Under review as a conference paper at ICLR 2026

PRINCIPAL PROTOTYPE ANALYSIS ON MANIFOLD FOR
INTERPRETABLE REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent years have witnessed the widespread adoption of reinforcement learning
(RL), from solving real-time games to fine-tuning large language models using
human preference data significantly improving alignment with user expectations.
However, as model complexity grows exponentially, the interpretability of these
systems becomes increasingly challenging. While numerous explainability meth-
ods have been developed for computer vision and natural language processing to
elucidate both local and global reasoning patterns, their application to RL remains
limited. Direct extensions of these methods often struggle to maintain the delicate
balance between interpretability and performance within RL settings. Prototype-
Wrapper Networks (PW-Nets) have recently shown promise in bridging this gap
by enhancing explainability in RL domains without sacrificing the efficiency of the
original black-box models. However, these methods typically require manually
defined reference prototypes, which often necessitate expert domain knowledge.
In this work, we propose a method that removes this dependency by automati-
cally selecting optimal prototypes from the available data. Preliminary experi-
ments on standard Gym environments demonstrate that our approach matches the
performance of existing PW-Nets, while remaining competitive with the original
black-box models.

1 INTRODUCTION

Deep reinforcement learning (RL) models have achieved state-of-the-art performance in domains
such as Go [Silver et al.| (2016)), Chess [Silver et al.| (2017), inverse scattering Jiang et al.| (2022)),
and self-driving cars Kiran et al.| (2021). More recently, RL has been successfully applied to align
large language models with human preferences, receiving considerable attention as a powerful post-
training strategy using extensive human feedback data Ouyang et al.| (2022); Rafailov et al.| (2024).
However, despite these advances, the deployment of RL agents in sensitive domains remains limited
due to the opaque nature of their decision-making processes. Extracting the rationale behind an
agent’s actions in a human-interpretable format remains a significant challenge, yet doing so is cru-
cial for understanding failure modes and ensuring trust in these systems. To address this challenge,
prototype-based networks have emerged as a promising approach for enhancing the interpretability
of deep learning models. ProtoPNet |Chen et al.| (2019), initially proposed for image classification
tasks, introduced pre-hoc interpretability by associating predictions with learned prototype repre-
sentations.

This idea was later extended to deep RL with Prototype-Wrapper Networks (PW-Nets) [Kenny et al.
(2023), which provide post-hoc interpretability while preserving the performance of the underly-
ing black-box agent. By incorporating exemplar-based reasoning, PW-Nets allow users to inspect
and understand the agent’s actions through user-defined reference examples, without degrading task
performance. Despite these recent advantages, there is a remaining challenge to automatically and
efficiently discover data-adaptive reference examples for interpreting RL behaviors, since manually
curated prototypes present several limitations: Human-selected prototypes are costly to acquire, dif-
ficult to scale, and often lack consistency across environments, reducing the reproducibility and gen-
eralization of explanations. To overcome the above limitations, we propose our principal prototype
analysis on manifold: an automated prototype sampling method that eliminates the need for manual
intervention and selects prototypes adaptive to RL tasks on the data manifold. To the best of our
knowledge, we are the first to automate prototype discovery in RL while retaining the performance

Under review as a conference paper at ICLR 2026

of the black-box agent. Our approach leverages a combination of metric and manifold learning ob-
jectives to select prototypes directly from the encoded state space that reflects a low-dimensional
geometric representation of the RL task, providing a more scalable and principled mechanism for
prototype discovery.

* Automated and Decoupled Prototype Discovery: Our method proposes a novel two-
stage architecture that decouples prototype discovery from policy optimization. In the
first stage, it automatically selects prototypes from the agent’s trajectory data using a
lightweight neural network trained with combined manifold and metric learning objectives,
removing the need for human-curated examples. In the second stage, these prototypes are
fixed and integrated into the PW-Net for interpretable action prediction, preserving black-
box performance.

* Geometry-Aware and Faithful Prototypes via Real Instances: Instead of learning ab-
stract embeddings, our method grounds each learned proxy vector in real training sam-
ples by mapping them to their nearest encoded instance. This ensures prototypes are both
geometry-aware—by leveraging piecewise-linear manifold approximations—and semanti-
cally faithful, enabling more intuitive and interpretable behavior analysis of RL agents.

2 RELATED WORKS

Interpretability in neural network architectures, particularly in computer vision (CV) and natural
language processing (NLP), has advanced substantially, encompassing both pre-hoc and post-hoc
strategies. In CV, post-hoc methods such as Grad-CAM |Selvaraju et al.|(2019), RISE |Petsiuk et al.
(2018)), and occlusion-based techniques like Meaningful Perturbations [Fong & Vedaldi|(2017) have
enabled visual explanations by highlighting image regions most influential to predictions. However,
these methods provide explanations only after decisions are made, offering limited insight into the
decision-making process itself. In NLP, pre-hoc approaches include interpretable rule-based de-
cision sets [Lakkaraju et al.| (2016 and, more recently, Proto-LM [Xie et al.| (2023)), which embeds
prototypical reasoning directly into large language models. Post-hoc methods such as LIME Ribeiro
et al.|(2016) and Integrated Gradients Sundararajan et al.[(2017)) are widely used to approximate local
model behavior and attribute predictions to input features. Other efforts have challenged conven-
tional practices; for instance, |Jain & Wallace|(2019) questioned the reliability of attention weights as
explanations, while |Arras et al.|(2016)) applied Layer-wise Relevance Propagation to trace decision
origins in text classifiers.

Although several interpretability techniques have been proposed for reinforcement learning (RL)
models|Vouros|(2022); Milani et al.|(2022)), most prior work relies on interpretable surrogate models,
such as decision trees, that imitate agent behavior in symbolic domains. These approaches, however,
do not scale to complex environments with high-dimensional observations such as high-dimensional
pixel-based observations. In deep RL settings, most interpretability research has focused on post-
hoc methods utilizing attention mechanisms |[Zambaldi et al.| (2019); [Mott et al.| (2019)or tree-based
surrogates [Liu et al.| (2018)), but these often fall short in revealing the underlying reasoning or intent
of the agent|Rudin et al.|(2021). Some approaches attempt to distill recurrent neural network (RNN)
policies into finite-state machines [Danesh et al.| (2021); |[Koul et al.| (2018)), but such methods can
yield opaque explanations and are constrained to specific architectures.

Our work builds on prototype-based neural networks, which are inherently interpretable by design.
These models associate test instances with prototypical examples during the forward pass, enabling
intuitive, exemplar-based reasoning. A foundational example of this approach was presented by |L1
et al.|(2017), who introduced a pre-hoc method that learns prototypes in latent space and classifies in-
puts based on their L2 distance to these prototypes. This method also required a decoder to visualize
prototype representations. A notable extension was ProtoPNet|Chen et al.|(2019), which associated
prototypes with image parts rather than entire images, enhancing fine-grained interpretability.

In the RL domain, this concept was adapted by |[Kenny et al.| (2023) through the Prototype-Wrapper
Network (PW-Net), a framework that enables pre-hoc performance of the black box model while
providing an interpretbale by design post-hoc analysis. The authors also explored an end-to-end
learning approach for training prototype representations, inspired by (Chen et al|(2019). While ef-
fective in image classification tasks, this approach failed to replicate the original performance of

Under review as a conference paper at ICLR 2026

black-box agents when applied to RL environments. We posit that simultaneously optimizing for
both performance and interpretability during training introduces a bottleneck that limits effective-
ness. To address this, our method decouples these objectives first sampling prototypes using a com-
bination of metric and manifold learning techniques. and then testing the sampled prototypes using
PW-net architecture. This separation allows us to preserve the performance of the original agent
while maintaining interpretability, without requiring manual prototype selection. Our results show
that this strategy achieves competitive performance across multiple environments, highlighting its
effectiveness and scalability.

3 METHODOLOGY

3.1 MOTIVATION

Prototype-based methods offer an interpretable way to associate each class with representative ex-
amples; here the representative examples are termed as prototypes. A straightforward baseline to
define prototypes is using simple statistics such as the class mean or medoids in the embedding
space. However, such naive approaches fail to capture the intrinsic geometry of encoded representa-
tions: they are biased by outliers, insensitive to multi-modal distributions within classes, and often
yield prototypes that are statistically central but semantically uninformative. To construct meaning-
ful prototypes, it is essential to account for the geometry of the data distribution itself.

According to the manifold hypothesis |Cayton| (2005), high-dimensional representations typically
reside on lower-dimensional manifolds. Leveraging this property enables geometry-aware prototype
sampling. Classical manifold learning techniques, however, come with limitations methods like t-
SNE |van der Maaten & Hinton (2008), UMAP Mclnnes et al.| (2020), and LLE [Roweis & Saul
(2000) emphasize neighborhood preservation but often distort local dependencies or fail to provide
consistent global structure. To address this, we adopt a piecewise-linear manifold learning approach
in which nonlinear manifolds are decomposed into locally linear regions. This design ensures that
prototypes are drawn from regions that reflect local geometry, avoiding the pitfalls of global averages
or distorted embeddings.

While manifold learning preserves geometric structure, prototypes must also be discriminative
across classes. Geometry alone does not guarantee that prototypes tightly capture intra-class consis-
tency or maximize inter-class separation. To achieve this, we incorporate a metric learning objec-
tives. Methods such as triplet or contrastive loss require predefined prototypes and extensive sample
mining, which is inefficient and often unstable. Instead, we employ Proxy-Anchor loss, which in-
troduces learnable class-level proxy vectors that directly enforce compact clustering within a class
and clear separation between classes. After training, each proxy is mapped to its nearest training
instance, yielding prototypes that are simultaneously geometry-aware and discriminative.

In (Chen et al.| (2019)), the notion of learnable prototypes was introduced for image classification,
where prototype learning was jointly optimized alongside the classification objective. While this
approach proved effective for supervised image tasks, its adaptation to reinforcement learning in
Kenny et al.[(2023)) (PW-Net*) resulted in noticeably weaker performance compared to black-box
RL models. To overcome this limitation, we propose to decouple these objectives into two sequential
stages. In the first stage, we focus on sampling prototypes that serve as robust and representative
anchors for each class. In the second stage, these prototypes are fixed and used within PW-Net,
which is then trained exclusively on the RL objective.

3.2 DATASET

Our method begins with the assumption that we have access to a pre-trained policy 7, operating
within a Markov Decision Process (MDP) [Sutton & Barto| (2015).Since all policies used in our
experiments are implemented as neural network architectures, we assume that each policy concludes
with a final linear layer. Under this setting, the policy 7y, can be decomposed into two components:
an encoder fenc, Wwhich maps the input state s to a latent representation z, and a final linear layer
defined by weights W and bias b. The resulting policy function can be expressed as:

ﬂ-bb(s) = ernc(s) + b,

Under review as a conference paper at ICLR 2026

Where z = fen(s) represents the encoded state.To construct the dataset used for training our pro-
totype selection mechanism, we execute the pre-trained agent in its original environment for n time
steps. During this rollout, we collect encoded state—action pairs, resulting in a dataset D:

D < {(2i, mon(si)) bieq -

3.3 TRAINING OVERVIEW

Backpropagation
@ i Wi ;’m""""""'"""'F;i'e"c‘e'b\'/'ié'é'l'iffe"a'r'aé‘t'a‘
scaling manifold cgnstruction
—— :Forward pass single
layer @ O
state inputs pre-trained neural | O
agent Y network
Point-to-Point MIBEiflEs
Proxy piecewise Manifald loss @ Proxy
manifolds Anchor loss

Proxy Momentum

i3 0% 1 update _:

O
] (o) OF |t === = ==

o

(0]

Figure 1: Overview of the proposed method

As mentioned in our method consists of two stages. In the first stage of our method, we initialize
a simple neural network hy and train it on Dataset D to jointly optimize manifold learning |4 and
metric learning objectives The neural network hy learns to map the high-dimensional encoded
representations into lower dimensions. Before the training process, we initialize the proxies ¢, and
6. here both the proxies are unique for each class and initiated randomly with 6, = 6,,,. The proxy
vector 0, is learned using the metric learning objective [2|and updated via back-propagation. The
proxy vector 6, is updated via the Momentum update |He et al.| (2020) where is the momentum
constant.

Om < ¥0m + (1 —)0, (D

Before training our model hg, we reformat the dataset D to consist of pairs of encoded state repre-
sentations and their corresponding discretized actions (Section [.I). This discretization allows the
use of a metric learning objective [2|that clusters encoded states with similar actions and separates
those with dissimilar ones, and also enables learning discriminative prototypes.

During training, for every mini-batch B we build linear piecewise manifolds as outlined in [3.4] For
every point in B, we then compute the manifold-based similarity following the procedure in
This similarity measure is used to compute the manifold point-to-point 10ss Lyanifoid- At the same
time, we compute the Proxy Anchor loss Lpa using randomly initialized class proxies 6, and latent
representations z in batch B. The final loss is computed as Loy = Lpa + Lmanifold-

The manifold point-to-point loss is designed to reduce the distance between points lying on the
same manifold, thus preserving local geometric structure while increasing the distance between
points on different manifolds. In contrast, the Proxy Anchor loss encourages samples from the
same class to cluster closer together while pushing samples from different classes further apart; this
encourages the discriminative learning of prototypes. For every epoch, the network hy is updated
through backpropagation, and the proxy vectors are updated according to the procedure described in
Once the training is completed, we use the learned proxy vectors 6,,, to select the nearest training
data sample as prototypes for each class to be used in the stage of two of training PW-net; here, for
every class, there is only 6,,, being initialized, i.e., we will be only getting one prototype per class.

Under review as a conference paper at ICLR 2026

3.4 MANIFOLD CONSTRUCTION

Based on the Manifold hypothesis, we assume that the encoded state representations produced by
the policy mp, though inherently complex and non-linear, can be locally approximated into smaller
chunks of linear regions. Our approach leverages this structural assumption to automatically identify
representative prototypes that capture the essential characteristics of each action class.

To efficiently approximate the structure of the data manifold, we adopt a piecewise linear manifold
learning method, which constructs localized m-dimensional linear submanifolds around selected
anchor points. Given a batch B containing [V data points, we randomly select n of them to serve as
anchors. For each anchor point hy(z;), we initially collect its m—1 nearest neighbors in the encoded
representation space based on Euclidean distance to form the neighborhood set X;.

The manifold expansion process proceeds iteratively by attempting to add the m-th nearest neighbor
to X;. After each addition, we recompute the best-fit m-dimensional submanifold using PCA and
assess whether all points in X; can be reconstructed with a quality above a threshold T'%. If the
reconstruction quality remains acceptable, the new point is retained in X;; otherwise, it is excluded.
This evaluation is repeated for subsequent neighbors N (hg(z;)); for j € {m;+1, ..., k}, gradually
constructing a local linear approximation of the manifold.

The final set X; comprises all points in the anchor’s neighborhood that lie well within an m-
dimensional linear submanifold. A basis for this submanifold is computed by applying PCA to
X, and extracting the top m eigenvectors. We choose PCA for this task as it is computationally
efficient and well-suited for capturing linear approximations of non-linear data, in alignment with
our assumption of locally linear structure within the high-dimensional state space.

3.5 LoOSS FUNCTIONS

Proxy Anchor Loss: We use a modified version of proxy anchor loss with Euclidean distance
instead of cosine similarity:

1
tn =gy 3 g [1+ 3 emla- () =~) @
* 0,€0 4 ZGZgrq
1
+== > log [14 Y exp(a-([ho(z) = byll2 —€)) 3)
ol 2, _
q zEZeq

Here, O denotes the set of all proxies, where each proxy 6, € © serves as a representative vector for
a class. The subset © C O includes only those proxies that have at least one positive embedding
in the current batch B. For a given proxy §,, the latent representations Z in B (where z € 2Z)

are partitioned into two sets: ZJ;, the positive embeddings belonging to the same class as 6, and
Ze_q =Z\Z t, the negative embeddings. The scaling factor e controls the sharpness of optimiza-

tion by amplifying hard examples when large (focusing gradients on difficult pairs) or smoothing
training when small (spreading weight across all pairs). The margin e enforces a buffer zone be-
tween positives and negatives by requiring positives to be closer to their proxies and negatives to be
sufficiently farther away.

Manifold Point-to-Point Loss: This loss helps in estimating the point to point similarities pre-
serving the geometric structure:

Lunanitold = Y, (8- (1= 5(2i,25)) — [|he (z:) — o ()]2)? Q)
i
where s(z;, z;) is the manifold similarity computed as:

s'(2i, 25) + 5'(25, 2i)
2

s(zi,25) =

Under review as a conference paper at ICLR 2026

with §'(z;, ;) = (2, 25) - B(2i, 2;), where:

oz, z5) = .
U (L ofzi,)2
ﬂ(zhzj) = !

(1+p(zi, 7))

0 is the scaling factor, it determines the maximum separation between dissimilar points. The loss
encourages Euclidean distances in the embedding space to match manifold-based dissimilarities
1 — s(z;, %;), ensuring that the learned metric space respects the underlying manifold structure.
o(z;, zj) is the orthogonal distance from point z; to the manifold of point z;, and p(z;, z;) is the
projected distance between point z; and the projection of z; on the manifold. The parameters N,
and Ng control how rapidly similarity decays with distance, with N, > Ny ensuring that similarity
decreases more rapidly for points lying off the manifold than for points on the same manifold..

Distance Calculation. For each point pair (z;, z;), the distances o(z;, z;) and p(z;, z;) are cal-
culated using the manifold basis vectors P; associated with point z;. The projection of z; onto
P;j is computed as projp (2;) = zj + 4 (2i — 2j,Vk)vx, where vy, are the basis vectors of P;.
The orthogonal distance is then o(z;,2;) = |zi — projp,(i)[|2, and the projected distance is
p(zi,zj) = |[lprojp, (2:) — zjll2. This process is repeated for all point pairs, capturing the full
geometric structure of the data manifold.

The total loss is the sum of these two components, allowing the model to simultaneously learn a
metric space that respects action classes while preserving the geometric structure of the data.

3.6 PERFORMANCE REVIEW

The action output a’ from the Prototype-Wrapper Network (PW-Net) can generalize better than the
original black-box model’s action a Snell et al.|(2017); Li et al.| (2021), due to improved alignment
with class-representative prototypes—even without further interaction with the environment. This
generalization is critically influenced by the quality and representativeness of the selected proto-
types. The black-box policy 7y, computes the action as:

a=W fene(s)+b

where z is the latent state representation obtained from the encoder.PW-Net enforces structured
reasoning through prototypes and computes similarity scores as:

N;
! / . . L
a; = E Wi7js1m(z,7j,pz7])
i=1

The similarity function is defined as:

(zij = Piy)* + 1)
(2ij —pij)* +e€

This ensures actions are chosen based on structured prototype distances rather than raw neural ac-
tivations. The model uses prototype based regularization providing a better generalization by using

the learned policy 7y as additional input signal. For simplicity assume a deep RL domain with only
two actions possible, the action can be computed as a’

a?,+1 25 +1
d, =W/ log | 22— | + W/, log | —=2—
! 1178 <d%,1 te 1208 di,+e

dijj = zi,j = Pij-
Where W’ is the manually defined weight matrix for each action, the output a’ is heavily depen-
dent on the similarity score between the z; ; and p; ;, this metric helps PW-Net avoid completely
mimicking the policy 7y, and instead use it as an additional input signal along with the choice of
prototype to better align responses with human choices.

sim(zi 5, pij) = log (

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS

4.1 ACTION DISCRETIZATION

In continuous action domains, we standardize the action space by first converting all action val-
ues to their absolute values. We then apply the sigmoid function to these transformed values and
determine the final action label by selecting the index corresponding to the maximum sigmoid out-
put. For instance, in the Car Racing environment, the original action output is represented as a
tuple [(acc, brake), left, right]. We first restructure this into a unified vector format:
[acc, brake, left, right]. The encoded state representation is then assigned a discrete
label based on the index of the maximum value obtained after applying the sigmoid function to
this transformed vector. This discretization procedure is consistently applied across all continuous
action environments, including the Bipedal Walker and Humanoid Standup environments, enabling
compatibility with our prototype selection and metric learning pipeline.

4.2 NUMERICAL RESULTS

Method Car Racing Bipedal-Walker | Humanoid Stand up
(Reward) (Reward) (Reward)

Our method 220.91 + 0.85 312.10 + 0.17 75112.60 + 840.25
PW-Net 220.72 + 0.34 308.27 + 3.41 74980.37 4+ 816.84
VIPER N/A -89.71 £7.51 -

PW-Net* -9.48 £2.50 190.41 £ 59.51 -

k-means -2.09 + 0.94 -107.72 £ 0.13 -
Black-Box (DQN) | 219.56 +0.85 312.32 £ 0.21 74930.50 £+ 837.61

Table 1: Reward comparison on Car Racing, Bipedal Walker, and Humanoid Standup tasks

Method | Pong (Reward) | Lunar Lander (Reward) | Acrobat (Reward)
Our method 14.96 £ 0.45 218.01 + 1.47 -83.12 +2.39
PW-Net 10.72 £ 0.26 216.38 + 1.69 -84.67 +2.42
VIPER N/A -408.81 £ 60.98 -
PW-Net* 8.85 £ 1.69 124.54 4+ 120.53 -

k-means -21.00 £+ 0.00 -419.46 4+ 119.08 -
Black-Box 12.07 £ 0.39 214.75 + 1.08 -85.54 + 3.37

Table 2: Reward comparison on Pong, Lunar Lander, and Acrobat environments.

The PW-Net Kenny et al.| (2023)) relied on human-curated prototypes in visually interpretable envi-
ronments such as Car Racing. However, this approach becomes infeasible in complex domains with
high-dimensional, non-visual state spaces and large continuous action sets. For instance, the Hu-
manoid Standup environment [B.I|features a high-dimensional vector input and 17 continuous con-
trol actions across joints and rotors, making manual prototype selection impractical without domain-
specific tools or expertise. Our automated prototype selection method overcomes this limitation by
leveraging geometric and class-level structure in the latent space. Notably, in the Humanoid Standup
task, our approach achieves a mean reward of 75,112.60 (SE = 840.25), closely matching the orig-
inal black-box model’s performance of 74,930.50 (SE = 837.61). This result demonstrates that our
method retains performance even in settings where manual prototype curation is infeasible. For the
new environments of Humanoid Standup and Acrobat for calculating the results on PW-net, we used
the class mean as the prototype. This is in reference with the approach followed by the authors of the
PW-net [C.I|that they have used for training on the Bipedal-walker and Lunar Lander environments.
To analyze the effect of varying hyperparameters, we have performed an ablation study [D|on the
Bi-pedal and Atari pong environments.

4.3 USER STUDY

The interpretability of PW-Nets arises from their case-based reasoning approach, where decisions
are explained through analogies to representative prototypical states. Prior work |Kenny et al.| (2023)

Under review as a conference paper at ICLR 2026

Black Box vs Sampled Prototypes

s0{ ® D _
00D o e
-=-- No Effect Joad
4.5 - .
o .-
4.0 1 B 28 e
o o
x el °
o 3.5 1 T e
(a)] g
i >
A4 3.0 —-
U B
0,5, 1=
om ot
2.0 7
1.5 2=
1.0 A i
1.0 15 2.0 4.0 45 5.0

Sarhpled Prototypes

Figure 2: 1ID and OOD distribution plots for both user groups

demonstrated that human-selected prototypes enable users to form accurate mental models of agent
behavior, supporting effective prediction of both successes and failures. Our automated prototype
selection is designed to preserve this interpretability mechanism by identifying states that capture
the same decision-critical features that human experts would highlight.

To evaluate the plausibility and faithfulness of the sampled prototypes, and to analyze how
prototype-based explanations influence participants’ ability to interpret and anticipate the agent’s
decisions in both IID and OOD conditions, we conducted a user study in the CarRacing environ-
ment (Figure [6). Out of the six environments considered in our experiments, four are symbolic
domains where states are represented as vectors of physical properties, while CarRacing and Atari
Pong operate on raw pixels that can be visually interpreted. CarRacing was chosen because its driv-
ing actions are naturally understandable to non-expert users, making it suitable for visual inspection
and evaluation |Rudin et al.| (2021).

Two groups of 25 participants were recruited. The first group interacted with PW-Nets using our
sampled prototypes as global explanations, while the second group was assigned to a black-box
condition in which participants were told: “The car has learned to complete the track as fast as pos-
sible in this environment by learning from millions of simulations, but no explanation is available.”
In this condition, prototype images were replaced with text-only information, while the prototype
group received visual exemplars that directly conveyed the agent’s reasoning process. This design
isolates the contribution of prototypes to interpretability by contrasting a case-based explanation
with no explanation.

Participants were presented with 20 scenarios: 10 in-distribution (ID) from the standard CarRacing-
v0 environment where the agent drove safely, and 10 out-of-distribution (OOD) from a modified
environment NotAnyMike| (2025)) introducing new road types and red obstacles that led to actual
failure cases. After viewing the car’s current state and the corresponding explanatory condition,
participants predicted whether the vehicle would operate safely on a five-point Likert scale. This
setup assessed how well explanations enabled users to anticipate agent behavior in both familiar and
novel situations.

Results are summarized in Figure [6] In the ID scenarios, both groups produced similar ratings, in-
dicating that participants could reliably interpret safe behavior in either condition. In contrast, for
the OOD cases where the agent failed, participants in the prototype condition were more sensitive to
these failures: their ratings more closely reflected the unsafe ground truth, while the black-box group
tended to overestimate safety. This demonstrates that prototype-based explanations enhance inter-
pretability by helping users anticipate failure modes, even if they do not increase overall reported
confidence.

Under review as a conference paper at ICLR 2026

B Our prototypes
M Human sampled prototypes

acceleration

Figure 3: Comparison of Visual similarity between prototypes

In addition, we evaluated the interpretability of our sampled prototypes relative to the human-curated
prototypes used in PW-Nets (Figure[d.3)). For each action class, participants rated on a 1-5 scale how
well the prototype represented the corresponding decision. For the acceleration class, ratings were
comparable across both methods, while for the other classes human-curated prototypes were slightly
preferred. However, the differences were marginal, suggesting that the automatically sampled pro-
totypes are equally interpretable in practice. Importantly, our method delivers this interpretability
benefit in high-dimensional settings where human prototype selection is infeasible.

5 CONCLUSION AND FUTURE WORK

The application of Deep Reinforcement Learning (Deep RL) spans from automated game simula-
tions to fine-tuning large language models (LLMs) using preference data. However, in the absence of
transparency regarding the agent’s actions and intentions, deploying such systems in high-stakes or
sensitive domains remains impractical Rudin| (2019). PW-Net addresses this challenge by providing
interpretability for deep RL agents through example-based reasoning using human-understandable
concepts. While relying on human-annotated prototypes offers valuable insights, it is not feasible
across all the domains. To overcome this limitation, our approach automatically samples prototypes
from the training data itself. Through user studies, we also demonstrate that trust in the model’s
behavior—especially under out-of-distribution (OOD) scenarios where failures are likely—can be
effectively assessed.Nonetheless, our method faces challenges when applied to tasks like sentence
generation in LLMs. Specifically, our technique assumes a single prototype per class, which be-
comes infeasible when the output space is as large as the vocabulary size—potentially in the order
of millions. Extracting prototypes at that scale is computationally intensive, requiring methodologi-
cal adaptations for interpretability in such settings. Although[Xie et al.|(2023)) proposed an extension
of prototype learning for LLMs, their work was limited to sentence classification, which does not
address the prototype scaling issue in generative tasks.

REFERENCES

Leila Arras, Franziska Horn, Grégoire Montavon, Klaus-Robert Miiller, and Wojciech Samek. Ex-
plaining predictions of non-linear classifiers in nlp, 2016. URL https://arxiv.org/abs/
1606.07298l

Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable reinforcement learning via policy
extraction, 2019. URL https://arxiv.org/abs/1805.08328.

https://arxiv.org/abs/1606.07298
https://arxiv.org/abs/1606.07298
https://arxiv.org/abs/1805.08328

Under review as a conference paper at ICLR 2026

Shubhang Bhatnagar and Narendra Ahuja. Piecewise-linear manifolds for deep metric learning,
2024. URL https://arxiv.org/abs/2403.14977.

bhcetsntrk. OpenAIPong-DQN: Solving atari pong game with duel double dqn in pytorch. https:
//github.com/bhctsntrk/OpenAIPong—DQON, 2025. Accessed: 2025-09-22.

Lawrence Cayton. Algorithms for manifold learning. 07 2005.

Chaofan Chen, Oscar Li, Chaofan Tao, Alina Jade Barnett, Jonathan Su, and Cynthia Rudin.
This looks like that: Deep learning for interpretable image recognition, 2019. URL https:
//arxiv.org/abs/1806.10574.

Mohamad H. Danesh, Anurag Koul, Alan Fern, and Saeed Khorram. Re-understanding finite-state
representations of recurrent policy networks, 2021. URL https://arxiv.org/abs/2006.
03745.

Ruth C. Fong and Andrea Vedaldi. Interpretable explanations of black boxes by meaningful pertur-
bation. In 2017 IEEE International Conference on Computer Vision (ICCV). IEEE, October 2017.
doi: 10.1109/iccv.2017.371. URL |http://dx.doi.org/10.1109/ICCV.2017.371,

R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by learning an invariant map-
ping. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’06), volume 2, pp. 1735-1742, 2006. doi: 10.1109/CVPR.2006.100.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning, 2020. URL https://arxiv.org/abs/1911.
05722.

Sarthak Jain and Byron C. Wallace. Attention is not explanation, 2019. URL https://arxiv.
org/abs/1902.10186.

Hanyang Jiang, Yuehaw Khoo, and Haizhao Yang. Reinforced inverse scattering, 2022. URL
https://arxiv.org/abs/2206.04186.

JinayJain. deepracing: Implementing ppo from scratch in pytorch to solve carracing. https:
//github.com/JinayJain/deep—-racing, 2025. Accessed: 2025-09-22.

Eoin M. Kenny, Mycal Tucker, and Julie Shah. Towards interpretable deep reinforcement learning
with human-friendly prototypes. In The Eleventh International Conference on Learning Repre-
sentations, 2023. URL https://openreview.net/forum?id=hWwY_JgOxsN.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning, 2021. URL https:
//arxiv.org/abs/2004.11362.

Sungyeon Kim, Dongwon Kim, Minsu Cho, and Suha Kwak. Proxy anchor loss for deep metric
learning, 2020. URL https://arxiv.org/abs/2003.13911l

B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A. Al Sallab, Senthil Yoga-
mani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey, 2021.
URLhttps://arxiv.org/abs/2002.00444.

Anurag Koul, Sam Greydanus, and Alan Fern. Learning finite state representations of recurrent
policy networks, 2018. URL https://arxiv.org/abs/1811.12530.

Himabindu Lakkaraju, Stephen H. Bach, and Jure Leskovec. Interpretable decision sets: A joint
framework for description and prediction. In Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, KDD 16, pp. 1675-1684, New
York, NY, USA, 2016. Association for Computing Machinery. ISBN 9781450342322. doi:
10.1145/2939672.2939874. URL https://doi.org/10.1145/2939672.2939874.

Gen Li, Varun Jampani, Laura Sevilla-Lara, Deqing Sun, Jonghyun Kim, and Joongkyu Kim.
Adaptive prototype learning and allocation for few-shot segmentation, 2021. URL https:
//arxiv.org/abs/2104.01893.

10

https://arxiv.org/abs/2403.14977
https://github.com/bhctsntrk/OpenAIPong-DQN
https://github.com/bhctsntrk/OpenAIPong-DQN
https://arxiv.org/abs/1806.10574
https://arxiv.org/abs/1806.10574
https://arxiv.org/abs/2006.03745
https://arxiv.org/abs/2006.03745
http://dx.doi.org/10.1109/ICCV.2017.371
https://arxiv.org/abs/1911.05722
https://arxiv.org/abs/1911.05722
https://arxiv.org/abs/1902.10186
https://arxiv.org/abs/1902.10186
https://arxiv.org/abs/2206.04186
https://github.com/JinayJain/deep-racing
https://github.com/JinayJain/deep-racing
https://openreview.net/forum?id=hWwY_Jq0xsN
https://arxiv.org/abs/2004.11362
https://arxiv.org/abs/2004.11362
https://arxiv.org/abs/2003.13911
https://arxiv.org/abs/2002.00444
https://arxiv.org/abs/1811.12530
https://doi.org/10.1145/2939672.2939874
https://arxiv.org/abs/2104.01893
https://arxiv.org/abs/2104.01893

Under review as a conference paper at ICLR 2026

Oscar Li, Hao Liu, Chaofan Chen, and Cynthia Rudin. Deep learning for case-based reason-
ing through prototypes: A neural network that explains its predictions, 2017. URL https:
//arxiv.org/abs/1710.04806.

Guiliang Liu, Oliver Schulte, Wang Zhu, and Qingcan Li. Toward interpretable deep reinforcement
learning with linear model u-trees, 2018. URL https://arxiv.org/abs/1807.05887.

Leland MclInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
projection for dimension reduction, 2020. URL https://arxiv.org/abs/1802.03426.

Stephanie Milani, Nicholay Topin, Manuela Veloso, and Fei Fang. A survey of explainable rein-
forcement learning, 2022. URL https://arxiv.org/abs/2202.08434.

Alex Mott, Daniel Zoran, Mike Chrzanowski, Daan Wierstra, and Danilo J. Rezende. Towards
interpretable reinforcement learning using attention augmented agents, 2019. URL https://
arxiv.org/abs/1906.02500.

nikhilbarhate99. Actor-Critic-PyTorch: Policy gradient actor-critic implementation (lunar lander v2)
in pytorch. https://github.com/nikhilbarhate99/Actor-Critic-PyTorch,
2025a. Accessed: 2025-09-22.

nikhilbarhate99. TD3-PyTorch-BipedalWalker-v2: Twin delayed ddpg (td3) pytorch solution
for roboschool and box2d environments. https://github.com/nikhilbarhate99/
TD3-PyTorch-BipedalWalker—v2, 2025b. Accessed: 2025-09-22.

NotAnyMike. gym: An improvement of carracing-v0O from openai gym for hierarchical reinforce-
ment learning. https://github.com/NotAnyMike/gym, 2025. Accessed: 2025-09-22.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback, 2022.
URLhttps://arxiv.org/abs/2203.02155.

Vitali Petsiuk, Abir Das, and Kate Saenko. Rise: Randomized input sampling for explanation of
black-box models, 2018. URL https://arxiv.org/abs/1806.07421l

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model,
2024. URL https://arxiv.org/abs/2305.18290.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1-8, 2021. URL http://jmlr.org/papers/v22/
20-1364.html.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “why should i trust you?”’: Explaining
the predictions of any classifier, 2016. URL https://arxiv.org/abs/1602.04938,

Sam T. Roweis and Lawrence K. Saul. Nonlinear dimensionality reduction by locally linear em-
bedding. Science, 290(5500):2323-2326, 2000. doi: 10.1126/science.290.5500.2323. URL
https://www.science.org/doi/abs/10.1126/science.290.5500.2323.

Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and
use interpretable models instead, 2019. URL https://arxiv.org/abs/1811.10154l

Cynthia Rudin, Chaofan Chen, Zhi Chen, Haiyang Huang, Lesia Semenova, and Chudi Zhong.
Interpretable machine learning: Fundamental principles and 10 grand challenges, 2021. URL
https://arxiv.org/abs/2103.11251.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for
face recognition and clustering. In 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 815-823. IEEE, June 2015. doi: 10.1109/cvpr.2015.7298682. URL
http://dx.doi.org/10.1109/CVPR.2015.7298682.

11

https://arxiv.org/abs/1710.04806
https://arxiv.org/abs/1710.04806
https://arxiv.org/abs/1807.05887
https://arxiv.org/abs/1802.03426
https://arxiv.org/abs/2202.08434
https://arxiv.org/abs/1906.02500
https://arxiv.org/abs/1906.02500
https://github.com/nikhilbarhate99/Actor-Critic-PyTorch
https://github.com/nikhilbarhate99/TD3-PyTorch-BipedalWalker-v2
https://github.com/nikhilbarhate99/TD3-PyTorch-BipedalWalker-v2
https://github.com/NotAnyMike/gym
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/1806.07421
https://arxiv.org/abs/2305.18290
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://arxiv.org/abs/1602.04938
https://www.science.org/doi/abs/10.1126/science.290.5500.2323
https://arxiv.org/abs/1811.10154
https://arxiv.org/abs/2103.11251
http://dx.doi.org/10.1109/CVPR.2015.7298682

Under review as a conference paper at ICLR 2026

Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based lo-
calization. [International Journal of Computer Vision, 128(2):336-359, October 2019. ISSN
1573-1405. doi: 10.1007/s11263-019-01228-7. URL http://dx.doi.org/10.1007/
s11263-019-01228-"7.

David Silver, Aja Huang, Christopher J. Maddison, Arthur Guez, Laurent Sifre, George van den
Driessche, Julian Schrittwieser, loannis Antonoglou, Veda Panneershelvam, Marc Lanctot,
Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lilli-
crap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the
game of go with deep neural networks and tree search. Nature, 529:484-503, 2016. URL http:
//www.nature.com/nature/journal/v529/n7587/full/naturel6961.html.

David Silver, Thomas Hubert, Julian Schrittwieser, [oannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Si-
monyan, and Demis Hassabis. Mastering chess and shogi by self-play with a general reinforce-
ment learning algorithm, 2017. URL https://arxiv.org/abs/1712.01815,

Jake Snell, Kevin Swersky, and Richard S. Zemel. Prototypical networks for few-shot learning,
2017. URL https://arxiv.org/abs/1703.05175.

Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objec-
tive. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 29. Curran Associates, Inc.,
2016. URL https://proceedings.neurips.cc/paper_files/paper/2016/
file/6b180037abbebea991d8bl232f8a8ca9—-Paper.pdf.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks, 2017.
URLhttps://arxiv.org/abs/1703.01365.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press, 2nd
edition, 2015. URL https://web.stanford.edu/class/psych209/Readings/
SuttonBartoIPRLBook2ndEd.pdfl Draft, in progress.

Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. A global geometric framework for non-
linear dimensionality reduction. Science, 290(5500):2319-2323, 2000. doi: 10.1126/science.290.
5500.2319. URL https://www.science.org/doi/abs/10.1126/science.290.
5500.23109.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Ma-
chine Learning Research, 9(86):2579-2605, 2008. URL http://jmlr.org/papers/v9/
vandermaatenO8a.html.

George A. Vouros. Explainable deep reinforcement learning: State of the art and challenges. ACM
Computing Surveys, 55(5):1-39, December 2022. ISSN 1557-7341. doi: 10.1145/3527448. URL
http://dx.doi.org/10.1145/35274438\

Sean Xie, Soroush Vosoughi, and Saeed Hassanpour. Proto-lm: A prototypical network-based
framework for built-in interpretability in large language models, 2023. URL https://arxiv.
org/abs/2311.01732.

Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor Babuschkin,
Karl Tuyls, David Reichert, Timothy Lillicrap, Edward Lockhart, Murray Shanahan, Victoria
Langston, Razvan Pascanu, Matthew Botvinick, Oriol Vinyals, and Peter Battaglia. Deep re-
inforcement learning with relational inductive biases. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=HkxaFoC9KQ.

12

http://dx.doi.org/10.1007/s11263-019-01228-7
http://dx.doi.org/10.1007/s11263-019-01228-7
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1703.05175
https://proceedings.neurips.cc/paper_files/paper/2016/file/6b180037abbebea991d8b1232f8a8ca9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/6b180037abbebea991d8b1232f8a8ca9-Paper.pdf
https://arxiv.org/abs/1703.01365
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://www.science.org/doi/abs/10.1126/science.290.5500.2319
https://www.science.org/doi/abs/10.1126/science.290.5500.2319
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
http://dx.doi.org/10.1145/3527448
https://arxiv.org/abs/2311.01732
https://arxiv.org/abs/2311.01732
https://openreview.net/forum?id=HkxaFoC9KQ

Under review as a conference paper at ICLR 2026

A RELATED WORKS

A.1 MANIFOLD LEARNING

The manifold hypothesis is a well-established principle in Machine Learning, which suggests that
Cayton| (2005):

Although data points often appear to have very high dimensionality, with thou-
sands of observed features, they can typically be represented by a much smaller
set of underlying parameters. In essence, the data resides on a low-dimensional
manifold embedded within a high-dimensional space.

Based on the Manifold hypothesis Manifold learning focuses on uncovering low-dimensional struc-
tures in high dimensional data. Manifold learning techniques like TSNE |van der Maaten & Hinton
(2008),UMAP Mclnnes et al.| (2020), LLE |[Roweis & Saul| (2000) and Isomap [Tenenbaum et al.
(2000) utilize information derived from the linearized neighborhoods of points to construct low
dimensional projections of non-linear manifolds in high dimensional data.

The method Piecewise-Linear Manifolds for Deep Metric Learning Bhatnagar & Ahujal(2024) aims
to train a neural network to learn a semantic feature space where similar items are close together and
dissimilar items are far apart, in an unsupervised manner. This method is based on using linearized
neighborhoods of points to construct a piecewise linear manifold, which helps estimate a continuous-
valued similarity between data points.

A.2 METRIC LEARNING

Metric learning aims to learn an embedding space where semantically similar samples are close
and dissimilar ones are far apart. Common loss functions include Contrastive loss [Hadsell et al.
(2006),aims at making representations of positive pairs closer to each other, while pushing negative
pairs further away than a positive margin. It is commonly used in tasks such as face verification or
representation learning with Siamese networks. Here (z;, ;) are embeddings of a pair, y; € {0,1}
indicates similarity, and m is the margin.

N
1 2
L=y [yl = 24113 + (1= i) ma (0,m — |2 — 2/l12)]

Triplet loss|Schroff et al|(2015) is another metric learning objective that enforces relative similarity
by ensuring that an anchor z, is closer to a positive sample x,, (same class) than to a negative
sample x,, (different class) by at least a margin. Unlike contrastive loss, which only considers
pairwise distances, triplet loss leverages relative comparisons, making it more effective in learning
discriminative embeddings for tasks such as face recognition and image retrieval, here f(-) is the
embedding function, m is the margin, z, is the anchor, x), is a positive sample, and x,, is a negative
sample.

N
= }V;max (0. 17k = PRI — [17(ah) — T +m)

Multi-class N-pair loss [Sohn| (2016) generalizes triplet loss by comparing one positive sample
against multiple negative samples simultaneously. This encourages more efficient optimization than
triplet loss, which only considers a single negative at a time, leading to better embedding separation
for tasks such as image classification, retrieval, and verification. Here f(-) is the embedding func-
tion, z*, is the anchor, :cé is the positive sample of the same class, and {27, } are negatives from other
classes.

N
£= %Zlog L+ Y exp (F(a) T f(ad) = f(22)T ()
i=1 J#i

13

Under review as a conference paper at ICLR 2026

Supervised contrastive loss | Khosla et al.| (2021) extends contrastive loss by leveraging label in-
formation to pull together embeddings from all samples of the same class, rather than relying only
on pairwise similarity. Unlike contrastive loss, which is limited to positive and negative pairs, su-
pervised contrastive loss uses class supervision to exploit multiple positives per anchor, leading to
richer and more discriminative representations. Here P(i) is the set of indices of positives shar-
ing the same class as anchor z;, 7 is a temperature scaling parameter, and f(-) is the embedding
function.

X -1 exp (f(as) " f(xp)/7)
L= - 1
2P0 2 T T e o) H ()7

Proxy-Anchor Loss: Proxy-Anchor Loss Kim et al.[(2020) replaces anchors with learnable class
representatives (proxies), removing the need for anchor sampling as in contrastive, triplet, or N-pair
losses. Instead of comparing individual samples, embeddings are optimized against proxies, which
serve as stable anchors for each class.

1
Lpa :@ Z log | 1+ Z exp (—a - (s(z,0q) —€))

0,0+ ZEZ;}
1
+ G] Z log | 1+ Z exp (o - (s(z,0q) —€))
0,€0 2€Z,

B MODEL ARCHITECTURE

This section includes details about the black-box models, user study, and the model architecture
(hg) used in our method. We used a single-layer network with intermediate normalizations. The
prototype size is set to 50 for all the environments. The motivation for using a simpler model is to
avoid losing information in the encoded vectors during manifold construction.

Table 3: Model Architecture

Layer Layer Parameters

Linear (latent size z, prototype size)
InstanceNormld prototype size

ReLU -

B.1 BLACK-BOX MODELS

For the CarRacing environment, we used a CNN model trained using PPO JinayJain| (2025). This
pre-trained model was evaluated under both IID and OOD settings during the user study. For Atari
Pong, we used a simple CNN trained with the Double Dueling DQN method bhctsntrk| (2025). The
model used for BipedalWalker was trained using TD?3 |nikhilbarhate99| (2025b), and the LunarLan-
der model was trained using the Actor-Critic method [nikhilbarhate99| (2025a). These networks are
relatively simple, reflecting the symbolic nature of their respective environments. For the Humanoid-
Standup and CartPole environments, we used models from Stable-Baselines3 [Raffin et al.| (2021)),
trained using PPO with an MLP policy. The diversity of environments, models, and algorithms
demonstrates the robustness of our approach.

C TRAINING PARAMETERS

For the first phase of training—prototype discovery—we train our network for 200 epochs on the
training dataset (Section [3.2)) using two separate Adam optimizers: one for the network parameters

14

Under review as a conference paper at ICLR 2026

and one for the proxy parameters. Both optimizers use a learning rate of 1e—-3, accompanied by
a learning rate scheduler with decay rate 1, = 0.97. The dimensionality of the encoded vector z
varies depending on the environment and the encoder model, but generally falls near the order of
100. We use a mini-batch size of 128 samples and set the reconstruction threshold 7" to 90%. The
scale parameter ¢ is set to 2 (the maximum distance between two points on a unit sphere), and the
submanifold dimension m is fixed at 3.

For the second phase—training and evaluating the sampled prototypes within the PW-Net frame-
work—we use the Adam optimizer with a learning rate of 1e-2, again paired with a scheduler
using 7; = 0.97. Training and evaluation are conducted over 5 independent iterations. In each iter-
ation, the PW-Net model is trained for 10 epochs and evaluated over 30 simulation runs to compute
the mean and standard deviation of the resulting rewards.

All experiments were conducted on an NVIDIA RTX A6000 GPU. In the first stage of our method,
we train a lightweight neural network hy to sample prototypes, which requires approximately 640
MB of GPU memory and about 7 hours of training time without parallelization. With parallelized
estimation of manifold-based similarities, the training time is reduced to roughly 2 hours, with a
peak GPU memory usage of about 4700 MB across all environments. For the Humanoid Standup
and Acrobat environments, we did not evaluate the methods VIPER, PW-Net*, and k-means, as
our focus was on approaches that achieve performance closer to the original black-box model. As
observed in the remaining four environments, these methods consistently fall short of delivering
results comparable to the black-box baseline.

C.1 METHOD COMPARISONS

The k-means method selects prototypes by choosing the cluster centers within each action class. In
contrast, PWnet* learns prototypes through a joint objective that combines a clustering loss and a
separation loss while simultaneously optimizing for RL performance. Moreover, our approach sig-
nificantly reduces the reliance on subjective inputs, thereby promoting a more objective assessment
of the prototypes. For all the environments, we used the same black box models [B.T|used in PW-net;
consequently, the values of performance for the methods PW-net*, VIPER |Bastani et al.|(2019)), and
K-means were also taken from the paper PW-net.

For the Car Racing and Atari Pong environments, we recomputed the performance of the black-box
models but retained the PW-Net scores reported in |[Kenny et al.|(2023)), as their evaluation relied on
human-surveyed prototypes for these tasks. In the case of symbolic domains, we constructed “ideal”
prototypical action-space examples, where the action of interest was set to 1 or -1 and all others to
0, and subsequently mapped these to the closest training samples. These prototypes were then used
to reevaluate PW-Net’s performance across the four symbolic domains in this work.

D ABLATION STUDY

To analyze the effect of each individual parameter, we have performed an ablation study on one
model each from the Continuous and discrete action spaced environments. To achieve this we used
the Bi-pedal walker and Atari pong environments respectively.

D.1 EFFECT OF m

The parameter m denotes the dimension of the linear submanifold X;, which locally approximates
the data manifold around a point hy(z). To examine its effect, we vary m in the range [2, 8] with
a step size of 1. As shown in (Figure [5] and Figure [)(a), performance consistently decreases in
both the environments as m increases. This trend arises because X; is intended to approximate
the immediate neighborhood of a point, which is inherently low-dimensional. Larger values of
m may lead to overfitting, since only a limited number of nearby samples are available within a
batch to reliably estimate X;, thereby degrading performance. Furthermore, we observe that the
computational overhead for prototype sampling increases with larger m, underscoring the trade-off
between accuracy and efficiency.

15

Under review as a conference paper at ICLR 2026

(a)Reward vs m (b)Reward vs (c)Reward vs Ng
320 T T T 315 T T T T 315 T T T
315 —
~ < 310 s 310 | |
5 3]
3 310 |~ 13 3
) Q O
& & 305 % 305 |- .
305 [~ —
300 | | | | 300 | | | | 300 | | |
2 4 6 8 0.4 0.6 0.8 1 1 2 3
(d)Reward vs Ny (e)Reward vs T' (H)Reward vs §
315 T T T 315 T T 315 T T T
~ 310 | s 310 s 310 | |
= = ~
=] 3 S
3 3 g
O 8 3
& 305 | < 305 % 305 |- .
300 | | | 300 | | | 300 | | |
2 4 6 0.7 0.8 0.9 1 2 3
Na T 5
(g)Reward vs a (h)Reward vs € (i) Reward vs no.of prototypes
315 T T T 315 T T 318 T T
316 —
310 |- s 310 |
T T T 314 |
S] 5]
H 3 S sl |
& 305 |- <= 305 =
310 —
300 | | | 300 | | | 308 | | |
10 20 30 0 0.1 0.2 0 20 40
« €

no.of prototypes

Figure 4: Ablation study on Bi-pedal walker environment

D.2 EFFECT OF v

The parameter v denotes the momentum constant used to update the proxy vector 6,,, during pro-
totype sampling. Following |[He et al.| (2020), higher values of ~ are expected to yield improved
performance, as the proxy updates become smoother and more stable. Consistent with this obser-
vation, (Figure [5and Figure d)(b) shows that in both models, performance improves as -y increases,
highlighting the importance of stable momentum updates for effective representation learning.

D.3 EFFECT OF N, & Ng

The parameters N, and Ng control the decay of similarity based on the orthogonal and projected
distances, respectively, of a point from the linear submanifold in the neighborhood of another point.
We vary N, in the range [1,6] with a step size of 1, and Ng in the range [0.5, 3] with a step size
of 0.5. As shown in (Figure [5|and Figure @)(c), increasing N leads to decrease in performance in
both the environments. In contrast, (Figure [5| and Figure H)(d) shows that performance improves
with larger NV, in both the environments.

16

Under review as a conference paper at ICLR 2026

(a)Reward vs m (b)Reward vs v (c)Reward vs Ng
20 T T T 20 T T T 16 T T T
~ 15| ~ 15 ~ 14
= ~ =
S 3 ._——0/“. 3
s ._‘\‘\.—-.\'\. 3 g .*-.\.\H
O Q QO
& 10 & 10 & oo b
5 | | | 5 | | | 10 | | |
4 6 8 0.4 0.6 0.8 1 2 3
(d)Reward vs N, (e)Reward vs T f)Reward vs §
16 T T T 16 — T T 16 T T T
® 14 - 3 14 .E 14 -
3 S [~
g ./././0/'/. : ././.__./._. g
v v v o0 %o
S 512 ST
10 | | | 10 | | | 10 | | |
2 4 6 0.7 0.8 0.9 1 2 3
N4 T 5
(g)Reward vs « (h)Reward vs € () Reward vs no.of prototypes
16 T T T 16 T 16 7 T T
s 14 - 1= 14 E 14
s S 3
3 3 3
N 3 Q
& oo 15 12 ‘ SEETAN
10 | | | 10 | | 10 | | |
10 20 30 0 0.1 0.2 0 10 20

no.of prototypes

Figure 5: Ablation study on Atari Pong walker environment

This effect can be explained by the relationship between N,, and Ng: as N,, approaches [N, a point
A at distance € within the linear neighborhood of a point B (and thus sharing many features with
B and its neighbors) may be treated as equally dissimilar to B as another point C' located at an
orthogonal distance ¢ from the neighborhood of B. In the experiments when Ng was varied IV, is
set to 4, as INg increases from 0.5 to 3 it becomes closer to IV, which is leading to a decrease in
performance. When N, was varied from 1 to 6 Ng was set to 0.5, as N,, increases from it becomes
larger than Ng which is leading to an increase in performance.

D.4 EFFECT OF T

The reconstruction threshold 7" determines the quality of points admitted into the linear submani-
fold X;. We vary T in the range [0.7,0.95] with a step size of 0.05. As shown in (Figure [5| and
Figure [)(e), the models in both environments exhibit a clear upward trend in performance as 7'

increases, underscoring the importance of ensuring that only high-quality points are incorporated
into X;.

17

Under review as a conference paper at ICLR 2026

D.5 EFFECT OF ¢

The scaling factor § regulates the maximum separation between dissimilar points. We vary ¢ in the
range [0.8, 3.2] with a step size of 0.4. As shown in (Figure |5|and Figure E])(f), the performance
remains relatively stable across this range in both environments, highlighting the robustness of our
method.

D.6 EFFECT OF «

The scaling factor v controls the sharpness of the exponential term in the Proxy Anchor loss. We
vary its value over 5, 10, 15, 20, 25, 30, 32. As shown in (Figure [5|and Figure @)(g), models in both
environments exhibit an overall increasing trend in performance with larger «.

D.7 EFFECT OF ¢

The margin parameter e enforces that positive embeddings are pulled within this distance from their
corresponding class proxies. We vary its value across 0.001,0.005,0.05,0.1,0.2. As shown in
(Figure[5]and Figure [)(h), models in both the environments demonstrate stable performance across
the range of ¢, undermining its effect in the loss function.

D.8 EFFECT OF no.of prototypes

To investigate the effect of prototype count on performance, we conducted an ablation study in
the Bipedal Walker and Atari Pong environments. In Bipedal Walker [i), rewards consistently
increased with additional prototypes until reaching a plateau. In contrast, in Atari Pong [5{i), rewards
initially improved with more prototypes but began to decline beyond a certain point. We attribute
this divergence to differences in state representation.

Bipedal Walker is a symbolic domain where states encode physical properties such as position and
velocity, providing relatively low-noise inputs. By comparison, Atari Pong represents states as
raw pixels, which must be encoded by a neural network before prototype selection. This pixel-
based encoding introduces noise, and as the number of prototypes increases, the accumulated noise
degrades performance.

E USER STUDY

Two groups of 25 users each participated in the study [6] One group was presented with the black-
box model (the "Black-Box Group”), while the other with sampled prototypes (the ”Sampled Pro-
totypes Group”). Both groups were given identical scenarios and instructions on how to rate them
independently. The figure below shows a sample of the IID and OOD cases shown to users.

F LLM USAGE

LLM was used to improve the quality of writing, and to assist in the LaTeX code review; it was not
used during the ideation or experimentation phase.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

IID Scenario

OO0D Scenario

Figure 6: User Study Overview

19

	Introduction
	Related Works
	Methodology
	Motivation
	Dataset
	Training overview
	Manifold construction
	Loss Functions
	Performance review

	Experiments
	Action Discretization
	Numerical Results
	User Study

	Conclusion and Future work
	Related Works
	Manifold learning
	Metric learning

	Model Architecture
	Black-Box Models

	Training parameters
	Method comparisons

	Ablation Study
	Effect of m
	Effect of gamma
	Effect of Nalpha & Nbeta
	effect of T
	Effect of delta
	Effect of alpha
	Effect of epsilon
	Effect of no.of prototypes

	User Study
	LLM usage

