
HiRoPE: Length Extrapolation for Code Models Using Hierarchical
Position

Anonymous ACL submission

Abstract

Addressing the limitation of context length in001
large language models for code-related tasks is002
the primary focus of this paper. Existing LLMs003
are constrained by their pre-trained context004
lengths, leading to performance issues in han-005
dling long complex code sequences. Inspired006
by how human programmers navigate code, we007
introduce Hierarchical Rotary Position Embed-008
ding (HiRoPE), a novel approach that enhances009
the traditional rotary position embedding into010
a hierarchical format based on the hierarchical011
structure of source code. HiRoPE offers easy012
integration into existing LLMs without extra013
training costs. Our method is extensively eval-014
uated with various LLMs, demonstrating stable015
performance in tasks such as language model-016
ing and long code completion. We also intro-017
duce a new long code understanding task with018
real-world code projects, in hopes of promoting019
further development in this code-related field.020
Theoretically and experimentally, we find that021
HiRoPE also addresses the out-of-distribution022
issue in position encoding. Our HiRoPE signif-023
icantly expands the context length capabilities024
of LLMs, enabling inference at lengths expo-025
nentially greater than the training length.026

1 Introduction027

Large language models (LLMs) such as LLaMA-2028

(Touvron et al., 2023b), and CodeLLaMA (Rozière029

et al., 2023) have achieved significant performances030

in code-related tasks. These Transformer-based031

models excel in code comprehension and genera-032

tion but face a notable challenge: the limitation033

of maximum context length. LLMs are typically034

pre-trained with a context length ranging from 2k035

to 16k tokens, which often proves insufficient for036

complex, extended source code. Exceeding this037

length limitation during inference may lead to per-038

formance degradation for these code models, par-039

ticularly in tasks like project-level code completion040

or long code generation.041

Traditional Position Index

The token at position 10000

(…preceding tokens…) return a + b
idx=10000

Hierarchical Position Index
The token, in the 9th function,

at position 100

idx=(9,100)

def func9()…
return a + b

9th function

10000th token

10000th token

def func1()…

Figure 1: Illustration of the hierarchical position in
source code, such as function-level and token-level po-
sitions. We also show a simplified abstract syntax tree
of the code in the bottom left corner.

Various methods have been developed to extend 042

the context window of LLMs. Some approaches 043

involve fine-tuning on extensive texts (Xiong et al., 044

2023; Chen et al., 2023b,a; Peng et al., 2023), 045

which can be resource-intensive and potentially 046

lead to overfitting and loss of performance on 047

shorter sequences. There are also some training- 048

free methods (Xiao et al., 2023; Han et al., 2023; 049

Ding et al., 2023). However, these methods usually 050

use window attention rely on local information, and 051

ignore the long dependency in code. It is essential 052

to incorporate certain structural characteristics of 053

the code into position encoding to efficiently model 054

these long-distance code dependencies. 055

Our work diverges from these methods by fo- 056

cusing on the hierarchical information of source 057

code in position encoding, inspired by how human 058

programmers navigate code. Traditional positional 059

encoding uses token counts for positioning, and 060

treats code as plain text. However, human pro- 061

grammers often use hierarchical information in the 062

code, representing positions in the code efficiently 063

through multi-level hierarchical positions. We pro- 064

pose a hierarchical position approach that identifies 065

token positions within specific levels, such as func- 066

1

tions or statements. Figure 1 shows the comparison067

of the traditional position and our hierarchical po-068

sition. It is clear that the hierarchical positional069

encoding, benefiting from the full utilization of070

structural information in the code, can more con-071

veniently locate positional information within long072

code sequences. This method could more effec-073

tively model long dependencies in source code.074

Following such inspirations, we introduce a075

novel approach, Hierarchical Rotary Position Em-076

bedding (HiRoPE), which enhances the popular077

rotary position embedding (RoPE) (Su et al., 2024)078

into a hierarchical format. HiRoPE differentiates079

itself by extracting hierarchical information from080

the source code and splitting the RoPE dimension081

to represent different hierarchical levels. It simul-082

taneously models token-level relative location and083

higher-level relative location information. We also084

add a window mechanism to ensure stability with085

short texts, aligning with traditional positional en-086

coding.087

HiRoPE is a plug-and-play solution, easily inte-088

grated into existing LLMs without additional train-089

ing costs. Our extensive experiments with popu-090

lar LLMs on tasks like language modeling and to-091

ken completion in long code contexts (CodeParrot,092

2022) demonstrate its effectiveness. We compare093

HiRoPE with existing length extrapolation meth-094

ods using long code benchmarks such as LCC (Guo095

et al., 2023) and RepoBench (Liu et al., 2023a). We096

also introduce a new long code understanding task097

named code symbol understanding with real-world098

code libraries. Theoretically and experimentally,099

we find that HiRoPE effectively addresses the out-100

of-distribution issue (Liu et al., 2023b) in position101

encoding. Our HiRoPE significantly expands the102

context length capabilities of LLMs, enabling in-103

ference at lengths exponentially greater than the104

training length. We believe our work with HiRoPE105

not only addresses a critical length limitation in106

LLM applications but also opens new avenues for107

long-structured data modeling research.108

In summary, we make the following main contri-109

butions:110

• We propose Hierarchical RoPE (HiRoPE), en-111

hancing the traditional rotary position embed-112

ding into a hierarchical format based on the113

hierarchical structure of source code, provid-114

ing improved extrapolation capabilities.115

• We conducted comprehensive experiments116

with LLMs on various long code tasks involv-117

ing language modeling and code completion. 118

We also introduce a new long code under- 119

standing task with real-world code projects, 120

in hopes of promoting further development in 121

this code-related field. 122

• We demonstrate that HiRoPE effectively ad- 123

dresses the out-of-distribution issue in posi- 124

tion encoding, enabling inference at lengths 125

exponentially greater than the training length. 126

2 Preliminary 127

We first introduce rotary position embedding in 128

Transformer in Section 2.1. While existing work 129

usually regards source code as plain text for model- 130

ing, we will also introduce the ignored hierarchical 131

information in source code in Section 2.2. 132

2.1 Rotary Position Embedding in 133

Transformer 134

Transformer models require explicit positional in- 135

formation to be injected, typically in the form of po- 136

sitional encodings, to represent the order of inputs. 137

Recently, the rotary position embedding (RoPE) 138

(Su et al., 2024) has become one of the most popu- 139

lar and elegant position encoding strategies and is 140

adopted by various LLMs (Touvron et al., 2023a,b; 141

Rozière et al., 2023). The main point of the RoPE 142

method is using absolute position encoding to show 143

relative position information. Formally, given a po- 144

sition index m ∈ [0, L) and an embedding vector 145

x := [x0, x1, . . . , xd−1]
⊤, where d is the dimen- 146

sion of the attention head, RoPE defines a complex 147

function f(x,m) as follows: 148

f(x,m) = [(x0 + ix1)e
imθ0 , (x2 + ix3)e

imθ1 , . . . ,

(xd−2 + ixd−1)e
imθd/2−1]⊤

(1) 149

where i :=
√
−1 is the imaginary unit and θj = 150

10000−2j/d. 151

With RoPE, the self-attention score can be cal- 152

culated as: 153

a(m,n) = Re⟨f(q,m), f(k, n)⟩

= Re

d/2−1∑
j=0

(q2j + iq2j+1)(k2j − ik2j+1)e
i(m−n)θj

=

d/2−1∑
j=0

[(q2jk2j + q2j+1k2j+1) cos((m− n)θj)

+ (q2jk2j+1 − q2j+1k2j) sin((m− n)θj)]

=: a(m− n)
(2)

154

2

Here q and k are the query and key vector for a spe-155

cific attention head. At each layer, RoPE is applied156

on both query and key embeddings for computing157

attention scores. We can observe that the calcu-158

lated attention score is only dependent on relative159

position m − n through trigonometric functions,160

which reflects the core of RoPE that uses the ab-161

solute position to represent the relative distance.162

Existing studies show that when dealing with long163

plain text, the RoPE will meet O.O.D issues where164

the value of m− n during inference is unseen (Liu165

et al., 2023b), leading to poor performances.166

2.2 Hierarchical Position in Source Code167

Most LLMs treat source code as plain text, pro-168

cessing it as if it were ordinary natural language.169

However, it is essential to take the structural in-170

formation of code into mind. Source code can be171

transformed into abstract syntax trees, and these172

tree structures contain rich hierarchical position in-173

formation. For example, the code snippets usually174

can be split into several class or function units, and175

each class/function contains various types of code176

blocks and statements. Figure 1 shows an illustra-177

tion of the simplified abstract syntax tree for a code178

snippet in the bottom left corner. This higher-level179

positional information contains rich semantics of180

source code, making it easy for human program-181

mers to locate and refer to different semantic parts.182

Therefore, in many existing program representation183

tasks, this hierarchical information plays a very im-184

portant role (Allamanis et al., 2018; Zhang et al.,185

2023). However, for today’s large language models,186

this high-level hierarchical positional information187

is almost ignored. In this paper, we try to incorpo-188

rate this hierarchical information into the position189

encoding method.190

3 Hierarchical RoPE191

In this paper, we propose HiRoPE, a hierarchical192

rotary position encoding for source code model-193

ing. Our proposed HiRoPE requires two modified194

stages: ❶ Hierarchical Format: We first take195

the step to transfer the existing rotary position em-196

bedding into a hierarchical format. We verify our197

approach theoretically and find that the hierarchi-198

cal format can bring stable extrapolation ability for199

RoPE. ❷ Window Mechanism. To ensure perfor-200

mance stability without further training, we also201

add a window mechanism, so that when dealing202

with short texts, our proposed method is consistent203

with the original positional encoding. An illustra- 204

tion of our HiRoPE is shown in Figure 2. 205

3.1 Hierarchical format 206

Unlike previous work that encodes the information 207

of each position as a number index m ∈ [0, L), we 208

use a h-dimensional vector to represent the hierar- 209

chical position index from high-level to low-level, 210

where h is a hyperparameter that indicates how 211

many levels of information we consider in the en- 212

coding. We begin with a simple case that we set 213

h = 2 and each token position can be represented 214

as (m1,m2). We use the higher and lower dimen- 215

sions in RoPE respectively to represent these two 216

hierarchical position indexes, so the Equation 1 can 217

be rewritten as: 218

f ′(x,m1,m2) =

[(x0 + ix1)e
im1θ0 , . . . , (xds−2 + ixds−1)e

im1θds/2−1 ,

(xds + ixds+1)e
im2θds/2 , . . . , (xd−2 + ixd−1)e

im2θd/2−1]⊤

(3)

219

There are a total of d dimensions in RoPE, and we 220

use the lower ds dimensions to represent the hierar- 221

chical index of m1, and the remaining dimensions 222

to represent m2. When we apply it to self-attention, 223

we can get a new calculation of the attention score: 224

hierarchicalAttn = Re⟨f(q,m1,m2), f(k, n1, n2)⟩

=

ds/2−1∑
i=0

[(q2ik2i + q2i+1k2i+1) cos((m1 − n1)θi)

+ (q2ik2i+1 − q2i+1k2i) sin((m1 − n1)θi)]

+

d/2−1∑
j=ds/2+1

[(q2jk2j + q2j+1k2j+1) cos((m2 − n2)θj)

+ (q2jk2j+1 − q2j+1k2j) sin((m2 − n2)θj)]

=: a′(m1 − n1,m2 − n2)
(4)

225

The attention score a′(. . .) we ultimately obtained 226

through the inner product is quite elegant. It in- 227

cludes the relative position distance of various hi- 228

erarchical levels, and this form can be similarly 229

extended to the representation of more hierarchical 230

positional structures. It indicates that the RoPE has 231

the potential to be transformed into a hierarchical 232

form, and we can use the hierarchical position in- 233

dex in the source code for this new form of RoPE, 234

as shown in the left part of Figure 2. 235

The original RoPE sets θj to 10000−2j/d, which 236

means that the lower the dimension, the higher its 237

frequency, and the more emphasis on modeling the 238

relative position information of short distances (Pal 239

et al., 2023). Therefore, in our hierarchical format, 240

3

Absolute Distance
in Code Tokens

Relative Distance in Attention

Low dim
(Token-level)

High dim
(Func-level)

1 1 1 1
1 1 1 1

0
0 0
0 0 0

0
0

0

0
0

0
0

4 3 2 1
5 4 3 2

1
2 1
3 2 1

1
0

0

0
0

0
0

(0,0) (0,1) (0,2) (0,3) (0,4) (1,5) (1,6)

4 3 2 1
5 4 3 2

1
2 1
3 2 1

1
0

0

0
0

0
0

3 3 2 1
3 3 3 2

1
2 1
2 2 1

1
0

0

0
0

0
0

hierarchial pos_idx:
(function_idx,token_idx)

Low Dim:
Same as original

High Dim:
Add Window = 3

HiRoPE

Figure 2: Overview of our HiRoPE. We transfer the existing position encoding method into a hierarchical format
(i.e.,, function-level and token-level) and apply it across different dimensions. We also add a window mechanism to
ensure performance stability (in this figure we set Lwindow to 3).

we use those low dimensions to represent token-241

level information, and high dimensions to represent242

higher-level hierarchical information, such as the243

function level or statement level in source code.244

3.2 Window Mechanism245

To ensure performance stability without further246

training, we follow existing extrapolation methods247

(Xiao et al., 2023; Han et al., 2023) and add a win-248

dow mechanism. Specifically, when dealing with249

short code snippets, we believe that existing LLMs250

have already mastered the ability to model these251

short semantic structures from vast pre-training252

code datasets. Therefore, when calculating the at-253

tention score, we directly use the original RoPE for254

those parts that are shorter than a specific length255

Lwindow. And for those long context parts that the256

distance is larger than Lwindow, we transfer them to257

the new hierarchical format by adding Lwindow − 1258

to each high-level distance. Our subsequent experi-259

ments have proved that even without any additional260

training, this window mechanism can bring strong261

stability, making the model’s performance applica-262

ble in various scenarios with arbitrary input lengths.263

An illustration of the final HiRoPE is shown in the264

right part of Figure 2.265

4 Experiment Setup266

In this section, we aim to answer the following267

research questions through a series of experiments.268

Details of the evaluation dataset statistics are shown269

in Table 1.270

Task Dataset Avg. Length Samples

Long Code
Language Modeling CodeParrot

0-2048 1031.46 100
2048-4096 3667.76 100
4096-8192 7074.57 100
8192-16384 14353.94 100

Long Text
Language Modeling ReRoPE-eval 21367.55 200

Code Symbol
Understanding Real-world Code Project 12976.89 56

Long Code
Completion

LCC 17855.73 300
RepoBench 21103.42 300

Table 1: Statistics of the evaluation datasets

RQ1. How is the language modeling capa- 271

bility of HiRoPE on long code sequences? We 272

evaluate HiRoPE’s language modeling ability on 273

CodeParrot-valid dataset (CodeParrot, 2022) in 274

Section 5.1. 275

RQ2. How is the language modeling capa- 276

bility of HiRoPE on long natural language se- 277

quences? The natural language lacks the explicit 278

hierarchical structure information found in code, 279

so we have made some modifications: we set every 280

128 tokens as a segment, and encode it as higher- 281

level position information. We use the evaluation 282

dataset from ReRoPE-eval (Su, 2023) in Section 283

5.2. 284

RQ3. How does HiRoPE perform in under- 285

standing real-world, long-code projects? To eval- 286

uate the effect of the method in real long-code sce- 287

narios, we design a new evaluation task on real 288

code projects: Code Symbol Understanding in 289

Section 5.3. Given a long code file, the model 290

is required to output all the function names and 291

class names defined in it. We extract long code 292

4

LLaMA-2 ShearedLLaMA TinyLLaMA Vicuna

Para. 7B 1.3B 1.1B 7B

Lpretrain 4096 4096 2048 2048

Vocab Size 32000 32000 32000 32000

Hidden Size 4096 2048 2048 4096
Attention Head 32 16 32 32
RoPE Dim 128 128 64 128

Table 2: Statistics of base LLMs

files from popular open-sourced code repositories,293

especially those newly updated code projects to294

avoid data leakage. Details of these code projects295

are shown in Table 6.296

RQ4. How does HiRoPE perform on existing297

benchmarks for long code completion? We298

further perform the evaluation using two long code299

completion benchmarks: LCC (Guo et al., 2023)300

and RepoBench (Liu et al., 2023a) in Section 5.4.301

RQ5. What is the impact of various settings302

in HiRoPE? To demonstrate that each setting in303

the design of our HiRoPE works, we carry out304

extensive ablation studies that include the dimen-305

sions’ split settings, the window mechanism, and306

the high-level segment split strategy in Section 5.5.307

4.1 Base LLMs308

The models used include LLaMA-2 (7B) (Touvron309

et al., 2023b), Sheared-LLaMA (1.3B) (Xia et al.,310

2023), TinyLlama (1.1B) (Zhang et al., 2024), and311

Vicuna (7B) (Chiang et al., 2023). This model312

choice is driven by their widespread use and popu-313

larity, as well as the constraints of our computing314

capabilities. Details are provided in Table 2.315

Considering training on long context sequences316

is resource-intensive and time-consuming, we fo-317

cus on those popular length extrapolation methods318

without training, including NTK (bloc97, 2023),319

ReRoPE (Su, 2023) and Self-Extend (Jin et al.,320

2024). These methods have shown impressive per-321

formance on long context language modeling.322

4.2 Inference Settings323

In our experiments, our HiRoPE uses a two-layer324

hierarchy, accounting for the position index at the325

token and function/class levels of the source code326

based on tree-sitter (Brunsfeld et al., 2024). For327

long context in natural language, we make some328

modifications and set every 128 tokens as a higher-329

level segment. We set the split dimension half of330

the total: ds = 0.5 ∗ dtotal, and choose a window331

length: Lwindow = 512. We keep the hyperparam-332

eters the same for those state-of-the-art baselines333

for a fair comparison. We use greedy search decod- 334

ing for generation. We use 4 A6000 GPUs for all 335

experiments. 336

5 Results and Analyses 337

5.1 Long Code Language Modeling 338

Language modeling is the most fundamental and 339

the least requirement for a LLM. We evaluate Hi- 340

RoPE’s language modeling ability on CodeParrot- 341

valid dataset. We divide the original dataset into 342

different length intervals. The experiment results 343

are shown in Table 3. A smaller loss and a smaller 344

ppl indicate a stronger language modeling capacity 345

of the corresponding model. Conversely, a larger 346

acc suggests a stronger capability of the respective 347

model in code completion on the given dataset. The 348

origin indicates that we directly use the original 349

setting of the model to evaluate. 350

Experiments show that original LLMs perform 351

badly on the long code language modeling task. 352

Even when the length slightly exceeds the pre- 353

training length, the ppl of all models exceed 45, 354

demonstrating their essential lack of modeling and 355

understanding capabilities for longer codes. When 356

we apply length extrapolation methods, all meth- 357

ods can reduce the loss and ppl into an acceptable 358

range for those long source codes, and our HiRoPE 359

almost outperforms all other baselines. Specifi- 360

cally, for ultra-long code sequences (length over 361

8192), HiRoPE achieves the best results in all met- 362

rics and under all settings. This fully demonstrates 363

the advantages of our HiRoPE in modeling long 364

sequence codes. Our method also shows general- 365

ization abilities. The four models evaluated have 366

differences in model parameters, pre-training data, 367

and pre-training length, yet our method has shown 368

very good results on all these models. 369

It is worth noting that our method does not im- 370

pair the model’s performance on shorter code. We 371

noted that some popular length extension meth- 372

ods, such as NTK, can impair the performance on 373

short code. Thanks to our window mechanism, our 374

method stays on par with the baseline model on 375

shorter datasets (length 0-2048) and even surpasses 376

the baseline on some metrics. HiRoPE demon- 377

strates consistently excellent language modeling 378

capabilities in various code length scenarios. 379

5.2 Long Text Language Modeling 380

In addition to testing the ability of language mod- 381

eling on long code, we also evaluate its effects on 382

5

Dataset Length: 0-2048 2048-4096 4096-8192 8192-16384

Para. Lpretrain loss ↓ ppl ↓ acc ↑ loss ↓ ppl ↓ acc ↑ loss ↓ ppl ↓ acc ↑ loss ↓ ppl ↓ acc ↑

LLaMA-2 7B 4096

origin 0.8579 2.3583 0.8065 0.9820 2.6698 0.7551 nan nan nan nan nan nan
NTK 1.1107 3.0365 0.7472 1.0469 2.8488 0.7414 0.9858 2.6800 0.7729 1.0181 2.7678 0.7630
ReRoPE 0.8593 2.3615 0.8054 0.7278 2.0705 0.8121 0.6633 1.9411 0.8411 0.7187 2.0518 0.8243
Self-Extend 0.8588 2.3604 0.8055 0.7209 2.0562 0.8147 0.6519 1.9192 0.8441 0.6983 2.0103 0.8290
HiRoPE 0.8586 2.3598 0.8060 0.7185 2.0514 0.8153 0.6482 1.9121 0.8452 0.6821 1.9780 0.8332

ShearedLLaMA 1.3B 4096

origin 1.2874 3.6235 0.7341 1.3103 3.7074 0.7019 3.8381 46.4375 0.4866 5.6958 297.6160 0.3211
NTK 1.6242 5.0744 0.6607 1.5047 4.5029 0.6619 1.3708 3.9383 0.7015 1.3657 3.9183 0.6964
ReRoPE 1.2897 3.6316 0.7332 1.0497 2.8567 0.7560 0.9699 2.6376 0.7846 1.0044 2.7303 0.7716
Self-Extend 1.2892 3.6300 0.7337 1.0428 2.8371 0.7586 0.9568 2.6034 0.7874 0.9804 2.6656 0.7768
HiRoPE 1.2888 3.6285 0.7338 1.0382 2.8242 0.7600 0.9514 2.5894 0.7885 0.9660 2.6273 0.7811

TinyLlama 1.1B 2048

origin 1.0788 2.9410 0.7594 4.1732 64.9235 0.4506 6.6603 780.8009 0.2630 7.9938 2962.5881 0.1682
NTK 1.1837 3.2664 0.7405 1.0952 2.9899 0.7256 0.9719 2.6430 0.7733 1.0021 2.7240 0.7626
ReRoPE 0.9703 2.6388 0.7877 0.8251 2.2821 0.7905 0.7685 2.1565 0.8210 0.8275 2.2877 0.8040
Self-Extend 0.9698 2.6375 0.7856 0.8123 2.2530 0.7931 0.7577 2.1333 0.8235 0.8119 2.2521 0.8073
HiRoPE 0.9743 2.6493 0.7881 0.8268 2.2861 0.7981 0.7683 2.1562 0.8208 0.8040 2.2345 0.8094

Vicuna 7B 2048

origin 1.1787 3.2502 0.7551 4.6046 99.9449 0.4473 7.7207 2254.4730 0.2597 9.9449 20846.3927 0.1601
NTK 1.3417 3.8255 0.7150 1.2587 3.5208 0.7068 1.1809 3.2573 0.7344 1.1912 3.2911 0.7285
ReRoPE 1.0716 2.9201 0.7800 0.8760 2.4012 0.7912 0.8138 2.2566 0.8182 0.8580 2.3585 0.8023
Self-Extend 1.0710 2.9183 0.7802 0.8735 2.3953 0.7891 0.7988 2.2228 0.8220 0.8351 2.3049 0.8066
HiRoPE 1.0707 2.9174 0.7799 0.8724 2.3926 0.7903 0.8002 2.2261 0.8213 0.8314 2.2965 0.8080

Table 3: Language Modeling Ability on CodeParrot-valid dataset. "nan" indicates that the model performs
significantly poor on the given setting.

last loss ↓ last ppl ↓ last acc ↑ all loss ↓ all ppl ↓ all acc ↑

TinyLlama

origin 9.3083 >1000 0.0194 7.3486 >1000 0.1466
NTK 2.1338 8.4468 0.5553 2.2745 9.7234 0.53
ReRoPE 1.8448 6.327 0.6008 1.903 6.7062 0.5867
Self-Extend 1.7904 5.9916 0.6089 1.8749 6.5201 0.5908
HiRoPE 1.7829 5.9474 0.6102 1.8717 6.4991 0.5913

ShearedLLaMA

origin 8.5027 >1000 0.0412 5.5237 250.5 0.274
NTK 2.3596 10.5863 0.5159 2.4056 11.0853 0.5059
ReRoPE 1.7952 6.0205 0.605 1.8514 6.3687 0.5932
Self-Extend 1.7662 5.8486 0.6105 1.8348 6.264 0.5966
HiRoPE 1.7622 5.8252 0.6113 1.8332 6.2536 0.5963

Table 4: Language Modeling Ability on ReRoPE-eval
dataset. In addition to calculating metrics on all tokens
(refer to "all_..."), we also record metrics on the last
2048 tokens of each data (refer to "last_...").

long natural language texts. We set every 128 to-383

kens as a high-level segment. We use the ReRoPE-384

eval dataset, and results are shown in Table 4. In385

addition to calculating metrics on all tokens (refer386

to "all_..." in the table), we also record metrics on387

the last 2048 tokens of each data (refer to "last_...").388

We find that our HiRoPE can also achieve sig-389

nificant improvement. HiRoPE achieves the best390

results on almost all metrics. Another interesting391

observation is that, given sufficient context, the392

model can utilize this contextual information to393

perform better when generating later tokens. That394

is to say, the metrics of "last_..." should be better395

than those of "all_...". However, we observe that396

for the original model, the situation is contrary to397

this. We attribute this to the fact that the original398

model’s ability to model long sequence languages399

is so poor that it can’t utilize that distant contextual400

information at all. Our HiRoPE can significantly401

improve the model’s ability to handle long codes402

and textual data, without requiring any training,403

Code Symbol
Understanding

(Recall ↑)

Long Code
Completion
(Edit Sim ↑)

LCC RepoBench

0-4k 4k-8k >8k 0-4k 4k-8k >8k

LLaMA-2
origin 0.0012 54.5 4.36 4.08 8.29 6.79 6.59

ReRoPE 0.0837 65.83 67.43 63.22 52.82 47.85 45.38
HiRoPE 0.0911 66.61 69.93 65.38 52.20 53.30 51.24

ShearedLLaMA
origin 0.0067 27.17 3.33 2.52 4.39 2.94 2.35

ReRoPE 0.0743 35.56 36.1 36.91 34.03 37.37 33.44
HiRoPE 0.0809 46.13 51.67 46.33 40.17 39.98 39.52

TinyLLaMA
origin 0.0067 17.29 5.45 6.28 7.91 7.53 7.07

ReRoPE 0.1214 49.22 57.20 53.11 37.72 40.50 39.38
HiRoPE 0.1415 35.17 42.83 49.92 42.48 43.53 39.82

Vicuna
origin 0.0067 18.47 2.56 2.76 3.67 2.49 2.32

ReRoPE 0.0636 57.95 59.73 58.52 42.78 43.65 45.23
HiRoPE 0.0721 63.42 62.01 64.42 37.10 42.30 45.93

Table 5: Performance on Code Symbol Understanding
and Long Code Completion.

reflecting its practical value. 404

5.3 Code Symbol Understanding 405

To evaluate the effect of the method in real long- 406

code scenarios, we have designed an evaluation 407

task for real code projects: Code Symbol Under- 408

standing. Given a long code context, the model is 409

required to output all the function names and class 410

names defined in it. These pre-defined functions 411

and classes are reused frequently in actual code de- 412

velopment. For code models, understanding which 413

functions and classes are defined in the code project 414

is a basic capability requirement. This task is in- 415

spired by the popular "Needle in a Haystack" syn- 416

thetic evaluation (gkamradt, 2023), but our code 417

symbol understanding task is more realistic and 418

code-related. Task examples are shown in Figure 5. 419

We use recall as the evaluation metric. 420

Our experiments in Table 5 have proven that 421

6

Figure 3: Ablation Studies including the settings of the
dimension split, the window mechanism, and the high-
level segment split strategy.

this seemingly simple task is extremely difficult for422

LLMs. We also evaluate this task using GPT-3.5-423

16k (GPT-3.5, 2023) and find that its result is only424

0.72. All these LLMs are not ideal in this more425

realistic code symbol understanding task. Our Hi-426

RoPE has been improved from the perspective of427

positional encoding, enabling the model to per-428

ceive structural hierarchy changes in the code, thus429

achieving relatively good results. Compared to the430

original models, our HiRoPE can achieve almost a431

hundredfold improvement on average across four432

models. We release our dataset in hopes of pro-433

moting further development in this code-related434

field.435

5.4 Long Code Completion436

We further perform the evaluation using two real-437

world long code completion benchmarks: LCC438

and RepoBench. Given a long code context, the439

model is required to generate the complete next440

line of code. We follow the experiment settings441

in Longbench-E (Bai et al., 2023) and use edit442

similarity as metrics. Results are shown in Table 5.443

Our HiRoPE also achieves stable improvements444

on this long code-related task. The input code con-445

text is filled with various predefined functions and446

classes. Our method can effectively sense these447

contents, handle these complex dependencies, and448

successfully use those functions that are defined449

far away during generation. Under two dataset sce-450

narios, our method consistently outperforms other451

baseline settings. The results reflect the practicality452

and generalization ability of our method.453

5.5 Ablation Study454

In our experiments, ❶ we set the split dimension455

half of the total ds = 0.5 ∗ dtotal and ❶ choose a456

window length ❷ Lwindow = 512. ❸ Our hierar-457

chical position includes both the token and func- 458

tion/class levels of the source code. We further 459

carry out extensive ablation studies including these 460

settings and results are shown in Figure 3. 461

We choose different dimension splitting ratios to 462

observe the performance of LLaMA-2 and TinyL- 463

LaMA in terms of ppl on CodeParrot [4k-8k]. 464

When the split ratio is 1, the HiRoPE degenerates 465

into the original model. Specifically, both models 466

show significant fluctuations in ppl between ratios 467

of [0.6, 0.7]. We will explore the reason in Section 468

6.1. 469

We change the window length to observe the 470

performance of LLaMA-2 on CodeParrot [0-2k] 471

and [4k-8k]. For shorter code data, we observe 472

a decreasing trend in ppl as the window size in- 473

creases. This validates that the window mechanism 474

can allow the model to retain its original computa- 475

tional mechanisms and better handle short-distance 476

dependencies. For longer code data, ppl behaves 477

anomalously when the window size is very small. 478

This also indicates that window mechanisms play a 479

key role in modeling long-distance dependencies. 480

We change the high-level segment split strategy. 481

In addition to dividing the hierarchy at the func- 482

level, we also try to split at the code statement 483

level as well as implementing a strategy of split- 484

ting continuous n-tokens as a high-level segment 485

(n = 128, 512, 1024). Experiments show that divid- 486

ing at the function level achieves the best results. 487

The semantics within a function are relatively simi- 488

lar, while the semantics between functions usually 489

vary greatly. It is necessary to divide long code 490

sequences into levels according to functions and 491

classes. 492

6 Discussion 493

6.1 Mitigating Out-of-Domain Issues in Long 494

Contexts 495

Existing work (Liu et al., 2023b) shows that LLMs 496

fail on input out of the pretraining context win- 497

dow because of the Out-Of-Distribution (O.O.D) 498

issues. We take the inspiration to explain it from 499

a cyclical perspective. In RoPE, each dimension 500

is composed of trigonometric functions, and its pe- 501

riod can be denoted as Tj = 2π
θj

= 2π ∗ 10000
2j
d . 502

Only those dimensions that have been completely 503

trained within the pre-training length can be con- 504

sidered as a reliable part for extrapolation, others 505

would encounter O.O.D issues when dealing with 506

problems of extrapolation. We can then get those 507

7

Figure 4: Performance of Short-ShearedLLaMA on
CodeParrot dataset. The training length is set to 128.
The results suggest our method has the potential to ex-
trapolate code models at an exponential length.

reliable dimensions by calculating Tj < Lpretrain.508

The calculated dim split is 0.70 and 0.63 for the509

four models in our experiments (Table 7). We are510

surprised to find that it is similar to the ratio we511

obtained in the ablation study in Figure 3. Our512

HiRoPE uses those high dimensions to represent513

higher-level position index information, and prop-514

erly applies them to smaller input numbers, thus515

mitigating O.O.D issues in long code contexts.516

The traditional RoPE uses a number m as the po-517

sition index to represent position information. Due518

to the O.O.D problem in high dimensions, its reli-519

able range is {m ∈ [0, Lpretrain]}. In our HiRoPE,520

we use a two-layer hierarchy as (m1,m2) and521

the reliable range is {m1 ∈ [0, Lpretrain],m2 ∈522

[0, Lpretrain]}. It proves that under ideal circum-523

stances, HiRoPE can effectively extrapolate to the524

length of Lh in an exponential ratio, where h is the525

hierarchy layer. We attempt to explore the upper526

limit of our HiRoPE’s extrapolation performance527

in the experiment in the next Section 6.2.528

6.2 Upper Limit of HiRoPE’s Performance529

Due to computational resource constraints, we530

made the following modifications based on Sec-531

tion 5.1: ❶ Firstly, in order to obtain a base532

model of suitable length, we designed a training533

strategy to obtain a shorter context length LLM,534

named ShortLLM: We use the position interpola-535

tion (Chen et al., 2023b) method reversely to re-536

duce the input length of some mainstream models537

to Lshort = 128 at a smaller training cost. Specifi-538

cally, given a position index m in the original RoPE,539

we use the new index αshort ∗ m to replace it as540

shown in Table 8. We fine-tune short models for541

1000 steps. ❷ We resample the CodeParrot-valid542

dataset, further refining it into smaller distance543

ranges, each range containing up to 50 test samples.544

The results are shown in Figure 4 and 6.545

Our trained ShortLLM successfully demon-546

strates the expected performance: the performance 547

drastically decreases after surpassing the training 548

length Lshort = 128. We then apply our Hi- 549

RoPE as well as the baseline ReRoPE. Our HiRoPE 550

demonstrates a more stable trend on long code se- 551

quences, even at the position close to L2
short. It 552

suggests our method has the potential to extrapo- 553

late code models at an exponential length. 554

7 Related Work 555

Existing large language models are originally 556

trained with fixed context sizes. When dealing with 557

longer sequences (such as long code), the model’s 558

performance may decrease quite drastically. Recent 559

studies have explored ways to expand the context 560

length. For example, Position Interpolation (Chen 561

et al., 2023b) linearly down-scales the input posi- 562

tion indices to match the original context window 563

size of LLMs with several training steps. Similar 564

studies (Chen et al., 2023a; Peng et al., 2023; Chen 565

et al., 2023c; Guo et al., 2023) also require fine- 566

tuning. However, these methods all need additional 567

tuning in longer contexts or face a disastrous col- 568

lapse after the extrapolation bound. There are also 569

some approaches without training. Some work use 570

window attention to clip the long sequences such 571

as (Xiao et al., 2023; Han et al., 2023; Ding et al., 572

2023)). However, these methods rely on local infor- 573

mation and may not effectively expand the context 574

window, struggling with long dependencies in code. 575

Recently, some methods have explored modifying 576

the relative distance to extend the extrapolation 577

length (bloc97, 2023; Su, 2023; Jin et al., 2024) 578

and focus on the natural language text. We pursue 579

the research line of training-free methods and pro- 580

pose considering the structural information of the 581

code when modeling the position. We expand the 582

traditional RoPE method into a hierarchical format 583

and prove the effectiveness of our HiRoPE through 584

theoretical derivations and practical experiments. 585

8 Conclusion 586

We propose HiRoPE, a training-free solution to the 587

context length limitation in LLMs for long code 588

modeling. We integrate the hierarchical structure 589

of source code into position encoding of LLMs. 590

Experiments demonstrate that HiRoPE achieves 591

stable improvements on diverse code-related tasks. 592

Our work not only addresses a critical limitation in 593

LLM applications but also opens new avenues for 594

long structured data modeling research. 595

8

Limitation596

There are several limitations to our work that we597

aim to address:598

Firstly, constrained by computational resources,599

we choose models below 7B for experiments. The600

four models evaluated have differences in model pa-601

rameters, pre-training data, and pre-training length,602

yet our method has shown very good results on all603

these models. We will attempt to conduct experi-604

ments on models with larger parameters and more605

complex structures to promote the development of606

the LLM community.607

Next, our discussion on the upper limit of the608

HiRoPE’s performance tends to lean towards theo-609

retical derivation. We have designed a set of Short-610

LLM experiments to prove our conclusions. It sug-611

gests our method has the potential to extrapolate612

code models at an exponential length, so for the613

LLaMA-2 model with Lpretrain = 4096, we can614

theoretically extrapolate its length to L2
pretrain ≈615

16, 000, 000. We are not clear whether some set-616

tings will implicitly affect the performance of the617

model. We will continue to explore the robust-618

ness of this experimental idea and try to explore619

the maximum performance of our method on real620

LLMs.621

References622

Miltiadis Allamanis, Marc Brockschmidt, and Mah-623
moud Khademi. 2018. Learning to represent pro-624
grams with graphs. In 6th International Conference625
on Learning Representations, ICLR 2018, Vancouver,626
BC, Canada, April 30 - May 3, 2018, Conference627
Track Proceedings.628

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,629
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao630
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,631
and Juanzi Li. 2023. Longbench: A bilingual, mul-632
titask benchmark for long context understanding.633
CoRR, abs/2308.14508.634

bloc97. 2023. Ntk-aware scaled rope al-635
lows llama models to have extended (8k+)636
context size without any fine-tuning and637
minimal perplexity degradation. https:638
//www.reddit.com/r/LocalLLaMA/639
comments/14lz7j5/ntkaware_scaled_640
rope_allows_llama_models_to_have/.641

Max Brunsfeld, Andrew Hlynskyi, Amaan Qureshi,642
Patrick Thomson, Josh Vera, and et al. 2024. tree-643
sitter/tree-sitter: v0.21.0-pre-release-1.644

Guanzheng Chen, Xin Li, Zaiqiao Meng, Shangsong645
Liang, and Lidong Bing. 2023a. CLEX: continu-646

ous length extrapolation for large language models. 647
CoRR, abs/2310.16450. 648

Shouyuan Chen, Sherman Wong, Liangjian Chen, and 649
Yuandong Tian. 2023b. Extending context window 650
of large language models via positional interpolation. 651
CoRR, abs/2306.15595. 652

Yuhan Chen, Ang Lv, Ting-En Lin, Changyu Chen, 653
Yuchuan Wu, Fei Huang, Yongbin Li, and Rui Yan. 654
2023c. Fortify the shortest stave in attention: En- 655
hancing context awareness of large language models 656
for effective tool use. CoRR, abs/2312.04455. 657

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, 658
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan 659
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. 660
2023. Vicuna: An open-source chatbot impressing 661
gpt-4 with 90%* chatgpt quality. See https://vicuna. 662
lmsys. org (accessed 14 April 2023). 663

CodeParrot. 2022. https://huggingface.co/codeparrot. 664

Jiayu Ding, Shuming Ma, Li Dong, Xingxing Zhang, 665
Shaohan Huang, Wenhui Wang, Nanning Zheng, and 666
Furu Wei. 2023. Longnet: Scaling transformers to 1, 667
000, 000, 000 tokens. CoRR, abs/2307.02486. 668

gkamradt. 2023. Needle in a haystack - pressure testing 669
llms. https://github.com/gkamradt/ 670
LLMTest_NeedleInAHaystack/tree/ 671
main. 672

GPT-3.5. 2023. https://platform.openai. 673
com/docs/models/gpt-3-5. 674

Daya Guo, Canwen Xu, Nan Duan, Jian Yin, and Ju- 675
lian J. McAuley. 2023. Longcoder: A long-range pre- 676
trained language model for code completion. In In- 677
ternational Conference on Machine Learning, ICML 678
2023, 23-29 July 2023, Honolulu, Hawaii, USA, 679
pages 12098–12107. 680

Chi Han, Qifan Wang, Wenhan Xiong, Yu Chen, Heng 681
Ji, and Sinong Wang. 2023. Lm-infinite: Simple 682
on-the-fly length generalization for large language 683
models. CoRR, abs/2308.16137. 684

Hongye Jin, Xiaotian Han, Jingfeng Yang, Zhimeng 685
Jiang, Zirui Liu, Chia-Yuan Chang, Huiyuan Chen, 686
and Xia Hu. 2024. LLM maybe longlm: Self- 687
extend LLM context window without tuning. CoRR, 688
abs/2401.01325. 689

Tianyang Liu, Canwen Xu, and Julian J. McAuley. 690
2023a. Repobench: Benchmarking repository- 691
level code auto-completion systems. CoRR, 692
abs/2306.03091. 693

Xiaoran Liu, Hang Yan, Shuo Zhang, Chenxin An, 694
Xipeng Qiu, and Dahua Lin. 2023b. Scaling laws of 695
rope-based extrapolation. CoRR, abs/2310.05209. 696

Arka Pal, Deep Karkhanis, Manley Roberts, Samuel 697
Dooley, Arvind Sundararajan, and Siddartha Naidu. 698
2023. Giraffe: Adventures in expanding context 699
lengths in llms. CoRR, abs/2308.10882. 700

9

https://openreview.net/forum?id=BJOFETxR-
https://openreview.net/forum?id=BJOFETxR-
https://openreview.net/forum?id=BJOFETxR-
https://doi.org/10.48550/ARXIV.2308.14508
https://doi.org/10.48550/ARXIV.2308.14508
https://doi.org/10.48550/ARXIV.2308.14508
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://doi.org/10.5281/zenodo.10638807
https://doi.org/10.5281/zenodo.10638807
https://doi.org/10.5281/zenodo.10638807
https://doi.org/10.48550/ARXIV.2310.16450
https://doi.org/10.48550/ARXIV.2310.16450
https://doi.org/10.48550/ARXIV.2310.16450
https://doi.org/10.48550/ARXIV.2306.15595
https://doi.org/10.48550/ARXIV.2306.15595
https://doi.org/10.48550/ARXIV.2306.15595
https://doi.org/10.48550/ARXIV.2312.04455
https://doi.org/10.48550/ARXIV.2312.04455
https://doi.org/10.48550/ARXIV.2312.04455
https://doi.org/10.48550/ARXIV.2312.04455
https://doi.org/10.48550/ARXIV.2312.04455
https://doi.org/10.48550/ARXIV.2307.02486
https://doi.org/10.48550/ARXIV.2307.02486
https://doi.org/10.48550/ARXIV.2307.02486
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5
https://proceedings.mlr.press/v202/guo23j.html
https://proceedings.mlr.press/v202/guo23j.html
https://proceedings.mlr.press/v202/guo23j.html
https://doi.org/10.48550/ARXIV.2308.16137
https://doi.org/10.48550/ARXIV.2308.16137
https://doi.org/10.48550/ARXIV.2308.16137
https://doi.org/10.48550/ARXIV.2308.16137
https://doi.org/10.48550/ARXIV.2308.16137
https://doi.org/10.48550/ARXIV.2401.01325
https://doi.org/10.48550/ARXIV.2401.01325
https://doi.org/10.48550/ARXIV.2401.01325
https://doi.org/10.48550/ARXIV.2306.03091
https://doi.org/10.48550/ARXIV.2306.03091
https://doi.org/10.48550/ARXIV.2306.03091
https://doi.org/10.48550/ARXIV.2310.05209
https://doi.org/10.48550/ARXIV.2310.05209
https://doi.org/10.48550/ARXIV.2310.05209
https://doi.org/10.48550/ARXIV.2308.10882
https://doi.org/10.48550/ARXIV.2308.10882
https://doi.org/10.48550/ARXIV.2308.10882

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and En-701
rico Shippole. 2023. Yarn: Efficient context win-702
dow extension of large language models. CoRR,703
abs/2309.00071.704

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten705
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,706
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.707
Code llama: Open foundation models for code. arXiv708
preprint arXiv:2308.12950.709

Jianlin Su. 2023. Rectified rotary position embeddings.710
https://github.com/bojone/rerope.711

Jianlin Su, Murtadha H. M. Ahmed, Yu Lu, Shengfeng712
Pan, Wen Bo, and Yunfeng Liu. 2024. Roformer: En-713
hanced transformer with rotary position embedding.714
Neurocomputing, 568:127063.715

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier716
Martinet, Marie-Anne Lachaux, Timothée Lacroix,717
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal718
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard719
Grave, and Guillaume Lample. 2023a. Llama: Open720
and efficient foundation language models. CoRR,721
abs/2302.13971.722

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-723
bert, Amjad Almahairi, and et al. 2023b. Llama 2:724
Open foundation and fine-tuned chat models. CoRR,725
abs/2307.09288.726

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi727
Chen. 2023. Sheared llama: Accelerating language728
model pre-training via structured pruning. CoRR,729
abs/2310.06694.730

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song731
Han, and Mike Lewis. 2023. Efficient stream-732
ing language models with attention sinks. CoRR,733
abs/2309.17453.734

Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang,735
Prajjwal Bhargava, Rui Hou, Louis Martin, Rashi736
Rungta, Karthik Abinav Sankararaman, Barlas Oguz,737
Madian Khabsa, Han Fang, Yashar Mehdad, Sharan738
Narang, Kshitiz Malik, Angela Fan, Shruti Bhosale,739
Sergey Edunov, Mike Lewis, Sinong Wang, and Hao740
Ma. 2023. Effective long-context scaling of founda-741
tion models. CoRR, abs/2309.16039.742

Kechi Zhang, Zhuo Li, Zhi Jin, and Ge Li. 2023. Im-743
plant global and local hierarchy information to se-744
quence based code representation models. In 31st745
IEEE/ACM International Conference on Program746
Comprehension, ICPC 2023, Melbourne, Australia,747
May 15-16, 2023, pages 157–168.748

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and749
Wei Lu. 2024. Tinyllama: An open-source small750
language model. CoRR, abs/2401.02385.751

10

https://doi.org/10.48550/ARXIV.2309.00071
https://doi.org/10.48550/ARXIV.2309.00071
https://doi.org/10.48550/ARXIV.2309.00071
https://github.com/bojone/rerope
https://doi.org/10.1016/J.NEUCOM.2023.127063
https://doi.org/10.1016/J.NEUCOM.2023.127063
https://doi.org/10.1016/J.NEUCOM.2023.127063
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2310.06694
https://doi.org/10.48550/ARXIV.2310.06694
https://doi.org/10.48550/ARXIV.2310.06694
https://doi.org/10.48550/ARXIV.2309.17453
https://doi.org/10.48550/ARXIV.2309.17453
https://doi.org/10.48550/ARXIV.2309.17453
https://doi.org/10.48550/ARXIV.2309.16039
https://doi.org/10.48550/ARXIV.2309.16039
https://doi.org/10.48550/ARXIV.2309.16039
https://doi.org/10.1109/ICPC58990.2023.00030
https://doi.org/10.1109/ICPC58990.2023.00030
https://doi.org/10.1109/ICPC58990.2023.00030
https://doi.org/10.1109/ICPC58990.2023.00030
https://doi.org/10.1109/ICPC58990.2023.00030
https://doi.org/10.48550/ARXIV.2401.02385
https://doi.org/10.48550/ARXIV.2401.02385
https://doi.org/10.48550/ARXIV.2401.02385

A Details of Code Symbol Understanding752

task753

We extract long code files from popular open-754

sourced code repositories, especially those newly755

updated code projects to avoid data leakage. We756

construct a static analysis tool to get the abstract757

syntax tree of each code file, and then get all de-758

fined function and class names in it as the ground-759

truth output symbols. Details of these code projects760

are shown in Table 6. We show the number of files761

we extracted from each project as well as the av-762

erage length of these code files. We also show763

the average number of symbols and their location764

statistics in the table.765

In Figure 5 we show an illustration of our pro-766

posed new task. We replace the input_code part767

with each code file, and use the task prompt to768

guide models to extract and output all defined func-769

tion and class names in input code. We also show770

an example output in the figure.771

def add_func(a,b):
return a + b

…

Task: Extract all defined function
names and class names from the
above code snippet.
extracted_entities =

An example output:
[add_func, …,]

Input_code

Task
prompt

Figure 5: Illustration of Code Symbol Understanding
task. We use the task prompt to guide models to extract
and output all defined function and class names in input
code.

B Details of ShortLLM experiments772

B.1 Theoretical calculation for O.O.D issues773

According to the analysis in Section 6.1, we can774

calculate the reliable dimensions for each model775

as:776

Split% = log10000
Lpretrain

2π
(5)777

The theoretical calculation results are shown in778

Table 7.779

B.2 ShortLLM Training780

In order to obtain the ShortLLM of suitable length,781

we use the position interpolation (Chen et al.,782

2023b) method reversely. Given a position index 783

m in the original RoPE, we use the new index 784

αshort ∗m to replace it as shown in Table 8. We 785

sample the CodeParrot-train dataset and filter the 786

data length less than Lshort. We set the global 787

batch size to 64 and fine-tune the models for 1000 788

steps. 789

B.3 ShortLLM Performances 790

After training, we apply our HiRoPE to these Short- 791

LLM models. Figure 6 shows the experiment re- 792

sults of the ShortLLM. We can observe that for all 793

models, Our HiRoPE can maintain good stability 794

as the length of the input code increases. Even if 795

the baseline ReRoPE method gradually becomes 796

unstable under some experimental settings (such 797

as on Short-TinyLLaMA), our method can resist 798

these performance declines. 799

11

Github Repo File Nums File Length Avg. Symbols Min. Symbol Loc Max. Symbol Loc

ddbourgin/numpy-ml 2 14055 15 927 10845
gradio-app/gradio 1 12938 11 272 12265
huggingface/accelerate 4 12814.5 11.5 379 12500
huggingface/diffusers 4 13324.75 16.2 276 8347
huggingface/optimum 1 13491 11 580 12868
huggingface/peft 1 15457 11 514 8525
huggingface/transformers 18 12919.4 12.7 239 14514
langchain-ai/langchain/ 2 14195 11.5 285 10790
numpy/numpy 6 11158.8 14 100 12026
tensorflow/tensorflow 17 13191.7 13.4 285 14920

Total 56 12976.89 13.17 100 14920

Table 6: Statistics of Code Symbol Understanding task. We show the number of files we extracted from each project
as well as the average length of these code files. We also show the average number of symbols and their location
statistics in the table.

Figure 6: Performance of ShortLLMs on CodeParrot dataset. The training length is set to 128.

Lpretrain RoPE Dim Split % Split Dim

LLaMA-2 4096 128 0.70 90.05
ShearedLLaMA 4096 128 0.70 90.05
TinyLLaMA 2048 64 0.63 40.21
Vicuna 2048 128 0.63 80.42

Table 7: Theoretical calculation of the reliable extrapo-
lation dimension.

Para. Lpretrain Lshort αshort

LLaMA-2 7B 4096 128 32
ShearedLLaMA 1.3B 4096 128 32
TinyLLaMA 1.1B 2048 128 16
Vicuna 7B 2048 128 16

Table 8: Model Statistics for ShortLLM experiments.

12

	Introduction
	Preliminary
	Rotary Position Embedding in Transformer
	Hierarchical Position in Source Code

	Hierarchical RoPE
	Hierarchical format
	Window Mechanism

	Experiment Setup
	Base LLMs
	Inference Settings

	Results and Analyses
	Long Code Language Modeling
	Long Text Language Modeling
	Code Symbol Understanding
	Long Code Completion
	Ablation Study

	Discussion
	Mitigating Out-of-Domain Issues in Long Contexts
	Upper Limit of HiRoPE's Performance

	Related Work
	Conclusion
	Details of Code Symbol Understanding task
	Details of ShortLLM experiments
	Theoretical calculation for O.O.D issues
	ShortLLM Training
	ShortLLM Performances

