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Abstract: Multi-arm motion planning is fundamental for enabling arms to com-
plete complex long-horizon tasks in shared spaces efficiently but current meth-
ods struggle with scalability due to exponential state-space growth and reliance
on large training datasets for learned models. Inspired by Multi-Agent Path
Finding (MAPF), which decomposes planning into single-agent problems cou-
pled with collision resolution, we propose a novel diffusion-guided multi-arm
planner (DG-MAP) that enhances scalability of learning-based models while
reducing their reliance on massive multi-arm datasets. Recognizing that col-
lisions are primarily pairwise, we train two conditional diffusion models, one
to generate feasible single-arm trajectories, and a second, to model the dual-
arm dynamics required for effective pairwise collision resolution. By integrat-
ing these specialized generative models within a MAPF-inspired structured de-
composition, our planner efficiently scales to larger number of arms. Evalua-
tions against alternative learning-based methods across various team sizes demon-
strate our method’s effectiveness and practical applicability. Project website:
https://diff-mapf-mers.csail.mit.edu
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1 Introduction

The ability of multiple arms to effectively coordinate in shared spaces is crucial for solving complex
tasks beyond the capability of individual arms. Humans naturally perform many such sophisticated
tasks by leveraging social interaction [1], shared information [2], and distributed responsibilities [3].
Enabling robotic systems, particularly those with multiple manipulators operating in close proxim-
ity, to achieve similar efficient, collision-free coordination remains a central challenge. This involves
handling high-dimensional joint configuration spaces inherent to multi-arm systems. Traditional
sampling-based motion planners (SMPs), such as RRT and PRM [4, 5, 6, 7, 8, 9], face significant
challenges when applied to multi-arm systems due to the curse of dimensionality in the joint space.
Alternatively, optimization-based planners can efficiently refine trajectories but are susceptible to lo-
cal minima and often require good initial seeds. Recently, learning-based methods have emerged that
can guide such planners [10, 11] with a primary focus on enhancing single-arm planning. Extending
them to multi-arm setups would require expensive multi-arm training data and solving large, non-
convex optimization problems. To address the multi-agent scalability more directly, other methods
[12] have integrated SMPs with Multi-Agent Path Finding (MAPF) decomposition techniques [13],
constructing individual roadmaps for each arm and coordinating them using MAPF-like solvers.
Nonetheless, scalability remains constrained, as the computational cost of generating initial SMP
roadmaps becomes a major bottleneck, particularly as the number of arms increases.

To address these scalability challenges, end-to-end learning-based approaches have gained increas-
ing attention. In particular, Multi-Agent Reinforcement Learning (MARL) methods [14] have
emerged, training decentralized policies using expert demonstrations from SMPs such as BiRRT.
While they have been shown to be scalable, MARL policies often depend heavily on diverse train-
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Figure 1: Multi-Arm Motion Planning: Timestamped snapshots compare an end-to-end learn-
ing method (top) with our DG-MAP approach (bottom) on a multi-arm pick-and-place task. Both
were trained using only lower-order interaction data (single/dual-arm trajectories). The end-to-end
method fails due to collision with another arm in the shared workspace, while DG-MAP success-
fully completes the task by leveraging specialized diffusion models combined with MAPF-inspired
structured decomposition.

ing data, and those trained primarily on simpler interactions involving only two arms frequently fail
to generalize to more complex, larger team scenarios.

An alternative line of work leverages diffusion models [15, 16, 17, 18, 19], which offer a promis-
ing combination of generative flexibility and explicit constraint handling. For instance, approaches
such as Multi-robot Multi-model planning Diffusion (MMD) [20] integrate single-robot diffusion
models within MAPF frameworks to enable collision-free navigation. Nonetheless, encoding com-
plex multi-agent geometric constraints, particularly for articulated manipulators, within diffusion
models remains a substantial challenge. Furthermore, current end-to-end multi-agent diffusion poli-
cies [19] require centralized training with full-team data, limiting their scalability to unseen team
compositions and motivating the need for novel, multi-arm-specific approaches.

Achieving effective multi-arm coordination requires planners that are scalable to large teams, adapt-
able to dynamic layouts, cooperative in goal achievement, and capable of closed-loop operation for
collision avoidance, as highlighted by Ha et al. [14] and illustrated in Figure 1. Motivated by these
challenges, we propose a novel closed-loop multi-arm motion planning framework called DG-MAP
that combines structured decomposition principles from MAPF with conditional diffusion models
to achieve scalable and data-efficient planning. Instead of planning directly in the high-dimensional
joint space, we plan in the conflict-resolution space wherein we plan motions for each arm indepen-
dently and use search to iteratively deconflict these plans from any potential collisions among pairs
of arms using conflict-resolution based methods. To this end, we introduce two specialized condi-
tional denoising diffusion models. The first model learns to generate feasible single-arm trajectories
respecting individual constraints. The second model is specifically designed to generate feasible
trajectories necessary to effectively resolve pairwise conflicts, conditioned on the relevant states of
the interacting pair. By integrating these generative models within a MAPF-inspired framework, our
planner manages combinatorial complexity and reduces the dependency on large-scale higher-order
multi-arm training data.

Our main contributions are:

• Conditional denoising diffusion models tailored for generating single-arm trajectories and,
distinctively, for resolving pairwise arm collisions.

• A novel framework integrating specialized diffusion models with MAPF-inspired decom-
position for multi-arm motion planning.

• Empirical validation showcasing significant improvements in scalability and effectiveness
even when trained on simpler interaction scenarios compared to alternative approaches.
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2 Preliminaries

2.1 Problem Definition

Consider a total of N manipulator arms, where each arm i has a fixed base pose ξbase
i , di degrees-

of-freedom (DoF), configuration space Qi ⊆ Rdi , and collision-free subspace Qfree
i with respect to

itself and any static obstacles in the environment. Multi-arm motion planning seeks a simultaneous
continuous path τ : [0, T ]→ Qsys, whereQsys = ×N

i=1Qi and T > 0 is the final time when all arms
have reached their goals, mapping time t to the system configuration q(t) = (q1(t), . . . , qN (t)) =
τ (t) ∈ Qi. The path τ must satisfy:

1. Boundary Conditions: τ (0) = qstart and τ (T ) = qfinal such that for all i, the final end-
effector pose pee

i (qi(T )) = FK(qi(T )) is within tolerances (δpos, δrot) of the goal pgoal
i , i.e.,

dpos(p
ee
i (qi(T )),p

goal
i ) ≤ δpos and drot(p

ee
i (qi(T )),p

goal
i ) ≤ δrot.

2. Collision Avoidance: For all t ∈ [0, T ], each arm is collision-free (qi(t) ∈ Qfree
i ∀ i) and there

are no inter-arm collisions between any distinct pair (i, j), i ̸= j.

2.2 Multi-Agent Path Finding (MAPF)

Multi-Agent Path Finding (MAPF) [13] is a discrete abstraction of the multi-arm coordination prob-
lem that seeks collision-free paths τ for N agents on a graph representing feasible configurations and
transitions. Scalable constraint-based algorithms like Prioritized Planning (PP) [21] and Conflict-
Based Search (CBS) [22] excel in MAPF by decomposing the multi-agent planning problem into a
series of single-agent problems. They rely on single-agent planners to propose individual trajecto-
ries for each agent independent of each other and resolve detected conflicts between two agents by
imposing explicit spatio-temporal constraints on subsequent planning queries.

2.3 Diffusion Models

Diffusion models, particularly Denoising Diffusion Probabilistic Models (DDPMs) [16, 15], are
probabilistic generative models that learn to reverse a fixed Markovian process that gradually adds
Gaussian noise to data over K steps. To generate a sample z0, such as a trajectory segment, the
model starts from pure noise zK ∼ N (0, I) and iteratively denoises it via:

zk−1 = f(zk, ϵθ(zk, k)) for k = K, . . . , 1, (1)

where ϵθ is a neural network predicting the noise at each step, and f(·) denotes the denoising update
based on the noise schedule. Training minimizes the mean squared error between the true and
predicted noise. For a data point z0 and a timestep k ∼ Uniform(1,K), noise ϵ ∼ N (0, I) is added
according to, zk =

√
ᾱkz0 +

√
1− ᾱkϵ, where ᾱk =

∏k
i=1 αi is the cumulative noise schedule.

The loss function then minimizes the difference between the predicted and true noise:

L(θ) = Ez0,ϵ,k

[
∥ϵ− ϵθ(zk, k)∥2

]
. (2)

Due to their ability to model complex, multi-modal distributions and their stable training dynamics,
diffusion models have been successfully applied to robotics tasks such as trajectory planning [18,
17, 23] making them suitable for generating meaningful manipulator trajectories.

3 Approach

We propose DG-MAP, our scalable and closed-loop multi-arm motion planner that integrates spe-
cialized generative models like conditional denoising diffusion models within a MAPF-inspired
structured decomposition. First, we discuss details about the offline training of these specialized
diffusion models following which we will present a simple search-based strategy to integrate these
models into a closed-loop planning framework.
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Figure 2: Overview of how DG-MAP operates in a closed-loop, receding horizon controller, gen-
erating delta-action sequences for multiple arms. Initially, each arm plans independently using its
dedicated single-arm model (ϵθ1 ). Conflicts trigger Rebranch (Alg. 2) Repair (Alg. 3) strategies.
The Repair strategy is highlighted (top) where a conflicting arm (pink) extracts paired observations
with the other conflicting arm (green) and utilizes the trained dual-arm model (ϵθ2 ) to generate fea-
sible delta-actions avoiding the collision.

3.1 Single-Arm Diffusion Model

Addressing the need for a closed-loop control that is crucial for multi-arm coordination with moving
obstacles like other arms, we leverage the Diffusion Policy framework [23] to train a generative
model for single-arm trajectory generation. A shared set of model parameters, denoted θ1, is learned
using expert demonstrations collected from single-arm BiRRT plans, following the setup in [14].
During planning and execution, each arm i utilizes an independent instantiation of this model to
predict a trajectory tailored to its current observation history.

The policy, denoted ϵθ1 , generates a sequence of future delta joint actions ∆qi =
[∆qi(t), . . . ,∆qi(t + Tp − 1)] over a prediction horizon Tp. Each predicted trajectory is condi-
tioned on a recent sequence of To observations oi = [oi(t − To − 1), . . . ,oi(t)] unique to arm i.
Each observation frame oi(t) includes the joint configuration qi(t), end-effector pose pee

i (t), target
end-effector pose pgoal

i , link positions Li(t), and constant base pose ξbase
i . This stacked observation

sequence provides temporal and goal-directed context to the policy.

L(θ1) = Ek,∆q0
i ,oi,ϵ

[∥∥ϵ− ϵθ1(oi,∆qk
i , k)

∥∥2] (3)

The model ϵθ1 is trained via the standard diffusion objective L(θ1) (Eq. (3)) to predict the noise ϵ
added to ground-truth actions ∆q0

i , conditioned on observations oi and timestep k. After training,
each arm independently samples its own action trajectory by running the denoising process using its
current observation history oi. This trained model serves to generate initial, potentially conflicting,
trajectory proposals for individual arms.

3.2 Dual-Arm Diffusion Model

To resolve inter-arm conflicts during multi-arm planning, we introduce a dual-arm diffusion model
ϵθ2 that learns using expert demonstrations collected from dual-arm BiRRT plans. While the action
space remains unchanged where we are predicting delta joint action sequences ∆qi for the ego-arm,
the observation structure is reorganized to explicitly capture interactions between the ego-arm and
the conflicting arm from this interacting pair inspired from [2, 14].

The dual-arm observation, denoted as ôi, is constructed by pairing the transformed observa-
tions of the conflicting arm with the ego-arm’s own observations at each timestep across a his-
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tory window of To steps. Specifically, for each timestep t′ ∈ [t− To − 1, . . . , t], we define
ôi(t

′) = [Tj→i(oj(t
′))⊕ oi(t

′)], where T j → i(·) denotes the transformation that maps arm j’s
observations into arm i’s reference frame, and ⊕ represents concatenation. The full observation
input to the diffusion model is then ôi = [ôi(t− To − 1), . . . , ôi(t)]. The dual-arm diffusion model
ϵθ2 is trained to predict the added noise at each diffusion timestep k, minimizing the denoising loss:

L(θ2) = Ek,∆q0
i ,ôi,ϵ

[∥∥ϵ− ϵθ2(ôi,∆qk
i , k)

∥∥2] , (4)

where ∆q0
i denotes the ground truth sequence of delta joint actions. The model thus learns to

generate collision-avoiding ego-arm trajectories while conditioning on the relevant information of
the conflicting arm.

3.3 Diffusion-Guided Multi-Arm Planning (DG-MAP)

We integrate the trained single-arm (ϵθ1 ) and dual-arm (ϵθ2 ) diffusion models within a search frame-
work inspired by MAPF principles. The planner searches over candidate delta-action sequences for
each arm, leveraging the diffusion models for proposal generation and conflict resolution. The over-
all procedure is detailed in Algorithm 1, utilizing the subroutines defined in Algorithms 2 and 3.

Algorithm 1 Diffusion-Guided Multi-Arm Planner (DG-
MAP)

1: Input: Models ϵθ1 , ϵθ2
2: Output: Collision-free plan {∆qi}Ni=1 or best effort
3: Initialize: Frontier set F ← ∅, collision cache C ← ∅
4: for i = 1 . . . N do
5: oi ← GetObs(i)
6: Pi ← ϵθ1(oi, ·, ·)
7: end for

// Generate initial plans independent of each
other

8: N0 ← Node(b = 0⃗,K = ∅)
// Node stores indices and conflicting plan

indices
9: F .Insert(N0, g(N0))

10: while F not empty and time not exceeded do
11: N ← F .ExtractMin()
12: τ ← {∆qN .bi

i }Ni=1
13: c← FindFirstCollision(τ , C)
14: if c is null then
15: return τ , t∗ // Solution found
16: end if
17: (i, j, t̂)← c // Conflicting pair and time
18: t∗ = min(t∗, t̂) // Update earliest collision time
19: κi = N .K ∪N .bi // Attempt to fix for arm i
20: Rebranch(i, κi)
21: Repair(i, j, κi)
22: κj = N .K ∪N .bj // Attempt to fix for arm j
23: Rebranch(j, κj)
24: Repair(j, i, κj)
25: end while
26: return Best plan found in F based on cost

// Timeout or failure

Planner State and Initialization:
The search state is represented by
nodes N in a search tree, each cor-
responding to a tuple of selected plan
indices b = (b1, . . . , bN ). An index
bi ∈ {1, . . . , B} points to a candidate
delta-action sequence ∆qbi

i for arm
i, covering a prediction horizon Tp.
The search maintains a frontier setF ,
implemented as a min-priority queue
storing nodes N ordered by a cost
function g(N ) guiding the search to-
wards promising nodes. This cost es-
timates solution quality by combin-
ing path smoothness, goal proxim-
ity and penalty for collisions. Ini-
tially, each arm i uses its single-arm
model ϵθ1 conditioned on its obser-
vation history oi of up to To steps
in the past to sample B diverse can-
didate delta-action sequences Pi =
{∆q1

i , . . . ,∆qB
i }. The search be-

gins with a root node N0 placed in F
along with an empty set of conflicting
plan indices (K) that will be updated
upon expansions. A collision cache
C stores pairwise collision check re-
sults.

Search Process and Conflict Res-
olution: The main loop (lines 10-
25) iteratively extracts the lowest-
cost node N from F . It checks the
corresponding plan combination for collisions using FindFirstCollision (line 13). If no conflict
is found, a valid solution is returned (line 14).

As the node N is expanded we detect a conflict c = (i, j, t̂), where t̂ is the earliest time step within
the prediction horizon Tp where the plans ∆qbi

i and ∆q
bj
j collide. t∗ is the earliest conflict time
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Algorithm 2 Generate Successors by Rebranch

1: Input: ego arm, conflicts κ
2: for m = 1 . . . |Pego| do
3: if m /∈ κ then
4: bnew

ego ← m

5: b′ ← (b1, . . . , b
new
ego, . . . , bN )

6: N ′ ← Node(b = b′,K = κ)
7: F .Insert(N ′, g(N ′))
8: end if
9: end for

Algorithm 3 Generate Successors by Repair

1: Input: ego arm, other arm, conflicts κ,
Model ϵθ2

2: ôego ← GetPairedObs(ego, other)
3: Sample {∆qnew,m

ego }Bm=1 using ϵθ2(ôego, ·, ·)
4: for m = 1 . . . B do
5: bnew

ego ← Pego.Update(∆qnew,m
ego )

6: b′ ← (b1, . . . , b
new
ego, . . . , bN )

7: N ′ ← (b = b′,K = κ)
8: F .Insert(N ′, g(N ′))
9: end for

and is updated based on t̂. It signifies that the current combination of plans is collision-free up to
time t∗ − 1, which could potentially allow for safe partial execution in a receding horizon context,
although our primary goal here is to find a fully collision-free plan for the horizon Tp. The set of con-
flicts κi indicate the plan indices corresponding to arm i that have been found to be in conflict in the
ancestors of the node. This book-keeping helps in avoiding redundant plans that did not succeed in
earlier expansions. The node expansion generates successor nodes by exploring alternatives for the
conflicting arms i and j using two distinct strategies (lines 20-24). First, Rebranch (Algorithm 2)
creates successors by trying alternative, pre-existing plans from P for both i and j. Second, Repair
(Algorithm 3) uses the dual-arm model ϵθ2 to generate B new candidate sequences for both i and j,
specifically aiming to avoid the detected conflict c, and creates successors for each successful repair.
All generated successors are added to F , allowing the search to explore other alternatives based on
their estimated costs.

Termination: The search continues until a collision-free node is extracted or termination conditions
(timeout or empty frontier) are met, returning the best plan found.

DG-MAP (Algorithm 1) operates within a closed-loop, receding horizon controller (Figure 2). At
each step, it plans from the current state, returning action sequences {∆qbi

i }Ni=1 for horizon Tp

and the predicted collision-free duration t∗ ≤ Tp. Actions are executed for t∗ steps, the state
is updated, and the process repeats. This interleaved planning and execution ensures adaptation,
persistent collision avoidance, and progress towards goals {pgoal

i }Ni=1. Executing up to t∗ provides a
balance between reactivity and planning efficiency, avoiding the excessive planning time of single-
step execution.

4 Experiments

Our experiments aim to answer the following key questions regarding DG-MAP:

Q1: How effectively does DG-MAP scale to planning for larger numbers of arms (N = 3 to N = 8)
when trained only on single and dual-arm interaction data?

Q2: How does DG-MAP’s performance compare to the learning-based methods, trained on limited
interaction data?

Q3: Can DG-MAP remain competitive with the learning-based methods, which leverage signifi-
cantly more complex higher-order interaction data during training?

Q4: Can DG-MAP be applied to practical applications apart from simple single goal-reaching
tasks?

Setup: We focus on static single goal-reaching tasks with N = 3 to N = 8 manipulator arms,
forming a foundation for applications like pick-and-place. Each arm has di = 6 DoF. Tasks are
executed in the PyBullet simulator [24] and are considered successful if all N arms reach their target
end-effector poses pgoal

i within a positional tolerance δpos = 0.03 units and orientation tolerance
δrot = 0.1 radians. Each attempt is limited to 400 simulation steps. We generate a test dataset of
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Figure 3: Visualization of test tasks for four arms across different difficulty levels: easy (left),
medium (middle), and hard (right). Task difficulty is based on the maximum intersection between
the arms’ hemispherical workspaces [14], with easy tasks involving minimal arm interaction and
hard tasks requiring significant overlap and coordination.

18,000 unique scenarios, with novel base poses ξbase
i and target poses pgoal

i distinct from training
data, evenly distributed across arm counts. Following [14], tasks are categorized by difficulty based
on the maximum workspace intersection volume between pairs of arms, as illustrated in the Figure
3. Implementation specific details can be found in the Appendix.

For comparisons, we utilize two variants of the multi-arm motion planner from Ha et al. [14], which
represents a valuable learning-based baseline with demonstrable scalability assurances.

1. Baseline-LD (Limited Data): This variant is trained using only single-arm and dual-arm inter-
actions for up to 756.8M timesteps. This comparison directly assesses the effectiveness of our
approach given the same limited interaction data.

2. Baseline-ED (Extended Data): This variant is trained on extended interaction including three
and four arms for up to 668.2 M timesteps allowing us to quantify the performance differen-
tial between models that can leverage complex multi-arm coordination compared to simplistic
pairwise interactions combined with planning.

Comparison with Baseline-LD: Table 1 shows that DG-MAP significantly outperforms Baseline-
LD across all task difficulties and team sizes. While Baseline-LD achieves moderate success with
3 arms (41.2% on average), its performance quickly deteriorates with more arms, dropping below
10% and sometimes failing entirely on medium and hard tasks beyond 4 arms. In contrast, DG-
MAP maintains consistently high average success rates above 90% across all settings. This stark
contrast highlights the scalability of DG-MAP’s planning-guided coordination in complex multi-
arm environments, where learning-only methods like Baseline-LD struggle due to limited training
on higher-order interactions addressing both Q1 and Q2.

Arms Easy Medium Hard Average
Baseline

LD
DG-MAP
Ours (↑)

Baseline
LD

DG-MAP
Ours (↑)

Baseline
LD

DG-MAP
Ours (↑)

Baseline
LD

DG-MAP
Ours (↑)

3 0.349 0.984 0.426 0.975 0.460 0.965 0.412 0.975
4 0.032 0.981 0.024 0.969 0.060 0.953 0.039 0.968
5 0.224 0.972 - 0.958 - 0.905 0.075 0.945
6 0.145 0.976 0.011 0.921 0.008 0.888 0.055 0.928
7 0.113 0.955 - 0.918 - 0.907 0.038 0.926
8 0.067 0.951 - 0.933 - 0.888 0.022 0.924

Table 1: Success rates (%, higher is better) for Baseline-LD and DG-MAP across easy, medium, and
hard tasks, evaluated with 3 to 8 arms. - indicates no successes.

Comparison with Baseline-ED: Table 2 presents success rates for Baseline-ED along with the rel-
ative improvement achieved by DG-MAP, measured as a percentage gap. While Baseline-ED main-
tains high performance across all settings (over 85% success), DG-MAP consistently outperforms it
with substantial gains for larger teams, with relative improvements up to 3.8% on medium-difficulty
tasks with 6 arms and 3.3% on hard tasks with 8 arms. This demonstrates DG-MAP’s planning-
guided coordination provides robust scalability and efficiency even in dense, high-interaction sce-
narios, making it competitive even with end-to-end learned policies that have been trained on higher-
order interaction data answering Q3.
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Arms Easy Medium Hard Average
Baseline

ED
DG-MAP
Gap (↑)

Baseline
ED

DG-MAP
Gap (↑)

Baseline
ED

DG-MAP
Gap (↑)

Baseline
ED

DG-MAP
Gap (↑)

3 0.980 0.984 0.973 0.975 0.943 0.965 0.965 0.975
4 0.973 0.981 0.961 0.969 0.950 0.953 0.961 0.968
5 0.963 0.972 0.947 0.958 0.891 0.905 0.934 0.945
6 0.950 0.976 0.887 0.921 0.882 0.888 0.906 0.928
7 0.950 0.955 0.913 0.918 0.891 0.907 0.917 0.926
8 0.951 0.951 0.911 0.933 0.859 0.888 0.907 0.924

Table 2: Success rates (%, higher is better) for Baseline-ED and DG-MAP across easy, medium, and
hard tasks, evaluated with 3 to 8 arms.

Multi-Arm Pick-And-Place Task

To address Q4, we evaluate DG-MAP on a four-arm, 6-DoF pick-and-place simulation setup adapted
from [14]. In this setup, four UR5 robots equipped with Robotiq 2F-85 grippers are positioned at
the corners of a central bin. The task requires the arms to collaboratively pick objects from the
ground and deposit them into the bin as shown in Figure. 4. Each trial involves randomly sampled
grasp objects from a 7-object subset of the YCB dataset [25]. The motion consists of two collision-
free phases starting from the initial pose to a pregrasp pose and from grasp to dump pose. Grasp
execution is managed by a separate low-level controller using precomputed grasps generated from
GraspIt! [26] with added noise [27]. Following [14], success is defined as all arms completing
the pick-and-place cycle without inter-arm or ground collisions. Bin collisions and knocked-over
objects are discarded, consistent with the training dataset that only incorporates arm states without
the bin or objects.

Figure 4: Visualization of the multi-arm pick-
and-place task where arms are tasked to pick ob-
jects from the ground onto the central bin.

Method Success (↑) Steps (↓)
Baseline-LD 0.375 4479
Baseline-ED 0.714 6018

DG-MAP 0.890 5390

Table 3: Success rate (%, higher is better) along
with average number of steps (lower is better)
taken by the methods to complete the full cycle
of multi-arm pick-and-place task.

Using this setup, DG-MAP is able to improve upon both Baseline-LD and Baseline-ED. Across 100
trials, DG-MAP achieves a success rate of 89% highlighting its effectiveness in enabling scalable,
collision-free multi-arm coordination even in dense, shared workspaces.

5 Conclusion
This paper introduced DG-MAP, a diffusion-guided multi-arm motion planner addressing the scal-
ability challenge in multi-arm motion planning. By integrating MAPF principles with special-
ized single-arm (ϵθ1 ) and dual-arm (ϵθ2 ) conditional diffusion models trained only on correspond-
ing interaction data, DG-MAP efficiently coordinates multiple arms without requiring complex
higher-order interaction data. Our experiments demonstrated that DG-MAP outperforms alterna-
tive learning-based baseline trained on identical limited data, achieving high success rates (>88%)
for up to eight arms. Furthermore, it remained competitive with a baseline trained on richer multi-
arm data, highlighting the data efficiency and effectiveness of the structured pairwise resolution
approach. The successful application to a complex pick-and-place task further validated its practical
utility beyond simple goal-reaching tasks.
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A Appendix

A.1 Limitations

While DG-MAP demonstrates significant promise and effectiveness across various multi-arm tasks,
several aspects offer avenues for future research and enhancement. Currently, the approach lever-
ages forward simulation of the predicted plans to check for collisions implying that the performance
can be limited and highly complex environments might challenge real-time execution. Further-
more, the training relies on low-level state information like joint values and link positions. This
results in models specialized to the specific arm morphologies used during training, ensuring high
precision for those systems when transferring them to real manipulators but limiting direct trans-
ferability to different robot arms or heterogeneous setups. Future work could explore incorporating
morphology-agnostic representations, potentially through visual perception or with VLMs [28] to
enhance generalization across platforms.

Figure 5: Computation time of Baseline-ED com-
pared to DG-MAP in seconds

The core design of DG-MAP focuses on de-
composing complexity via single and dual-arm
interactions, which significantly reduces train-
ing data requirements and directly addresses the
most frequent conflict types. However, com-
plex coordination strategies involving three or
more arms simultaneously might not be fully
captured by this pairwise approach. Investigat-
ing methods to efficiently incorporate or adap-
tively switch to higher-order interaction mod-
els, perhaps when pairwise resolution fails or
when richer data is available, could further im-
prove performance in highly complex scenar-
ios. Additionally, a key limitation is the plan-
ner’s dependence on the single-arm model (ϵθ1 ). If all initial trajectory proposals contain intrin-
sic collisions like with itself or the plane, the system cannot recover, as the dual-arm model (ϵθ2 )
exclusively addresses inter-arm conflicts. Finally, the closed-loop, interleaved planning and execu-
tion cycle provides reactivity but introduces computational latency during planning, as illustrated
in Figure 5. While acceptable for some robotic tasks with less outside interventions, applications
demanding extremely high-speed reactions to unpredictable events, such as close human interaction,
might require complementary approaches. Finally, although DG-MAP focuses its efforts on coor-
dinating multiple arms effectively, there is still potential improvement in solving collaborative tasks
as described in [12]. These points highlight opportunities to build upon the DG-MAP framework,
extending its applicability and performance range in future iterations.

A.2 Implementation Details

The diffusion models (ϵθ1 and ϵθ2 ) were trained, and all planning experiments conducted, on a
system equipped with a 32-core Intel i9-14900K CPU and an NVIDIA GeForce RTX 4090 GPU.
The algorithm is implemented in Python and used PyBullet [24] as the simulator, building upon the
official codebase released by Ha et al. [14] for environment simulation and integrating the diffusion
policy framework from Chi et al. [23].

The observation vector for the single-arm model (ϵθ1 ) comprised 6 joint values, 7 end-effector pose
values (position + quaternion), 7 target end-effector pose values, 30 values representing key link
positions, and 7 values for the fixed base pose, resulting in a dimension |oi| = 57 [14]. The dual-
arm model (ϵθ2 ) used a concatenated observation from the interacting pair, resulting in dimension
|ôi| = 114. We adopted the CNN-based UNet architecture with FiLM conditioning as detailed in
[23], employing the squared cosine noise schedule proposed in iDDPM [29].
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Within the DG-MAP search (Algorithm 1), nodes represent combined states for all N arms. The
quality of expanding a node with a specific combination of candidate plan segments {∆qbi

i }Ni=1,
where ∆qbi

i is the bi-th plan segment for arm i over horizon Tp is evaluated using a cost function as
defined below,

g(N ) =

N∑
i=1

∥∆qbi
i (t)∥2 + dpos(p

ee
i (qi(Tp − 1)),pgoal

i ) + drot(p
ee
i (qi(Tp − 1)),pgoal

i ) + Pcoll,

where ∥∆qbi
i (t)∥2 is the action magnitude, dpos(p

ee
i (qi(Tp − 1)),pgoal

i ) is the position residual and
drot(p

ee
i (qi(Tp − 1)),pgoal

i ) is the orientation residual at the end of the segment Tp, and Pcoll is a
large penalty applied if *any* collision occurs within the combined plan segment over the horizon
[0, Tp). Specific hyperparameter values used are listed in Table 4.

Table 4: Hyperparameters for DG-MAP Training and Planning.

Parameter Value
Diffusion Model & Training
Positional encoding size 256
Number of denoising steps 100
UNet layers (channels) [256, 512, 1024]
Training epochs 100
Batch size 4096
Observation horizon To 2
Prediction horizon Tp 16
Action sequence length Ta (used for training) 1
ϵθ1 Observation dim |oi| 57
ϵθ2 Observation dim |ôi| 114
ϵθ1 Action dim |∆qi| 6
ϵθ2 Action dim |∆qi| 6
Policy learning rate 1e-4
Learning rate weight decay 1e-6
Polyak update coefficient (EMA decay) 0.001
Optimizer AdamW

Planning & Cost Function
Planning batch size B (candidate samples per arm) 10
Planning timeout 60s
Workspace radius (defines task difficulty) 0.85
Plan segment collision penalty Pcoll 10

A.3 Effect of value-based diffusion models

Method Success (↑) Steps (↓)
DG-MAP (ϵθ1 , ϵθ2 ) 0.890 5390
DG-MAP (ϵQLθ1 , ϵ

QL
θ2

) 0.908 5254

Table 5: Success rate (%, higher is better) along
with average number of steps (lower is better)
taken by the DG-MAP variants to complete the
full cycle of multi-arm pick-and-place task.

To address the challenge of out-of-distribution
performance in diffusion models, the Diffu-
sionQL [30] method was recently introduced.
Motivated by this, we trained two new mod-
els, ϵQLθ1 and ϵQLθ2 , to test the effectiveness of
DiffusionQL within our planning framework.
First, we generated offline RL datasets com-
patible with DiffusionQL training. This was
done by taking the data collected for our orig-
inal single-arm and dual-arm models and “re-
tracing” it through the environment simulator, applying the reward function described in [14]. Us-
ing these offline RL datasets, we then adapted the DiffusionQL critic for use in a receding horizon
context. Specifically, we modified the critic to evaluate entire action sequences over the full predic-
tion horizon. Finally, during the planning stage, we sampled 50 candidate action sequences per arm
from the trained DiffusionQL actors. We subsequently employed the adapted critic to score these
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sequences and selected the top 10 sequences for each arm. These selected sequences were then used
as input for the remainder of our established planning algorithm.

Arms Average

Baseline
LD

Baseline
ED

DG-MAP
(ϵθ1 , ϵθ2 )

DG-MAP
(ϵQLθ1 , ϵ

QL
θ2

)

3 0.412 0.965 0.975 0.973
4 0.039 0.961 0.968 0.970
5 0.075 0.934 0.945 0.955
6 0.055 0.906 0.928 0.923
7 0.038 0.917 0.926 0.924
8 0.022 0.907 0.924 0.919

Table 6: Average Success Rates(%, higher is better)
for 3–8 arms across different methods

Table 5 presents results on the multi-
arm pick-and-place task. Here, the DG-
MAP variant utilizing DiffusionQL mod-
els achieves a slightly higher success rate
(90.8% vs. 89.0%) and completes the
task in marginally fewer steps on average
(5254 vs. 5390) compared to the standard
variant. This suggests that incorporating
reward signals via Q-learning might offer
a small advantage in optimizing for suc-
cess and efficiency on this complex, multi-
stage application task, potentially by better
handling scenarios that deviate from the
expert demonstrations.

However, examining the average success rates across the general goal-reaching benchmarks (Ta-
ble 6), the performance difference between the two DG-MAP variants is minimal and inconsistent
across different numbers of arms. For N = 4, 5, the QL variant shows a slight edge, while for
N = 3, 6, 7, 8, the standard variant performs marginally better. The absolute difference in aver-
age success rate is typically less than 1% between the two. This indicates that for the broad set
of goal-reaching tasks, both the behavioral cloning and Diffusion Q-Learning approaches provide
highly effective underlying generative models for trajectory proposals and repairs within the DG-
MAP planning framework. The core benefit appears to stem from the planner’s structure combined
with the generative capabilities of diffusion models, rather than a strong preference for either the
standard or QL training objective in the general case.
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