
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PRINCIPAL PROTOTYPE ANALYSIS ON MANIFOLD FOR
INTERPRETABLE REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent years have witnessed the widespread adoption of reinforcement learning
(RL), from solving real-time games to fine-tuning large language models using
human preference data significantly improving alignment with user expectations.
However, as model complexity grows exponentially, the interpretability of these
systems becomes increasingly challenging. While numerous explainability meth-
ods have been developed for computer vision and natural language processing to
elucidate both local and global reasoning patterns, their application to RL remains
limited. Direct extensions of these methods often struggle to maintain the delicate
balance between interpretability and performance within RL settings. Prototype-
Wrapper Networks (PW-Nets) have recently shown promise in bridging this gap
by enhancing explainability in RL domains without sacrificing the efficiency of the
original black-box models. However, these methods typically require manually
defined reference prototypes, which often necessitate expert domain knowledge.
In this work, we propose a method that removes this dependency by automati-
cally selecting optimal prototypes from the available data. Preliminary experi-
ments on standard Gym environments demonstrate that our approach matches the
performance of existing PW-Nets, while remaining competitive with the original
black-box models.

1 INTRODUCTION

Deep reinforcement learning (RL) models have achieved state-of-the-art performance in domains
such as Go Silver et al. (2016), Chess Silver et al. (2017), inverse scattering Jiang et al. (2022),
and self-driving cars Kiran et al. (2021). More recently, RL has been successfully applied to align
large language models with human preferences, receiving considerable attention as a powerful post-
training strategy using extensive human feedback data Ouyang et al. (2022); Rafailov et al. (2024).
However, despite these advances, the deployment of RL agents in sensitive domains remains limited
due to the opaque nature of their decision-making processes. Extracting the rationale behind an
agent’s actions in a human-interpretable format remains a significant challenge, yet doing so is cru-
cial for understanding failure modes and ensuring trust in these systems. To address this challenge,
prototype-based networks have emerged as a promising approach for enhancing the interpretability
of deep learning models. ProtoPNet Chen et al. (2019), initially proposed for image classification
tasks, introduced pre-hoc interpretability by associating predictions with learned prototype repre-
sentations.

This idea was later extended to deep RL with Prototype-Wrapper Networks (PW-Nets) Kenny et al.
(2023), which provide post-hoc interpretability while preserving the performance of the underly-
ing black-box agent. By incorporating exemplar-based reasoning, PW-Nets allow users to inspect
and understand the agent’s actions through user-defined reference examples, without degrading task
performance. Despite these recent advantages, there is a remaining challenge to automatically and
efficiently discover data-adaptive reference examples for interpreting RL behaviors, since manually
curated prototypes present several limitations: Human-selected prototypes are costly to acquire, dif-
ficult to scale, and often lack consistency across environments, reducing the reproducibility and gen-
eralization of explanations. To overcome the above limitations, we propose our principal prototype
analysis on manifold: an automated prototype sampling method that eliminates the need for manual
intervention and selects prototypes adaptive to RL tasks on the data manifold. To the best of our
knowledge, we are the first to automate prototype discovery in RL while retaining the performance

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

of the black-box agent. Our approach leverages a combination of metric and manifold learning ob-
jectives to select prototypes directly from the encoded state space that reflects a low-dimensional
geometric representation of the RL task, providing a more scalable and principled mechanism for
prototype discovery.

• Automated and Decoupled Prototype Discovery: Our method proposes a novel two-
stage architecture that decouples prototype discovery from policy optimization. In the
first stage, it automatically selects prototypes from the agent’s trajectory data using a
lightweight neural network trained with combined manifold and metric learning objectives,
removing the need for human-curated examples. In the second stage, these prototypes are
fixed and integrated into the PW-Net for interpretable action prediction, preserving black-
box performance.

• Geometry-Aware and Faithful Prototypes via Real Instances: Instead of learning ab-
stract embeddings, our method grounds each learned proxy vector in real training sam-
ples by mapping them to their nearest encoded instance. This ensures prototypes are both
geometry-aware—by leveraging piecewise-linear manifold approximations—and semanti-
cally faithful, enabling more intuitive and interpretable behavior analysis of RL agents.

2 RELATED WORKS

Interpretability in neural network architectures, particularly in computer vision (CV) and natural
language processing (NLP), has advanced substantially, encompassing both pre-hoc and post-hoc
strategies. In CV, post-hoc methods such as Grad-CAM Selvaraju et al. (2019), RISE Petsiuk et al.
(2018), and occlusion-based techniques like Meaningful Perturbations Fong & Vedaldi (2017) have
enabled visual explanations by highlighting image regions most influential to predictions. However,
these methods provide explanations only after decisions are made, offering limited insight into the
decision-making process itself. In NLP, pre-hoc approaches include interpretable rule-based de-
cision sets Lakkaraju et al. (2016) and, more recently, Proto-LM Xie et al. (2023), which embeds
prototypical reasoning directly into large language models. Post-hoc methods such as LIME Ribeiro
et al. (2016) and Integrated Gradients Sundararajan et al. (2017) are widely used to approximate local
model behavior and attribute predictions to input features. Other efforts have challenged conven-
tional practices; for instance, Jain & Wallace (2019) questioned the reliability of attention weights as
explanations, while Arras et al. (2016) applied Layer-wise Relevance Propagation to trace decision
origins in text classifiers.

Although several interpretability techniques have been proposed for reinforcement learning (RL)
models Vouros (2022); Milani et al. (2022), most prior work relies on interpretable surrogate models,
such as decision trees, that imitate agent behavior in symbolic domains. These approaches, however,
do not scale to complex environments with high-dimensional observations such as high-dimensional
pixel-based observations. In deep RL settings, most interpretability research has focused on post-
hoc methods utilizing attention mechanisms Zambaldi et al. (2019); Mott et al. (2019)or tree-based
surrogates Liu et al. (2018), but these often fall short in revealing the underlying reasoning or intent
of the agent Rudin et al. (2021). Some approaches attempt to distill recurrent neural network (RNN)
policies into finite-state machines Danesh et al. (2021); Koul et al. (2018), but such methods can
yield opaque explanations and are constrained to specific architectures.

Our work builds on prototype-based neural networks, which are inherently interpretable by design.
These models associate test instances with prototypical examples during the forward pass, enabling
intuitive, exemplar-based reasoning. A foundational example of this approach was presented by Li
et al. (2017), who introduced a pre-hoc method that learns prototypes in latent space and classifies in-
puts based on their L2 distance to these prototypes. This method also required a decoder to visualize
prototype representations. A notable extension was ProtoPNet Chen et al. (2019), which associated
prototypes with image parts rather than entire images, enhancing fine-grained interpretability.

In the RL domain, this concept was adapted by Kenny et al. (2023) through the Prototype-Wrapper
Network (PW-Net), a framework that enables pre-hoc performance of the black box model while
providing an interpretbale by design post-hoc analysis. The authors also explored an end-to-end
learning approach for training prototype representations, inspired by Chen et al. (2019). While ef-
fective in image classification tasks, this approach failed to replicate the original performance of

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

black-box agents when applied to RL environments. We posit that simultaneously optimizing for
both performance and interpretability during training introduces a bottleneck that limits effective-
ness. To address this, our method decouples these objectives first sampling prototypes using a com-
bination of metric and manifold learning techniques. and then testing the sampled prototypes using
PW-net architecture. This separation allows us to preserve the performance of the original agent
while maintaining interpretability, without requiring manual prototype selection. Our results show
that this strategy achieves competitive performance across multiple environments, highlighting its
effectiveness and scalability.

3 METHODOLOGY

3.1 MOTIVATION

Prototype-based methods offer an interpretable way to associate each class with representative ex-
amples; here the representative examples are termed as prototypes. A straightforward baseline to
define prototypes is using simple statistics such as the class mean or medoids in the embedding
space. However, such naive approaches fail to capture the intrinsic geometry of encoded representa-
tions: they are biased by outliers, insensitive to multi-modal distributions within classes, and often
yield prototypes that are statistically central but semantically uninformative. To construct meaning-
ful prototypes, it is essential to account for the geometry of the data distribution itself.

According to the manifold hypothesis Cayton (2005), high-dimensional representations typically
reside on lower-dimensional manifolds. Leveraging this property enables geometry-aware prototype
sampling. Classical manifold learning techniques, however, come with limitations methods like t-
SNE van der Maaten & Hinton (2008), UMAP McInnes et al. (2020), and LLE Roweis & Saul
(2000) emphasize neighborhood preservation but often distort local dependencies or fail to provide
consistent global structure. To address this, we adopt a piecewise-linear manifold learning approach
in which nonlinear manifolds are decomposed into locally linear regions. This design ensures that
prototypes are drawn from regions that reflect local geometry, avoiding the pitfalls of global averages
or distorted embeddings.

While manifold learning preserves geometric structure, prototypes must also be discriminative
across classes. Geometry alone does not guarantee that prototypes tightly capture intra-class consis-
tency or maximize inter-class separation. To achieve this, we incorporate a metric learning objec-
tives. Methods such as triplet or contrastive loss require predefined prototypes and extensive sample
mining, which is inefficient and often unstable. Instead, we employ Proxy-Anchor loss, which in-
troduces learnable class-level proxy vectors that directly enforce compact clustering within a class
and clear separation between classes. After training, each proxy is mapped to its nearest training
instance, yielding prototypes that are simultaneously geometry-aware and discriminative.

In Chen et al. (2019), the notion of learnable prototypes was introduced for image classification,
where prototype learning was jointly optimized alongside the classification objective. While this
approach proved effective for supervised image tasks, its adaptation to reinforcement learning in
Kenny et al. (2023) (PW-Net*) resulted in noticeably weaker performance compared to black-box
RL models. To overcome this limitation, we propose to decouple these objectives into two sequential
stages. In the first stage, we focus on sampling prototypes that serve as robust and representative
anchors for each class. In the second stage, these prototypes are fixed and used within PW-Net,
which is then trained exclusively on the RL objective.

3.2 DATASET

Our method begins with the assumption that we have access to a pre-trained policy πbb operating
within a Markov Decision Process (MDP) Sutton & Barto (2015).Since all policies used in our
experiments are implemented as neural network architectures, we assume that each policy concludes
with a final linear layer. Under this setting, the policy πbb can be decomposed into two components:
an encoder fenc, which maps the input state s to a latent representation z, and a final linear layer
defined by weights W and bias b. The resulting policy function can be expressed as:

πbb(s) = Wfenc(s) + b,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Where z = fenc(s) represents the encoded state.To construct the dataset used for training our pro-
totype selection mechanism, we execute the pre-trained agent in its original environment for n time
steps. During this rollout, we collect encoded state–action pairs, resulting in a dataset D:

D ← {(zi, πbb(si))}ni=1.

3.3 TRAINING OVERVIEW

Figure 1: Overview of the proposed method

As mentioned in 3.1, our method consists of two stages. In the first stage of our method, we initialize
a simple neural network hθ and train it on Dataset D to jointly optimize manifold learning 4 and
metric learning objectives 2. The neural network hθ learns to map the high-dimensional encoded
representations into lower dimensions. Before the training process, we initialize the proxies θq and
θm; here both the proxies are unique for each class and initiated randomly with θq = θm. The proxy
vector θq is learned using the metric learning objective 2 and updated via back-propagation. The
proxy vector θm is updated via the Momentum update He et al. (2020) where γ is the momentum
constant.

θm ← γθm + (1− γ)θq (1)

Before training our model hθ, we reformat the dataset D to consist of pairs of encoded state repre-
sentations and their corresponding discretized actions (Section 4.1). This discretization allows the
use of a metric learning objective 2 that clusters encoded states with similar actions and separates
those with dissimilar ones, and also enables learning discriminative prototypes.

During training, for every mini-batch B we build linear piecewise manifolds as outlined in 3.4. For
every point in B, we then compute the manifold-based similarity following the procedure in 3.5.
This similarity measure is used to compute the manifold point-to-point loss Lmanifold. At the same
time, we compute the Proxy Anchor loss LPA using randomly initialized class proxies θq and latent
representations z in batch B. The final loss is computed as Ltotal = LPA + Lmanifold.

The manifold point-to-point loss is designed to reduce the distance between points lying on the
same manifold, thus preserving local geometric structure while increasing the distance between
points on different manifolds. In contrast, the Proxy Anchor loss encourages samples from the
same class to cluster closer together while pushing samples from different classes further apart; this
encourages the discriminative learning of prototypes. For every epoch, the network hθ is updated
through backpropagation, and the proxy vectors are updated according to the procedure described in
1. Once the training is completed, we use the learned proxy vectors θm to select the nearest training
data sample as prototypes for each class to be used in the stage of two of training PW-net; here, for
every class, there is only θm being initialized, i.e., we will be only getting one prototype per class.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.4 MANIFOLD CONSTRUCTION

Based on the Manifold hypothesis, we assume that the encoded state representations produced by
the policy πbb, though inherently complex and non-linear, can be locally approximated into smaller
chunks of linear regions. Our approach leverages this structural assumption to automatically identify
representative prototypes that capture the essential characteristics of each action class.

To efficiently approximate the structure of the data manifold, we adopt a piecewise linear manifold
learning method, which constructs localized m-dimensional linear submanifolds around selected
anchor points. Given a batch B containing N data points, we randomly select n of them to serve as
anchors. For each anchor point hθ(zi), we initially collect its m−1 nearest neighbors in the encoded
representation space based on Euclidean distance to form the neighborhood set Xi.

The manifold expansion process proceeds iteratively by attempting to add the m-th nearest neighbor
to Xi. After each addition, we recompute the best-fit m-dimensional submanifold using PCA and
assess whether all points in Xi can be reconstructed with a quality above a threshold T%. If the
reconstruction quality remains acceptable, the new point is retained in Xi; otherwise, it is excluded.
This evaluation is repeated for subsequent neighbors N(hθ(xi))j for j ∈ {ml+1, . . . , k}, gradually
constructing a local linear approximation of the manifold.

The final set Xi comprises all points in the anchor’s neighborhood that lie well within an m-
dimensional linear submanifold. A basis for this submanifold is computed by applying PCA to
Xi and extracting the top m eigenvectors. We choose PCA for this task as it is computationally
efficient and well-suited for capturing linear approximations of non-linear data, in alignment with
our assumption of locally linear structure within the high-dimensional state space.

3.5 LOSS FUNCTIONS

Proxy Anchor Loss: We use a modified version of proxy anchor loss with Euclidean distance
instead of cosine similarity:

LPA =
1

|Θ+|
∑

θq∈Θ+

log

1 +
∑

z∈Z+
θq

exp (−α · (∥hθ(z)− θq∥2 − ϵ))

 (2)

+
1

|Θ|
∑
θq∈Θ

log

1 +
∑

z∈Z−
θq

exp (α · (∥hθ(z)− θq∥2 − ϵ))

 (3)

Here, Θ denotes the set of all proxies, where each proxy θq ∈ Θ serves as a representative vector for
a class. The subset Θ+ ⊆ Θ includes only those proxies that have at least one positive embedding
in the current batch B. For a given proxy θq , the latent representations Z in B (where z ∈ Z)
are partitioned into two sets: Z+

θq
, the positive embeddings belonging to the same class as θq , and

Z−
θq

= Z \ Z+
θq

, the negative embeddings. The scaling factor α controls the sharpness of optimiza-
tion by amplifying hard examples when large (focusing gradients on difficult pairs) or smoothing
training when small (spreading weight across all pairs). The margin ϵ enforces a buffer zone be-
tween positives and negatives by requiring positives to be closer to their proxies and negatives to be
sufficiently farther away.

Manifold Point-to-Point Loss: This loss helps in estimating the point to point similarities pre-
serving the geometric structure:

Lmanifold =
∑
i,j

(δ · (1− s(zi, zj))− ∥hθ(zi)− hθ(zj)∥2)2 (4)

where s(zi, zj) is the manifold similarity computed as:

s(zi, zj) =
s′(zi, zj) + s′(zj , zi)

2

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

with s′(zi, zj) = α(zi, zj) · β(zi, zj), where:

α(zi, zj) =
1

(1 + o(zi, zj)2)
Nα

β(zi, zj) =
1

(1 + p(zi, zj))
Nβ

δ is the scaling factor, it determines the maximum separation between dissimilar points. The loss
encourages Euclidean distances in the embedding space to match manifold-based dissimilarities
1 − s(zi, zj), ensuring that the learned metric space respects the underlying manifold structure.
o(zi, zj) is the orthogonal distance from point zi to the manifold of point zj , and p(zi, zj) is the
projected distance between point zj and the projection of zi on the manifold. The parameters Nα

and Nβ control how rapidly similarity decays with distance, with Nα > Nβ ensuring that similarity
decreases more rapidly for points lying off the manifold than for points on the same manifold..

Distance Calculation. For each point pair (zi, zj), the distances o(zi, zj) and p(zi, zj) are cal-
culated using the manifold basis vectors Pj associated with point zj . The projection of zi onto
Pj is computed as projPj

(zi) = zj +
∑

k⟨zi − zj , vk⟩vk, where vk are the basis vectors of Pj .
The orthogonal distance is then o(zi, zj) = ∥zi − projPj

(zi)∥2, and the projected distance is
p(zi, zj) = ∥projPj

(zi) − zj∥2. This process is repeated for all point pairs, capturing the full
geometric structure of the data manifold.

The total loss is the sum of these two components, allowing the model to simultaneously learn a
metric space that respects action classes while preserving the geometric structure of the data.

3.6 PERFORMANCE REVIEW

The action output a′ from the Prototype-Wrapper Network (PW-Net) can generalize better than the
original black-box model’s action a Snell et al. (2017); Li et al. (2021), due to improved alignment
with class-representative prototypes—even without further interaction with the environment. This
generalization is critically influenced by the quality and representativeness of the selected proto-
types. The black-box policy πbb computes the action as:

a = Wfenc(s) + b

where z is the latent state representation obtained from the encoder.PW-Net enforces structured
reasoning through prototypes and computes similarity scores as:

a′i =

Ni∑
j=1

W ′
i,jsim(zi,j , pi,j)

The similarity function is defined as:

sim(zi,j , pi,j) = log

(
(zi,j − pi,j)

2 + 1

(zi,j − pi,j)2 + ϵ

)
.

This ensures actions are chosen based on structured prototype distances rather than raw neural ac-
tivations. The model uses prototype based regularization providing a better generalization by using
the learned policy πbb as additional input signal. For simplicity assume a deep RL domain with only
two actions possible, the action can be computed as a′

a′1 = W ′
1,1 log

(
d21,1 + 1

d21,1 + ϵ

)
+W ′

1,2 log

(
d21,2 + 1

d21,2 + ϵ

)

di,j = zi,j − pi,j .

Where W ′ is the manually defined weight matrix for each action, the output a′ is heavily depen-
dent on the similarity score between the zi,j and pi,j , this metric helps PW-Net avoid completely
mimicking the policy πbb and instead use it as an additional input signal along with the choice of
prototype to better align responses with human choices.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS

4.1 ACTION DISCRETIZATION

In continuous action domains, we standardize the action space by first converting all action val-
ues to their absolute values. We then apply the sigmoid function to these transformed values and
determine the final action label by selecting the index corresponding to the maximum sigmoid out-
put. For instance, in the Car Racing environment, the original action output is represented as a
tuple [(acc, brake), left, right]. We first restructure this into a unified vector format:
[acc, brake, left, right]. The encoded state representation is then assigned a discrete
label based on the index of the maximum value obtained after applying the sigmoid function to
this transformed vector. This discretization procedure is consistently applied across all continuous
action environments, including the Bipedal Walker and Humanoid Standup environments, enabling
compatibility with our prototype selection and metric learning pipeline.

4.2 NUMERICAL RESULTS

Method Car Racing Bipedal-Walker Humanoid Stand up
(Reward) (Reward) (Reward)

Our method 220.91 ± 0.85 312.10 ± 0.17 75112.60 ± 840.25
PW-Net 220.72 ± 0.34 308.27 ± 3.41 74980.37 ± 816.84
VIPER N/A -89.71 ± 7.51 -
PW-Net* -9.48 ± 2.50 190.41 ± 59.51 -
k-means -2.09 ± 0.94 -107.72 ± 0.13 -
Black-Box (DQN) 219.56 ± 0.85 312.32 ± 0.21 74930.50 ± 837.61

Table 1: Reward comparison on Car Racing, Bipedal Walker, and Humanoid Standup tasks

Method Pong (Reward) Lunar Lander (Reward) Acrobat (Reward)

Our method 14.96 ± 0.45 218.01 ± 1.47 -83.12 ± 2.39
PW-Net 10.72 ± 0.26 216.38 ± 1.69 -84.67 ± 2.42
VIPER N/A -408.81 ± 60.98 -
PW-Net* 8.85 ± 1.69 124.54 ± 120.53 -
k-means -21.00 ± 0.00 -419.46 ± 119.08 -
Black-Box 12.07 ± 0.39 214.75 ± 1.08 -85.54 ± 3.37

Table 2: Reward comparison on Pong, Lunar Lander, and Acrobat environments.

The PW-Net Kenny et al. (2023) relied on human-curated prototypes in visually interpretable envi-
ronments such as Car Racing. However, this approach becomes infeasible in complex domains with
high-dimensional, non-visual state spaces and large continuous action sets. For instance, the Hu-
manoid Standup environment B.1 features a high-dimensional vector input and 17 continuous con-
trol actions across joints and rotors, making manual prototype selection impractical without domain-
specific tools or expertise. Our automated prototype selection method overcomes this limitation by
leveraging geometric and class-level structure in the latent space. Notably, in the Humanoid Standup
task, our approach achieves a mean reward of 75,112.60 (SE = 840.25), closely matching the orig-
inal black-box model’s performance of 74,930.50 (SE = 837.61). This result demonstrates that our
method retains performance even in settings where manual prototype curation is infeasible. For the
new environments of Humanoid Standup and Acrobat for calculating the results on PW-net, we used
the class mean as the prototype. This is in reference with the approach followed by the authors of the
PW-net C.1 that they have used for training on the Bipedal-walker and Lunar Lander environments.
To analyze the effect of varying hyperparameters, we have performed an ablation study D on the
Bi-pedal and Atari pong environments.

4.3 USER STUDY

The interpretability of PW-Nets arises from their case-based reasoning approach, where decisions
are explained through analogies to representative prototypical states. Prior work Kenny et al. (2023)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 2: IID and OOD distribution plots for both user groups

demonstrated that human-selected prototypes enable users to form accurate mental models of agent
behavior, supporting effective prediction of both successes and failures. Our automated prototype
selection is designed to preserve this interpretability mechanism by identifying states that capture
the same decision-critical features that human experts would highlight.

To evaluate the plausibility and faithfulness of the sampled prototypes, and to analyze how
prototype-based explanations influence participants’ ability to interpret and anticipate the agent’s
decisions in both IID and OOD conditions, we conducted a user study in the CarRacing environ-
ment (Figure 6). Out of the six environments considered in our experiments, four are symbolic
domains where states are represented as vectors of physical properties, while CarRacing and Atari
Pong operate on raw pixels that can be visually interpreted. CarRacing was chosen because its driv-
ing actions are naturally understandable to non-expert users, making it suitable for visual inspection
and evaluation Rudin et al. (2021).

Two groups of 25 participants were recruited. The first group interacted with PW-Nets using our
sampled prototypes as global explanations, while the second group was assigned to a black-box
condition in which participants were told: “The car has learned to complete the track as fast as pos-
sible in this environment by learning from millions of simulations, but no explanation is available.”
In this condition, prototype images were replaced with text-only information, while the prototype
group received visual exemplars that directly conveyed the agent’s reasoning process. This design
isolates the contribution of prototypes to interpretability by contrasting a case-based explanation
with no explanation.

Participants were presented with 20 scenarios: 10 in-distribution (ID) from the standard CarRacing-
v0 environment where the agent drove safely, and 10 out-of-distribution (OOD) from a modified
environment NotAnyMike (2025) introducing new road types and red obstacles that led to actual
failure cases. After viewing the car’s current state and the corresponding explanatory condition,
participants predicted whether the vehicle would operate safely on a five-point Likert scale. This
setup assessed how well explanations enabled users to anticipate agent behavior in both familiar and
novel situations.

Results are summarized in Figure 6. In the ID scenarios, both groups produced similar ratings, in-
dicating that participants could reliably interpret safe behavior in either condition. In contrast, for
the OOD cases where the agent failed, participants in the prototype condition were more sensitive to
these failures: their ratings more closely reflected the unsafe ground truth, while the black-box group
tended to overestimate safety. This demonstrates that prototype-based explanations enhance inter-
pretability by helping users anticipate failure modes, even if they do not increase overall reported
confidence.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 3: Comparison of Visual similarity between prototypes

In addition, we evaluated the interpretability of our sampled prototypes relative to the human-curated
prototypes used in PW-Nets (Figure 4.3). For each action class, participants rated on a 1–5 scale how
well the prototype represented the corresponding decision. For the acceleration class, ratings were
comparable across both methods, while for the other classes human-curated prototypes were slightly
preferred. However, the differences were marginal, suggesting that the automatically sampled pro-
totypes are equally interpretable in practice. Importantly, our method delivers this interpretability
benefit in high-dimensional settings where human prototype selection is infeasible.

5 CONCLUSION AND FUTURE WORK

The application of Deep Reinforcement Learning (Deep RL) spans from automated game simula-
tions to fine-tuning large language models (LLMs) using preference data. However, in the absence of
transparency regarding the agent’s actions and intentions, deploying such systems in high-stakes or
sensitive domains remains impractical Rudin (2019). PW-Net addresses this challenge by providing
interpretability for deep RL agents through example-based reasoning using human-understandable
concepts. While relying on human-annotated prototypes offers valuable insights, it is not feasible
across all the domains. To overcome this limitation, our approach automatically samples prototypes
from the training data itself. Through user studies, we also demonstrate that trust in the model’s
behavior—especially under out-of-distribution (OOD) scenarios where failures are likely—can be
effectively assessed.Nonetheless, our method faces challenges when applied to tasks like sentence
generation in LLMs. Specifically, our technique assumes a single prototype per class, which be-
comes infeasible when the output space is as large as the vocabulary size—potentially in the order
of millions. Extracting prototypes at that scale is computationally intensive, requiring methodologi-
cal adaptations for interpretability in such settings. Although Xie et al. (2023) proposed an extension
of prototype learning for LLMs, their work was limited to sentence classification, which does not
address the prototype scaling issue in generative tasks.

REFERENCES

Leila Arras, Franziska Horn, Grégoire Montavon, Klaus-Robert Müller, and Wojciech Samek. Ex-
plaining predictions of non-linear classifiers in nlp, 2016. URL https://arxiv.org/abs/
1606.07298.

Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable reinforcement learning via policy
extraction, 2019. URL https://arxiv.org/abs/1805.08328.

9

https://arxiv.org/abs/1606.07298
https://arxiv.org/abs/1606.07298
https://arxiv.org/abs/1805.08328

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Shubhang Bhatnagar and Narendra Ahuja. Piecewise-linear manifolds for deep metric learning,
2024. URL https://arxiv.org/abs/2403.14977.

bhctsntrk. OpenAIPong-DQN: Solving atari pong game with duel double dqn in pytorch. https:
//github.com/bhctsntrk/OpenAIPong-DQN, 2025. Accessed: 2025-09-22.

Lawrence Cayton. Algorithms for manifold learning. 07 2005.

Chaofan Chen, Oscar Li, Chaofan Tao, Alina Jade Barnett, Jonathan Su, and Cynthia Rudin.
This looks like that: Deep learning for interpretable image recognition, 2019. URL https:
//arxiv.org/abs/1806.10574.

Mohamad H. Danesh, Anurag Koul, Alan Fern, and Saeed Khorram. Re-understanding finite-state
representations of recurrent policy networks, 2021. URL https://arxiv.org/abs/2006.
03745.

Ruth C. Fong and Andrea Vedaldi. Interpretable explanations of black boxes by meaningful pertur-
bation. In 2017 IEEE International Conference on Computer Vision (ICCV). IEEE, October 2017.
doi: 10.1109/iccv.2017.371. URL http://dx.doi.org/10.1109/ICCV.2017.371.

R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by learning an invariant map-
ping. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’06), volume 2, pp. 1735–1742, 2006. doi: 10.1109/CVPR.2006.100.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning, 2020. URL https://arxiv.org/abs/1911.
05722.

Sarthak Jain and Byron C. Wallace. Attention is not explanation, 2019. URL https://arxiv.
org/abs/1902.10186.

Hanyang Jiang, Yuehaw Khoo, and Haizhao Yang. Reinforced inverse scattering, 2022. URL
https://arxiv.org/abs/2206.04186.

JinayJain. deepracing: Implementing ppo from scratch in pytorch to solve carracing. https:
//github.com/JinayJain/deep-racing, 2025. Accessed: 2025-09-22.

Eoin M. Kenny, Mycal Tucker, and Julie Shah. Towards interpretable deep reinforcement learning
with human-friendly prototypes. In The Eleventh International Conference on Learning Repre-
sentations, 2023. URL https://openreview.net/forum?id=hWwY_Jq0xsN.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning, 2021. URL https:
//arxiv.org/abs/2004.11362.

Sungyeon Kim, Dongwon Kim, Minsu Cho, and Suha Kwak. Proxy anchor loss for deep metric
learning, 2020. URL https://arxiv.org/abs/2003.13911.

B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A. Al Sallab, Senthil Yoga-
mani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey, 2021.
URL https://arxiv.org/abs/2002.00444.

Anurag Koul, Sam Greydanus, and Alan Fern. Learning finite state representations of recurrent
policy networks, 2018. URL https://arxiv.org/abs/1811.12530.

Himabindu Lakkaraju, Stephen H. Bach, and Jure Leskovec. Interpretable decision sets: A joint
framework for description and prediction. In Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, KDD ’16, pp. 1675–1684, New
York, NY, USA, 2016. Association for Computing Machinery. ISBN 9781450342322. doi:
10.1145/2939672.2939874. URL https://doi.org/10.1145/2939672.2939874.

Gen Li, Varun Jampani, Laura Sevilla-Lara, Deqing Sun, Jonghyun Kim, and Joongkyu Kim.
Adaptive prototype learning and allocation for few-shot segmentation, 2021. URL https:
//arxiv.org/abs/2104.01893.

10

https://arxiv.org/abs/2403.14977
https://github.com/bhctsntrk/OpenAIPong-DQN
https://github.com/bhctsntrk/OpenAIPong-DQN
https://arxiv.org/abs/1806.10574
https://arxiv.org/abs/1806.10574
https://arxiv.org/abs/2006.03745
https://arxiv.org/abs/2006.03745
http://dx.doi.org/10.1109/ICCV.2017.371
https://arxiv.org/abs/1911.05722
https://arxiv.org/abs/1911.05722
https://arxiv.org/abs/1902.10186
https://arxiv.org/abs/1902.10186
https://arxiv.org/abs/2206.04186
https://github.com/JinayJain/deep-racing
https://github.com/JinayJain/deep-racing
https://openreview.net/forum?id=hWwY_Jq0xsN
https://arxiv.org/abs/2004.11362
https://arxiv.org/abs/2004.11362
https://arxiv.org/abs/2003.13911
https://arxiv.org/abs/2002.00444
https://arxiv.org/abs/1811.12530
https://doi.org/10.1145/2939672.2939874
https://arxiv.org/abs/2104.01893
https://arxiv.org/abs/2104.01893

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Oscar Li, Hao Liu, Chaofan Chen, and Cynthia Rudin. Deep learning for case-based reason-
ing through prototypes: A neural network that explains its predictions, 2017. URL https:
//arxiv.org/abs/1710.04806.

Guiliang Liu, Oliver Schulte, Wang Zhu, and Qingcan Li. Toward interpretable deep reinforcement
learning with linear model u-trees, 2018. URL https://arxiv.org/abs/1807.05887.

Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
projection for dimension reduction, 2020. URL https://arxiv.org/abs/1802.03426.

Stephanie Milani, Nicholay Topin, Manuela Veloso, and Fei Fang. A survey of explainable rein-
forcement learning, 2022. URL https://arxiv.org/abs/2202.08434.

Alex Mott, Daniel Zoran, Mike Chrzanowski, Daan Wierstra, and Danilo J. Rezende. Towards
interpretable reinforcement learning using attention augmented agents, 2019. URL https://
arxiv.org/abs/1906.02500.

nikhilbarhate99. Actor-Critic-PyTorch: Policy gradient actor-critic implementation (lunar lander v2)
in pytorch. https://github.com/nikhilbarhate99/Actor-Critic-PyTorch,
2025a. Accessed: 2025-09-22.

nikhilbarhate99. TD3-PyTorch-BipedalWalker-v2: Twin delayed ddpg (td3) pytorch solution
for roboschool and box2d environments. https://github.com/nikhilbarhate99/
TD3-PyTorch-BipedalWalker-v2, 2025b. Accessed: 2025-09-22.

NotAnyMike. gym: An improvement of carracing-v0 from openai gym for hierarchical reinforce-
ment learning. https://github.com/NotAnyMike/gym, 2025. Accessed: 2025-09-22.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback, 2022.
URL https://arxiv.org/abs/2203.02155.

Vitali Petsiuk, Abir Das, and Kate Saenko. Rise: Randomized input sampling for explanation of
black-box models, 2018. URL https://arxiv.org/abs/1806.07421.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model,
2024. URL https://arxiv.org/abs/2305.18290.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/
20-1364.html.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”why should i trust you?”: Explaining
the predictions of any classifier, 2016. URL https://arxiv.org/abs/1602.04938.

Sam T. Roweis and Lawrence K. Saul. Nonlinear dimensionality reduction by locally linear em-
bedding. Science, 290(5500):2323–2326, 2000. doi: 10.1126/science.290.5500.2323. URL
https://www.science.org/doi/abs/10.1126/science.290.5500.2323.

Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and
use interpretable models instead, 2019. URL https://arxiv.org/abs/1811.10154.

Cynthia Rudin, Chaofan Chen, Zhi Chen, Haiyang Huang, Lesia Semenova, and Chudi Zhong.
Interpretable machine learning: Fundamental principles and 10 grand challenges, 2021. URL
https://arxiv.org/abs/2103.11251.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for
face recognition and clustering. In 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 815–823. IEEE, June 2015. doi: 10.1109/cvpr.2015.7298682. URL
http://dx.doi.org/10.1109/CVPR.2015.7298682.

11

https://arxiv.org/abs/1710.04806
https://arxiv.org/abs/1710.04806
https://arxiv.org/abs/1807.05887
https://arxiv.org/abs/1802.03426
https://arxiv.org/abs/2202.08434
https://arxiv.org/abs/1906.02500
https://arxiv.org/abs/1906.02500
https://github.com/nikhilbarhate99/Actor-Critic-PyTorch
https://github.com/nikhilbarhate99/TD3-PyTorch-BipedalWalker-v2
https://github.com/nikhilbarhate99/TD3-PyTorch-BipedalWalker-v2
https://github.com/NotAnyMike/gym
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/1806.07421
https://arxiv.org/abs/2305.18290
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://arxiv.org/abs/1602.04938
https://www.science.org/doi/abs/10.1126/science.290.5500.2323
https://arxiv.org/abs/1811.10154
https://arxiv.org/abs/2103.11251
http://dx.doi.org/10.1109/CVPR.2015.7298682

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based lo-
calization. International Journal of Computer Vision, 128(2):336–359, October 2019. ISSN
1573-1405. doi: 10.1007/s11263-019-01228-7. URL http://dx.doi.org/10.1007/
s11263-019-01228-7.

David Silver, Aja Huang, Christopher J. Maddison, Arthur Guez, Laurent Sifre, George van den
Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot,
Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lilli-
crap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the
game of go with deep neural networks and tree search. Nature, 529:484–503, 2016. URL http:
//www.nature.com/nature/journal/v529/n7587/full/nature16961.html.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Si-
monyan, and Demis Hassabis. Mastering chess and shogi by self-play with a general reinforce-
ment learning algorithm, 2017. URL https://arxiv.org/abs/1712.01815.

Jake Snell, Kevin Swersky, and Richard S. Zemel. Prototypical networks for few-shot learning,
2017. URL https://arxiv.org/abs/1703.05175.

Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objec-
tive. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 29. Curran Associates, Inc.,
2016. URL https://proceedings.neurips.cc/paper_files/paper/2016/
file/6b180037abbebea991d8b1232f8a8ca9-Paper.pdf.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks, 2017.
URL https://arxiv.org/abs/1703.01365.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press, 2nd
edition, 2015. URL https://web.stanford.edu/class/psych209/Readings/
SuttonBartoIPRLBook2ndEd.pdf. Draft, in progress.

Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. A global geometric framework for non-
linear dimensionality reduction. Science, 290(5500):2319–2323, 2000. doi: 10.1126/science.290.
5500.2319. URL https://www.science.org/doi/abs/10.1126/science.290.
5500.2319.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Ma-
chine Learning Research, 9(86):2579–2605, 2008. URL http://jmlr.org/papers/v9/
vandermaaten08a.html.

George A. Vouros. Explainable deep reinforcement learning: State of the art and challenges. ACM
Computing Surveys, 55(5):1–39, December 2022. ISSN 1557-7341. doi: 10.1145/3527448. URL
http://dx.doi.org/10.1145/3527448.

Sean Xie, Soroush Vosoughi, and Saeed Hassanpour. Proto-lm: A prototypical network-based
framework for built-in interpretability in large language models, 2023. URL https://arxiv.
org/abs/2311.01732.

Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor Babuschkin,
Karl Tuyls, David Reichert, Timothy Lillicrap, Edward Lockhart, Murray Shanahan, Victoria
Langston, Razvan Pascanu, Matthew Botvinick, Oriol Vinyals, and Peter Battaglia. Deep re-
inforcement learning with relational inductive biases. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=HkxaFoC9KQ.

12

http://dx.doi.org/10.1007/s11263-019-01228-7
http://dx.doi.org/10.1007/s11263-019-01228-7
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1703.05175
https://proceedings.neurips.cc/paper_files/paper/2016/file/6b180037abbebea991d8b1232f8a8ca9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/6b180037abbebea991d8b1232f8a8ca9-Paper.pdf
https://arxiv.org/abs/1703.01365
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://www.science.org/doi/abs/10.1126/science.290.5500.2319
https://www.science.org/doi/abs/10.1126/science.290.5500.2319
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
http://dx.doi.org/10.1145/3527448
https://arxiv.org/abs/2311.01732
https://arxiv.org/abs/2311.01732
https://openreview.net/forum?id=HkxaFoC9KQ

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A RELATED WORKS

A.1 MANIFOLD LEARNING

The manifold hypothesis is a well-established principle in Machine Learning, which suggests that
Cayton (2005):

Although data points often appear to have very high dimensionality, with thou-
sands of observed features, they can typically be represented by a much smaller
set of underlying parameters. In essence, the data resides on a low-dimensional
manifold embedded within a high-dimensional space.

Based on the Manifold hypothesis Manifold learning focuses on uncovering low-dimensional struc-
tures in high dimensional data. Manifold learning techniques like TSNE van der Maaten & Hinton
(2008),UMAP McInnes et al. (2020), LLE Roweis & Saul (2000) and Isomap Tenenbaum et al.
(2000) utilize information derived from the linearized neighborhoods of points to construct low
dimensional projections of non-linear manifolds in high dimensional data.

The method Piecewise-Linear Manifolds for Deep Metric Learning Bhatnagar & Ahuja (2024) aims
to train a neural network to learn a semantic feature space where similar items are close together and
dissimilar items are far apart, in an unsupervised manner. This method is based on using linearized
neighborhoods of points to construct a piecewise linear manifold, which helps estimate a continuous-
valued similarity between data points.

A.2 METRIC LEARNING

Metric learning aims to learn an embedding space where semantically similar samples are close
and dissimilar ones are far apart. Common loss functions include Contrastive loss Hadsell et al.
(2006),aims at making representations of positive pairs closer to each other, while pushing negative
pairs further away than a positive margin. It is commonly used in tasks such as face verification or
representation learning with Siamese networks. Here (zi, z

′
i) are embeddings of a pair, yi ∈ {0, 1}

indicates similarity, and m is the margin.

L =
1

N

N∑
i=1

[
yi ∥zi − z′i∥22 + (1− yi) max

(
0,m− ∥zi − z′i∥2

)2]
Triplet loss Schroff et al. (2015) is another metric learning objective that enforces relative similarity
by ensuring that an anchor xa is closer to a positive sample xp (same class) than to a negative
sample xn (different class) by at least a margin. Unlike contrastive loss, which only considers
pairwise distances, triplet loss leverages relative comparisons, making it more effective in learning
discriminative embeddings for tasks such as face recognition and image retrieval, here f(·) is the
embedding function, m is the margin, xa is the anchor, xp is a positive sample, and xn is a negative
sample.

L =
1

N

N∑
i=1

max
(
0, ∥f(xi

a)− f(xi
p)∥22 − ∥f(xi

a)− f(xi
n)∥22 +m

)
Multi-class N-pair loss Sohn (2016) generalizes triplet loss by comparing one positive sample
against multiple negative samples simultaneously. This encourages more efficient optimization than
triplet loss, which only considers a single negative at a time, leading to better embedding separation
for tasks such as image classification, retrieval, and verification. Here f(·) is the embedding func-
tion, xi

a is the anchor, xi
p is the positive sample of the same class, and {xj

n} are negatives from other
classes.

L =
1

N

N∑
i=1

log

1 +
∑
j ̸=i

exp
(
f(xi

a)
⊤f(xj

n)− f(xi
a)

⊤f(xi
p)
)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Supervised contrastive loss Khosla et al. (2021) extends contrastive loss by leveraging label in-
formation to pull together embeddings from all samples of the same class, rather than relying only
on pairwise similarity. Unlike contrastive loss, which is limited to positive and negative pairs, su-
pervised contrastive loss uses class supervision to exploit multiple positives per anchor, leading to
richer and more discriminative representations. Here P (i) is the set of indices of positives shar-
ing the same class as anchor xi, τ is a temperature scaling parameter, and f(·) is the embedding
function.

L =

N∑
i=1

−1
|P (i)|

∑
p∈P (i)

log
exp

(
f(xi)

⊤f(xp)/τ
)∑N

a=1 1[a ̸=i] exp (f(xi)⊤f(xa)/τ)

Proxy-Anchor Loss: Proxy-Anchor Loss Kim et al. (2020) replaces anchors with learnable class
representatives (proxies), removing the need for anchor sampling as in contrastive, triplet, or N-pair
losses. Instead of comparing individual samples, embeddings are optimized against proxies, which
serve as stable anchors for each class.

LPA =
1

|Θ+|
∑

θq∈Θ+

log

1 +
∑

z∈Z+
θq

exp (−α · (s(z, θq)− ϵ))


+

1

|Θ|
∑
θq∈Θ

log

1 +
∑

z∈Z−
θq

exp (α · (s(z, θq)− ϵ))


B MODEL ARCHITECTURE

This section includes details about the black-box models, user study, and the model architecture
(hθ) used in our method. We used a single-layer network with intermediate normalizations. The
prototype size is set to 50 for all the environments. The motivation for using a simpler model is to
avoid losing information in the encoded vectors during manifold construction.

Table 3: Model Architecture
Layer Layer Parameters
Linear (latent size z, prototype size)
InstanceNorm1d prototype size
ReLU -

B.1 BLACK-BOX MODELS

For the CarRacing environment, we used a CNN model trained using PPO JinayJain (2025). This
pre-trained model was evaluated under both IID and OOD settings during the user study. For Atari
Pong, we used a simple CNN trained with the Double Dueling DQN method bhctsntrk (2025). The
model used for BipedalWalker was trained using TD3 nikhilbarhate99 (2025b), and the LunarLan-
der model was trained using the Actor-Critic method nikhilbarhate99 (2025a). These networks are
relatively simple, reflecting the symbolic nature of their respective environments. For the Humanoid-
Standup and CartPole environments, we used models from Stable-Baselines3 Raffin et al. (2021),
trained using PPO with an MLP policy. The diversity of environments, models, and algorithms
demonstrates the robustness of our approach.

C TRAINING PARAMETERS

For the first phase of training—prototype discovery—we train our network for 200 epochs on the
training dataset (Section 3.2) using two separate Adam optimizers: one for the network parameters

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

and one for the proxy parameters. Both optimizers use a learning rate of 1e-3, accompanied by
a learning rate scheduler with decay rate ηt = 0.97. The dimensionality of the encoded vector z
varies depending on the environment and the encoder model, but generally falls near the order of
100. We use a mini-batch size of 128 samples and set the reconstruction threshold T to 90%. The
scale parameter δ is set to 2 (the maximum distance between two points on a unit sphere), and the
submanifold dimension m is fixed at 3.

For the second phase—training and evaluating the sampled prototypes within the PW-Net frame-
work—we use the Adam optimizer with a learning rate of 1e-2, again paired with a scheduler
using ηt = 0.97. Training and evaluation are conducted over 5 independent iterations. In each iter-
ation, the PW-Net model is trained for 10 epochs and evaluated over 30 simulation runs to compute
the mean and standard deviation of the resulting rewards.

All experiments were conducted on an NVIDIA RTX A6000 GPU. In the first stage of our method,
we train a lightweight neural network hθ to sample prototypes, which requires approximately 640
MB of GPU memory and about 7 hours of training time without parallelization. With parallelized
estimation of manifold-based similarities, the training time is reduced to roughly 2 hours, with a
peak GPU memory usage of about 4700 MB across all environments. For the Humanoid Standup
and Acrobat environments, we did not evaluate the methods VIPER, PW-Net*, and k-means, as
our focus was on approaches that achieve performance closer to the original black-box model. As
observed in the remaining four environments, these methods consistently fall short of delivering
results comparable to the black-box baseline.

C.1 METHOD COMPARISONS

The k-means method selects prototypes by choosing the cluster centers within each action class. In
contrast, PWnet* learns prototypes through a joint objective that combines a clustering loss and a
separation loss while simultaneously optimizing for RL performance. Moreover, our approach sig-
nificantly reduces the reliance on subjective inputs, thereby promoting a more objective assessment
of the prototypes. For all the environments, we used the same black box models B.1 used in PW-net;
consequently, the values of performance for the methods PW-net*, VIPER Bastani et al. (2019), and
K-means were also taken from the paper PW-net.

For the Car Racing and Atari Pong environments, we recomputed the performance of the black-box
models but retained the PW-Net scores reported in Kenny et al. (2023), as their evaluation relied on
human-surveyed prototypes for these tasks. In the case of symbolic domains, we constructed “ideal”
prototypical action-space examples, where the action of interest was set to 1 or -1 and all others to
0, and subsequently mapped these to the closest training samples. These prototypes were then used
to reevaluate PW-Net’s performance across the four symbolic domains in this work.

D ABLATION STUDY

To analyze the effect of each individual parameter, we have performed an ablation study on one
model each from the Continuous and discrete action spaced environments. To achieve this we used
the Bi-pedal walker and Atari pong environments respectively.

D.1 EFFECT OF m

The parameter m denotes the dimension of the linear submanifold Xi, which locally approximates
the data manifold around a point hθ(z). To examine its effect, we vary m in the range [2, 8] with
a step size of 1. As shown in (Figure 5 and Figure 4)(a), performance consistently decreases in
both the environments as m increases. This trend arises because Xi is intended to approximate
the immediate neighborhood of a point, which is inherently low-dimensional. Larger values of
m may lead to overfitting, since only a limited number of nearby samples are available within a
batch to reliably estimate Xi, thereby degrading performance. Furthermore, we observe that the
computational overhead for prototype sampling increases with larger m, underscoring the trade-off
between accuracy and efficiency.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

2 4 6 8
300

305

310

315

320

m

R
e
w
a
r
d

(a)Reward vs m

0.4 0.6 0.8 1
300

305

310

315

γ

R
e
w
a
r
d

(b)Reward vs γ

1 2 3
300

305

310

315

Nβ

R
e
w
a
r
d

(c)Reward vs Nβ

2 4 6
300

305

310

315

Nα

R
e
w
a
r
d

(d)Reward vs Nα

0.7 0.8 0.9
300

305

310

315

T

R
e
w
a
r
d

(e)Reward vs T

1 2 3
300

305

310

315

δ

R
e
w
a
r
d

(f)Reward vs δ

10 20 30
300

305

310

315

α

R
e
w
a
r
d

(g)Reward vs α

0 0.1 0.2
300

305

310

315

ϵ

R
e
w
a
r
d

(h)Reward vs ϵ

0 20 40
308

310

312

314

316

318

no.of prototypes

R
e
w
a
r
d

(i)Reward vs no.of prototypes

Figure 4: Ablation study on Bi-pedal walker environment

D.2 EFFECT OF γ

The parameter γ denotes the momentum constant used to update the proxy vector θm during pro-
totype sampling. Following He et al. (2020), higher values of γ are expected to yield improved
performance, as the proxy updates become smoother and more stable. Consistent with this obser-
vation, (Figure 5 and Figure 4)(b) shows that in both models, performance improves as γ increases,
highlighting the importance of stable momentum updates for effective representation learning.

D.3 EFFECT OF Nα & Nβ

The parameters Nα and Nβ control the decay of similarity based on the orthogonal and projected
distances, respectively, of a point from the linear submanifold in the neighborhood of another point.
We vary Nα in the range [1, 6] with a step size of 1, and Nβ in the range [0.5, 3] with a step size
of 0.5. As shown in (Figure 5 and Figure 4)(c), increasing Nβ leads to decrease in performance in
both the environments. In contrast, (Figure 5 and Figure 4)(d) shows that performance improves
with larger Nα in both the environments.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

2 4 6 8
5

10

15

20

m

R
e
w
a
r
d

(a)Reward vs m

0.4 0.6 0.8 1
5

10

15

20

γ

R
e
w
a
r
d

(b)Reward vs γ

1 2 3
10

12

14

16

Nβ

R
e
w
a
r
d

(c)Reward vs Nβ

2 4 6
10

12

14

16

Nα

R
e
w
a
r
d

(d)Reward vs Nα

0.7 0.8 0.9
10

12

14

16

T

R
e
w
a
r
d

(e)Reward vs T

1 2 3
10

12

14

16

δ

R
e
w
a
r
d

(f)Reward vs δ

10 20 30
10

12

14

16

α

R
e
w
a
r
d

(g)Reward vs α

0 0.1 0.2
10

12

14

16

ϵ

R
e
w
a
r
d

(h)Reward vs ϵ

0 10 20
10

12

14

16

no.of prototypes

R
e
w
a
r
d

(i)Reward vs no.of prototypes

Figure 5: Ablation study on Atari Pong walker environment

This effect can be explained by the relationship between Nα and Nβ : as Nα approaches Nβ , a point
A at distance ε within the linear neighborhood of a point B (and thus sharing many features with
B and its neighbors) may be treated as equally dissimilar to B as another point C located at an
orthogonal distance ε from the neighborhood of B. In the experiments when Nβ was varied Nα is
set to 4, as Nβ increases from 0.5 to 3 it becomes closer to Nα which is leading to a decrease in
performance. When Nα was varied from 1 to 6 Nβ was set to 0.5, as Nα increases from it becomes
larger than Nβ which is leading to an increase in performance.

D.4 EFFECT OF T

The reconstruction threshold T determines the quality of points admitted into the linear submani-
fold Xi. We vary T in the range [0.7, 0.95] with a step size of 0.05. As shown in (Figure 5 and
Figure 4)(e), the models in both environments exhibit a clear upward trend in performance as T
increases, underscoring the importance of ensuring that only high-quality points are incorporated
into Xi.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D.5 EFFECT OF δ

The scaling factor δ regulates the maximum separation between dissimilar points. We vary δ in the
range [0.8, 3.2] with a step size of 0.4. As shown in (Figure 5 and Figure 4)(f), the performance
remains relatively stable across this range in both environments, highlighting the robustness of our
method.

D.6 EFFECT OF α

The scaling factor α controls the sharpness of the exponential term in the Proxy Anchor loss. We
vary its value over 5, 10, 15, 20, 25, 30, 32. As shown in (Figure 5 and Figure 4)(g), models in both
environments exhibit an overall increasing trend in performance with larger α.

D.7 EFFECT OF ϵ

The margin parameter ϵ enforces that positive embeddings are pulled within this distance from their
corresponding class proxies. We vary its value across 0.001, 0.005, 0.05, 0.1, 0.2. As shown in
(Figure 5 and Figure 4)(h), models in both the environments demonstrate stable performance across
the range of ϵ, undermining its effect in the loss function.

D.8 EFFECT OF no.of prototypes

To investigate the effect of prototype count on performance, we conducted an ablation study in
the Bipedal Walker and Atari Pong environments. In Bipedal Walker 4(i), rewards consistently
increased with additional prototypes until reaching a plateau. In contrast, in Atari Pong 5(i), rewards
initially improved with more prototypes but began to decline beyond a certain point. We attribute
this divergence to differences in state representation.

Bipedal Walker is a symbolic domain where states encode physical properties such as position and
velocity, providing relatively low-noise inputs. By comparison, Atari Pong represents states as
raw pixels, which must be encoded by a neural network before prototype selection. This pixel-
based encoding introduces noise, and as the number of prototypes increases, the accumulated noise
degrades performance.

E USER STUDY

Two groups of 25 users each participated in the study 6. One group was presented with the black-
box model (the ”Black-Box Group”), while the other with sampled prototypes (the ”Sampled Pro-
totypes Group”). Both groups were given identical scenarios and instructions on how to rate them
independently. The figure below shows a sample of the IID and OOD cases shown to users.

F LLM USAGE

LLM was used to improve the quality of writing, and to assist in the LaTeX code review; it was not
used during the ideation or experimentation phase.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 6: User Study Overview

19

	Introduction
	Related Works
	Methodology
	Motivation
	Dataset
	Training overview
	Manifold construction
	Loss Functions
	Performance review

	Experiments
	Action Discretization
	Numerical Results
	User Study

	Conclusion and Future work
	Related Works
	Manifold learning
	Metric learning

	Model Architecture
	Black-Box Models

	Training parameters
	Method comparisons

	Ablation Study
	Effect of m
	Effect of gamma
	Effect of Nalpha & Nbeta
	effect of T
	Effect of delta
	Effect of alpha
	Effect of epsilon
	Effect of no.of prototypes

	User Study
	LLM usage

