
Under review as submission to TMLR

Using Enriched Category Theory to Construct the Nearest
Neighbour Classification Algorithm

Anonymous authors
Paper under double-blind review

Abstract

This paper is the first to construct and motivate a Machine Learning algorithm solely with
Enriched Category Theory, supplementing evidence that Category Theory can provide valu-
able insights into the construction and explainability of Machine Learning algorithms. It is
shown that a series of reasonable assumptions about a dataset lead to the construction of
the Nearest Neighbours Algorithm. This construction is produced as an extension of the
original dataset using profunctors in the category of Lawvere metric spaces, leading to a
definition of an Enriched Nearest Neighbours Algorithm, which, consequently, also produces
an enriched form of the Voronoi diagram. Further investigation of the generalisations this
construction induces demonstrates how the k Nearest Neighbours Algorithm may also be
produced. Moreover, how the new construction allows metrics on the classification labels
to inform the outputs of the Enriched Nearest Neighbour Algorithm: Enabling soft classi-
fication boundaries and dependent classifications. This paper is intended to be accessible
without any knowledge of Category Theory.

1 Introduction

As Machine Learning (ML) becomes more popular, the use of black-box approaches is beginning to hinder the
progression of the field. During engineering and development, the better one understands a model, the easier
it is to improve its performance, diagnose faults, and provide guarantees for its behaviour. Unfortunately,
necessary to the development of many algorithms, there are design decisions motivated by intuition or trial
and error. Part of the difficulty in understanding these algorithms comes from a lack of clarity in how
they interact with the data they are provided. How does the encoding of input data affect the information
an algorithm understands? To approach this question, this paper seeks to investigate the use of Enriched
Category Theory (ECT) for the design of Machine Learning algorithms. To provide evidence that this
approach has potential, it is demonstrated that basic assumptions about a dataset can lead to the natural
construction of a pre-existing algorithm, which is popular for its predictable and robust behaviour: the
Nearest Neighbours Algorithm (NNA).

The argument for using Enriched Category Theory in such a theory proceeds as follows. The process of
learning requires the ability to make comparisons. This may be comparisons between entries of a training
dataset to identify patterns, between training examples and new cases for the sake of inference, and between
different models of the same dataset. Enriched Category Theory provides a general framework for defining
and studying comparisons between objects. It demonstrates that the entirety of the information associated
with an object can be encoded in its comparisons to other objects. Using Enriched Category Theory, the
structure of data can be encoded explicitly in their mutual comparisons rather than implicitly, as is familiar
with many ML algorithms. The benefit of this approach would be that the design and mechanism of ML
algorithms become more transparent. The assumptions about datasets can be made more explicit. Moreover,
the learning process can be interpreted in its natural form as reasoning about the comparison of observations.

1

Under review as submission to TMLR

2 Background

To the knowledge of the authors, the construction of the Nearest Neighbours Algorithm demonstrated in
this paper is one of the first examples of a machine learning algorithm motivated and constructed solely
with Enriched Category Theory. There is one other example of an entirely categorical construction of an
ML algorithm, where previous work (Shiebler, 2022) shows that the single linkage clustering algorithm can
be found as a Kan-extension of a dataset of points. However, it is suggested that the steps shown for the
derivation of the NNA draw a tighter parallel between the intuition of how the dataset is represented, and
the derived algorithm.

There are also examples of algorithms whose structures have been encoded in the language of category theory,
such as Graph Neural Networks (Dudzik & Veličković, 2022). But they represent the structure of how the
algorithm computes information, and not necessarily the selection of the optimal model or representation of
the input dataset. In contrast, the NNA construction draws a direct line from the representation of the data
to the selection of the optimal classification.

Understanding the Enriched Category Theory construction of the Nearest Neighbours algorithm requires an
understanding of Lawvere metric spaces as Cost Enriched Categories, as well as a working knowledge of the
Nearest Neighbours Algorithm. It is beyond the scope of this paper to provide a complete introduction to
Enriched Category Theory 1, but thankfully many of its complexities can be avoided by focusing on the
specific case of Lawvere metric spaces. The following section provides the necessary components, as well as
a brief overview of the Nearest Neighbours Algorithm.

2.1 Nearest Neighbours Algorithm

The Nearest Neighbours Algorithm (Fix & Hodges, 1989) extends the classification of a dataset of points in
a metric space to the entire metric space. Consider a dataset of n pairs (x1, y1), ..., (xn, yn). The targets of
the dataset, yi, are elements of a set of class labels Y . The features of the dataset, xi, represent points in a
metric space X. This allows the distance between any two points to be measured, following the traditional
metric space axioms.

• d(a, a) = 0
• a ̸= b ⇔ d(a, b) > 0 Positivity
• d(a, b) = d(b, a) Symmetry
• d(a, b) + d(b, c) ≥ d(a, c) Triangle Inequality

To a point of the metric space not in the dataset, the Nearest Neighbours Algorithm assigns a class if a
closest point in the dataset has that class. An example of the classification regions produced can be seen
in Fig 1 which shows the NNA classification of a two class dataset of points sampled from two Gaussian
distributions.

To express this as a relation we can represent the dataset with two functions. The indexes of the dataset can
be expressed as the set of integers from 1 to n, N = {a ∈ Z | 1 ≤ a ≤ n}. The features of the dataset can
be encoded with the function F : N → X such that Fi = xi. The targets of the dataset can be expressed
similarly with a function T : N → Y , such that Ti = yi. Given a point x ∈ X and a class y ∈ Y , the relation
should return true if the closest data-point to x has the class y. 2

NNA(y, x) = ∃i ∈ N [Ti = y and d(Fi, x) = inf
i′∈N

d(Fi′, x)]

This relation can be presented in an alternate form that will be useful later, but it requires that the indexes
are partitioned based on their classes. We define the partition as follows. NT (y) = {i ∈ N | Ti = y}. This

1A basic introduction can be found in "Seven Sketches in Compositionality" (Fong & Spivak, 2018) while a more technical
overview occurs in "Basic Concepts of Enriched Category Theory" (Kelly, 2005).

2inf in the following expression represents the infimum or least upper bound of a set of values. For finite cases it can be
replaced with minimum.

2

Under review as submission to TMLR

Figure 1: An example of the classification regions produced by the nearest neighbour algorithm from data
points sampled from two Gaussian distributions, representing the distributions of the two classes.

allows the relation to be presented as:

NNA(y, x) ⇔ inf
i∈N

d(Fi, x) = inf
i∈NT (y)

d(Fi, x)

2.2 Lawvere Metric Spaces

As mentioned in the introduction, Enriched Category Theory provides a method of encoding structure
through a rigorous language for talking about comparisons. In some sense, an Enriched Category is a
collection of objects which can be compared. Given a category C, two objects x ∈ C and y ∈ C can be
compared with the notation C(x, y). This is referred to as the hom-object of x and y. This hom-object
exists in its own category called the base of enrichment. To make the comparisons meaningful, ECT requires
that the base of enrichment have some way of combining hom-objects, called a monoidal product, and some
juxtaposition of these two hom-objects to a third. An example of how this structure works can be seen
in order relations. Consider a category called Fruits, which is a collection of fruits ordered by price. The
hom-object Fruits(Apple, Orange) would test to see if Apples were cheaper than Oranges. In this instance
this comparison could also be written as Apples ≤ Oranges. The outcome of this comparison is either true
or false so the base of enrichment would be a category containing an object representing true and an object
representing false. This base of enrichment can be called Bool for Boolean.

A sensible logical deduction to make with such a category would be to say that if we know fruit A is cheaper
than fruit B, and fruit B is cheaper than fruit C, then A must be cheaper than C. Notionally, this can be
written as:

(A ≤ B) and (B ≤ C) =⇒ (A ≤ C)

This process of logical inference gives the general motivating structure of an enriched category. In this
instance, each comparison of the ordered set returns a value in Bool. The monoidal product of Bool is the
logical "and", allowing its objects to be combined. The hom-object of Bool is logical implication.

Bool(x, y) = (x ⇒ y)

3

Under review as submission to TMLR

Because Bool can be described with a hom-object which takes values in itself, it is described as self enriched.
When Bool is used as the base of enrichment, the general structure of the enriched category becomes the
structure of a pre-order relation.

A Lawvere metric space is an enriched category whose base of enrichment is chosen so that the categories
operate like metric spaces, allowing the enriched category to measure the distances between its objects. The
base of enrichment for Lawvere metric spaces is called the Cost category. Because it represents measurements
of distance, its objects are the non-negative real numbers extended with infinity3. Given a Cost enriched
category X, and two objects x and y of X, the hom object X(x, y) can be interpreted as the distance between
x and y. The monoidal product of Cost is addition. Cost can be interpreted as both a Bool enriched category,
and a self enriched category. As a Bool enriched category, it is a preorder, with the ordering of its objects
given by the standard order relation on the real numbers.

Cost(x, y) = (x ≥ y)

Looking at the previous example, we can replace the and operation of Bool with addition, and the implication
with ≥ to recover the following expression for Cost categories.

X(x, y) + X(y, z) ≥ X(x, z)

This requirement of Cost categories is the triangle inequality, stating that taking a detour to a third object
cannot be quicker than travelling directly between two objects. By choosing the Cost category as the base of
enrichment, ECT naturally recovers some, but not all of the the metric space axioms (As detailed in section
2.1). This makes Lawvere metric spaces pseudo-metric spaces. In Lawvere metric spaces, one retains the
triangle inequality, and the requirement that the distance from an object to itself is zero (d(a, a) = 0), but
the metric spaces are not required to be symmetric (d(a, b) = d(b, a)) and two different objects can be zero
distance apart. This can be a controversial choice, but there are several arguments for this being a desirable
outcome. For example, in many cases an intuitive notion of distance is not symmetric, e.g. its easier to go
down stairs than up them. One might also say that distance is a measure of similarity not identity, and
the idea of two different objects being zero distance apart is sensible when considering systems at a certain
level of coarseness. In either case, if one wishes to operate with traditional metric spaces, they are all also
Lawvere metric spaces, and the necessary axioms can be asserted as convenient.

By sensibly considering how we wish to compare objects in our enriched categories, choosing objects and a
monoidal product in the base of enrichment, we have recovered the structure of a metric space. Though the
Lawvere metric space is one of the simpler examples of an enriched category, it starts to reveal the power of
such a theory to construct complex structures for the representation of data.

2.3 Functors and Profunctors

An Enriched Category may be thought of as representing a particular datatype, with the structure of that
datatype being represented by the hom-objects of the category. In order to interact with this information,
there are many ways of comparing categories to each other. Between categories with the same base of
enrichment, there are two constructions which are relevant for this work: Functors and Profunctors.

In set theory, a mapping from one set to another is called a function. In ECT , there is a similar concept called
a functor. Functors between enriched categories are structure preserving maps. In the case of Cost-enriched
categories (Lawvere metric spaces), this reduces to the statement that functors are distance non-increasing
functions. Given a functor F : X → Y , from X to Y, this can be expressed as the statement that for any
two objects a, b ∈ X.

X(a, b) ≥ Y (Fa, Fb)

As well as Functors between categories being the ECT version of functions between sets, there is also an
ECT version of relations between categories. A set relation R between two sets X and Y is often described

3The objects of Cost being {x ∈ R | x ≥ 0} ∪ {∞}. The monoidal product is addition, with addition by infinity defined as
x + ∞ = ∞

4

Under review as submission to TMLR

as a subset of the Cartesian products of X and Y , i.e. R ⊆ X × Y . However, this relation can also
be thought of as a function which returns true if the relation is true, and false if the relation is false:
R : Y × X → {False, True}. In ECT , this notion is extended to a functor from the tensor product of two
categories to the base of enrichment.

R : Y op ⊗ X → Cost

Such a construction is called a profunctor. For notation, a profunctor R : Y op ⊗ X → Cost, can be written
as R : X ↛ Y . The tensor product of two categories Y op ⊗ X contains objects which are pairs of objects in
X and Y similar to how the Cartesian product of sets contains pairs of elements of sets. The notation Y op

is used to refer to a category with the objects of Y , but whose hom objects are reversed.

Y (a, b) = Y op(b, a)

With two set relations R : X ↛ Y and S : Y ↛ Z, a composite relation can be produced of the form
S ◦ R : A ↛ C. The composition of two relations R and S is true for two inputs x and z, if there exists an
element y in Y such that R(y, x) is true, and S(z, y) is true. The logic of relation composition is described
by the following equation.

(S ◦ R)(z, x) := ∃y ∈ Y [R(y, x) and S(z, y)]

Similar to relations, profunctors can also be composed. Given Cost enriched profunctors R : X ↛ Y
and S : Y ↛ Z, the output of their composition bares a striking resemblance to the formula for relation
composition.

(S ◦ R)(z, x) := inf
y∈Y

(R(y, x) + S(z, y))

The similarity between relation composition and profunctor composition is more than just cosmetic. It
also emulates how Cost enriched categories treat logical propositions. In the Boolean logic setting, the
"and" operation outputs true only when both of its inputs are true, and false otherwise. In Cost enriched
categories, a distance of zero can be interpreted as true, and a distance greater than zero is false. With this
interpretation, the sum of two values a and b, where both are non-negative, can only be zero if both a and
b are zero. From the perspective of Cost category logic, a + b is the logical "and" operation. Furthermore,
within this version of logic the infimum operation is the Cost version of the existential quantifier. When X is
finite, The statement infx∈X Fx = 0 means there exists a value x such that Fx is zero. In the infinite case, it
suggests that there exists a value Fx which is arbitrarily close to zero. Applying this logic to the definition
of profunctors, it can be seen that profunctors produce truth values from pairs of objects, if the output of
zero is interpreted as true, and the output of non-zero is interpreted as false. Such an interpretation can be
represented by the functor (0 = x) : Cost → Bool. The following table highlights the comparable notions
between standard Set theory and Lawvere metric spaces, though this comparison extends to all enriched
category theory.

Logical Concept Set Theory Lawvere metric spaces
Truth Values Bool Cost
Conjunction ∧ +
Mappings Functions Functors

Binary Predicate Relations Profunctors
Existential Quantifier ∃ inf
Universal Quantifier ∀ sup

With knowledge of Functors, Profunctors and their composition there is a final piece of information necessary
for the construction of the Nearest Neighbours Algorithm. Continuing with the intuition from functions and
relations of sets, it can be observed that functions are a special kind of relation, known as a functional
relation. A function F : N → X is said to produce an element Fi when given an element i ∈ N , but this
behaviour can be represented directly as a relation F∗ : N ↛ X which evaluates to a truth value under the

5

Under review as submission to TMLR

condition F∗(x, i) ⇔ (x = Fi). In fact, there is also a second relation of the opposite direction F ∗ : X ↛ N
which represents the logical evaluation of the function F ∗(i, x) ⇔ (Fi = x).

The interaction between functions and relations has a mirror in the interaction between functors and profunc-
tors. A functor F : N → X canonically generates two profunctors. One of the same direction F∗ : N ↛ X
and one of the opposite direction F ∗ : X ↛ N . They are defined with the aid of hom-objects, where
F∗(x, i) = X(x, F i) and F ∗(i, x) = X(Fi, x). In the case of Lawvere metric spaces, the profunctors of F
evaluated on objects x and i can be read as: "The distance between x and the image of i under F ". With
this final component, it is now possible to construct the Nearest Neighbours Algorithm.

3 Constructing The Nearest Neighbours Algorithm

This section explores the construction of the Nearest Neighbours Algorithm, given a dataset of points in a
metric space, and classification labels, using Enriched Category Theory. Starting with a dataset of n pairs
(x1, y1), ..., (xn, yn), the xi values are elements of a metric space X, and the yi values are class labels. Given
a new point x ∈ X, what is the correct class label to associate with it?

From the format of the dataset, the primary characteristic of the data points is the distances between them.
This would suggest that the natural choice for the enriched categories are Lawvere metric spaces, i.e. Cost
enriched categories. The first step is to find an appropriate representation of the data. An individual data
point, (xi, yi), has three components. An index value i, an associated point in the metric space xi, and the
classification label yi. The n index values can be stored in a Cost-enriched category N . The metric space X
can clearly also be represented as a Cost-enriched category X, but the class labels can also be represented in
a similar way, as the contents of the Cost-enriched category Y , which contains all of the possible class labels.
With these categories, the information of the dataset can be represented by two functors. F : N → X maps
the index values to their associated position in the metric space xi. The functor T : N → Y , similarly, maps
data indexes to class labels.

Though it is now clear what objects the various enriched categories contain, it remains to determine what
the hom-objects of each category should be. In the case of the metric space X, it is clear that between any
points a, b ∈ X, the hom object X(a, b) should correspond directly with the distance metric on X. It is less
clear what the choice should be for the categories N and Y .

Proceeding with the intuition that the hom-objects, or in this case the distances, between objects should
encode meaningful information about the data, the objects of N , the indexes, possess no explicit relation to
each other. This would suggest that the distances between indexes should be as "un-constraining as possible".
In the context of enriched categories, the lack of constraint would suggest that the Functors from N to any
other Cost category, should correspond directly with maps from the objects of N to the other category. To
achieve this, the category N can be given the discrete metric, shown in the following equation.

N(i, j) =
{

0 i = j

∞ i ̸= j

Recalling that functors between Cost-Categories are distance non-increasing functions, the discrete metric
means that this condition is trivially satisfied, as the objects of N are as distant from each other as possible.
This models the lack of a relationship between the data indexes. The same logic can be applied to the objects
of Y . Class labels should also have no meaningful relation to each other, so the discrete metric can be applied
to Y as well. With the categories N , X, Y and the functors F , and T , the dataset can be represented by
the following diagram.

X

N Y
T

F

6

Under review as submission to TMLR

To find the classes of all the points in X would optimistically be to find a suitable candidate for the dotted
arrow from X to Y . However, there is an issue. It is expected that two classification regions in X may be
touching, producing a boundary between classification regions which can have a trivially small distance. If
we insist that classes are assigned by functors, then the functors must be distance non-increasing. This would
require that the classes in Y have a distance of zero from each other. It is tempting to think that one should
not assign Y the discrete metric, but this has an unfortunate consequence. Within the language of Enriched
Category Theory, the hom-objects are the only way to distinguish between objects of a category. Setting
all of the distances between objects in Y to zero would make all of the classes indistinguishable from each
other in any categorical construction. It was correct to assign Y the discrete metric, but not to expect the
classifications to be represented by a functor. The classifications can in fact be represented by a profunctor
NNA : X ↛ Y .

With the expectation that the correct classification is represented by a profunctor, we can attempt to
produce this profunctor directly by composition. The functors F and T both have two canonical profunctors
associated with them. By selecting these profunctors appropriately, we can compose them to produce a
profunctor from X to Y . This can be done with the profunctors F ∗ : X ↛ N and T∗ : N ↛ Y .

X

N Y

F ∗
p

T∗p

T∗◦F ∗

As previously discussed, the profunctor F ∗ : X ↛ N measures the distance between a point in X and the
image of a data point in N . The profunctor T∗ : N ↛ Y does something similar, but because it is produced
by a functor between discrete categories, its outputs are even easier to interpret. If a data index i has a class
y, i.e. Ti = y, then T∗(y, i) will be 0. However, if i does not have class y then T∗(y, i) is infinity. Substituting
these profunctors into the profunctor composition formula produces the following equation.

(T∗ ◦ F ∗)(y, x) = inf
i∈N

(F ∗(i, x) + T∗(y, i))

The interpretation of this composition is relatively straight forward. If the class of i selected by the infimum
is not y, then T (y, i) will be infinity, making the entire sum as large or larger than any other possible
value. However, if the i selected was of class y, then the formula returns infi∈N F ∗(i, x). In other words the
composition (T∗ ◦ F ∗)(y, x) returns the distance from x to the closest data point which is of class y. This
could also be interpreted as evaluating the infimum of a partition of the indexes which have the class y 4.

(T∗ ◦ F ∗)(y, x) = inf
i∈NT (y)

d(Fi, x)

A useful outcome, but not quite the NNA . There is one additional step. In order to reproduce the NNA we
need to compare the output of the profunctor T∗ ◦ F ∗, to a similar composition with a profunctor that has
no knowledge of the classes, 1NY : N ↛ Y .

To model the notion that 1NY has no knowledge of the classes, it must respond true to any i ∈ N and y ∈ Y ,
i.e. 1NY (y, i) = 0 5. Composing this profunctor with F ∗ produces a composition with no knowledge of the
classes.

(1NY ◦ F ∗)(y, x) = inf
i∈N

(F ∗(i, x) + 1NY (y, i))

= inf
i∈N

F ∗(i, x)

4Note that the following expression re-uses the notation NT (y) introduced in section 2.1 to represent the partition subset
of N with classes y, NT (y) = {i ∈ N | T i = y}

5This also makes 1NY the terminal profunctor of the category of profunctors between N and Y , P rof(N, Y)

7

Under review as submission to TMLR

Given a point x ∈ X and class y ∈ Y , the profunctor (1NY ◦ F ∗)(y, x) gives the distance to the closest
point in the dataset (i.e. in the image of F). This composition has forgotten all class information. Finally,
to reconstruct the NNA classification it only remains to compare the outputs of both profunctors. As their
outputs are objects of the Cost category, the natural comparison is their hom-object in Cost.

NNA : X ↛ Y

NNA(y, x) := Cost((1NY ◦ F ∗)(y, x), (T∗ ◦ F ∗)(y, x))

Because Cost can be viewed as a Bool enriched category, and therefore a preorder, this leads to the expression:

NNA(y, x) = (1NY ◦ F ∗)(y, x) ≥ (T∗ ◦ F ∗)(y, x)

A point x is taken to have class y when NNA(y, x) is true. Consider the situation that the closest data point
Fj to x has class y, then T (y, j) = 0. The left hand side of the inequality finds the smallest distance from x
to a data point with any class and the right hand side finds the smallest distance to a data point with class
y. When the closest data point to x has class y, the left hand side returns the same value as the right hand
side and the inequality is true.

NNA(y, x) ⇔ Cost((1NY ◦ F ∗)(y, x), (T∗ ◦ F ∗)(y, x))
⇔ (1NY ◦ F ∗)(y, x) ≥ (T∗ ◦ F ∗)(y, x)
⇔ inf

i∈N
F ∗(i, x) ≥ inf

i∈N
(F ∗(i, x) + T (y, i))

⇔ F ∗(j, x) ≥ F ∗(j, x) + T (y, j)
⇔ F ∗(j, x) ≥ F ∗(j, x)
⇔ True

Alternatively, in a situation where the nearest data point does not have class y, then (T∗ ◦ F ∗)(y, x) >
(1NY ◦ F ∗)(y, x) and the output will be false. From this interpretation, it is clear that the NNA profunctor
produces the same classification as the Nearest Neighbours Algorithm. In its purely categorical form, the
similarity between the profunctor construction and the relation introduced in Section 2.1 is obscured, but it
can be made clear through substitution.

NNA(y, x) ⇔ Cost((1NY ◦ F ∗)(y, x) , (T∗ ◦ F ∗)(y, x))
⇔ (1NY ◦ F ∗)(y, x) ≥ (T∗ ◦ F ∗)(y, x)
⇔ inf

i∈N
F ∗(i, x) ≥ inf

i∈N
(F ∗(i, x) + T∗(y, i))

⇔ inf
i∈N

F ∗(i, x) ≥ inf
i∈NT (y)

F ∗(i, x)

⇔ inf
i∈N

F ∗(i, x) = inf
i∈NT (y)

F ∗(i, x)

⇔ inf
i∈N

X(Fi, x) = inf
i∈NT (y)

X(Fi, x)

⇔ inf
i∈N

d(Fi, x) = inf
i∈NT (y)

d(Fi, x)

The last line is the same as the NNA relation shown in Section 2.1, demonstrating that this construction is
the same as the standard Nearest Neighbours Algorithm.

8

Under review as submission to TMLR

4 Generalising the Nearest Neighbours Algorithm

With the basic construction of the NNA presented in section 3, we now explore how this form can be gener-
alised. Firstly, we will discuss the production of the k Nearest Neighbours Algorithm (k-NNA). Secondly, we
will discuss forming soft or dependent classification boundaries using non-discrete metrics for classification
labels.

4.1 K Nearest Neighbours

A common extension of the standard NNA, the k-NNA, bases its output on an aggregate classification formed
from the classes of the k nearest neighbours. To produce this generalisation, the construction needs to store
the information associated with k neighbouring data points, and a choice needs to be made concerning the
method of aggregating the classes of these points. The first issue can be solved using the tensor product
introduced in section 2.3. In particular, given a Cost enriched category C, we can produce the k times tensor
product of C with itself.

Ck := C1 ⊗ ... ⊗ Ck C = Ci

The tensor product operates on the objects of C identically to the set-theoretic Cartesian product, meaning
that the objects of Ck are k-tuples of the objects of C. The tensor product also operates on hom objects of
C by applying the monoidal product of the base of enrichment. In the case of Cost, the monoidal product
is just an addition.

Ck(x⃗, y⃗) = C1(x⃗1, y⃗1) ⊗ ... ⊗ Ck(x⃗k, y⃗k)

The tensor product also acts on enriched functors similarly to how the Cartesian product acts on functions.
The tensor product of functors maps tuples to tuples, with each component functor acting element-wise on
the tuples. This allows the mapping produced by a functor k times tensored with itself to be presented as
follows.

F k(x⃗) = (F (x⃗1), ..., F (x⃗k))

Because the tensor product of enriched categories acts on both categories and functors, we can produce the
k times tensor product of the diagram which defines the dataset.

Xk

Nk Y k

F k

T k

This diagram can store the information required for the k-NNA classification. However, it includes tuples
that would usually be excluded, i.e., where a particular data point appears multiple times. Usually, the k
nearest neighbours are k different neighbours. By including tuples which duplicate data points, the algorithm
can base its aggregate classification on a tuple of duplicate points. To avoid this issue, we can introduce
a subcategory of Nk, which only includes tuples with no duplicate points. This subcategory also comes
equipped with a functor, which is an inclusion on objects, mapping the subcategory into the original space.

I : Nk → Nk

The introduction of I allows the diagram to be restricted such that the algorithm only acknowledges tuples
of distinct neighbours. By composing I with F and T , then taking the induced profunctors, we can produce
a similar profunctor diagram as used in section 3.

Xk

Nk Y k

(F kI)∗

p

(T kI)∗
p

9

Under review as submission to TMLR

The second step in this procedure is to correct the outputs and inputs of the diagram by composing profunc-
tors that convert k-tuples back into individual points of X and Y . The k times tensor product of X with
itself comes equipped with a profunctor functor that identifies the k-tuples formed from a single element of
X.

∆ : X ↛ Xk

The profunctor identifies such tuples by comparing a single element of X with each element of the tuple
using the distance metric of X.

∆(x⃗, x) = X(x⃗1, x) ⊗ ... ⊗ X(x⃗k, x)

When every element of x⃗ is zero distance from x then ∆(x⃗, x) = 0. The profunctor used to correct the
outputs of the diagram is not so clearly defined. Alternatively, it should be said that multiple viable options
could be used depending on how the k-NNA is expected to operate. The aggregator profunctor takes the
form A : Y k ↛ Y . Part of the variability in its definition is how A handles ties, where the most common
labels are equally prevalent amongst the k neighbours. Whenever there is a clash, a greedy aggregation
policy may assign both labels, a conservative policy would assign no labels, and a biased policy may always
prefer one label over another. Ultimately, A becomes a hyperparameter. The commonality between these
schemes is that A is invariant to permutations in the order of the elements, that it is 0 when a tuple of
neighbours does possess the given classification label, and it is ∞ otherwise. The following diagram may be
produced with access to the profunctors ∆ and A.

Xk X

Nk Y k Y

(F kI)∗

p

∆p

(T kI)∗
p

A
p

In parallel with the strategy of section 2.1 this allows the k-NNA algorithm to be defined through profunctor
composition.

k-NNA : X ↛ Y

k-NNA := A ◦ Cost((1
NkY k ◦ (FI)∗), ((TI)∗ ◦ (FI)∗)) ◦ ∆

The definition of k-NNA can also be presented more concisely with reference to the original NNA algorithm,
constructed over the functors F kI and T kI. For clarity, we notate the original NNA construction as NNAF,T .

k-NNA = A ◦ NNAF kI,T kI ◦ ∆

Presenting the k-NNA using the NNA construction will also allow us to leverage the arguments of section
3 without having to repeat them. Each component profunctor must yield true for the composite k-NNA
to yield true. In the case of Cost-enriched profunctors, we interpret the output 0 interchangeably with the
value true. To convince ourselves that the k-NNA is behaving as expected, we may follow a point x ∈ X
around the diagram.

By construction ∆(x⃗, x) is only true when x⃗ has as its elements objects which are zero distance from x.
When X is considered a traditional metric space, including the axiom of positivity, this forces x⃗i = x. We
also know that NNAF kI,T kI(y⃗, x⃗) is true when the closest point to x⃗ in the image of F kI has the classification
y⃗. All points in the image of F kI are tuples of distinct neighbours. The distance metric of Xk is the sum of
distances in X. By minimising each dimension, we may construct an object z⃗ ∈ Xk. We select z⃗1 to be the
closest point to x, and then as z⃗2 must be a different point, we select it to be the second closest point in the
dataset. Iterating leads to z⃗k being the kth closest point to x. This shows that if z⃗ minimises the distance
to x⃗, it is a tuple of k nearest neighbours to x. The classes of y⃗ must match component-wise with each class
assigned to the components of z⃗. Given a z⃗ which minimises the distance to x⃗, then a permutation of z⃗ also
minimises this distance, inducing a permutation in the classes y⃗. However, this does not affect the output
because A is selected to be invariant to permutations. Finally, given a tuple of classes y⃗, then A(y, y⃗) is
true if y corresponds with the aggregate class as selected by the chosen aggregation policy. The sequence

10

Under review as submission to TMLR

of deductions shows that k-NNA(y, x) yields true only when y is the aggregate of the classes of k nearest
neighbours to x.

In summary, k-NNA can be produced using the NNA algorithm by duplicating the original dataset with a
k fold tensor product. A choice of class label aggregation policy allows k-tuples of labels to be reduced to a
single class label. Before finishing this section, it should be noted that there are instances where a dataset
may have multiple points which are equidistant from x. This would produce multiple tuples of neighbours,
which minimise the distance without necessarily being a permutation of each other. In this case, the k-NNA
would assign multiple class labels to x. This can be seen as an extension of the case in the NNA, where a
point equidistant from two data points with different classes is assigned both class labels.

4.2 Label Metrics for Soft Boundaries and Dependent Classifications

The categorical constructions of the NNA and k-NNA are novel to this paper, but the algorithms are
already well established. While this is beneficial in justifying that ECT can produce practically applicable
algorithms, it would be nice to demonstrate that ECT analysis can extend the utility of existing algorithms.
Thankfully, the construction of the NNA does not only replicate the behaviour of a traditional nearest
neighbour algorithm. When the construction parameters are allowed to vary outside of what is usually
possible, the NNA begins exhibiting novel and potentially valuable behaviours.

The particular variation explored in this section occurs through the definition of the space of classification
labels, Y . In the traditional implementation, the collection of classification labels is a set of values with
no additional structure; as the algorithm is usually implemented directly from its description, it is unclear
how one would incorporate additional structure into its decision-making. Section 3 shows that when Y is
considered a discrete category, the ECT construction of NNA reproduces precisely the expected behaviour.
However, Y is not required to be a discrete category in general. By framing the construction within the cat-
egory of Lawvere metric spaces, the enriched NNA can accept Y as any Lawvere metric space. Incorporating
information about the similarity of classification labels as a metric allows the enriched classifier to produce
softer classification boundaries. This could be formed from a semantic similarity metric for word-based labels
or a more traditional metric for vector-based labels. Metrics associated with Y , the category of classification
labels, will be referred to as label metrics.

Label metrics are incorporated into the classification decision through T∗.

T∗(y, i) = Y (y, T i)

When the label metric is discrete, T∗ serves only to identify when points are identical or not. However,
for label metrics with bounded distances, the enriched NNA may present a point as having a particular
classification if that label is within a certain distance of the label of the nearest neighbour. To understand
this behaviour for a non-discrete label metric, we may visualise the outputs of the NNA over its entire space
of input pairs. Consider, for example, a function from the unit interval to the unit interval. A sample of
points from this function can be presented with functors F and T , allowing the application of the NNA.
Both X and Y values can be given the standard metric of the real numbers rather than forcing Y to be
discrete. The outputs of the NNA and 4-NNA for every X and Y position are visualised in Fig 2.

The images demonstrate the output values of the profunctors, showing how they evaluate the nearness to
truth of each coordinate point. Operating in this fashion, the NNA begins to act more as a regression model
than as a classifier.

In addition to the ability to present non-discrete label metrics, the presentation of Y as a Lawvere metric space
allows it to adopt an asymmetric metric. This induces what one might refer to as dependent classifications,
where the assignment of one label may depend on the assignment of another. For example, consider the
classification labels Dog, Cat, Bird, and Mammal. The label metric between Dog, Cat, and Bird can be
taken to be discrete. As all Dogs and Cats are Mammals, we can represent this relationship by allowing the
metric to become zero when evaluated in one direction.

Y (Mammal, Dog) = Y (Mammal, Cat) = 0

11

Under review as submission to TMLR

Figure 2: A plot of the values of NNA (left) and 4-NNA (right) for x, y ∈ [0, 1]. 30 points were uniformly
sampled from the interval [0, 1] and transformed by the function f(x) = 0.4 + 0.1 sin(10x) − 0.7x2 + 0.7x3

then randomly scaled by ±5% to produce the Y values. The hom objects where taken to be X(a, b) =
Y (a, b) = |b − a|. The aggregation policy chosen for 4-NNA is only zero when all tuple components agree on
the class. Both colour scales clip outputs outside their stated range.

As not all Mammals are Dogs or Cats, the converse relationship is assigned an infinite distance.

Y (Dog, Mammal) = Y (Cat, Mammal) = ∞

As birds are not mammals and mammals are not birds, then these labels are an infinite distance from each
other.

Y (Bird, Mammal) = Y (Mammal, Bird) = ∞

Assume for some value x, that NNA(x, Dog) = True, then the two component profunctors of the NNA are
equal.

(1NY ◦ F ∗)(Dog, x) = (T∗ ◦ F ∗)(Dog, x)

The statement that Y (Mammal, Dog) = 0 allows it to be inserted into the definition of the right-hand side
to demonstrate that (1NY ◦ F ∗)(Dog, x) = (T∗ ◦ F ∗)(Mammal, x).

(1NY ◦ F ∗)(Dog, x) = (T∗ ◦ F ∗)(Dog, x)
= inf

i∈N
(F ∗(i, x) + T∗(Dog, i))

= inf
i∈N

(F ∗(i, x) + Y (Dog, T i))

= inf
i∈N

(F ∗(i, x) + Y (Mammal, Dog) + Y (Dog, T i))

≥ inf
i∈N

(F ∗(i, x) + Y (Mammal, T i))

≥ (T∗ ◦ F ∗)(Mammal, x)

12

Under review as submission to TMLR

The presence of the infimum in the definition of (1NY ◦ F ∗)(Dog, x) forces the inequality to be an equality.
By the definition of the left-hand side, we know that (1NY ◦ F ∗)(Dog, x) = (1NY ◦ F ∗)(Mammal, x) as
(1NY ◦ F ∗) is invariant to the first input. Together, these statements induce the following equality.

(1NY ◦ F ∗)(Mammal, x) = (T∗ ◦ F ∗)(Mammal, x)

This infers that NNA(Mammal, x) = True. Proving the aforementioned dependent classification.

NNA(Dog, x) =⇒ NNA(Mammal, x)

The same logic also induces a dependent classification between Cat and Mammal. However, as the distance
from Mammal to Dog or Cat is infinite, neither depends on the Mammal label. Similarly, as the labels
Mammal and Bird are mutually infinite distance apart, neither depends on the other.

Exploring the enriched NNA as Y is allowed to take non-discrete and asymmetric metrics demonstrates that
the resultant behaviours may apply to a broad range of use cases. When Y is allowed to be non-discrete,
the NNA can make regression and classification decisions reminiscent of kernel density algorithms. When Y
is allowed to be asymmetric, it can encode dependent relationships reminiscent of simple ontologies. In both
cases, the enrichment of the NNA has unlocked behaviours with machine learning applications inaccessible
to the original algorithm.

5 Future Work

Given the diversity of Machine Learning algorithms and the natural generalising power of Enriched Category
Theory, there are numerous avenues to explore for future extensions of this work.

The construction of the NNA in section 3 does not require any specific properties of Cost-enriched categories
to define. This naturally leads to a candidate definition of the V-enriched Nearest Neighbours Algorithm
(V-NNA).

V-NNA : X ↛ Y

V-NNA(y, x) := V ((1NY ◦ F ∗)(y, x), (T∗ ◦ F ∗)(y, x))

The question arises as to whether this definition has valuable properties in other bases of enrichment. Though
the previous section interpreted the hom-object of the base of enrichment in its Bool-enriched form for the
sake of clarity, future works would benefit from considering the self-enriched form of the hom-object and, in
the case of the Cost-NNA, interpreting the hom-object with truncated subtraction rather than an inequality.

Cost-NNA : X ↛ Y

Cost-NNA(y, x) = (T∗ ◦ F ∗)(y, x) −̇ (1NY ◦ F ∗)(y, x)

Researchers who are not interested in Machine Learning would possibly consider the Voronoi diagram as
a more exciting outcome of the V-NNA. By assigning each index a separate class, the NNA partitions the
metric space dependent on each point. In this instance, the partitions generated in other bases of enrichment
may prove interesting.

The generalisation of the NNA to the k-NNA shows how the latter can be expressed in terms of the former
using the flexible language of profunctor composition. This relationship is not clear in other presentations.
Further investigation of how profunctor composition can be used to express machine learning algorithms
may lead to deeper insights. Beyond this, the increased flexibility of the enriched NNA in allowing Y to take
on a variety of metrics requires practical verification to demonstrate its utility on real-world datasets.

13

Under review as submission to TMLR

6 Conclusion

The nascent field of Category Theory for Machine Learning has grown in recent years. As Category Theory
is predominantly concerned with mathematical structure, there is hope that such techniques can improve our
understanding of Machine Learning algorithms. Previous works have demonstrated that there is value in this
avenue of research. However, there are currently not enough examples to indicate the correct way to apply
Category Theory to understanding Machine Learning algorithms. In particular, there has not previously
been an application of Enriched Category Theory in Machine Learning. With the construction of the Nearest
Neighbours Algorithm, using tools from Enriched Category Theory, there is now a stronger indication that
this area can provide valuable insight. Furthermore, the strategies used to represent information and to
reason about the construction of machine learning algorithms in this format suggest that the enriched
structure offers a potentially more intuitive framework than other categorical attempts.

The simplicity of constructing the Nearest Neighbours Algorithm in this framework adds credence to the
sense that the algorithm is an exceedingly natural approach to extending classifications. With the formulation
of the Enriched Nearest Neighbours Algorithm, it becomes a tantalising area of future work to ask if this
algorithm continues to provide sensible classifications in other bases of enrichment. This motivation is
part of the underpinning interest mentioned in the introduction of this work. Is it the case that machine
learning requires fundamentally new algorithms to tackle stranger and stranger problems? Alternatively,
when suitably abstracted, a handful of algorithms might be sufficient for most cases, and the engineering
challenge comes in choosing the correct base of enrichment.

Another interesting outcome of this work is to indicate that Enriched Category Theory is a framework of
reasoning that should be of more interest to Machine Learning researchers. Often derided as a more abstract
formulation of the exceedingly abstract field of Category Theory, certain enrichment bases create enriched
categories that are practically useful. Furthermore, it indicates that understanding the interaction between
hom-objects, functors, and profunctors can provide valuable insights into structuring information and the
meaning behind those structures. Even if one does not find the rigorous application of the theory useful, the
intuition may prove helpful.

References
Andrew Dudzik and Petar Veličković. Graph Neural Networks are Dynamic Programmers, October 2022.

URL http://arxiv.org/abs/2203.15544. arXiv:2203.15544 [cs, math, stat].

Evelyn Fix and J. L. Hodges. Discriminatory Analysis. Nonparametric Discrimination: Consistency Prop-
erties. International Statistical Review / Revue Internationale de Statistique, 57(3):238–247, 1989. ISSN
0306-7734. doi: 10.2307/1403797. URL https://www.jstor.org/stable/1403797. Publisher: [Wiley,
International Statistical Institute (ISI)].

Brendan Fong and David I. Spivak. Seven Sketches in Compositionality: An Invitation to Applied Cat-
egory Theory, October 2018. URL http://arxiv.org/abs/1803.05316. Number: arXiv:1803.05316
arXiv:1803.05316 [math].

G. M. Kelly. Basic concepts of enriched category theory. Repr. Theory Appl. Categ., (10):vi+137, 2005.
Reprint of the 1982 original [Cambridge Univ. Press, Cambridge; MR0651714].

Dan Shiebler. Kan Extensions in Data Science and Machine Learning, July 2022.

14

http://arxiv.org/abs/2203.15544
https://www.jstor.org/stable/1403797
http://arxiv.org/abs/1803.05316

	Introduction
	Background
	Nearest Neighbours Algorithm
	Lawvere Metric Spaces
	Functors and Profunctors

	Constructing The Nearest Neighbours Algorithm
	Generalising the Nearest Neighbours Algorithm
	K Nearest Neighbours
	Label Metrics for Soft Boundaries and Dependent Classifications

	Future Work
	Conclusion

