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Abstract

Prompt learning has proven effective in adapting vision language models for1

downstream tasks. However, existing methods usually append learnable prompt2

tokens solely with the category names to obtain textual features, which fails to fully3

leverage the rich context indicated in the textual category name. To address this4

issue, we propose the Tree of Attributes Prompt learning (TAP), which first instructs5

LLMs to generate a tree of attributes with a “concept - attribute - description”6

structure for each associated category name, and then learn the hierarchy with7

vision and text prompt tokens. Unlike existing methods that merely augment8

category names with a set of unstructured descriptions, our approach essentially9

distills structured knowledge graphs associated with class names from LLMs.10

Furthermore, our approach introduces text and vision prompts designed to explicitly11

learn the corresponding visual attributes, effectively serving as domain experts.12

Additionally, the general and diverse descriptions generated based on the class13

names may be wrong or absent in the specific given images. To address this14

misalignment, we further introduce a vision-conditional pooling module to extract15

instance-specific text features. Extensive experimental results demonstrate that16

our approach outperforms state-of-the-art methods on the zero-shot base-to-novel17

generalization as well as few-shot classification across 11 diverse datasets.18

1 Introduction19

Recent advancements in vision-language models (VLMs) like CLIP [33] and ALIGN [13] merge20

the capabilities of visual perception with linguistic understanding, which have revolutionized the21

landscape with their zero-shot learning abilities. They proficiently handle tasks on unseen data,22

bypassing the conventional requirement for task-specific training. This feature has enabled a plethora23

of applications, ranging from content-based image retrieval to complex visual question answering,24

setting new benchmarks in the domain. A crucial development in this domain is the concept of25

prompt learning, which has significantly influenced both natural language processing (NLP) [20–22]26

and vision-only models [14, 43, 44, 51]. This approach leverages learnable prompts to guide model27

understanding, tailoring responses to specific tasks or datasets.28

Prompt learning, particularly in vision-language models, has garnered considerable interest due29

to its parameter efficiency and rapid convergence [54, 53, 55, 8, 23]. Techniques like CoOp [54]30

optimize learnable continuous prompts for few-shot image recognition, enhancing model performance31

significantly. Recent efforts have expanded to multimodal prompt learning, optimizing prompts32

in both visual and language domains [15, 16, 38, 19]. Despite their success, these models rely on33

simplistic text prompts, typically formatted as “a photo of a {class}”, illustrated in Fig. 1 (a). While34

functional, this approach lacks depth, failing to encapsulate the intricacies and finer details inherent in35
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Figure 1: Illustration of the methods for CLIP text prompts formation. (a) Manually created prompt
with the single “a photo of a {class}” template; (b) A unstructured set of detailed descriptions
generated by LLMs; (c) The proposed Tree of Attribute that organizes the descriptions in a “concept -
attribute - descriptions” structure, essentially distilling knowledge graphs from LLMs; (d) An example
Tree of Attribute for “dumplings”.

visual data. Such limitations hinder the model’s ability to fully leverage the rich, descriptive potential36

offered by more detailed and contextually relevant textual information.37

In parallel, another stream of research has been exploring the utilization of large language models38

(LLMs) to generate more elaborate and descriptive text prompts for enhancing zero-shot learning39

capabilities [26, 32, 35, 17, 30, 48, 49, 36, 52, 40]. These LLM-generated descriptions offer a wealth40

of detail and context, potentially enriching the model’s interpretative capabilities. However, current41

methodologies in integrating these descriptions often do not exploit the full potential of this richness.42

As shown in Fig. 1 (b), most of these approaches lack a structured framework to organize and utilize43

these descriptions effectively, leading to a scattergun approach where not all generated descriptions44

are contextually relevant or optimally aligned with the visual content. In addition, as noted in [35],45

descriptions generated by such paradigms are usually diverse, which covers most possibilities of the46

class, but include descriptions that are either likely not co-occurring, e.g. “steamed” and “fried”, or47

absent in the input image, e.g. “long tail” for a cat shot from the front, necessitating the need for a48

selective pooling mechanism for clearer image-text alignments.49

In response to these challenges, our work introduces “Tree of Attribute Prompt learning (TAP),”50

a method that redefines the integration and utilization of detailed descriptions within VLMs. As51

indicated in Fig. 1 (c), unlike existing methods that merely augment category names with a set of52

unstructured descriptions, our approach essentially distills structured knowledge graphs associated53

with class names from LLMs. Specifically, we adopt a hierarchical, tree-like structure to systemati-54

cally generate and integrate descriptions, ensuring a layered and comprehensive understanding of55

visual content. Each branch of this tree represents a specific attribute, with finer details fleshed out in56

the subsequent leaves, ensuring that every aspect of the visual content is captured and represented.57

Furthermore, we reimagine the learnable prompt tokens as “domain experts”, each specializing in58

different aspects of the image, supplemented by the CLS token’s global perspective. In addition, we59

introduce vision-conditional layers for each expert-attribute pair, which pool the most applicable60

descriptions from each of the attribute sets with condition on the input image content, ensuring61

optimal image-text alignment. This setup not only provides a detailed, attribute-focused analysis but62

also harmonizes these insights with the overall context.63

Extensive experiments in both base-to-novel generalization and few-shot classification across 1164

diverse datasets demonstrate the effectiveness of our method. On base-to-novel generalization, TAP65

achieves average performance gains of 1.07% in harmonic mean over the state-of-the-art methods,66

and 9.34% over the vanilla CLIP. Competitive results are also observed in few-shot classification.67

2 Related Work68

Prompt Learning for Vision-Language Models. Prompt learning bridges linguistic understanding69

and visual perception by guiding VLMs with text prompts, a concept originated in NLP [20–22]70

and adapted to vision-only [14, 43, 44, 51] and multimodal contexts[54, 53, 15, 16, 38, 19, 40, 34,71

36, 52, 55, 4, 23]. In the textual domain, CoOp [54] optimizes learnable continuous prompts in72

CLIP’s language branch for few-shot image recognition, while CoCoOp [53] addresses CoOp’s73
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overfitting issues by conditioning prompts on visual features. In the visual domain, Visual Prompt74

Tuning (VPT) [1] and Dual-modality Prompt Tuning (DPT) [47] enhance CLIP’s vision encoder by75

learning visual prompts in pixel space and dynamically generating prompts through cross-attention,76

respectively. TransHP [42] leverages category hierarchy for prompt learning to improve classification77

performance. LoGoPrompt [38] enhances classification by incorporating synthetic images with class78

name text as auxiliary visual prompts. MaPLe [15] explores multimodal prompt learning, jointly79

optimizing prompts in both vision and language branches. Other recent works have focused on80

regularizing prompt learning to leverage the knowledge from base VLMs effectively, demonstrating81

enhanced generalization in varied downstream visual tasks [16, 4, 36]. PromptSRC, for instance,82

introduced a self-regulating method that restricts both the vision and text prompt, demonstrating83

improved generalization. Distinct from these approaches, PLOT [5] and ALIGN [41] leverage84

Optimal Transport to align multiple prompts with local visual features, either from the multi-head85

self-attention layer or at a token level. Our work diverges from these methods by introducing a86

hierarchical "Tree of Attribute" framework derived from LLMs to structure textual descriptions and87

guide the learning of specialized "domain expert" tokens for attribute-level understanding.88

Image classification by descriptions. There’s a growing emphasis on using visual descriptions for89

zero-shot recognition, moving beyond generic prompts [54, 53]. These descriptions, like the “fur90

pattern” or “tail shape” of a cat, provide fine-grained and distinctive characteristics. The use of LLMs91

like GPT-3 [3], allows for efficient generation of a broad spectrum of class-specific descriptions,92

offering an advantage over manually crafted templates. While this approach has been extensively93

researched in zero-shot contexts [17, 26, 30, 35, 48, 49, 10, 32, 28], its application in conjunction94

with prompt learning for few-shot tasks remains relatively unexplored[25, 19, 40, 52, 50]. Previ-95

ous methodologies, however, have largely utilized unstructured descriptions, lacking an organized96

framework for effective utilization. Our approach diverges by structuring these descriptions into a97

“Tree of Attribute” model, coupled with learnable visual prompts as domain experts. Additionally,98

LLM-generated descriptions often cover a wide range of potential class descriptions, of which not99

all may be pertinent to a given image, pointing to the need for a selective pooling mechanism to100

ensure optimal image-text alignment. We further introduce a vision-conditional pooling layer for101

refined image-text alignment. This structured approach not only enhances the interpretability of the102

model’s learning process but also significantly improves alignment accuracy between image content103

and descriptive text.104

3 Methodology105

3.1 Preliminary106

CLIP. Our approach is built on the pre-trained vision-language model, CLIP [33]. Formally, let (x, c)107

denote the dataset, where x is an image and c ∈ {1, . . . , C} are the class labels. For an image x, the108

vision encoder hI(·) transforms it into a feature vector fvx = hI(x). Simultaneously, each class label109

c is mapped to a text prompt tc = a photo of a {c}, and converted into textual feature vectors110

f tc = hT (tc). The predicted class ŷ is given by:111

ŷ = argmax
c

cos(fvx , f
t
c) (1)

where cos(·) denotes cosine similarity.112

Image classification with class descriptions. To improve the model’s understanding of the categories113

in the transfer datasets, previous works [26, 35] use more detailed descriptions from Large Language114

Models (LLMs) instead of the simple "a photo of a {c}" to prompt the CLIP text encoder.115

Under this approach, a convoluted set of descriptions is generated for a class c as Dc : {"c, which116

is/has/etc description." }, e.g. c="television" and description="black or grey".117

This classification is reformulated as118

ŷ = argmax
c

1

|Dc|
∑
d∈Dc

cos(hI(x),hT(d)) (2)

3.2 Overall Framework119

We rethink the descriptions by LLM Dc as nodes in knowledge graphs. While previous methods120

generate an unstructured set of descriptions, we distill structured knowledge graphs for each class c121
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Figure 2: Overview of the proposed TAP method. TAP utilizes fine-grained descriptions from LLMs
and organizes them in a Tree of Attribute. Vision expert tokens are added to the vision encoder to
learn from specific attributes such as color and shape. A vision-conditional pooling layer is introduced
to ensure optimal image-text alignment. Textual context tokens are also incorporated to the textual
branch, shared across descriptions.

from LLM, in which the root node is the class name c, capturing the highest level semantics, and the122

leaf nodes are the detailed descriptions capturing fine-grained details. In this framework, previous123

paradigms only generate the leaf nodes of the graph, with the edges and graph structure missing,124

where the rich and inherent structure from the descriptions is overlooked. To address this limitation,125

we formulate our approach as a Tree of Attribute, which follows the “concept - attribute - description”126

structures, as illustrated in Fig. 1 (c).127

Besides weighting the descriptions equally, previous works typically align descriptions that describe128

images from different aspects and at different granularities with a singular CLS token from the image129

encoder. However, while the use of a single CLS token is effective in certain contexts, we note that130

the CLS token is designed to capture the global information of an input image x [9]. As a result, even131

though this helps to further inform global understanding, it may fail to effectively capture the nuances132

and variances at the attribute level. This leads to suboptimal use of the rich descriptions. We address133

this by introducing a set of learnable prompt tokens that serve as domain experts in the vision branch,134

each of which aligns with a specific attribute-level textual embedding.135

Additionally, close inspection of the LLM-generated descriptions indicates limited contextual rele-136

vance and a high degree of diversity. Previous works [35] reflect the issue of descriptions that are137

likely not co-occurring e.g. “steam” and “fried”. We further identify cases where the descriptions are138

technically correct but irrelevant to certain images, such as describing “long tail” in frontal images139

of cats, underscoring the need for a selective pooling mechanism. Thus, we introduce a vision-140

conditional pooling layer to extract instance-specific text features for each attribute for selecting the141

most applicable descriptions.142

Overall, our approach utilizes fine-grained descriptions and organizes them in a Tree of Attribute143

following the “concept - attributes -descriptions” structure. Learnable vision expert tokens are144

appended to the input image embedding to learn from specific fine-grained attributes such as color145

and shape. A vision-conditional pooling layer is further added for each attribute to ensure optimal146

image-text alignment. Inspired by CoOP [54], we also incorporate textual contextual tokens in the147

text encoder. The overall framework is presented in Fig. 2.148

3.3 Tree of Attribute generation by LLMs149

We redefine the process of integrating LLM-generated descriptions by introducing a knowledge graph150

Gc = {Vc, Ec} for each class c, where Vc denotes the set of nodes, and Ec denotes the edges that151

capture the semantic relationship between nodes. In previous works, Vc is the set of descriptions152

Dc, while Ec is missing. We argue that such methods overlook the inherent structure among the153

descriptions and thus do not exploit the richness of these descriptions effectively. To better leverage154

knowledge from LLMs, we introduce an attribute layer to link the root node class name, and the leaf155

node descriptions. The attribute nodes include visual attributes generated by LLMs, such as color and156

shape, for systematically guiding description generation as illustrated in Fig. 1 (c). Each branch of157

this “tree” represents a specific attribute, with the subsequent “leaves” fleshing out the descriptions158
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with finer details. In this framework, Vc includes the class name which is the root node, the set of159

attributes such as color and shape being the intermediate layer, and lastly the set of descriptions160

under each attribute node. Ec includes the edges that build up the hierarchy. This structure allows161

for a nuanced representation of class information, spanning from general concepts down to specific162

attributes and detailed descriptions.163

To this end, we introduce the Tree of Attribute (ToA), where we use a tree structure to model the164

relationship and structure of the descriptions. Let Ac denote the set of attributes, and for each attribute165

ac ∈ Ac, we denote its leaf nodes as Da
c . Each set Da

c contains descriptions that specifically pertain166

to attribute a for class c, which is denoted as167

Da
c = {da,1c , da,2c , . . . , da,nc }, (3)

where da,ic represents the i-th description for attribute a of class c and n is the number of descriptions168

per attribute.169

The process of generating a Tree of Attribute (ToA) unfolds in three steps: 1) Attribute Generation:170

We first query LLMs with the dataset information and ask it to generate a set of attributes A which are171

considered relevant and characteristic of the dataset. 2) Example Generation: We then ask LLMs to172

generate descriptions for a randomly sampled class in the dataset, using the attributes A identified173

in the previous step. Each description takes the format of “class, which {is/has/etc} {description}”.174

Human review is performed to ensure the quality of the example. 3) Description Generation for175

All Classes: Building upon the Q&A template from the previous step, the LLM is then tasked with176

generating descriptions for all classes in the dataset.177

Additionally, we incorporate a “global context” attribute which is aligned with the CLS token in the178

vision encoder. The descriptions are the 7 standard templates provided in [33].179

3.4 Learning TAP with Learnable Expert Tokens180

To fully exploit the structured Tree of Attribute, we introduce learnable visual expert tokens pv
a in the181

vision branch to learn from each of the attribute nodes a ∈ A. Unlike traditional methods that rely182

on a single CLS token for alignment, these expert tokens enable focused learning on specific image183

attributes, such as color or shape, enhancing the model’s performance and interpretability.184

We denote the set of introduced visual expert tokens as Pv = {pv
a|a ∈ A}. Akin to the idea185

of visual prompt tuning (VPT) [14], we insert Pv into the input sequence of the vision encoder,186

forming the prompted input sequences X̃p = {eCLS,Pv,Epatch}, where eCLS is the input CLS187

token, and Epatch denotes the embedded patch tokens. To further boost the model’s capacity for188

nuanced attribute representation, we employ deep prompting by introducing a zero-initialized layer189

residual for each prompt token across transformer layers, which provides more explicit attribute190

guidance across transformer layers. In parallel, we adopt a set of m learnable context tokens191

Pt = {pt
j |j ∈ {1, 2, ...,m}} for the text encoder shared across all descriptions, similar to [54].192

3.5 Vision-Conditional Pooling193

To mitigate issues of misalignment and potential misleading information from the broad spectrum of194

LLM-generated descriptions, we proposed an adaptive vision-conditional pooling layer, applicable to195

each set of attribute descriptions Da shared across all classes to dynamically pool the most applicable196

descriptions based on the visual content of the image x using its corresponding visual expert token197

denoted as pv
a,x. For ease of expression, we will proceed without explicitly mentioning x, though it’s198

important to note that both the expert token and the resulting attribute-level embeddings are dependent199

on the visual information. Intuitively, VCP uses attention to calculate the similarity between pv
a and200

all embedded descriptions in attribute Da, which are then used as weights for a weighted sum of the201

original description embeddings. Formally, for each attribute a and its associated expert token pv
a,202

the pooled attribute-level embedding va
c for class c and attribute a is:203

Query = Wq · pv
a,

Key = Wk · Emb(Da
c ),

Attention Score = softmax(Query · KeyT ),
va
c = Attention Score · Emb(Da

c ),

(4)
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where Wq and Wk are learnable weights ∈ Rd×d, Emb(·) denotes the embedding function, and204

softmax(·) is the Softmax function. This layer mirrors cross-attention but omits Wv to maintain the205

output within the CLIP V-L space.206

3.6 Training and Inference207

Training objective. During training, each visual expert token pv
a is aligned with its associated208

attribute-level embedding vac , trained with the following contrastive objective:209

Lcon(p
v
a,v

a
c ) = − 1

N

N∑
i=1

log
exp(cos(pv

a,v
a
y)/τ)∑C

c=1 exp(cos(p
v
a,v

a
c )/τ)

, (5)

where N represents the number of training samples, and τ is the learned temprature of CLIP. The210

total classification loss Lclass is the average of the contrastive loss from each expert token as well as211

the CLS token, defined as:212

Lclass =
1

|A|

( ∑
a∈A

Lcon(p
v
a,v

a
c ))

)
, (6)

Similar to [16] and [4], we regularize the vision CLS token, text feature, and the prediction logits213

from each attribute using the vanilla CLIP model. We denote the regularization loss as Lreg, where214

the details can be found in Appendix. The overall training objective is Ltotal = Lclass + Lreg.215

Prediction fusion. During inference, we integrate the prediction by each attribute expert pair by a216

weighted sum, formulated as follows:217

ỹ = argmax
c

(
α cos(fvCLS ,v

CLS
c ) +

1− α

|A| − 1

∑
a∈A\{CLS}

cos(pv
a,v

a
c )

)
(7)

where α is a hyperparameter that signifies the weight assigned to the global context provided by the218

CLS token, balancing its contribution with that of the attribute-specific expert prompts.219

4 Experiments220

We extensively evaluate our method in two settings: 1) Base-to-novel class generalization, where the221

datasets are equally split into base and novel classes. We train the model on the base classes only and222

evaluate on both base and novel classes; and 2) Few-shot classification with 16 shots per class.223

Datasets and baslines. For both base to novel class generalization and few-shot setting, we follow224

previous works [54, 53], using 11 image recognition datasets. The datasets span a range of recog-225

nition tasks: ImageNet [7] and Caltech101 [11] for generic object recognition; OxfordPets [30],226

StanfordCars [18], Flowers102 [27], Food101 [2], and FGVCAircraft [24] for fine-grained classifica-227

tion; SUN397 [46] for scene recognition; UCF101 [39] for action recognition; DTD [6] for texture228

classification; and EuroSAT [12] for satellite image analysis. We benchmark against several leading229

methods, including CLIP [33], CoOp [54], Co-CoOP [53], ProGrad [55], RPO [19], LoGoPrompt230

[38], and the state-of-the-art PromptSRC [16].231

Implementation details. A pre-trained CLIP model with a ViT-B/16 vision backbone is used in all232

of our experiments and results are averaged over 3 runs. We use GPT-3.5-turbo [29] for attribute and233

description generation. We initialize the text context tokens with the word embedding of a photo234

of a. For both settings, we iteratively train the vision and text encoders with 5 epochs for vision235

and 1 epoch for text schedule. We set α = 0.4, µ1 = 10, and µ2 = 2.5 for all datasets. We train236

the vision encoder for 50 and 100 epochs, and text encoder for 10 and 20 epochs for base-to-novel237

generalization and few-shot experiments, respectively. For DTD, Oxford Flowers, Stanford Cars,238

UCF101, and Caltech101 datasets, we use a learning rate of 0.002 for the text encoder and 0.006 for239

the vision encoder, with µ3 = 3. For the remaining 6 datasets, the learning rates for both text and240

vision encoders are set as 0.004, with µ3 = 1.5. We also use a Gaussian Prompt Weighting (GPA)241

following [16], with a mean of 45, std of 10 for base-to-novel generalization, and 80, 20 for few-shot242

experiments. Refer to the Appendix for additional implementation details.243
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Table 1: Comparison of TAP in base-to-novel generalization. HM: harmonic mean [45].

(a) Average

Base Novel HM

CLIP 69.34 74.22 71.70
CoOp 82.69 63.22 71.66
Co-CoOp 80.47 71.69 75.83
ProGrad 82.48 70.75 76.16
RPO 81.13 75.00 77.78
LoGoPrompt 84.47 74.24 79.03
PromptSRC 84.26 76.10 79.97
TAP 84.75 77.63 81.04

(b) ImageNet

Base Novel HM

CLIP 72.43 68.14 70.22
CoOp 76.47 67.88 71.92
Co-CoOp 75.98 70.43 73.10
ProGrad 77.02 66.66 71.46
RPO 76.60 71.57 74.00
LoGoPrompt 76.74 70.83 73.66
PromptSRC 77.60 70.73 74.01
TAP 77.97 70.40 73.99

(c) Caltech101

Base Novel HM

CLIP 96.84 94.00 95.40
CoOp 98.00 89.81 93.73
Co-CoOp 97.96 93.81 95.84
ProGrad 98.02 93.89 95.91
RPO 97.97 94.37 96.03
LoGoPrompt 98.19 93.78 95.93
PromptSRC 98.10 94.03 96.02
TAP 98.90 95.50 97.17

(d) OxfordPets

Base Novel HM

CLIP 91.17 97.26 94.12
CoOp 93.67 95.29 94.47
Co-CoOp 95.20 97.69 96.43
ProGrad 95.07 97.63 96.33
RPO 94.63 97.50 96.05
LoGoPrompt 96.07 96.31 96.18
PromptSRC 95.33 97.30 96.30
TAP 95.80 97.73 96.76

(e) StanfordCars

Base Novel HM

CLIP 63.37 74.89 68.65
CoOp 78.12 60.40 68.13
Co-CoOp 70.49 73.59 72.01
ProGrad 77.68 68.63 72.88
RPO 73.87 75.53 74.69
LoGoPrompt 78.36 72.39 75.26
PromptSRC 78.27 74.97 76.58
TAP 80.70 74.27 77.35

(f) Flowers102

Base Novel HM

CLIP 72.08 77.80 74.83
CoOp 97.60 59.67 74.06
Co-CoOp 94.87 71.75 81.71
ProGrad 95.54 71.87 82.03
RPO 94.13 76.67 84.50
LoGoPrompt 99.05 76.52 86.34
PromptSRC 98.07 76.50 85.95
TAP 97.90 75.57 85.30

(g) Food101

Base Novel HM

CLIP 90.10 91.22 90.66
CoOp 88.33 82.26 85.19
Co-CoOp 90.70 91.29 90.99
ProGrad 90.37 89.59 89.98
RPO 90.33 90.83 90.58
LoGoPrompt 90.82 91.41 91.11
PromptSRC 90.67 91.53 91.10
TAP 90.97 91.83 91.40

(h) FGVCAircraft

Base Novel HM

CLIP 27.19 36.29 31.09
CoOp 40.44 22.30 28.75
Co-CoOp 33.41 23.71 27.74
ProGrad 40.54 27.57 32.82
RPO 37.33 34.20 35.70
LoGoPrompt 45.98 34.67 39.53
PromptSRC 42.73 37.87 40.15
TAP 44.40 36.50 40.06

(i) SUN397

Base Novel HM

CLIP 69.36 75.35 72.23
CoOp 80.60 65.89 72.51
Co-CoOp 79.74 76.86 78.27
ProGrad 81.26 74.17 77.55
RPO 80.60 77.80 79.18
LoGoPrompt 81.20 78.12 79.63
PromptSRC 82.67 78.47 80.52
TAP 82.87 79.53 81.17

(j) DTD

Base Novel HM

CLIP 53.24 59.90 56.37
CoOp 79.44 41.18 54.24
Co-CoOp 77.01 56.00 64.85
ProGrad 77.35 52.35 62.45
RPO 76.70 62.13 68.61
LoGoPrompt 82.87 60.14 69.70
PromptSRC 83.37 62.97 71.75
TAP 84.20 68.00 75.24

(k) EuroSAT

Base Novel HM

CLIP 56.48 64.05 60.03
CoOp 92.19 54.74 68.69
Co-CoOp 87.49 60.04 71.21
ProGrad 90.11 60.89 72.67
RPO 86.63 68.97 76.79
LoGoPrompt 93.67 69.44 79.75
PromptSRC 92.90 73.90 82.32
TAP 90.70 82.17 86.22

(l) UCF101

Base Novel HM

CLIP 70.53 77.50 73.85
CoOp 84.69 56.05 67.46
Co-CoOp 82.33 73.45 77.64
ProGrad 84.33 74.94 79.35
RPO 83.67 75.43 79.34
LoGoPrompt 86.19 73.07 79.09
PromptSRC 87.10 78.80 82.74
TAP 87.90 82.43 85.08

Table 2: Few shot classification results with 16 shots.
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CLIP 78.79 67.31 95.43 85.34 80.44 97.37 82.90 45.36 73.28 69.96 87.21 82.11
CoOp 79.89 71.87 95.57 91.87 83.07 97.07 84.20 43.40 74.67 69.87 84.93 82.23
CoCoOp 74.90 70.83 95.16 93.34 71.57 87.84 87.25 31.21 72.15 63.04 73.32 78.14
MaPLe 81.79 72.33 96.00 92.83 83.57 97.00 85.33 48.40 75.53 71.33 92.33 85.03
PSRC 82.87 73.17 96.07 93.67 83.83 97.60 87.50 50.83 77.23 72.73 92.43 86.47

TAP 83.37 73.76 96.73 93.90 85.37 98.10 87.53 50.43 77.30 74.90 91.90 87.17

4.1 Base-to-Novel Generalization244

In base-to-novel generalization, we equally split the classes into base and novel classes. Initial245

training and evaluations are conducted on the seen base classes, followed by evaluation on the unseen246

novel classes in a zero-shot manner. TAP surpasses prior state-of-the-art models in terms of the247

base and novel class accuracy, as well as their harmonic mean across most of the 11 datasets, with248

an average increase of 1.53% in the zero-shot novel class prediction, and a 1.07% increase in the249

overall harmonic mean in average, as detailed inTable 1. Notably, our method improves unseen class250

prediction without compromising base class performance, exhibiting an average performance boost251

of 0.49%. In the challenging fine-grained tasks such as DTD, EuroSAT, and UCF101, TAP achieves252

significant improvements in novel class prediction by 5.03%, 8.27%, and 3.63% respectively. These253

results underscore the robust generalizability and efficacy of our method across diverse scenarios.254

4.2 Few-Shot Classification255

In few-shot classification, TAP also outperforms existing methods in 9 out of the 11 datasets. Detailed256

in Table 2, we achieve an average accuracy of 83.37 across the 11 datasets, surpassing the previous257

state-of-the-art methods by 0.5%, further demonstrating the effectiveness of our method.258
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Figure 3: Visualization of the class activation maps.

Table 3: Effects of the Tree of At-
tributes.

Des. Org. Unstructured Ours

Base 82.89 84.75
Novel 75.32 77.63
HM 78.93 81.04

Table 4: Effects of domain experts.
Align. Token CLS Ours

Base 83.89 84.75
Novel 76.85 77.63
HM 80.22 81.04

Table 5: Effects of the number of experts.

Attrs. Num. 1 2 3 4 5 6 7 8 Ours

Base Acc. 83.20 83.97 84.1 84.41 84.45 84.62 84.66 84.74 84.75
Novel Acc. 74.90 76.20 76.35 77.06 77.13 77.17 77.35 76.67 77.63

HM 78.83 79.90 80.04 80.57 80.63 80.72 80.84 80.50 81.04

4.3 Ablation Study259

Effects of Tree of Attribute. A core inquiry is whether structuring descriptions into a Tree of260

Attribute (ToA) offers advantages over an unstructured aggregation of LLM-generated descriptions.261

To evaluate, we revert to aligning a mixed, unstructured set of descriptions with the CLS token262

- a common practice in prior studies [25, 19, 40, 52], while keeping the same number of visual263

prompt tokens. According to Table 3, substituting the ToA with an unstructured set results in264

significant performance decreases of 1.86%, 2.31%, and 2.11% across the average base, novel, and265

their harmonic mean performances, respectively. This stark contrast underscores the ToA’s critical266

role in enhancing model efficacy.267

Effects of Learning through Domain Experts. Further, we examine the impact of substituting the268

CLS token with visual expert tokens for learning fine-grained attributes, commonly adopted in in269

previous works [25, 19, 40, 52]. Our findings (Table 4) reveal improvements of 0.89%, 0.78%, and270

0.82% in the average base, novel, and harmonic mean accuracies, respectively, upon integrating visual271

expert tokens. These results support the notion that domain-specific, learnable tokens enhance the272

model’s ability to grasp fine-grained details by focusing on distinct aspects of the image, as opposed273

to the CLS token’s global focus.274

Effects of Number of Attributes. In our framework, the selection of attributes is dynamically275

determined by LLMs, leading to variability across different datasets. This adaptability stands in276

contrast to a static approach where the number of attributes is uniformly set across all datasets. To277

understand the impact of this variability, we explore how altering the number of attributes from 1 to 8278

influences model performance. Our findings, detailed in Table 5, reveal a performance improvement279

trend as the number of attributes increases, with an optimal peak at 7 attributes before a slight decline280

at 8. However, crucially, across all fixed-attribute scenarios, none matched the performance achieved281

through our method’s dynamic attribute determination. These results underscore the importance of282

an adaptive approach to attribute selection, as opposed to a one-size-fits-all strategy.283

Design choice of the vision-conditional pooling layer. Lastly, we ablate the design of the pooling284

layer, starting from the naive training-free average pooling, to the attention-based pooling mechanism285

with condition on the input image. Compared to average pooling, VCP demonstrates a performance286

gain of 1.08% in the average harmonic mean. Furthermore, when compared with attention-based max287

pooling, which selects a single description per attribute according to the attention score in Eq. (4),288
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• served steamed in a bamboo 
basket
• pan-fried to a crispy finish and 
served with a dipping sauce

Presentation

• pale beige color 
• golden-brown hue from 
pan-frying or deep-frying

Color
• soft and chewy texture
• crispy texture on the bottom 
from pan-frying

Texture
0.81

0.19

0.95

0.05

0.88

0.12

0.92

0.08

Shape
• round with a pleated edge
• crescent-shaped, with a 
fold in the dough

Figure 4: Visualization of the attention weights in the VCP layer for an example “dumplings” image.

Table 6: Design choice of the pooling layer.

Pooling Method Base Acc. Novel Acc. HM

Attn. Max Pooling 82.90 76.36 79.49
Average Pooling 83.18 76.98 79.96

VCP (Ours) 84.75 77.63 81.04

VCP maintains a superior advantage of 1.55% in average harmonic mean. These outcomes attest to289

the VCP layer’s integral role in finetuning attribute relevance to the visual context, substantiating its290

design and implementation within our model.291

4.4 Visualization292

Expert tokens focus on attribute-related regions. We further investigate the effects of vision293

domain experts by visualizing their class activation maps from three illustrative examples using294

GradCAM [37], as shown inFig. 3. These visualizations underscore the precision with which each295

expert token concentrates on the image regions pertinent to its designated attribute. Take the first296

cat image as an example. The “fur pattern” expert distinctly highlights the animal’s fur texture,297

whereas the “ear” and “eye” experts focus precisely on the respective anatomical features. This298

pattern of attribute-specific attention is consistent across the evaluated examples, reinforcing the299

conceptualization of expert tokens as dedicated “domain experts” within the visual field.300

VCP layer pools the most applicable descriptions. The inherently interpretable nature of the VCP301

layer, thanks to its attention mechanism, allows for insightful visualizations of its operational process.302

Through the examination of attention weights assigned by the VCP layer to different attributes303

in a given image, we elucidate the layer’s capability to discern and prioritize the most applicable304

descriptions. As illustrated in Fig. 4 with a “dumplings” image, the VCP layer adeptly allocates305

higher attention weights to descriptions accurately reflecting the observed instance (e.g., assigning306

weights of 0.92 to “round with a pleated edge” under the “Shape” attribute and 0.95 to “soft and307

chewy texture” under the Texture”). In contrast, less relevant descriptions for the specific image308

context (e.g., “crescent-shaped” for Shape and “crispy texture from pan-frying” for Texture) receive309

significantly lower weights. This discernment is crucial, given the class dumplings” encompasses a310

broad variety of appearances based on cooking methods, yet not all descriptions are fitting for every311

instance. These visualizations compellingly demonstrate the VCP layer’s effectiveness in refining312

description relevance, thereby enhancing the model’s interpretative alignment with the visual content.313

5 Conclusion314

This paper introduces Tree of Attribute Prompt learning (TAP), a novel method that integrates315

detailed, LLM-generated descriptions within VLMs, achieving state-of-the-art performance in both316

base-to-novel generalization and few-shot image classification tasks across 11 diverse datasets. TAP317

leverages a hierarchical "Tree of Attribute" framework, distilling structured knowledge graphs from318

LLMs for nuanced representation of visual concepts, and employs learnable "domain expert" tokens319

and a vision-conditional pooling module for optimal image-text alignment. While promising, we320

note that the reliance on LLMs presents challenges in fine-grained datasets where similar classes321

require nuanced differentiation, in which cases LLMs generate identical descriptions for distinct322

classes, impacting novel class prediction performance. It highlights the current limitations of LLMs323

in discerning highly fine-grained distinctions. Addressing this challenge through enhanced LLM324

capabilities or alternative strategies will be a key focus of future research.325
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A Appendix484

A.1 Model regularization485

Denote the frozen image feature from CLIP vision encoder as fv , the frozen text feature for description d from486

CLIP text encoder as f td, and the zero-shot logit prediction from CLIP as ŷ. Additionally, denote the trained487

image feature as f̃v , the trained text feature for description d as f̃ td, and the logit prediction from attribute a after488

training as ỹa. The losses are as follows:489

LL1−V = ||fv − f̃v||1 (8)

Lcon−T = −
∑
d∈D

(
1

2
log

exp(cos(f td, f̃
t
d))∑

k∈Ds
exp(cos(f td, f̃

t
k))

+
1

2
log

exp(cos(f td, f̃
t
d))∑

k∈Ds
exp(cos(f tk, f̃

t
d))

)
(9)

490

LKL−attr =
1

|A|

( ∑
a∈A

DKL(ŷ, ỹa)

)
(10)

The regularization loss is then:491

Lreg = µ1LL1−V + µ2LKL−attr + µ3Lcon−T , (11)

Our overall training objective is thus given by:492

Ltotal = Lclass + Lreg (12)

A.2 Additional implementation details493

We use PyTorch [31] to implement all experiments on a single NVIDIA A100-80GB GPU. Our code is developed494

based on the implementation of CoOp [54], which is available at https://github.com/KaiyangZhou/CoOp and495

released under the MIT license. Our code is also released under the MIT license. Baseline results for both496

base-to-novel generalization and few-shot classification are taken from their respective publications. For the497

“global context” attribute which is aligned with the CLS token in the vision encoder, we use the following 7498

selected templates provided in [33].499

"itap of a {class}."500

"a bad photo of the {class}."501

"a origami {class}."502

"a photo of the large {class}."503

"a {class} in a video game."504

"art of the {class}."505

"a photo of the small {class}."506

A.3 Prompts for Tree-of-Attribute generation507

As introduced in Section 3.3, we generate the Tree-of-Attribute with the following three steps: 1) Attribute508

Generation, 2) In-Context Example Generation, and 3) Description Generation for All Classes. The prompts for509

each step are as follows:510

1) Attribute Generation:511

{Dataset Description.}512

Visual attributes refer to observable, describable features of the images that can include color, shape, size,513

texture, and any specific patterns or markings, which can help differentiate between classes for the dataset. They514
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should be consistently observable across multiple images of the same class. Your task is to generate a list of515

visual attributes (less than 10) for the {Dataset Name} dataset. Ensure this list is clear, concise, and specific to516

the dataset’s needs. Avoid generic attributes that do not contribute to distinguishing between classes.517

2) In-Context Example Generation518

Describe describe what a "{Random Class Name}" class in the {Dataset Name} dataset look like using the519

generated visual attributes.520

You must follow the following rules:521

1. For each visual attribute, describe all possible variations as separate sentences. This approach allows for a522

detailed and clear presentation of each attribute’s range.523

2. Provide a maximum of five descriptions for each visual attribute to maintain focus and relevance. Also, aim to524

provide at least two descriptions to ensure a comprehensive overview of the attribute.525

3. The descriptions should provide clear, distinguishable features of each class to support image classification526

tasks.527

4. Descriptions for each attribute are independent from each other, and they should not serve as context for each528

other.529

5. Each description describes an image independetly. If certain description is possible for a class, please just530

list that description, and do not use words like "may have" or "sometimes have".531

6. Reply descriptions only. Do not include any explanation before and after the description.532

7. The descriptions should follow the format of "classname, which ...", where "..." is the description of the visual533

attribute.534

3) Description Generation for All Classes535

{Dataset Description.}536

Your task is to write detailed descriptions for various classes within the {Dataset Name} dataset, using the537

provided visual attributes such as color and shape. These descriptions will help in accurately classifying and538

understanding the unique features of each class.539

You must follow the following rules:540

1. For each visual attribute, describe all possible variations as separate sentences. This approach allows for a541

detailed and clear presentation of each attribute’s range.542

2. Provide a maximum of five descriptions for each visual attribute to maintain focus and relevance. Also, aim to543

provide at least two descriptions to ensure a comprehensive overview of the attribute.544

3. The descriptions should provide clear, distinguishable features of each class to support image classification545

tasks.546

4. Descriptions for each attribute are independent from each other, and they should not serve as context for each547

other.548

5. Each description describes an image independetly. If certain description is possible for a class, please just549

list that description, and do not use words like "may have" or "sometimes have".550

6. Reply descriptions only. Do not include any explanation before and after the description.551

7. The descriptions should follow the format of "classname, which ...", where "..." is the description of the visual552

attribute.553

Q: Describe what a "{Random Class Name}" in the {Dataset Name} look like using the following visual attributes:554

{Visual Attributes from Step 1.}555

A: {Answer from Step 2.}556

Q: Describe what a "{Target Class Name}" in the {Dataset Name} look like using the following visual attributes:557

{Visual Attributes from Step 1.}558

A:559

In the prompt templates, "Dataset Description" is the description of the dataset from their official website,560

"Random Class Name" is a randomly sampled class name in the dataset for in-context example generation, and561

"Target Class Name" is the class name of interest for the current query. While step 1 and 2 are made in two562

consecutive calls to provide contexts which are queried once per dataset, step 3 is queried independently for563
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each of the remaining classes in the dataset. Human review is performed after step 2 to ensure a high-quality set564

of attributes and in-context example.565

A.4 Potential societal impacts566

While our work primarily focuses on advancing prompt learning in vision-language models, it’s crucial to567

acknowledge the potential broader societal implications of such advancements. On the positive side, TAP could568

lead to more efficient and accurate image understanding systems, benefiting various domains. For instance, it569

could enhance accessibility for visually impaired individuals by providing more detailed descriptions of visual570

content. Furthermore, improved visual understanding could contribute to more effective content moderation,571

mitigating the spread of harmful online materials. However, these advancements also present potential risks.572

LLMs used for description generation can perpetuate existing societal biases present in their training data, leading573

to biased outcomes in image recognition. Moreover, sophisticated VLMs could be misused to create misleading574

visual content, contributing to misinformation and manipulation. The enhanced ability to analyze and understand575

images also raises privacy concerns, particularly in surveillance contexts where personal information could be576

extracted from visual data. Addressing these potential negative impacts necessitates careful consideration of bias577

mitigation techniques during LLM training, promoting transparency and explainability in VLM decision-making,578

and establishing ethical guidelines for responsible development and deployment of such technologies.579
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NeurIPS Paper Checklist580

1. Claims581

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s582

contributions and scope?583

Answer: [Yes]584

Justification: The abstract and introduction clearly state the problem of limited context in existing585

prompt learning methods, propose TAP as a solution using structured knowledge graphs and domain586

experts, and highlight the strong experimental results in both base-to-novel generalization and few-shot587

classification. This accurately reflects the paper’s contributions and scope.588

Guidelines:589

• The answer NA means that the abstract and introduction do not include the claims made in the590

paper.591

• The abstract and/or introduction should clearly state the claims made, including the contributions592

made in the paper and important assumptions and limitations. A No or NA answer to this593

question will not be perceived well by the reviewers.594

• The claims made should match theoretical and experimental results, and reflect how much the595

results can be expected to generalize to other settings.596

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not597

attained by the paper.598

2. Limitations599

Question: Does the paper discuss the limitations of the work performed by the authors?600

Answer: [Yes]601

Justification: The paper includes a discussion of the limitations associated with relying on LLMs for602

generating descriptions, particularly in fine-grained datasets where similar classes require nuanced603

differentiation. This discussion can be found in "Conclusion".604

Guidelines:605

• The answer NA means that the paper has no limitation while the answer No means that the paper606

has limitations, but those are not discussed in the paper.607

• The authors are encouraged to create a separate "Limitations" section in their paper.608

• The paper should point out any strong assumptions and how robust the results are to violations of609

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,610

asymptotic approximations only holding locally). The authors should reflect on how these611

assumptions might be violated in practice and what the implications would be.612

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested613

on a few datasets or with a few runs. In general, empirical results often depend on implicit614

assumptions, which should be articulated.615

• The authors should reflect on the factors that influence the performance of the approach. For616

example, a facial recognition algorithm may perform poorly when image resolution is low or617

images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide618

closed captions for online lectures because it fails to handle technical jargon.619

• The authors should discuss the computational efficiency of the proposed algorithms and how620

they scale with dataset size.621

• If applicable, the authors should discuss possible limitations of their approach to address problems622

of privacy and fairness.623

• While the authors might fear that complete honesty about limitations might be used by reviewers624

as grounds for rejection, a worse outcome might be that reviewers discover limitations that625

aren’t acknowledged in the paper. The authors should use their best judgment and recognize626

that individual actions in favor of transparency play an important role in developing norms that627

preserve the integrity of the community. Reviewers will be specifically instructed to not penalize628

honesty concerning limitations.629

3. Theory Assumptions and Proofs630

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete631

(and correct) proof?632

Answer: [NA]633

Justification: The paper focuses on proposing a novel method for prompt learning in VLMs and634

evaluating its empirical performance. It doesn’t introduce any new theoretical results or theorems635

requiring formal proofs.636
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Guidelines:637

• The answer NA means that the paper does not include theoretical results.638

• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.639

• All assumptions should be clearly stated or referenced in the statement of any theorems.640

• The proofs can either appear in the main paper or the supplemental material, but if they appear in641

the supplemental material, the authors are encouraged to provide a short proof sketch to provide642

intuition.643

• Inversely, any informal proof provided in the core of the paper should be complemented by644

formal proofs provided in appendix or supplemental material.645

• Theorems and Lemmas that the proof relies upon should be properly referenced.646

4. Experimental Result Reproducibility647

Question: Does the paper fully disclose all the information needed to reproduce the main experimental648

results of the paper to the extent that it affects the main claims and/or conclusions of the paper649

(regardless of whether the code and data are provided or not)?650

Answer: [Yes]651

Justification: The paper provides all the necessary information for reproducing the experimental652

results.653

Guidelines:654

• The answer NA means that the paper does not include experiments.655

• If the paper includes experiments, a No answer to this question will not be perceived well by the656

reviewers: Making the paper reproducible is important, regardless of whether the code and data657

are provided or not.658

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make659

their results reproducible or verifiable.660

• Depending on the contribution, reproducibility can be accomplished in various ways. For661

example, if the contribution is a novel architecture, describing the architecture fully might suffice,662

or if the contribution is a specific model and empirical evaluation, it may be necessary to either663

make it possible for others to replicate the model with the same dataset, or provide access to664

the model. In general. releasing code and data is often one good way to accomplish this, but665

reproducibility can also be provided via detailed instructions for how to replicate the results,666

access to a hosted model (e.g., in the case of a large language model), releasing of a model667

checkpoint, or other means that are appropriate to the research performed.668

• While NeurIPS does not require releasing code, the conference does require all submissions669

to provide some reasonable avenue for reproducibility, which may depend on the nature of the670

contribution. For example671

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to672

reproduce that algorithm.673

(b) If the contribution is primarily a new model architecture, the paper should describe the674

architecture clearly and fully.675

(c) If the contribution is a new model (e.g., a large language model), then there should either be676

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,677

with an open-source dataset or instructions for how to construct the dataset).678

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are679

welcome to describe the particular way they provide for reproducibility. In the case of680

closed-source models, it may be that access to the model is limited in some way (e.g.,681

to registered users), but it should be possible for other researchers to have some path to682

reproducing or verifying the results.683

5. Open access to data and code684

Question: Does the paper provide open access to the data and code, with sufficient instructions to685

faithfully reproduce the main experimental results, as described in supplemental material?686

Answer: [No]687

Justification: Our codebase is built based on the CoOP and CoCoOP [54, 53], and can be reproduced688

based on our Methods, Implementation details in main text and appendix. Our code will be released689

upon acceptance.690

Guidelines:691

• The answer NA means that paper does not include experiments requiring code.692

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/693

guides/CodeSubmissionPolicy) for more details.694
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• While we encourage the release of code and data, we understand that this might not be possible,695

so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless696

this is central to the contribution (e.g., for a new open-source benchmark).697

• The instructions should contain the exact command and environment needed to run to reproduce698

the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/699

guides/CodeSubmissionPolicy) for more details.700

• The authors should provide instructions on data access and preparation, including how to access701

the raw data, preprocessed data, intermediate data, and generated data, etc.702

• The authors should provide scripts to reproduce all experimental results for the new proposed703

method and baselines. If only a subset of experiments are reproducible, they should state which704

ones are omitted from the script and why.705

• At submission time, to preserve anonymity, the authors should release anonymized versions (if706

applicable).707

• Providing as much information as possible in supplemental material (appended to the paper) is708

recommended, but including URLs to data and code is permitted.709

6. Experimental Setting/Details710

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,711

how they were chosen, type of optimizer, etc.) necessary to understand the results?712

Answer: [Yes]713

Justification: The training and test details can be found in section Experiments and Appendix.714

Guidelines:715

• The answer NA means that the paper does not include experiments.716

• The experimental setting should be presented in the core of the paper to a level of detail that is717

necessary to appreciate the results and make sense of them.718

• The full details can be provided either with the code, in appendix, or as supplemental material.719

7. Experiment Statistical Significance720

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-721

tion about the statistical significance of the experiments?722

Answer: [No]723

Justification: We follow previous works [54, 53] to report results averaged over 3 runs. Error bars are724

not reported.725

Guidelines:726

• The answer NA means that the paper does not include experiments.727

• The authors should answer "Yes" if the results are accompanied by error bars, confidence728

intervals, or statistical significance tests, at least for the experiments that support the main claims729

of the paper.730

• The factors of variability that the error bars are capturing should be clearly stated (for example,731

train/test split, initialization, random drawing of some parameter, or overall run with given732

experimental conditions).733

• The method for calculating the error bars should be explained (closed form formula, call to a734

library function, bootstrap, etc.)735

• The assumptions made should be given (e.g., Normally distributed errors).736

• It should be clear whether the error bar is the standard deviation or the standard error of the737

mean.738

• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report739

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is740

not verified.741

• For asymmetric distributions, the authors should be careful not to show in tables or figures742

symmetric error bars that would yield results that are out of range (e.g. negative error rates).743

• If error bars are reported in tables or plots, The authors should explain in the text how they were744

calculated and reference the corresponding figures or tables in the text.745

8. Experiments Compute Resources746

Question: For each experiment, does the paper provide sufficient information on the computer747

resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?748

Answer: [Yes]749

Justification: The type of compute used is provided in Appendix.750
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Guidelines:751

• The answer NA means that the paper does not include experiments.752

• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud753

provider, including relevant memory and storage.754

• The paper should provide the amount of compute required for each of the individual experimental755

runs as well as estimate the total compute.756

• The paper should disclose whether the full research project required more compute than the757

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into758

the paper).759

9. Code Of Ethics760

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code761

of Ethics https://neurips.cc/public/EthicsGuidelines?762

Answer: [Yes]763

Justification: We conform with the NeurIPS Code of Ethics in every aspect.764

Guidelines:765

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.766

• If the authors answer No, they should explain the special circumstances that require a deviation767

from the Code of Ethics.768

• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due769

to laws or regulations in their jurisdiction).770

10. Broader Impacts771

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts772

of the work performed?773

Answer: [Yes]774

Justification: The potential societal impacts are discussed in Appendix.775

Guidelines:776

• The answer NA means that there is no societal impact of the work performed.777

• If the authors answer NA or No, they should explain why their work has no societal impact or778

why the paper does not address societal impact.779

• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,780

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-781

ment of technologies that could make decisions that unfairly impact specific groups), privacy782

considerations, and security considerations.783

• The conference expects that many papers will be foundational research and not tied to particular784

applications, let alone deployments. However, if there is a direct path to any negative applications,785

the authors should point it out. For example, it is legitimate to point out that an improvement in786

the quality of generative models could be used to generate deepfakes for disinformation. On the787

other hand, it is not needed to point out that a generic algorithm for optimizing neural networks788

could enable people to train models that generate Deepfakes faster.789

• The authors should consider possible harms that could arise when the technology is being used790

as intended and functioning correctly, harms that could arise when the technology is being used791

as intended but gives incorrect results, and harms following from (intentional or unintentional)792

misuse of the technology.793

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies794

(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-795

ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the796

efficiency and accessibility of ML).797

11. Safeguards798

Question: Does the paper describe safeguards that have been put in place for responsible release of799

data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or800

scraped datasets)?801

Answer: [NA]802

Justification: This paper primarily focuses on a novel prompt learning method and doesn’t involve803

the release of a new pre-trained LLM, image generator, or scraped dataset. Therefore, this question804

doesn’t directly apply in this context. We leverage an existing pre-trained LLM (GPT-3.5-turbo), and805

any ethical considerations regarding its release and potential misuse fall under the responsibility of its806

creators.807
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Guidelines:808

• The answer NA means that the paper poses no such risks.809

• Released models that have a high risk for misuse or dual-use should be released with necessary810

safeguards to allow for controlled use of the model, for example by requiring that users adhere to811

usage guidelines or restrictions to access the model or implementing safety filters.812

• Datasets that have been scraped from the Internet could pose safety risks. The authors should813

describe how they avoided releasing unsafe images.814

• We recognize that providing effective safeguards is challenging, and many papers do not require815

this, but we encourage authors to take this into account and make a best faith effort.816

12. Licenses for existing assets817

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,818

properly credited and are the license and terms of use explicitly mentioned and properly respected?819

Answer: [Yes]820

Justification: We credited the creators of the CoOp codebase [54] by including the attribution statement821

in appendix.822

Guidelines:823

• The answer NA means that the paper does not use existing assets.824

• The authors should cite the original paper that produced the code package or dataset.825

• The authors should state which version of the asset is used and, if possible, include a URL.826

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.827

• For scraped data from a particular source (e.g., website), the copyright and terms of service of828

that source should be provided.829

• If assets are released, the license, copyright information, and terms of use in the package should830

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for831

some datasets. Their licensing guide can help determine the license of a dataset.832

• For existing datasets that are re-packaged, both the original license and the license of the derived833

asset (if it has changed) should be provided.834

• If this information is not available online, the authors are encouraged to reach out to the asset’s835

creators.836

13. New Assets837

Question: Are new assets introduced in the paper well documented and is the documentation provided838

alongside the assets?839

Answer: [No]840

Justification: Code will be realseased upon acceptance.841

Guidelines:842

• The answer NA means that the paper does not release new assets.843

• Researchers should communicate the details of the dataset/code/model as part of their sub-844

missions via structured templates. This includes details about training, license, limitations,845

etc.846

• The paper should discuss whether and how consent was obtained from people whose asset is847

used.848

• At submission time, remember to anonymize your assets (if applicable). You can either create an849

anonymized URL or include an anonymized zip file.850

14. Crowdsourcing and Research with Human Subjects851

Question: For crowdsourcing experiments and research with human subjects, does the paper include852

the full text of instructions given to participants and screenshots, if applicable, as well as details about853

compensation (if any)?854

Answer: [NA]855

Justification: Our paper doesn’t involve crowdsourcing or research with human subjects.856

Guidelines:857

• The answer NA means that the paper does not involve crowdsourcing nor research with human858

subjects.859

• Including this information in the supplemental material is fine, but if the main contribution of the860

paper involves human subjects, then as much detail as possible should be included in the main861

paper.862
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other863

labor should be paid at least the minimum wage in the country of the data collector.864

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects865

Question: Does the paper describe potential risks incurred by study participants, whether such866

risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an867

equivalent approval/review based on the requirements of your country or institution) were obtained?868

Answer: [NA]869

Justification: This paper focuses on developing a novel prompt learning method and evaluating its870

performance on established image recognition datasets. It doesn’t involve any form of crowdsourcing,871

human subject research, or data collection that would necessitate IRB approval or ethical considerations872

related to study participants. Therefore, this question doesn’t apply to our research.873

Guidelines:874

• The answer NA means that the paper does not involve crowdsourcing nor research with human875

subjects.876

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be877

required for any human subjects research. If you obtained IRB approval, you should clearly state878

this in the paper.879

• We recognize that the procedures for this may vary significantly between institutions and880

locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for881

their institution.882

• For initial submissions, do not include any information that would break anonymity (if applica-883

ble), such as the institution conducting the review.884
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