vision and natural language processing (NLP). The lack of labeled 3D
data has fueled a growing interest in self-supervised representation learning (SSL/SSRL) for 3D
understanding [6]. SSL has proven highly effective in both NLP [[7, 8] and 2D vision [9H12], offering
strong scalability [13H16], and robust down-stream capabilities [[17, [18, [16]], even with minimal
labeled data [19]. These successes have inspired SSRL techniques to be adapted to point cloud data.
Particularly, masked point modeling (MPM) approaches have gained traction [20-H26]], given their
effectiveness and conceptual alignment with masked modeling frameworks for 2D and NLP.

Despite their popularity, we argue that MPM-based approaches have fundamental limitations. Recon-
struction objectives tend to emphasize short-range dependencies and high-frequency details [27, 28]],
which are often dominated by noise rather than semantically meaningful structure. This issue is
exacerbated in complex 3D geometries, where undersampling introduces high target variance. More
broadly, MPM may not lead to the semantic abstraction crucial for robust downstream performance.
This is backed by empirical findings that demonstrate that these models underperform compared
to invariance-based alternatives in low-shot and linear probing regimes [[19]. To overcome these
limitations, several works have attempted to fuse generative reconstruction with invariance-based
objectives [21} 26]. However, the pattern differences of these objectives can cause them to interfere
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Figure 1: A depiction of the size of some well-known predominantly object-centered datasets in the
computer vision domain. The blue color corresponds to (2D) image datasets, and red to 3D datasets.

with one another, resulting in worse performance than using reconstruction alone. Notably, ReCon
[26] solves this through a two-tower architecture that separates the objectives, but this comes with
significantly increased computational overhead.

In light of these issues, we seek a more elegant integration of local masked modeling and global
invariance learning. Particularly, we posit a reframing of the MPM paradigm: rather than predicting
the input from the latent, what if we instead predict the latent representations themselves? This shift
aligns with the philosophy behind works such as CPC [29]], data2vec [30} 311, and I-JEPA [32]], that
argue for learning semantics through prediction in latent space. The intuition stems from the notion
that semantically meaningful features are those that are predictive across spatial contexts, even when
fine details are occluded. For example, given only a visible wing of an airplane, one cannot reasonably
predict the exact geometry of the tail, but one can predict the presence of a tail—a semantic category.

Building on this insight, we introduce AsymDSD: an Asymmetric Dual Self-Distillation framework
for 3D point clouds (Fig. 2). AsymDSD effectively combines predictive masked modeling with
invariance learning, using a joint embedding architecture (JEA) trained through self-distillation from
a momentum teacher. The framework is designed with efficiency in mind, and addresses issues such
as representation collapse and shape leakage, taking inspiration from a variety of recent works in
SSRL on images. We summarize the core components and main contributions as follows:

* Dual Self-Distillation Objectives: The model jointly optimizes (1) a patch-level latent masked
point modeling (MPM) objective through same-view self-distillation on masked tokens, and (2) a
global invariance learning objective using cross-view self-distillation 33} [18]]. The representations
are projected to a distribution over a discrete latent variable, thereby explicitly modeling a posterior.
This gives more direct control to overcome representation collapse and stabilize training.

* Asymmetric Architecture: The student model, unlike the teacher, hosts an encoder-predictor
design. Given effective high mask ratios [22], the relatively heavy encoder processes only a small
number of visible patches, while a lightweight predictor builds the representations of masked
patches. Unlike previous methods [22]], we disable self-attention over the mask queries, which
avoids leaking the global shape through the positional queries, and further enhances efficiency.

» Multi-Mask: To amortize the cost of the additional teacher, we introduce multi-mask [31]], which
samples multiple independent masks per point cloud. This allows targets and non-contextualized
student embeddings to be reused across masks, effectively increasing batch size at minimal cost.

* Multi-Crop: While many point cloud-specific augmentations fall short in enforcing a challenging
invariance objective, the modality-agnostic cropping augmentations proves effective. In particular,
we adapt multi-crop to point clouds, encouraging the model to efficiently learn robust local-to-
global mapping capabilities.

To evaluate the effectiveness of AsymDSD, we adopt the common ShapeNet [36] pretraining protocol
and transformer backbone [21]], ensuring a fair comparison. Under this setup, AsymDSD achieves
state-of-the-art performance on ScanObjectNN [37]], reaching 90.53% accuracy, which is a 5.35%
absolute improvement over the Point-MAE baseline [22]]. The method also exhibits strong general-
ization in few-shot settings, as demonstrated on ModeINet40 [38]. Furthermore, we run ablations on
our training framework to show that the proposed components contribute substantial improvements.
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Figure 2: High level overview of AsymDSD. The diagram highlights the asymmetry between the
teacher and student networks, and shows the distillation of knowledge from the momentum encoded
(EMA) teacher on both a cross-view global (CLS) and same-view patch level. The block widths
indicate the number of patches processed, while their lengths represent network depth. The student’s
efficient design is reflected in its deep but narrow encoder and wide but shallow predictor.

To assess scalability, we pretrain AsymDSD on a large composite dataset incorporating synthetic and
scanned point clouds, including Objaverse [4], totaling over 930,000 shapes. Pre-training on this
large dataset attains 93.72% accuracy on ScanObjectNN, a new single-modal SOTA with a standard
transformer, exceeding PointGPT-L [24] by 2.6%.

2 Related Work

SSRL in 2D Vision has evolved along two main paradigms: discriminative (or invariance-based)
and generative approaches. Discriminative methods primarily focus on overcoming representation
collapse: a mode wherein representations become constant, and thus independent of the input.
Approaches such as SimCLR [10] and MoCo [39] employed contrastive learning, which relies on
comparing positive pairs (augmentations of the same image) against a large set of negatives. However,
these methods require large batch sizes or memory banks to be effective. Subsequent works, such
as BYOL [9] and SimSiam [40], demonstrated that contrastive negatives are dispensable. They
utilize a student-teacher setup with architectural asymmetry to stabilize training and avoid collapse.
Follow-up studies further explored this space by integrating regularization techniques like mean
entropy maximization [41] [T9]], clustering constraints [33]], and representation decorrelation [42], [43].

Parallel to this, denoising autoencoders [44], have evolved into masked image modeling (MIM)
approaches [45][12]]. MAE, in particular, employs an efficient encoder-decoder setup that leverages the
transformer’s capacity to process sparse inputs. BEiT [46] introduced discrete token prediction using
a pre-trained dVAE [47]], however its targets lack high-level semantics [33]]. Hybrid methods have
since emerged that blend MIM with joint embedding architectures. Notably, data2vec [30} 31]] and
I-JEPA reframe MIM as latent representation prediction, regressing contextualized embeddings
produced by a momentum teacher instead of raw pixels. Differently, iBOT [33]] and DINOv2 [18]]
include a global invariance objective to ensure semantically rich targets for the MIM objective.

SSRL for Point Clouds. The success of SSRL in 2D vision has inspired analogous developments in
3D point cloud learning. Early invariance-based methods adopted contrastive frameworks [48-50]
but also BYOL-style [51]] or DINO-style [52] training. With the adoption of the standard transformer,
point cloud-specific adaptations of MIM emerged. Point-BERT [21]] and Point-MAE [22]] employ
masked token prediction strategies analogous to their image counterparts. To avoid shape leakage
through the mask queries, PointGPT [24]] sequentializes the point patches to enable autoregressive
modeling. In contrast, we demonstrate that a simpler and more efficient alternative—disabling
attention on mask tokens—is equally effective. point2vec builds on data2vec [30] with an added
predictor module, yet it does not address shape leakage at the predictor stage. ReCon [26] successfully
combines masked point modeling (MPM) with multi-modal invariance learning but introduces added
complexity through its dual-tower architecture. In comparison, our method seamlessly incorporates
invariance learning without any changes to the underlying model architecture.



3 AsymDSD: Asymmetric Dual Self-Distillation

AsymDSD unfies two complementary self-supervised objectives, which we initially introduce as
independent SSRL approaches. While not tied to a specific model architecture, we present it under
a ViT-style [53]] backbone with a lightweight PointNet-based patch embedding module, following
Point-BERT [21]]. A more detailed description of this architecture can be found in Appendix [A]

3.1 Global Objective: Invariance learning

The global objective of AsymDSD innvolves the learning of representations with an abstraction of
semantics that is discriminative to individual inputs, up to a set of data augmentations. For this
purpose, it integrates knowledge distillation [54] and invariance learning in an end-to-end framework.
Specifically, given an input sample x ~ p(x), latent variable z € Z, and two augmentations
t1,to ~ T, the invariance-based distillation objective is:

0" = argfginExw(x),tl,th [DkL (ph (z | t1(x)) || ph(z | t2(x)))] 1)
S

where pg(z | ) = softmax(fg(x)/7)., with T a temperature to control the sharpness. In SSRL, the
teacher posterior pj, (z|x) is not known ahead of training. Instead, past iterations of the student serve
as a proxy for the teacher. Particularly, we use an exponential moving average (EMA) of the student’s
parameter: 6’ < nf’ + (1 —n)0, where 6’ are the teacher and 6 the student parameters, and 7 a decay
rate.

Iteratively optimizing Equation [T may lead to pathological solutions in absence of additional
constraints. A ‘shortcut’ in minimizing any such objective is for the latent z to become independent
of the input z, i.e. pp(z) = pg(z | x). This is particularly implied by the scenarios:

1. H(po(z)) = H(Exp)lpe(z | x)]) = 0, i.e., the marginal entropy becomes zero. The
model collapses to a single latent representation z that is always assigned a probability of 1.

2. H(po(z | x)) = log|Z]|, i.e., the posterior entropy becomes maximal. The model always
outputs a uniform distribution over the latent space Z.

To overcome these modes of posterior collapse, we follow DINO [L1], by applying centering and
sharpening. Centering prevents scenario (1) by subtracting a running mean from the teacher logits,
thereby reducing the logits of the latent z that are frequently assigned high probability, thus helping
to avoid low-entropy collapse. Sharpening prevents scenario (2) by setting a lower teacher softmax
temperature compared to the student: 7, < 75. This makes the posterior distribution more peaked,
pushing it away from a uniform distribution and thus avoiding high-entropy collapse.

Cropping Augmentation. In principle, one can omit view-invariance by using identical inputs—
reducing the objective to some form of mutual information maximization with centering and sharp-
ening; this does not necessarily lead to useful representations [[53,56]. Instead, strong performance
in self-supervised learning is often tied to carefully designed view augmentations. However, rather
than relying on hand-crafted occlusions or corruptions [20} 57], we follow recent image-based SSRL
trends that favor modality-agnostic augmentations such as masking or cropping [30}32]]. Specifically,
AsymDSD generates crops by sampling randomly rotated bounding boxes with variable aspect ratios,
rescaled to retain a random fraction c of the original

points (see Fig. [3).

Multi-Crop. Furthermore, we adopt multi-crop [33] to
point clouds by generating two global crops zJ and z3
that cover a large fraction of the point cloud (¢ > 0.4), @
along with several local crops x! that may include as
little as 5% of the original points (0.05 < ¢ < 0.4). To
simplify the implementation, all crops are subsampled

to a fixed number of points, with local crops containing S:a):L(c)).clal crop: (Cb):%l%bal crop:
one-quarter the points of global crops. This sets up a
challenging objective that encourages learning globally Figure 3: Local and global crops.

consistent representations from highly localized views.



Particularly, we define the multi-crop loss over the full set of crops V = {af, 25, 2,..., 2}, } as:
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L (u,v) = =Py, (u)" log P (v), 3)
where P}, (u), and P§(v) are the probability mass vectors. These are obtained by attaching a
dedicated CLS-token to each view to aggregate global shape information. The logits over the
latent are computed via a separate projection module [[11] to process this global representation:
fo(u) = hProi( f;nc(u)CLs). Additionally, a KoLeo loss [58, [18] is added to further encourage
diversity in representations within a batch.

3.2 Patch-Level Objective: Masked Point Modeling (MPM)

While the global objective encourages inter-instance invariance and discrimination, the local objective
promotes intra-instance predictability. Specifically, we adopt a masked point modeling (MPM)
objective to learn spatially contextualized representations.

Given a patchified input consisting of N, patches, denoted by = = (X', ¢), where X " represents a
collection of local point groups and ¢ denotes the corresponding center points for these groups, we
define a binary mask m € {0, 1}"V¢ with a masking ratio M,.. The set of masked patch indices is
given by M = {i | m; = 1}, and the set of visible patch indices by M = {i | m; = 0}. With latent
MPM, the model trained on maximizing the log-posterior where the conditional comprises the visible

context £ = (X /1\3}17 c M) accompanied by a position query c; such thati € M, i.e.

E(x,2:)~gs (x,2:),M [Z log pg (7 | i,Ci)] . 4)
ieEM

In simple terms, this expectation measures how well the model can predict the latent variable z;
corresponding to the center ¢; given a visible context . However, we cannot jointly sample x
and z; as we do not have a model ¢ (x,z;). While variational methods such as BEiT [46] and
Point-BERT [21]] are enticing due to their mathematical interpretation [S9], it remains guided by
reconstruction-based learning, compromising semantic abstraction. Instead, we adopt a dynamic
momentum teacher p}, similar to the global objective, allowing us to reformulate MPM as:

RMPM (97 0/) = Ex~p(x),/\/t |: - Z Ezir\/pg,(z”x) [1ng§ (Zi | 5(7 Ci)] (5)
ieM

In practice, the targets z; ~ p,(z; | x) are not sampled from the teacher posterior as we use
a latent with finite support. This enables the enumeration of all latent realizations for the exact
computation of the cross-entropy as well as centering and sharpening to avoid collapse. Still, the
design of the parameterized student f; and teacher f, model underlying their respective posterior
density function is crucial in ensuring a latent that represents semantically abstract information
under the objective RMPM  wWhile symmetric architectures (e.g., denoising encoders [33}[30]]) are
plausible, we adopt an asymmetric design with the student hosting an encoder-predictor setup:
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where f°"¢ is a contextualizing encoder processing the visible ’? -.(‘0 Visible patch
~ . . . J
context &; gP**? a prediction module that predicts the contextu- § o .
alized embeddings for each mask query ; = (eMASK o) ¢ o o
L]

given the encoded visible context. eMASK is a learnable mask

token, and e?® the encoded position signal ¢;; hP™ is a pro- Figure 4: Leakage of the coarse
jection head, that separately projects each patch embedding to ~ shape via the positions of masked
the discrete latent z;. patches.

We consider the following benefits of this asymmetric design: (1) without the predictor, positional
queries c ¢ inadvertently leak global spatial structure at the encoder stage (as illustrated in Fig. [4).



By deferring these queries to the predictor they can be effectively ‘masked’ by disabling attention
between them. (2) Our encoder does not process masked embeddings during SSRL. This reduces the
distribution mismatch between pre-training and downstream tasks, improving transferability. (3) The
asymmetry due to a student predictor mitigates representations collapse and enhances training stability
[60,132]. Without this, the model may learn trivial solutions ignoring any contextual information. For
example, a partitioning of space such that the centers c; are uniformly projected across spatial bins Z
would maximize the marginal entropy H (pg(z)), rendering centering ineffective in overcoming this
form of collapse. (4) Due to high mask ratios, the compute heavy encoder only processes a small
number of visible patches. By contrast, the predictor that processes all the masked patches can be
lightweight, thereby greatly increasing training efficiency.
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Masking Strategy. When it comes to the masking strategy, we observe that uniform masking (Fig.
makes it generally easy to infer global structure due to the wide spatial distribution of visible patches.
To address this, we implement inverse block-wise masking (Fig. [5b), which retains only a few small
contiguous regions. This forces the model to infer the global shape from finer-grained details in
a localized area. Specifically, we sample multiple fixed-sized blocks to add to the visible context
via k-NN on center points c. To account for possible block overlap, the final mask is adjusted by
randomly flipping masked or unmasked bits to achieve the target mask ratio.

Multi-Mask. Although the teacher f}, only performs a forward pass, it is comparatively costly due to
full-context encoding. To amortize this cost, a multi-mask strategy is applied, where multiple masks
m(?) are sampled per input x, averaging the MPM loss across them. This increases the effective batch
size at a fraction of the usual cost, as the teacher targets as well as the non-contextualized student
patch embeddings can be reused across masks.

3.3 Dual Objective Learning

AsymDSD unifies global invariance learning and local masked point modeling (MPM) within a single
framework. Since both objectives operate in a latent space, it enables parameter sharing without
architectural entanglement. Specifically, the encoder f7"¢ is shared across objectives, while separate
projection heads are maintained for the global and local tasks to accommodate objective-specific
dynamics with minimal computational overhead. The predictor gp“Ed is not used to refine the CLS
token, meaning it is exclusive to the MPM branch. multi-mask is applied to the two global crops,
whereas the local crops remain unmasked. These masked global views create additional cross-view
comparisons for the global objective, and can be seen as a form of implicit denoising, similar to MSN
[19]. Figure [f] summarizes the interactions between the outputs in the complete framework.

4 Experiments

We evaluate AsymDSD through extensive experiments across 3D recognition, few-shot classification,
and part segmentation, including studies on scalability and ablations.

4.1 ShapeNet Pre-Training

Implementation Details. We follow the common SSRL pre-training protocol involving ShapeNet-
Core [36], consisting of 41,952 CAD models across 55 categories. Point clouds are generated by



Table 1: Overall accuracy on ModelNet40 and ScanObjectNN. Where available, the accuracy
without voting is reported. ST indicates a ViT-S sized standard transformer as described in Section [A]
and Table SM indicates single-modal training; #P(M) indicates the number of parameters in
millions.

ScanObjectNN
OBJ_BG OBJ_ONLY  PB_T50_RS

Method Reference #P(M) ST SM ModelNet40

Supervised Learning Only

PointNet CVPR ‘17 [62] 35 X v 89.2 733 79.2 68.0
PointMLP ICLR ‘22 [63] 12.6 X v 9.1 - - 854+3
PointNeXt NeurIPS 22 [64] 1.4 X v 94.0 - - 87.7+.4
Adapted ViT-S Appendix@ 22.1 v v OP19 87.6 86.7 83.5
Self-Supervised Representation Learning - Full Fine-tune

Point-BERT CVPR 22 [21] 22.1 v v 93.2 87.43 88.12 83.07
Point-MAE ECCV 22 [22] 22.1 v v 93.2 90.02 88.29 85.18
PointGPT-S NeurIPS 23 [24] 22.1 v 94.0 91.6 90.0 86.9
AsymSD-CLS-S Section 22.1 v v 93.6 92.77 90.53 88.72
AsymSD-MPM-S  Section|3.2] 22.1 v v 94.0 92.77 91.39 88.58
AsymDSD-S Section|3.3| 22.1 v v 94.1 94.32 91.91 90.53
MaskPoint ECCV 22 [63] X v 93.8 89.3 88.1 843
Point-M2AE NeurIPS 22 [23] 153 X v 94.0 91.22 88.81 86.43
ReCon SM ICML ‘23 [26] 43.6 X v 93.6 94.15 93.12 89.73
Point-RAE ACMMM 23 [66] 29.2 X v 94.0 95.53 93.63 90.28
Point-FEMAE AAAI 24 [25] 274 X v 94.0 95.18 93.29 90.22
PointMamba Neurips 24 [67] 12.3 X v 93.6 94.32 92.60 89.31

Self-Supervised Representation Learning - Linear

Point-BERT CVPR 22 [21] 22.1 v v 91.09+.15 84.171+.30 87.19%.16 74.44+.12
Recon MAE ICML ‘23 [22] 433 X v 90.22+.09 82.77+.30 83.23+.16 74.13+.21
point2vec GCPR ‘23 [34] 22.1 v v 92.44+£.04 82.75+.54 85.44+.26 74.25+.11
Point-RAE ACMMM 23 [66] 28.9 X v - 86.15+.33 86.31+.23 78.25+.30
AsymSD-CLS-S Section 21.8 v v 91.78+£.10 90.67+.31 88.31+.31 83.19+.14
AsymSD-MPM-S  Section|3.2) 21.8 v v 93.55+.05 89.00+.20 87.80+.14 81.04+.14
AsymDSD-S Section|3.3| 21.8 v v 92.52+.15 89.95+.21 88.73+.23 83.33+.14
ACT ICLR 23 [2] 21.8 v oo 91.36+.17 85.20+.83 85.84+.15 76.31+.26
ReCon ICML ‘23 [22] 433 X X 92.47+.22 89.50+.20 89.72+.17 81.36+.14

uniformly sampling 16,384 surface points per mesh and normalizing them to the unit sphere. For
each input, we sample two global crops (1,024 points, 64 patches) and four local crops (256 points,
16 patches), with each patch comprising the K = 32 nearest neighboring points. Global crops are
masked using inverse block-wise masking at a 70% ratio with four masks per crop. The encoder is a
ViT-S backbone with RMSNorm and GELU, and the student predictor is a lighter ViT-Ti [61] variant
with 6 layers. The projection heads expand embeddings to a 4096-way latent space. Pre-training is
run for 300 epochs using AdamW, with a cosine learning rate schedule peaking at 5.0 x 10~%, and a
cosine EMA decay increasing from 0.995 to 1.0 during training. With a single RTX 4090, this takes
roughly 18 hours to complete. For additional details, we refer the reader to Appendix [B.1]

Object Recognition. We evaluate the downstream performance of AsymDSD on standard 3D object
classification benchmarks using three protocols: From Scratch, Linear, and Full Fine-tune [2]]. The
teacher encoder (i.e., without projection head) is used for all downstream tasks, as it generally
outperforms the student. In the Linear protocol, we freeze the encoder’s weights and add a trainable
linear layer atop the encoder. For the Full Fine-tune and From Scratch settings, we employ a 3-
layer MLP head and update all model parameters during training. The inputs to these classification
heads are formed by concatenating the CLS-token embedding with the mean and max pooled patch
embeddings. All models are trained for 150 epochs using cross-entropy loss with label smoothing set
to 0.2, a batch size 32, and a drop path rate of 0.2 [68]. The MLP head uses hidden dimensions of
256, batch normalization, and dropout (p = 0.5). Results to these experiments are shown in Table [T]

On ModelNet40 [38]], a clean synthetic dataset of 12k CAD models across 40 categories, AsymDSD-
S achieves 94.1% accuracy with Full Fine-tune, a +1.2% increase compared to training From Scratch
(Adapted ViT-S). Even with a simple linear probe, performance remains strong, indicating strong
off-the-shelf representations. In contrast, point-reconstruction methods like MAE underperform
by over 2% in the Linear setup. On ScanObjectNN [37], a real-world scanned object dataset,
AsymDSD achieves 90.53% (+7.0%) on the hardest PB_TS50_RS split, surpassing all prior methods
with a standard transformer by +3.6%. While some methods slightly outperform AsymDSD on



cleaner subsets, they rely on architectural modifications with additional trainable parameters during
fine-tuning. In fact, with equal trainable parameters under Linear probing, our method outperforms
all other self-supervised approaches, including cross-modal methods like ACT [2] and ReCon [26].

Few-Shot Classification. We evaluate few-shot performance on ModelNet40 following the m-way,
n-shot protocol of [69]. The model is fine-tuned with a high learning rate (1 x 10~2 ) and predictions
are based on concatenated mean and max pooled patch embeddings (ignoring the CLS token). As
shown in Table[2] AsymDSD-S achieves the best result in three out of four configurations, further
supporting the off-the-shelve quality of the learned representations in low-data regimes.

Part Segmentation. We also evaluate semantic segmentation on ShapeNet-Part [70]. For this, we
employ a PointNet++-style decoder [71] aggregating features from multiple encoder layers, following
Point-MAE [22]. As shown in TableE], AsymDSD-S achieves competitive mloU scores, similar
to transformer-based methods like Point-MAE [22] and PointGPT-S [24]]. While methods such as
point-M2AE outperform in this task, they rely on a U-Net-style architecture, which is generally better
suited for dense prediction.

Table 2: Average overall accuracy and standard devia- 1able 3: Part segmentation results on
tion on ModelNet40 few-shot over 10 independent runs ShapeNet-Part. The mean IoU is over

per experiment. all instances (Inst.) or per-class (Cls.).
mloU

Method ST S-way 10-way Method ST

10-shot 20-shot 10-shot 20-shot Inst.  Cls.
Point-BERT [21] V946431 963427 91.0£54 927451 Point-BERT [2]] v 856 841
MaskPoint [63] X 950437 972417 914440 934435 Point-MAE [22] v 861 844
Point-MAE [22] v 963425 97.8+1.8 92.644.1 95.043.0 PointGPT-S [24] v 862 84l
Point-RAE [34] X 97.3+£1.6 98.7+1.3 933440 95.8+3.0 AsymDSD-S v 860 844
Point-FEMAE [34] x 972419 98.6+13 940433 958428 JONLFEMAE [35] % 863 849
AsymDSD-S v 961428 98.8+13 94.4+35 95.8+33 POt M2AE (23] © ses 849

4.2 Scaling Beyond ShapeNet

While ShapeNet is a standard benchmark for 3D SSRL, it is small by today’s standards and only
comprises synthetic data, constraining the quality of learned representations. To explore the scal-
ability of AsymDSD, we pre-train on a substantially larger and more diverse dataset composed of
synthetic and real-world 3D sources. This Mixture dataset combines a 10-dataset aggregate (133K
instances) with Objaverse [4] (797K instances). In addition, we also explore a larger ViT-B backbone
(AsymDSD-B*), extending beyond the original ViT-S configuration (AsymDSD-S*). Details of the
dataset composition and training setup are provided in Appendix [C.1]

Experiments show strong improvements from scaling (Table ). When moving from ShapeNet to
the more extensive Mixture dataset, fine-tuning accuracy improves by +0.6% on ModelNet40 and
+3.19% on ScanObjectNN, surpassing the previous best PointGPT-L. Linear evaluation results show
even greater gains, with improvements of +1.24% and +8.63%, respectively. We further compare
with models that have undergone extensive post-pretraining on supervised data (PP) [24], including

Table 4: Results from scaling up pre-training. PP indicates additional post-pretraining with supervised
data; CM cross-modal training; #P(M) the parameters count in millions.

ScanObjectNN
OBJ_BG OBJ_ONLY  PB_T50_RS

Method Reference #P(M) PP CM ModelNet40

Full Fine-tune

PointGPT-B NeurIPS 23 [24] 92.0 X X 94.2 93.6 92.5 89.6
PointGPT-L NeurIPS 23 [24] 310.0 X X 94.5 95.7 94.1 91.1
AsymDSD-S* - 22.1 X X 94.4 97.07 94.83 92.89
AsymDSD-B* - 92.1 X X 94.7 96.73 94.32 93.72
Point-MAE-Bx NeurIPS 23 [24] 120.1 v X 94.2 942 93.9 90.2
PointGPT-Bx NeurIPS 23 [24] 92.0 v X 94.4 95.8 95.2 91.9
ReCon++-Bx ECCV 24 [72] 177.4 v v 94.6 98.62 96.21 93.34
Linear
AsymDSD-S* - 21.8 X X 93.98+.14 95.224.17 94.51+.18 91.31+.09
AsymDSD-B* - 91.8 X X 93.76+.13 96.16+.11 93.44+.16 91.96+.14




Table 5: Ablations. Accuracy on ScanObjectNN is reported using a linear SVM or Full Fine-tune.

(a) Cropping and multi-crop. (c) Predictor. c: visible context; m: mask tokens
Method SVM FFt Method Attention Mem. It/ SVM FFt
CLS-S 82.27 88.72 Self Cross
— cropping 73.60 | 8.67 82.13 | 6.59
— multi-crop  78.38 | 3.89  85.64 | 3.08 MPM-S X e 162 480 8106 88.58

ctm X 179 432  77.00 | 4.06 85.98 | 2.60
(b) Mask strategies. _predictor X x 233 3.1 249505451 69.74 | 18.84
Method Ratio SVM FFt
Tnverse bw. 0.6 79.63 | 1.43 88.02 | 0.46 (d) multi-mask. Bs.: Batch size; Mm.: Number of masks
07 80951011 88201038  pethod Bs. Mm. Mem. It/s SVM FFt
MPM-S 0.8 81.06 88.58
0.85 81.3710.29 88.17 041 MPM-S 128 8 16.2  4.80 81.06 88.58
N - — multi-mask 1024 1 48.8 146 81.16 1 0.10 88.48 | 0.10
Uniform 0.8 79.74 | 1.32  87.99 | 0.59

the significantly larger cross-modal model ReCon++-B [26]. Remarkably, AsymDSD-B*, despite its
smaller size and purely self-supervised training, outperforms these models on both ModelNet40 and
the hardest ScanObjectNN benchmark. These results underscore the effectiveness of AsymDSD in
leveraging large-scale unlabeled 3D data to learn highly transferable representations.

4.3 Properties and Ablations

Synergistic Objectives. AsymDSD jointly optimizes two complementary objectives to enhance
representation learning. To assess the synergistic effect, we train models on each objective separately
with re-tuned hyperparameters. As shown in Table (1] both invariance learning (AsymSD-CLS-S) and
masked point modeling (AsymSD-MPM-S) demonstrate competitive down-stream performance, but
their combination (AsymDSD-S) exceeds both objectives across all benchmarks after fine-tuning. For
linear probing, however, individual objectives may outperform due to task-specific inductive biases
favoring certain benchmarks. To further understand this synergy, we examine the attention distance
patterns (Figure[7) and observe that our latent MPM demonstrates an attention specialization pattern
relatively aligned with the CLS objective. This contrasts with the typical inverted pattern found in
masked autoencoders [26]. We hypothesize that this alignment enhances their composability.

Ablations. We highlight several ablations to demonstrate that the main contributions are not some
simple add-ons for minor incremental gains, but are core to their objectives. As shown in Table[5a]
cropping plays a key role in learning effective representations, with local crops (multi-crop) enabling
full performance. We also evaluate different masking strategies (Table [5b), finding that our proposed
inverse block-wise masking outperforms uniform masking. The method is robust to exact configu-
rations, though best results are observed with masking ratios of 0.8 for MPM and 0.7 for the dual
objective. Furthermore, Table [5¢|shows that the predictor is necessary to overcome collapse. That
said, we observe that combining MPM with the global objective is sufficient to stabilizes training.
Still, performance is reduced if global shape leakage is not addressed at the predictor (Appendix [E)).
This is further evidenced by the performance gap between our efficient cross-attention-only predictor
and the more expressive design with self-attention over all patches including masks (c+m). When
we disable multi-mask, the efficiency of the design becomes especially obvious (Table[5d). There is
virtually no performance degradation when using multi-mask with similar effective batch size, while
reducing the memory usage and throughput by nearly 70%.

AsymSD-CLS AsymSD-MPM AsymDSD
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Figure 7: The average attention distance per attention head across the depth of the encoder.



Table 6: Comparison of prediction targets.

Method Raw points Latent ModelNet40 ScanObjectNN
SVM FFt SVM FFt
CLS - - 91.78 93.64 82.27 88.72
MAE v X 9291 94.04 78.49 87.75
MPM X v 93.31 94.04 81.06 88.58
CLS + MAE v X 91.90 7 0.12 9348 | 0.16 82931 0.66 88.55]0.17
CLS + MPM X v 93.03 1 1.25 941317049 82347 0.07 90.53 7 1.81

Latent targets. Table[6|highlights the impact of shifting the masked modeling targets from the input
space (raw points) to the latent space. Our implementation of MAE shows substantial gains over
Point-MAE [22]], which can be attributed to mitigating global shape leakage through our predictor
design and to the scale invariance introduced by variable-sized global crops. This reveals that some
of our contributions extend beyond our framework. However, more importantly, as hypothesized,
combining global invariance learning (CLS) with MAE (CLS + MAE) provides limited additional
benefit and even results in a slight performance drop under full fine-tuning. In contrast, integrating
CLS with our latent MPM objective (CLS + MPM) produces a clear synergistic effect, where the
model to surpass both objectives when applied independently.

5 Conclusion and Limitations

Conclusion. In this paper, we introduced AsymDSD, a unified self-supervised learning framework for
3D point clouds that integrates masked modeling and invariance learning through asymmetric dual self-
distillation. By avoiding reconstruction-based targets and addressing critical issues like shape leakage
and representation collapse, AsymDSD enables efficient and semantically rich representation learning.
The asymmetric design not only stabilizes training but also improves computational efficiency by
decoupling heavy encoding from lightweight prediction. Extensive experiments demonstrate SOTA
performance on multiple benchmarks, with strong generalization in low-shot and large-scale settings.

Limitations. While AsymDSD demonstrates strong performance on a wide-range of experiments,
there are some limitations to the current work: (1) Pre-training and evaluations have been primarily
conducted on object-centered datasets; and (2) the encoder architecture uses a flat hierarchy. These
limitations are closely related, as the current architecture does not scale well to larger point clouds
typically found in scene-level data. However, AsymDSD can be extended to hierarchical encoders
with multi-resolution representations, which are better suited for such settings. Building on the
promising results of this study, we view this as a compelling direction for future work.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The claims are substantiated in the Sec.[3land Sec.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: There is a dedication section with limitations in Sec.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The core methodology can be reproduced based on Sec. The method
is generally robust against exact hyperparameters, but we provide many details in the

Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Data is publicly available. We include code with configurations to reproduce
results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The general experimental settings are presented in Sec.[d Appendix [B|contains
tables with many precise details.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We do not test for statistical significance, but do include standard deviations
on some results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We disclose the computer resources in Sec. [d] More details are in Ap-
pendix[C.2}

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The conducted research is conform the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no direct societal impact, as we propose a novel learning framework
for 3D point clouds.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: There is no such immediate risk.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite all original works including datasets. Our work does not redistribute
existing assets.

Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our work does not involve crowdsourcing nor researching with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our work does not involve crowdsourcing nor researching with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method development does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Overall Model Pipeline

Although many dedicated models architectures for point cloud data have been devised, there is a
lack of a unified architecture akin to those established in NLP and 2D CV. In these areas, model
architectures have converged over time to a few dominant designs [[73}, (74, [53]]. However, in recent
times, a line of work on 3D SSRL has emerged [22, 211, [34, 24| that relies on a relatively simple
model design that integrates the standard transformer architecture [[74} [53]]. This model architecture
is detailed in this section. A detailed overview of this pipeline with AsymDSD pre-training is shown
in Figure 8]
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Figure 8: Overview of the processing pipeline for AsymDSD for a single point cloud through both
the Teacher and Student network. The red colored arrows and modules indicate the stream of local
structural information. The blue colors indicate the stream of global positional information. These
streams get mixed at the encoder and predictor networks.

A.1 Patch Tokenization

The first step of the processing pipeline involves the abstraction of the point set to a smaller set of
point patches to obtain a manageable set of units for further processing. These patches are local
groups of points that are comparable to image patches in vision transformers [53]]. These patches are
subsequently embedded to obtain a set of patch tokens.

A.1.1 Input

The input is a point cloud S, consisting of a finite collection of pairs of point positions p() € P ¢ R3
and F point features f( € F ¢ RF:

s={(p".s) 19V eP, fVeFi=1,. . ,n}. ®

However, for simplicity we consider the point cloud S in tensor representation 2*°:
P N F
a"C=[p| f] e RVGHO, ©)

with point positions p € RY*3 and accompanying features f € RV*F,

A.1.2 Patchify

To form the patches, first, N, center points ¢ are sampled via farthest point sampling (FPS). FPS
is a procedure that iteratively samples points that are most distant from the already sampled points,
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starting with a randomly sampled point. Subsequently, k-nearest neighbour (KNN) is employed to
find the K -nearest points in " based on their corresponding positions p from each center c. This
procedure is referred to as patchify and can be expressed mathematically as:

¢ =FPS(p), c € RN<3; (10)
P = KNN (¢,p, 2" K) , P g RNeXEXGHF) (11)

To disentangle the global positional information from the local structural information, the reference
frame of each patch is translated to its respective center:

XP = [P,y. — c|Py], XP g RNexKx(3H0), (12)
with P, the point positions, and Py the point features of the patches.

This patchify procedure is reflected as a part of the complete processing pipeline for AsymDSD in
Figure[§]

A.1.3 Patch Embedding

The obtained patches X ¥ are themselves small point clouds. Accordingly, before further processing,
they must be projected to an embedding space. This embedding process effectively boils down to the
compression of the point cloud into a single feature vector describing its shape. For this purpose a
small PointNet Embedding model is used, as shown in Figure O

This embedding model first projects the points in each patch to a higher Déatch-dimensional space

through a simple shared multi-layer perceptron (MLP), and takes the maximum of this projection over
the K points. This essentially partitions the Euclidean space into regions. To make the partitioning
dependent on the contents of the point cloud, the maximum feature vector is concatenated to the
projected point features before being projected and pooled once more to obtain the final patch
embeddings ef. In other words:

1

ZP = MLP,(X7T), ZP e RNXEXDparen,  (13)

ef = max (MLP2 <[ZP‘ max (z}fk)]) ) , ef’ e RNeXPembed. (14)
.7 :7]‘

where MLP; is a multi-layer perceptron consisting of two linear layers interjected with a normaliza-
tion and non-linear activation function.

A.1.4 Position Embedding

The separated positions of the patches are similarly prepared for downstream processing. In contrast
to textual language and images where tokens or patches are associated with discrete positions, the
center points of each point patch are embedded in a continuous R? Euclidean space. While many
different methods have been proposed to reinject the positional information of point clouds [[75H77],
a simple and efficient absolute positional embedding (APE) is used here. The embedding is defined
by a learnable mapping fP° : R3 s RPemved and is implemented with a simple two-layer MLP:

el = MLP(c), P> € RNeX Pembed, (15)

A.2 Contextualizing Encoder

At the core of the pipeline is the transformer encoder, which contains the majority of the parameters
and carries out the bulk of the processing work. This encoder utilizes global self-attention across the
patch tokens, thereby incorporating shape information from the entire point cloud to obtain globally
contextualized embeddings.

A.2.1 Input

To obtain the input to the tranformer encoder, a learnable class embedding e“S € R!*Pemved g
prepended to the patch embedding tokens, yielding the input z° of the encoder model:

20 — [eCLS, eP} 7 20 ¢ ROUAN) X Demped (16)

bl
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Figure 9: Building blocks of the processing pipeline.

This additional CLS token is not associated with a position in R? and serves to build up a global
representation, which is beneficial for non-localalized tasks such as classification or the global
self-distillation objective of AsymDSD.

A.2.2 Transformer Encoder

A standard transformer encoder [74]] with pre-normalization is used, following the overall model
structure of ViT [53]]. It consists of a stack of L transformer blocks (Figure[9b). Due to the expected
importance of positional information of the patches, the position embedding is readded to the input
of each block. This diverges from the typical approach where the position embedding is added
once before the first block of the transformer. Notably, the model maintains a fixed embedding size
throughout the depth of the network.

B Additional Implementation Details of AsymDSD

B.1 ShapeNet Pre-Training

Pre-training details including pre-processing, model and training hyperparameters are provided in
Table[7]

B.2 Inverse Block-wise masking for point clouds

Block-wise masking has been explored for point cloud data in several studies. However, the common
implementation involves sampling a single block [21},22][34]. AsymDSD generalizes this by sampling
any number of blocks of a pre-determined size B, expressed in the number of patches. Furthermore,
we consider inverse block-wise masking, following Baevski et al. [31]], where the blocks instead
indicate which patches to keep.

The difficulty with sampling multiple blocks is that they may partially overlap, which makes it
difficult to mask the desired ratio of patches. To address this issue, the mask ratio is slight increased
by adjust ratio A,. to increase the number of blocks Np to be sampled. Specifically:

(1-M.)+ A,
B, ’

where Np is the number of blocks, IV, the number of patches, M,. the mask ratio, A, the adjust ratio,
and finally B, the block size.

Np = round (NC * )

The blocks are subsequently generated by sampling Np center positions, and accumulating the By
nearest patches according to the Lo-distance. This may lead to over- or under-masking depending
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on the amount of overlap. However, this is resolved by randomly swapping the mask bits until the
desired mask ratio is achieved. The adjust ratio A,. can be chosen such that the number of swaps to

be performed is minimized.

Table 7: AsymDSD’s hyperparameters for ShapeNet pre-training.

(a) The data pre-processing parameters including crop- (c) The hyperparameters and details of the model.

ping and masking.

Parameter Symbol Value
Parameter Symbol Value
- Shared Model Defaults
Data Pre-processing
- Normalization RMSNorm
IR It Activation GELU [8]]
Augmentation-1 Rotate z-axis L ATers B False
Augmentation-2 Anistropic Scaling [0.8, 1.2]
Normalization Unit Sphere Patch Embedding (Sec.
Cropping MLP; Dims 128, 256
MLP> Dims 512,384
Global Local
# Crops N, N1 > 4 Position Embedding (Sec.
# Points N 1024 256 MLP Dims 128, 384
# Patches N. 64 16 .
# Patch Points K 32 kY Contextualizing Encoder (Sec.
Crop Fraction [0.4,1.0] [0.05,0.4] Transformer Block Transformer Encoder
Masking Embedding l?im ) Dembed 384
MLP Expansion Dim 1536
Mask Sampler Inverse block-wise # Layers L 12
Multi Mask Nmm 4 # Attention Heads H 6
Mask Ratio M, 0.7 N
Block Size By 6 Predictor
Adjust Ratio Ar 0.1 Transformer Block Transformer Decoder
Embedding Dim Dembed 192
(b) The training hyperparameters. MLP Expansion Dim 768
# Layers L 6
Parameter Symbol Value i AGSTE [#(2le ] B
Training Projection head
Batch Size B 128 MLP Dims 1024, 1024, 256
Output Dim Niok 4096
Epochs 300 Li Bi T
Precision FP16 mixed Inear bias rue
Optimizer
Optimizer AdamW
LR Schedule Alr Cosine Annealing
Base Learning Rate 5.0 x 1074
# LR Warmup Epochs 10
Momentum Decay B1, B2 0.9, 0.999
Weight Decay 0.05
KoLeo Scale a 0.01
Gradient Clip Norm 10.0
Self-Distillation
EMA Schedule n Cosine
EMA Start, End n°, n® [0.995, 1.000]
Centering Momentum m 0.9
Student Temp Ts 0.1
Teacher Temp Schedule Linear Warmup
Teacher Temp CLS ToLS [0.04,0.07]
Teacher Temp Patch rpatch [0.05,0.07]
# Teacher Warmup Epochs 10

C Scaling Pre-Training

C.1 Mixture Dataset

To scale the amount of training data, 3D models and scans from various sources were accumulated
to make one large diverse datasets. Table [§]provides an overview of these datasets and their basic
properties. The first 10 listed datasets comprise a total of 133 668 instances. When combined with
the Objaverse dataset [4]], they form Mixture, resulting in a total of 930 752 instances.

26



To provide some more details on the compilation process: for synthetic datasets without pre-existing
point clouds, we uniformly sampled 16 k points from the surface of each mesh. In the case of scanned
scene datasets with annotated objects—specifically S3DIS [82] and SUN RGB-D [83]—individual
objects were cropped from the scenes and saved as individual instances. Notably, object instances with
less than 2 k points were thrown away—these are predominantly of the category clutter. Additionally,
all objects were rotated to their natural upright position in a shared reference frame. Any other
features, such as color or normals, were not used.

C.2 Training details

These models that are pre-trained on Mixture are referred to as AsymDSD-S* for the ViT-S-sized
model and AsymDSD-B* for the ViT-B model. The architectural details of the larger model are
shown in Table[I0] with parameter counts for both models listed in Table[9] Notably, AsymDSD-B
scales the patch embedding to accommodate the larger ViT-B contextualizing encoder, and upgrades
the predictor from a ViT-Ti to a ViT-S, with half the usual number of layers.

AsymDSD-S* was trained for 100 epoch on a batch size of 128, totaling 727 k optimization steps,
in roughly 100 hours on a single A100 GPU. AsymDSD-B* was trained for both 50 epochs, taking
around 175 hours, respectively, on the same hardware.

C.3 Evaluation on Objaverse-LVIS

The Objaverse dataset contains a subset of approximately 47 k objects annotated with one of the
1,156 categories from the LVIS dataset [84]. Unlike other datasets, it does not come with a predefined
training or test split and is typically used for zero-shot evaluation in language-aligned models [85 [86].
Since our model does not produce language-aligned representations, we assess its representational
quality through few-shot probing using both linear and kNN classifiers.

In particular, 10 instances are randomly sampled per category, and the remaining instances are added
to the test set. We exclude any category with 10 or fewer instances, resulting in a total of 1060
remaining categories. Again, we exclude any additional features such as color and sample 1024
points per instance. The few-shot sampling strategy was repeated 10 times to remove most of the
noise from sampling or training. The results from these experiments are shown in Table [T T]

Table 8: Datasets for scaling pre-training. ' indicates that Table 10: The hyperparameters and

object instances are sampled from scenes. details of AsymDSD-B.
Dataset #Instances  # Classes Type Parameter Value
ShapeNetCore v2 [36] 52470 55 Synthetic Patch Embedding (Sec.
3D-FUTURE [87] 16 560 50 Synthetic .
ScanObjectNN [37] 16034 15 Scanned Migl g?““ ]21%21567’6%1 2
ModelNet40 [38] 9843 40 Synthetic 2 Dims g
S3DIST [82) 8948 14 Scanned Position Embedding (Sec.[A.1.4)
SUN RGB-Df [83] 8451 - Scanned MLP Di
Amazon Berkeley Objects [§5] 7953 . Synthetic Dims 128, 768
OmniObject3D [89] 5911 216 Syntheqe Contextualizing Encoder (Sec.
Toys4K [90] 4000 105 Synthetic
Google Scanned Objects [91] 1030 - Scanned Transformer Block Transformer Encoder
- - Embedding Dim 768
Objaverse [4] 797084 1156+ Mixed MLP Expansion Dim 3072
Mixture 930 752 - Mixed # Layers 12
# Attention Heads 6
Drop Path [68] 0.1
Predictor
Table 9: The total number of parameters of each module. e T e
# Parameters (M) Embedding Dim 384
Module Symbol MLP Expansion Dim 1536
AsymDSD-S  AsymDSD-B # Layers 6
Patch Embedding f;"‘bed 0.5 6.5 # Attention Heads 6
Transformer Encoder f:;tx 21.2 85.0
Predictor ff;md 2.9 11.2
Projection Head fgjroj 2 x 2.8 2 x 3.2
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Table 11: Topk few-shot performance on Objaverse LVIS subset. The number of shots per category
is 10 and the average is reported over 10 independent runs. kNN uses the 5-nearest neighbors.

Linear kNN

Method

Topl Top3 Top5 Topl Top3 Top5

AsymDSD-S* 3775 5743 6470 3330 49.77 5427
AsymDSD-B* 3836  58.22 6543 33.68 50.24  54.68

CLS Marginal Entropy CLS Posterior Entropy CLS KL Divergence
075 +
75 1 \/k_ 75 4
8 50+ 50 1 0:50 1
S
25 1 25 1 0251
0.0 ; ; 0.0 n n 0.00 T3 n ;
0 50 000 100 000 0 50 000 100 000 0 50 000 100 000
Patch Marginal Entropy Patch Posterior Entropy Patch KL Divergence
7.5 7.5 104
250t 5.0 1
S 05T
25 T 25 1
0.0 +5 ' } 0.0 +5 " ; 0.0 1, ; ;
0 50 000 100 000 0 50 000 100 000 0 50 000 100 000
Training Step Training Step Training Step
I — Sharpening Only — Sharpening and Centering —— No Sharpening, No Centering I

Figure 10: Marginal and posterior entropy, and KL divergence during training.

D Properties and Ablations of AsymDSD

This section presents additional experiments and results to gain deeper insights into the properties of
AsymDSD.

D.1 Student-Teacher dynamics

The dynamics that unfold between the student and teacher are central to the effectiveness of SSRL
with AsymDSD. In particular, we demonstrate the occurrence of representation collapse and highlight
the importance of centering and sharpening mechanisms in mitigating this issue. In addition, we look
at the teacher performance relative to the student.

D.1.1 Sharpening and Centering

For AsymDSD, sharpening and centering on the discrete targets is a central method of defense
against the main modes of collapse. To demonstrate the effectiveness of these techniques, we trained
AsymDSD without sharpening and centering, only with sharpening, and with both.

To determine wether collapse occurs in these setups, we compute the empirical marginal and posterior
entropy over the batches B during training:

H (py(z:)) ~ H (Z Py (2 | x)) , (18)

zeB

By [H (0 (2 | )] = Y H (ph (i | %)) , (19)
z€eB
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Figure 11: Student versus teacher performance. It shows plots of the overall accuracy on the hardest
subset of ScanObjectNN with a linear SVM.

where ¢ = CLS or ¢ € M for the CLS-token or the patch tokens respectively. These metrics are
plotted in Figure 10| alongside the KL divergence from the two training objectives R°™5(, #’) and
RMPM (9 ¢"). Note that we can simply decompose the cross-entropy to obtain the KL divergence:
Dxi(x [l y) = H(x,y) — H(x).

Without sharpening and centering, the posterior collapses to the uniform distribution over both the
CLS- and patch tokens, as indicated by the maximum entropy for Ny, = 4096 of log(4096) ~ 8, 318.
On the other hand, when sharpening the targets, the marginal entropy falls to zero on the CLS-token,
which indicates that the model always assigns a probability of 1.0 to the same token. This effect is
not observed for the patch tokens, which demonstrate a non-zero marginal entropy larger than the
posterior entropy. In this scenario we also observe non-zero KL divergence. We believe this greater
stability on the patch tokens to be a result of the predictor module, which has been shown to be a key
component in stabilizing training (Tab. (60} 32]].

When combining sharpening with centering, as per AsymDSD, both modes of collapse are avoided,
as the marginal entropy now stays high while the posterior entropy goes down during training, as
desired. After all, the difference between the two quantifies the mutual information between the input
x and latent z;.

D.1.2 Outperforming Teacher

A property that is sometimes witnessed with joint embedding architectures with a momentum teacher,
is the teacher outperforming the student with the idea that the teacher guides the student towards
higher quality representations [92} [I1]]. As shown in Figure[TT] AsymDSD demonstrates this effect
with the teacher on average outperforming the student during training when evaluated with a linear
SVM on ScanObjectNN. That said, this performance difference was not observed on the ModelNet40
dataset. However, this might be related to fact that peak accuracy with a linear SVM on ModelNet40
is obtained at around 10% of the total training duration.

D.2 Representational Quality

For a qualitative assessment of the representations of the AsymDSD’s pre-trained encoder, we project
patch embeddings to RGB space with t-SNE. Specifically, patch embeddings of the AsymDSD-B*
pre-trained encoder are computed for 200 samples from the same object category in the ModelNet40
dataset. Each point is colored according to the inverse distance weighted average of the three nearest
RGB patch embeddings.

The visualizations are shown for three object categories in Figure [I2} We also included visualizations
from a model that is trained with supervised learning on the ModelNet40 dataset. It stands out that
AsymDSD shows high congruency among the projected embeddings from patches that comprise a
semantic part of an object. This uniformity is also manifested between parts from different objects,
e.g. the cyan colored ears of the cups, or the green cone shaped lamp covers. Interestingly, the
latter example of cone shaped lamp covers also demonstrates strong scale invariance. We believe
that cropping and multi-crop plays a key role in learning this invariance, as it leads to varying patch
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Figure 12: Zero-shot coloring of points according to inverse distance weighted nearest patch embed-
dings from AsymDSD-B* projected to RGB space with t-SNE. The projection is computed with 200
instances from the same class with a perplexity of 30.

densities for the same object. Notably, these properties with strong semantic separation are not
present with the model that is trained with standard supervision. This supervised model instead shows
a strong positional bias among the projected embeddings.

E Additional Ablations

E.1 Predictor in AsymDSD

Table [I2] presents results from ablation experiments on the dual-objective formulation involving
the predictor module. These results suggest that jointly optimizing both objectives improves ro-
bustness: even when the predictor is removed (cf. Table , downstream performance does not
collapse. Nonetheless, there is a modest drop in accuracy, and throughput decreases significantly. We
hypothesize that this collapse-resistance stems from global invariance learning mitigating the model’s
collapse towards representing only the positional queries—given the variability of such queries across
different crops.

Nevertheless, some performance degradation is expected when the predictor is removed due to
leakage of the overall object shape through all mask queries. This effect should become pronounced
when unmasked local crops are removed and the predictor is also excluded—i.e., when all instances
expose a large portion of the coarse shape. Under this configuration, results indeed show a substantial
drop in performance, most notably in linear SVM accuracy.

Table 12: Ablations on AsymDSD-S.

Method Fig. MC Attention Mem. It/s ModelNet40 ScanObjectNN
Self Cross SVM FFt SVM FFt
AsymSD  [3 v x c 256 257 93.03 94.13 82.34 90.53
32 v c+tm  x 268 242 9267/ 0.36 9384029 8213, 0.21 89.45] 1.08
— predictor - v X X 319 207 92870 0.17 9400]0.13 81.82]0.52 8949 | 1.04
X X c 228 301 93.03— 00 9384029 81.99]0.35 89.52] 1.01
— predictor - X X X 293 251 92.18] 0.85 9364 0.49 79.88) 2.46 88.13 2.40
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In fact, when using a predictor and optimizing the joint objective, multi-crop may no longer be
essential. In particular, inverse block-wise masking can simulate localized contexts similar to those
provided by local crops, but without incurring the additional computational cost of processing them
separately. However, under the current implementation, the variable nature of local crops allows
for significantly smaller contexts compared to what is achievable through masking applied to global
crops. This likely explains the observed performance improvements when local crops are included
alongside the dual objective. However, these findings suggest a promising direction for future work:
exploring the use of variable mask ratios as a potential alternative to multi-crop strategies.

E.2 Objective Function

The MPM objective RMPM is presented as a cross-entropy objective between the teacher and student
posterior over the masked patches (Eq. [5). However, as demonstrated in other works [32]], the
high-dimensional student representations (i.e., before projection to discrete latent z) can also be
directly regressed onto the teacher representations without representational collapse ensuing.

Table[T3|presents results comparing these approaches. We find that direct regression with a smooth L1-
loss (8 = 2) [93] without the KL divergence-based RMPM objective—and thus no MI-maximizing
measures on a discrete latent projection—does not lead to collapsed representations. However, we
observe from hyper-parameters sweeps across several training runs that it is difficult to stabilize
training. This is reflected in down-stream performance that eventually starts decreasing during
training. Interestingly, when regression is combined with RMPM it stabilizes training and improves
performance across all benchmarks compared to training only on RMPM | We therefore use this setting
combining the two losses in AsymSD-MPM-S. AsymDSD-S only uses cross-entropy minimization,
as we did not observe down-stream improvement by adding an additional regression loss.

Table 13: Loss functions for MPM. CE indicates the cross-entropy objective RMPM_ RG indicates a
regression loss.

CE RG ModelNet40 ScanObjectNN

SVM FFt SVM FFt
v X 92.10 ] 0.53 93.76 | 0.28 78.97 | 0.49 87.75 | 0.83
X v’ 90510 2.12 9344 0.60 69.7419.72 8737/ 1.21
v ' 92.63 94.04 79.46 88.58

E.2.1 Additional Predictor Designs

The predictor module is a central component of MPM with Asymmetric Self-Distillation. It was
argued that it not only enhances training efficiency but also improves the overall training architecture
by mitigating issues such as global shape leakage, distribution mismatch, and representation collapse.
These results were presented in Table but we experimented with several alternative predictor
designs. The results of these experiments are presented in Table [I4] with the designs shown in
Figure

While it was already shown that the typical transformer encoder implementation (Fig. [[3a)) leads
to significantly reduce performance. We also tested cross-attention with concatenation of the query
token itself (Fig.[T3d), but observe that this yields no significant benefit, at the cost of higher memory
usage and lower throughput.

Multi-Block. So far the two extremes of separately predicting all masked patches (pg (i | X, ¢;), Vi €
M) or predicting all masked patches at once (pg(z; | X, carq), Vi € M) have been explored. This
can be generalized to predicting any number of masked patches at once [32]. Block-wise masking
is particularly suitable alongside such generalized prediction objective, given that it provides local
neighborhoods of masked regions to be ‘unmasked’. In this way, the prediction is performed
by providing the positional queries for a block of patches, allowing a coordinated build-up of
representations over a region that extends beyond the bounds of a single patch without revealing the
global shape of the object.

For multi-block, we use blocks with size B, = 9, using two suitable designs for a coordinated
build up, as shown in Figure and Although these designs achieved strong downstream
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performance, they offered no clear advantage over the simpler approach of predicting each patch

token independently, while coming with the cost of lower throughput.

(a) Self-attention on (b) Self-attention + (c) Cross-attention

context + mask cross-attention on context

O((S+E)?) O (E* + SE) O (SE)

(d) Cross-attention
on context + self

O (SE?)

(e) Cross-attention
on context + mask

O (SE?)

Figure 13: Different transformer block designs for the predictor. The time complexity of the attention
computations is included, with S = | M| and E = | M| the number of context and masked patches

respectively.

Table 14: Ablations on the predictor of AsymSD-MPM-S. RG indicates a regression loss. MB indicates
the use of multi-block. Of the attention tokens, C is the visual context, M the mask queries, S the
query token itself. Mem. is the total memory usage with a batch size of 128 (with multi-mask set to
8) in GiB; and It/s the throughput in iterations per second. For more details of the design refer to the

indicated figures.

Method Fig. MB Attention Mem. It/s ModelNet40 ScanObjectNN
Self Cross SVM FFt SVM FFt
(MPM-S) 13 x X ® 162 4.80 93.31 94.04 81.06 88.58
13d] X X c+s 175 4.65 93.03 | 0.28 94.04 — 0.0 81.06 — 0.0 87.96 | 0.62
[3a] x ctm X 179 432 88.17] 5.14 9287 1.17 77.00, 4.06 8598 2.60
. 13b) vv m @ 156 3.68 9319 | 0.12 9388 0.16 81.8570.79 8751 ] 1.07
+ Multi-Block ef vv X ctm 154 401 93.07,0.24 942970.25 8095/ 0.11 88.17] 0.41

32



	Introduction
	Related Work
	AsymDSD: Asymmetric Dual Self-Distillation
	Global Objective: Invariance learning
	Patch-Level Objective: Masked Point Modeling (MPM)
	Dual Objective Learning

	Experiments
	ShapeNet Pre-Training
	Scaling Beyond ShapeNet
	Properties and Ablations

	Conclusion and Limitations
	Overall Model Pipeline
	Patch Tokenization
	Input
	Patchify
	Patch Embedding
	Position Embedding

	Contextualizing Encoder
	Input
	Transformer Encoder


	Additional Implementation Details of AsymDSD
	ShapeNet Pre-Training
	Inverse Block-wise masking for point clouds

	Scaling Pre-Training
	Mixture Dataset
	Training details
	Evaluation on Objaverse-LVIS

	Properties and Ablations of AsymDSD
	Student-Teacher dynamics
	Sharpening and Centering
	Outperforming Teacher

	Representational Quality

	Additional Ablations
	Predictor in AsymDSD
	Objective Function
	Additional Predictor Designs



