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Abstract

Generating counterfactual explanations is one of the most effective ap-
proaches for uncovering the inner workings of black-box neural network
models and building user trust. While remarkable strides have been made
in generative modeling using diffusion models in domains like vision, their
utility in generating counterfactual explanations in structured modalities
remains unexplored. In this paper, we introduce Structured Counterfactual
Diffuser or SCD, the first plug-and-play framework leveraging diffusion for
generating counterfactual explanations in structured data. SCD learns the
underlying data distribution via a diffusion model which is then guided at test
time to generate counterfactuals for any arbitrary black-box model, input,
and desired prediction. Our experiments show that our counterfactuals not
only exhibit high plausibility compared to the existing state-of-the-art but
also show significantly better proximity and diversity.

1 Introduction

As AI models become more capable and widespread, the issue of trust becomes critical
(Doshi-Velez & Kim, 2017). While traditional software is transparent—allowing tracing its
control flow and easily resolving trust concerns—modern AI is built upon neural networks
that are not transparent. Their underlying control flow is not understood, making it difficult to
trust in high-risk settings such as loan or hiring decisions. Although the remarkable power
and flexibility of neural networks have allowed building systems that achieve capabilities not
possible with traditional software alone OpenAI (2023); Ramesh et al. (2022), this lack of
transparency and trust becomes a significant hurdle in realizing the full potential of neural
networks Ribeiro et al. (2016); Lundberg & Lee (2017); Wachter et al. (2017).

To address concerns about trust, one needs to answer why a model behaves in a certain
way. One of the most promising directions to answer this is via what-if scenarios or counter-
factuals Wachter et al. (2017). While Wachter et al. (2017) originally introduced the idea of
counterfactual explanations, the idea has gained significant attention in recent years Mothilal
et al. (2020); Karimi et al. (2019); Yang et al. (2022); Ross et al. (2020); Madaan et al.
(2021). Ideally, counterfactuals should possess the following characteristics: 1) they should
maintain proximity to the original input, 2) they should attain the desired counterfactual
label to ensure its validity, 3) they should be diverse and capture a wide range of distinct
scenarios and 4) they should be plausible. While proximity, validity, and diversity criteria
have been studied extensively, there has been little focus on the plausibility of the generated
counterfactuals, i.e., ensuring that the generated counterfactuals are realistic and conform
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Figure 1: Overview of Our Counterfactual Generation Process. The process starts by
encoding the given human-readable instance or row into an embedding by performing a
look-up on a dictionary of learned embeddings. Next, we iteratively apply denoising steps
while incorporating the gradient information from the given black-box model to minimize the
disparity between the model’s prediction and the desired label. At the end of the denoising
process, we obtain an embedding which is then decoded via a reverse look-up on the
dictionary to obtain the counterfactual instance.

to the underlying data distribution. Previous works have approached plausibility in a minimal
sense, e.g., enforcing values to lie in legal ranges or applying user-designed constraints
Mothilal et al. (2020); Karimi et al. (2019).

Recently, in the visual domain, diffusion models (Ho et al., 2020) have been successfully
used to acquire the underlying data distribution for generating plausible counterfactual
explanations Augustin et al. (2022); Jeanneret et al. (2022); Sanchez & Tsaftaris (2022);
202 (2023). However, in the domain of tabular or structured data, counterfactual explanation
methods have largely ignored these recent advances in diffusion modeling raising another
important question: “Can diffusion models, which are known for their remarkable generation
capabilities in vision, help generate high-quality plausible counterfactuals in the structured
domain?"

To answer this question, in this work, we propose a novel counterfactual explainer called
Structured Counterfactual Diffuser or SCD. SCD is the first plug-and-play framework lever-
aging diffusion modeling for generating counterfactual explanations for structured data. SCD
works by learning the underlying data distribution via a diffusion model Li et al. (2022); Ho
et al. (2020). At test time, the diffusion model is used to perform guided iterative denoising to
generate counterfactuals for any given input and black-box model in a plug-and-play manner.
In experiments, we show that our counterfactual explainer not only exhibits high plausibility
compared to the state-of-the-art approaches but also shows significantly better proximity
and diversity scores of the generated counterfactuals.

2 Preliminaries

Structured Data. A table or structured data consists of rows or instances. Each instance is
a tuple with a value for each column or attribute. The entire space of such instances can be
described as X = X1 × . . .×XC . Here, C denotes the number of columns or attributes in
the table, and each Xc denotes the space of possible values for column c. For example,
a possible instance from a 4-column table is [female, 40, doctoral, married].
Here, X1 can represent gender categories, X2 can represent the possible age values, and
so forth. We will use x to denote an instance and xc to denote c-th column or attribute within
the instance.

Black-Box Model. A black-box model is a model f : X → Y that maps an input instance
x ∈ X to a label y ∈ Y.

2.1 Structured Counterfactual Explanations

As highlighted by Wachter et al. (2017), counterfactuals help identify alternative scenarios
where a slight change in the original input x to a counterfactual input x′ would have changed
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the outcome from y to y′ by a black-box model f . By analyzing the change in prediction on
counterfactual inputs, one can uncover if the model is making decisions based on potentially
problematic or undesired criteria.

Counterfactual Explainer. Formally, a counterfactual explainer can be described as a
system or framework that, given an input x, a model f , and a counterfactual label y′ (where
y′ is different from the original label y), produces a set of B counterfactuals X′.

X′ = {x′
1, . . . , x′

B} = CounterfactualExplainer(f, x, y′).
Here, each counterfactual x′

b ∈ X′ should achieve the counterfactual label y′ on the given
black-box model f with minimal change to the original input x.

Desired Characteristics of Counterfactuals. While Wachter et al. (2017) originally intro-
duced the proximity desiderata i.e., the counterfactual should be close to the original input
x, Mothilal et al. (2020) introduced the desiderata of diversity. Plausibility, on the other hand,
has not been given much attention in the community. Some existing works primarily focus on
only keeping generated values within legal ranges, disregarding the complex relationships
that values of various columns have (Karimi et al., 2019) or require costly user-defined
plausibility constraints (Mothilal et al., 2020). In this work, we take a significant step forward
in alleviating this concern.

3 SCD: Structured Counterfactual Diffuser

In this section, we present our proposed model Structured Counterfactual Diffuser or
SCD. SCD learns a diffusion model through training on a structured dataset or table D.
Via training on D, SCD learns about the underlying data distribution which enables it to
generate plausible counterfactuals. Once the diffusion model is trained, SCD can be used in
a plug-and-play manner to obtain counterfactual explanations for any given black-box model.
We now describe SCD in detail.

Row Embedding. To train the diffusion model, we first map the raw human-readable
instances or rows x of the table D into embeddings. The diffusion model shall be trained
to model the distribution in this embedding space. We maintain a learned dictionary of
embeddings Embeddingc : Xc → Rd for each column c. To encode a row, we lookup the
embedding for each of the C columns and concatenate these embeddings to obtain a row
embedding z as follows:

z = [Embedding1(x1), . . . , EmbeddingC(xC)] ∈ RC×d

where d is the size of the embedding per column.

3.1 Diffusion Modeling

Via diffusion modeling, we seek to learn a distribution pθ(z) over the row embeddings. In
diffusion modeling, the distribution pθ(z) consists of T denoising steps:

pθ(z0) =
∫

p(zT )
∏

t=T,...,1
pθ(zt−1|zt, t)dz1:T

Here, p(zT ) represents standard Gaussian, the sequence zT , . . . , z1 consists of iteratively
cleaner samples, finally producing the desired sample z0; and pθ(zt−1|zt, t) is a one-step
denoising distribution. The pθ(zt−1|zt, t) is parametrized in the following manner:

N (γ1,tẑ0 + γ2,tzt, βtI)
where ẑ0 = gθ(zt, t), and the coefficients γ1,t and γ2,t are given by:

γ1,t = βt
√

ᾱt−1

1− ᾱt
, γ2,t =

(1− ᾱt−1)√αt

1− ᾱt
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Employing standard notations, we utilize a variance schedule β1, . . . , βT , where αt = 1− βt,
and ᾱt =

∏t
i=1(1− βi). We use a cosine schedule in our implementation.

Learning: The training procedure involves first introducing noise to the input z0, creating its
noisy version zt.

zt =
√

ᾱtz0 +
√

1− ᾱtϵt, where ϵt ∼ N (0, I).

Subsequently, a neural network predictor is trained that takes zt as input and aims to predict
the original input z0 by generating a prediction ẑ0 = gθ(zt, t). The learning objective is
Ldiffusion(θ) = E(ẑ0, z0) where E is an error function.

3.2 Generating Counterfactuals via Guided Diffusion

Given the trained denoising distribution pθ(zt−1|zt, t), we are now ready to generate coun-
terfactuals for a black-box model f given an input instance x and a desired label y′. The
process works by performing guided diffusion starting from the embedding of the given
input instance. For this, we first encode x to its row embedding z ∈ RC×d. Since we seek
to sample B counterfactuals, we copy the row embedding B times and stack the copies
together to construct an embedding Z ∈ RB×C×d. Next, we add Gaussian noise to Z to
facilitate diversity among the B generated samples.

Z′
τ ←

√
ᾱτ Z +

√
1− ᾱtϵt, where ϵt ∼ N (0, I).

Next, we perform τ guided diffusion steps. We iteratively and alternatingly apply the following
two steps: 1) Denoising Step: This step involves sampling Z′

t−1 ∼ pθ(Z′
t−1|Z′

t, t). 2) Guiding
Step: This step involves performing a gradient step on Z′

t−1 with respect to a guiding loss L
as: Z′

t−1 ← Z′
t−1 − η∇Z′

t−1
L, where η is the step size for the update. One of the things that

L measures is how well the black-box model f produces the counterfactual label y′ on the
samples Z′

t−1 of the current step. We describe the exact formulation of L in detail in a later
section. From this iterative process, we obtain a series of progressively cleaned embeddings
Z′

τ , . . . , Z′
0. Next, we take the generated Z′

0, perform reverse look-up using the learned
embeddings and obtain the human-readable counterfactual instances X′ = {x′

1, . . . , x′
B}. In

Fig. 1, we illustrate this process.

3.2.1 Guiding Loss

We now describe the terms in our guiding loss L. Following Mothilal et al. (2020), we include
3 terms in our loss capturing validity, proximity, and diversity of the samples. Formally this
loss can be described as:

L(Z′, x, f, y′) = λvalidityLvalidity(Z′, f, y′) + λproximityLproximity(Z, Z′) + λdiversityLdiversity(Z′)

Validity Loss. We use the cross-entropy loss of the black-box model f with respect to the
desired prediction y′ as our validity loss.

Lvalidity(Z′, f, y′) = CrossEntropy(f(Z′),target = y′).

Proximity Loss. We use a simple L2 loss between Z the embedding of the original input and
Z′ the generated embedding at the current step of the guided diffusion.

Lproximity(Z, Z′) = ||Z− Z′||2.

Diversity Loss. We use the negative of L2 loss between all pairs of counterfactual instances:

Ldiversity(Z′) = −2
B(B − 1)

B−1∑
i=1

B∑
j=i+1

||z′
i − z′

j ||2.
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Table 1: Comparison of plausibility, proximity, diversity, and validity scores of SCD and DiCE
on various datasets. For validity, proximity, and diversity scores, higher is better. For the
plausibility score, lower is better since it captures the negative log-likelihood of the generated
samples.

Dataset Plausibility (↓) Proximity (↑) Diversity (↑) Validity (↑)

DiCE SCD DiCE SCD DiCE SCD DiCE SCD

Adult Income 121.0 21.21 0.5764 0.6173 0.3837 0.4008 0.9776 0.7511
UCI Bank 166.7 42.37 0.2141 0.3000 0.4165 0.5498 0.9686 0.8600
Housing Price 109.5 42.91 0.3055 0.3417 0.4289 0.5986 0.9908 0.8526

Table 2: Counterfactual Samples in Adult Income Dataset. Given the input row with
the original label “≤ 50K", we ask our method SCD and the baseline DiCE to generate
counterfactual instances that flip the label to “> 50K" with respect to a black-box income
predictor. We note that SCD generates plausible samples while DiCE struggles. Specifically,
we note that DiCE creates counterfactuals containing Divorced and Husband within the same
row which is contradictory and impossible (highlighted in red). In comparison, SCD creates
plausible counterfactuals where the Marital Status and Relationship columns correctly
conform with each other (highlighted in green).

Method Age Workclass Education Ed. No. Marital Status Occupation Relationship

Input 39 State-gov Bachelors 13 Never-married Adm-clerical Not-in-family

Ours 31 Self-emp-inc Bachelors 13 Married-civ-spouse Adm-clerical Wife
34 Self-emp-inc Bachelors 13 Married-civ-spouse Exec-managerial Husband
39 Federal-gov Bachelors 13 Married-civ-spouse Prof-specialty Husband

DiCE 39 State-gov Bachelors 16 Divorced Transport-moving Husband
39 State-gov Bachelors 16 Divorced Transport-moving Husband
39 Without-pay Some-college 16 Divorced Transport-moving Husband

4 Experiments

Datasets. In experiments, we evaluate the quality of generated counterfactuals on three
datasets: Adult Income Dataset Frank (2010), UCI Bank Dataset Moro & Cortez (2012) and
Housing Price Dataset Pace & Barry (1997).

Black-Box Model. For each dataset, we train a classifier to act as the black-box model that
a counterfactual explainer would seek to explain. The architecture is a simple 2-layer MLP
that takes the concatenated embeddings of columns of a row as input and tries to predict a
class label. For each dataset, the classification task that the black-box model is trained to
perform is as follows: 1) Adult Income Dataset: Given a row as input, the black-box model
predicts whether the income exceeds 50K per year or not. 2) UCI Bank Dataset: Given a
row describing attributes of a client, the black-box model predicts if the client will subscribe
to a term deposit or not. 3) Housing Price Dataset: Given a row as input, the black-box
model predicts whether the house price is greater than $200K or not.

4.1 Metrics

We consider the following metrics for evaluating the generated counterfactuals. 1) Validity
Score: We compute the validity score of the generated counterfactuals in X′ by checking if
they result in the desired label with respect to the black-box model. 2) Proximity Score: We
compute proximity score as the average fraction of matching values between the generated
counterfactuals in X′ and the original input x. 3) Diversity Score: We compute the diversity
score of the generated counterfactuals in X′ as the mean of the distances between each pair
of samples. 4) Plausibility: The goal is to evaluate how likely is the generated counterfactual
under the true data distribution. We learn a model of the desired distribution by learning
an auto-regressive model pϕ over the tokens or values in the instances. To compute the
plausibility score, we compute the negative log-likelihood of each generated counterfactual
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x′
b ∈ X′ using pϕ:

Plausibility = − 1
B

B∑
b=1

log pϕ(x′
b) = − 1

B

B∑
b=1

N∑
n=1

log pϕ(x′
b,n|x′

b,1, . . . , x′
b,n−1)

where a lower negative log-likelihood is desired for a more plausible counterfactual.

4.2 Benefits of SCD in Counterfactual Generation

In Table 1, we compare our model SCD and our baseline, DiCE. It is remarkable that our
model produces counterfactuals that are significantly more plausible than those generated
by DiCE. In fact, the negative log-likelihood of our samples are 21.21, 42.37, and 42.91 while
DiCE yields significantly worse results attaining 121.0, 166.7, and 109.5 on the 3 datasets,
respectively. Our higher plausibility is also evidenced by our generated counterfactual
samples in Table 2. We can see that our model coherent values for the columns Marital Status
and Relationship while the baseline DiCE produces contradictory values e.g., Divorced and
Husband within the same row. This highlights the advantage of using a diffusion model that
learns complex relationships to constrain the generated counterfactuals to be plausible.

Furthermore, our results show significant improvements in the diversity and proximity
scores over the baseline, achieving approximately 0.10-0.17 higher diversity and 0.04-0.10
higher proximity scores relative to DiCE. Our validity score, i.e., the fraction of generated
counterfactuals that attain the desired label, is about 0.1 lower than the baseline. While this
is a slight decline, it is not a significant concern since it is straightforward to remove the
counterfactuals that do not attain the desired label via post-processing. Furthermore, some
worsening of the validity score may be expected since SCD constrains the samples to be
plausible while DiCE does not.

5 Related Work

Various studies have pursued counterfactual explanations Wachter et al. (2017); Mothilal
et al. (2020); Yang et al. (2022); Karimi et al. (2020); Guidotti et al. (2019). However, none
of them directly and properly tackle the problem of generating plausible counterfactuals.
In the image domain, several works attempt to generate counterfactuals using diffusion
models Augustin et al. (2022); Jeanneret et al. (2022); Sanchez & Tsaftaris (2022); 202
(2023). This is another line of works focusing on contrastive explanations Dhurandhar et al.
(2019); Jacovi et al. (2021), however, these do not leverage diffusion modeling, like ours.
However, while these are based on the image domain, the utility of diffusion models for
counterfactual explanation in the tabular domain has remained unexplored. In the language
domain, there has been a significant number of works for counterfactual generation Wu
et al. (2021); Madaan et al. (2021, 2023); Ross et al. (2020); Boreiko et al. (2022); Howard
et al. (2022). However, these have primarily relied on auto-regressive LLMs and not diffusion
models. Although Li et al. (2022) pursues diffusion-based language modeling, it does not
pursue the task of counterfactual explanation and also does not deal with the tabular domain.
Additionally, there has also been interest in the domain of search and retrieval for generating
counterfactual explanations Xu et al. (2023).

6 Conclusion

In this paper, we introduced a novel counterfactual explainer called Structured Counterfactual
Diffuser (SCD) for structured data aimed at producing highly plausible counterfactuals.
Our technique leverages a diffusion model to learn complex relationships among various
attributes of structured data. Via guided diffusion, our model not only exhibits high plausibility
compared to the existing state-of-the-art but also shows significant improvement in proximity
and diversity, while also maintaining high validity.
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