
BPE Stays on SCRIPT: Structured Encoding
for Robust Multilingual Pretokenization

Sander Land 1 Catherine Arnett 2

Abstract
Byte Pair Encoding (BPE) tokenizers, widely
used in Large Language Models, face challenges
in multilingual settings, including penalization
of non-Western scripts and the creation of to-
kens with partial UTF-8 sequences. Pretokeniza-
tion, often reliant on complex regular expressions,
can also introduce fragility and unexpected edge
cases. We propose SCRIPT (Script Category
Representation in PreTokenization), a novel en-
coding scheme that bypasses UTF-8 byte con-
version by using initial tokens based on Unicode
script and category properties. This approach en-
ables a simple, rule-based pretokenization strat-
egy that respects script boundaries, offering a
robust alternative to pretokenization strategies
based on regular expressions. We also intro-
duce and validate a constrained BPE merging
strategy that enforces character integrity, appli-
cable to both SCRIPT-BPE and byte-based BPE.
Our experiments demonstrate that SCRIPT-BPE
achieves competitive compression while eliminat-
ing encoding-based penalties for non-Latin-script
languages.

github.com/sanderland/script bpe

1. Introduction
Text representation for language models involves a funda-
mental mismatch between legacy encoding systems and
modern NLP practices. This mismatch is evident during
pretokenization. Byte Pair Encoding (BPE, Sennrich et al.,
2016), the dominant tokenization method, typically operates
after an initial pretokenization step, during which the input
text is split into smaller ‘pretokens’. Then BPE merges these
into more meaningful tokens. However, pretokenization
commonly relies on manually crafted regular expressions,
which can be difficult to create and interpret. Reliance on

1Cohere 2EleutherAI. Correspondence to: Sander Land
<sander@cohere.com>.

Proceedings of the ICML 2025 Tokenization Workshop (Tok-
Shop), Vancouver, Canada. PMLR 267, 2025. Copyright 2025 by
the author(s).

these patterns often leads to unexpected edge cases and sub-
optimal segmentation, particularly in diverse multilingual
contexts (Velayuthan & Sarveswaran, 2025; Land, 2024).

Beyond these pretokenization difficulties, the choice of char-
acter representation itself introduces additional biases. BPE
typically operates either on UTF-8 bytes (byte-level BPE)
or Unicode characters (character-level BPE). However, both
approaches present fundamental challenges. In byte-level
BPE, the variable encoding length implicitly penalizes non-
Latin scripts (‘byte premium effects’, Arnett et al., 2024).
For some scripts, characters are represented with a single
byte (e.g., Latin), while other scripts have characters with
two or three bytes per character (e.g., Greek and Chinese,
respectively). This is illustrated in Figure 1A. In addition,
the representation of characters is disconnected from their
meaning, with similar characters having very different rep-
resentations, or very different characters sharing a common
prefix purely due to Unicode’s historical assignment order,
as illustrated in Figure 1B.

Byte-level BPE tokenizers can also learn merges that cross
character boundaries, resulting in tokens representing a mix
of full and partial characters. Although tokens representing
part of a single character’s UTF-8 encoding are necessary
to form three- and four-byte characters, those representing
a mix of full and partial characters lack semantic meaning,
risk invalid encodings, and can become under-trained (Land
& Bartolo, 2024). Due to the greedy nature of BPE, an early
merge crossing character boundaries can lead to a cascade of
merges that create ever more such tokens (Figure 1C). The
GPT-4o tokenizer has 874 such tokens, e.g. <0x95>\n\n.

Although applying BPE directly to Unicode characters, e.g.
SentencePiece (Kudo & Richardson, 2018), avoids initial
UTF-8 conversion, it introduces a different challenge: Uni-
code uses approximately 150,000 codepoints to represent a
wide range of characters. This forces tokenizers to initially
select a manageable subset of Unicode codepoints using
coverage parameters, then to fall back to UTF-8 bytes or
out-of-vocabulary tokens for unselected characters.

To address these fundamental limitations of both UTF-8
and Unicode approaches, we introduce SCRIPT-BPE, a
novel encoding scheme built on Unicode script and category

1

https://github.com/sanderland/script_bpe/


Ωa
CE    A961

书

E4    B9    A6

One bad merge can lead to
cascading partial sequences

F0    9F    A4    97

🤗

UTF-8

SCRIPT

EF    BF    A5￥

EF    BF    85ￅ

Different scripts require different number
of UTF-8 bytes per character

In UTF-8, different scripts
share the same initial bytes

7L

안                 녕                 하          ...

45EL EH 429912HS

39

51PS

L

block 
token

index 
token

EC    95    88  ED   95    98EB   85    95 

SCRIPT
encoding

204HA

A.

B. C.

k

Figure 1. A: Illustration of variable encoding length in UTF-8 encoding compared to consistent encoding length for SCRIPT encoding. B:
In UTF-8, the same initial byte sequences may be used for characters in different scripts, however SCRIPT encoding uses consistent block
tokens to represent characters from the same script block. C: Byte-based BPE can allow merges that create partial UTF-8 sequences,
which then cascade through the rest of the sequence.

properties. Our encoding uses two initial tokens to represent
each character, eliminating crosslinguistic bias due to byte
premium effects. This encoding naturally leads to a simple
rule-based pretokenization algorithm that groups characters
by script properties, offering a robust alternative to regular
expressions. Additionally, we propose a constrained BPE
merging strategy. We show that this method drastically
reduces partial character sequences in both SCRIPT- and
byte-based BPE.

2. Related Work
Pretokenization. Recent work shows that pretokenization
can have a greater impact on downstream performance than
more salient parameters like vocabulary size (Wegmann
et al., 2025). Despite this, it is a relatively under-studied area
within tokenizer research and a small number of approaches
are dominant, each with their own weaknesses.

Many pretokenizers are complex regular expressions, mostly
variants of the GPT-2 pretokenizer. Generally, they have
rules to split based on English contractions, whitespaces,
and digits. Pretokenizing English contractions like ’m (e.g.
I’m), ’s (e.g. woman’s), ’d (e.g. I’d), etc. primarily benefits
English, by providing specialized handling that preserves
word structure. These rules, however, can harm tokenization
for other languages (Arnett, 2024). For example, the follow-

ing words would be targeted by the same regular expression,
but instead of preserving word structure, it would split the
word at an unnatural point: s’mhath (‘(it’s) good’; Scottish
Gaelic), m’sit (‘all’, Mi’kmaq), n’di (‘eat’; Fulfulde), and

’dan (‘son’; Hausa).

Whitespace pretokenization is pervasive as a pretokenization
approach—even for pretokenizers that don’t rely on regu-
lar expressions. Recent work shows that removing whites-
pace pretokenization or allowing merges across whitespace
boundaries leads to improved compression, lower latency,
and higher throughput (Liu et al., 2025; Schmidt et al., 2025).
This early work questions whether whitespace-based preto-
kenization is an essential component for tokenization.

Digit pretokenization (Schmidt et al., 2024) involves split-
ting all digits into individual pretokens. The GPT regular
expression splits strings of digits into groups of up to three
digits. Single-digit tokenization is associated with better
performance in arithmetic tasks when compared to regular-
expression-based or whole-number tokenization (Liu &
Low, 2023; Dagan et al., 2024; Singh & Strouse, 2024).

Regular-expression-based pretokenizers have also been
shown to be fragile, even for English data. For instance,
Schmidt et al. (2025) show that the original GPT pretok-
enizer doesn’t account for different straight versus curly
apostrophes (e.g. isn't and isn’t, respectively) and propose a

2



more robust regular-expression-based pretokenizer to handle
these cases.

Language Parity. As illustrated in Figure 1A, the vari-
able encoding length of UTF-8 leads to byte premiums for
different languages (Arnett et al., 2024). Recent efforts have
sought to address these tokenization challenges. MYTE
(Limisiewicz et al., 2024) proposes morphology-driven byte
encodings for fairer representations, which lead to more
equitable tokenization across languages. This approach
requires morphologically annotated data, however, so is
limited in its ability to scale to new languages.

Lee et al. (2025) propose jamo-level over syllable-level tok-
enization for Korean, which offers benefits for low-resource
machine translation. Again, this approach is limited in its
language coverage, as it only works for languages that use
Hangul. However, language-specific solutions like this high-
light the benefits of using linguistically informed units for
tokenization.

Velayuthan & Sarveswaran (2025) highlight how common
pretokenizers split diacritics from their corresponding char-
acters for scripts used for Tamil, Sinhala, and Hindi. The
authors propose grapheme-level as opposed to unicode-
codepoint-level to keep characters and their diacritics to-
gether and avoid edge cases for the regular expression. This
leads to improved compression for those languages.

3. SCRIPT Encoding
Our novel encoding scheme, SCRIPT (Script Category
Representation in PreTokenization), maps each Unicode
character to a pair: a block token and an index token. This
mapping is derived from two Unicode properties:

• Unicode Script: The writing system to which a char-
acter belongs (e.g., Latin, Cyrillic, Han).

• Unicode Supercategory: We define five supercate-
gories by grouping standard Unicode general cate-
gories: Letters & Marks (LM), Punctuation & Symbols
(PS), Numbers (N), Separators (Z), and Other (C). Pre-
cise definitions and exceptions are in Appendix A.

Each unique Script-Supercategory pair defines a potential
character block. As can be seen in Table 1, some of these
blocks contain a very large number of characters. To man-
age vocabulary size, we split any Script block larger than
a predefined threshold into multiple sub-blocks. We set
this threshold to the size of the ‘Latin LM’ block. This
results in 468 block tokens (each representing a specific
script-supercategory-sub-block combination), and 1448 in-
dex tokens (identifying a character within a block).

By representing each Unicode character as a unique pair

of a block token and an index token, we both reduce the
worst-case encoding length of a character from four byte-
tokens in byte-based BPE to two tokens. At the same time,
this approach also provides more linguistically meaningful
representations.

3.1. SCRIPT pretokenization

Structured SCRIPT encoding enables a simple rule-based
pretokenization strategy, avoiding the need for complex
regular expressions. In this approach, we form initial groups
of consecutive characters that share the same Unicode script
and supercategory. These initial groups are then refined to
form the final pretokens by merging groups involving single
spaces or with an ‘Inherited’ script property. Full details of
this pretokenization algorithm are provided in Appendix B.

3.2. Constrained BPE Merges

Standard Byte Pair Encoding (BPE) greedily merges the
most frequent adjacent tokens. In our SCRIPT-BPE
scheme—which represents each character as a pair of a
block token and an index token—an unconstrained BPE
could, for instance, merge an index token i1 from one char-
acter with the block token b2 of the subsequent character.
Such cross-character merges would lead to tokens similar to
partial UTF-8 sequence tokens (Land & Bartolo, 2024) and
introduce complexities during inference, potentially requir-
ing models to learn intricate dependencies between partial
character representations, similar to the case presented in
Figure 1C.

To avoid these problematic merges, we experiment with
a constrained merge strategy. Specifically for SCRIPT-
BPE, constrained BPE merges are only allowed between
tokens that already represent one or more full characters,

Table 1. Largest character counts per Script-Supercategory block.
We split the large highlighted blocks into sub-blocks.

Script Supercat. Size

Han LM 98,687
Hangul LM 11,677
Common PS 7,195
Tangut LM 6,914
Egyptian Hieroglyphs LM 5,089
Latin LM 1,448
Arabic LM 1,253
Yi LM 1,165
Cuneiform LM 1,118
Common LM 1,049
Canadian Aboriginal LM 723
Inherited LM 655
Bamum LM 641
Common N 586
Anatolian Hieroglyphs LM 583

3



or between a single block token and a single index token
(thereby forming a complete character).

We also apply a similar technique to standard byte-level
BPE. We introduce a constraint where merges are allowed
within the byte sequence of a single character (processed
strictly left-to-right), or between sequences that each repre-
sent complete characters. It disallows combining a space
character (a full character) with only the first byte of a subse-
quent multi-byte character, which is a common early merge
in unconstrained BPE on multi-byte scripts.

4. Results
We train and evaluate tokenizers in monolingual and multi-
lingual settings. Monolingual tokenizers are trained with a
vocabulary size of 64,000 on 300 MB subsets sourced from
Chang et al. (2024). We train monolingual tokenizers for 12
languages.1 Multilingual tokenizers are trained to 256,000
merges on a 35 GB subsample of CulturaX (Nguyen et al.,
2023) to provide broad multilingual coverage. We also
create a 136 GB validation set.2

In both settings, we compare UTF-8 byte-based BPE with
SCRIPT-BPE. The byte-based tokenizers use tiktoken’s
regular expression-based pretokenizers (OpenAI, 2024). We
try both cl100k (GPT-4) and o200k (GPT-4o) variants.
For SCRIPT-BPE tokenizers, we test both our proposed
rule-based and regular expression pretokenization.

4.1. Constrained merges

As shown in Table 2, we find that constraining BPE merges
to respect character boundaries is beneficial for all encod-
ings and datasets. Not only does it eliminate tokens with
partial character sequences, but it also almost universally
improves compression.

Byte-based BPE with o200k regular expression shows a
particular outlier on the Thai dataset, with 42,831 tokens
representing a mix of full and partial characters, as a re-
sult of several early merges between common characters
and two leading UTF-8 bytes <0xE0><0xB8>, causing a
cascade of merges with partial characters. As differences
in compression are generally small, we present only the
constrained versions in all subsequent results.

4.2. Implementation and Performance

Our tokenizer training experiments are conducted using
a custom Python implementation. Although constraining
merges introduces additional boundary checks during the

1The languages in our sample are Japanese, Chinese, Thai,
Punjabi, Hindi, Korean, Russian, Arabic, Hebrew, Vietnamese,
German, and English chosen to represent a diverse range of scripts.

2Datasets linked in repository

BPE process, it also reduces the size of internal data struc-
tures used in training by limiting the search space. Table 3
presents the training time performance. For SCRIPT-based
approaches, constraining merges reduces training time com-
pared to unconstrained versions (cf. ✓vs. ×). For byte-
based tokenizers, training time increases slightly with con-
strained merges, potentially due to the more complex charac-
ter boundary checks required for UTF-8 encoding compared
to SCRIPT. In practice, for a moderately parallel setup with
16 CPUs, all tokenizers train in approximately one hour for
256,000 merges on the multilingual dataset, ensuring that
training time is not a bottleneck.

4.3. Compression

Table 4 presents compression rates for our multilingual
tokenizer across various languages, showing both initial
character encoding costs and final compression ratios after
BPE merges. Here we calculate compression as the num-
ber of tokens per character over the validation set. Choice
of pretokenization significantly influences these final com-
pression ratios, in line with findings from Wegmann et al.
(2025). Notably, for Thai, Hindi, and Punjabi, the pattern
used by ‘cl100k‘ splits words at diacritic marks, severely
worsening compression. In contrast, the SCRIPT-based pre-
tokenization generally achieves robust compression across
diverse scripts. However, it can lag behind the more com-
plex ‘o200k’ pretokenization pattern in specific cases such
as Chinese and Thai. For Chinese, this difference may be

Table 2. Results for constraining merges to form full Unicode char-
acters first (✓) versus the normal non-constrained approach (×).
Tokens/Char shows mean compression ratio on the training corpora
for the monolingual tokenizers in Tokens/Unicode character, and
#Partial Char. shows mean count of tokens with partial character
sequences.

Tokens/Char #Partial Char.

Constrained Merges: × ✓ × ✓

Bytes + cl100k regex 0.333 0.332 1678 209
Bytes + o200k regex 0.282 0.280 5193 183
SCRIPT (rule-based) 0.293 0.289 6048 0
SCRIPT + o200k regex 0.284 0.280 8062 0

Table 3. Training time in hours for the multilingual tokenizer with
256k merges with different pretokenizers, not including pretok-
enization and initialization.

Compute: 1 CPU 16 CPUs

Constrained Merges: × ✓ × ✓

Bytes + cl100k regex 5.2 6.7 1.2 1.3
Bytes + o200k regex 5.8 8.0 1.2 1.3
SCRIPT (rule-based) 4.4 4.1 1.0 0.9
SCRIPT + o200k regex 6.1 4.5 1.1 1.0

4

https://huggingface.co/datasets/uonlp/CulturaX


Table 4. We report performance of the multilingual tokenizer on its training set, and both monolingual and multilingual validation sets.
Initial tokens/character refers to the number of tokens used to encode the dataset before merges. Compression results are shown for both
UTF-8 byte encoding, and SCRIPT encoding, where ‘rule-based’ refers to the SCRIPT encoding’s novel pretokenization strategy. Lower
values are better. Values > 5% , > 10% , and > 20% worse than the best in their row are highlighted.

Init. Tokens/Char Final Tokens/Character

Bytes SCRIPT Bytes SCRIPT
Language (Script) cl100k o200k rule-based o200k

Japanese (Japanese) 2.74 2 0.5249 0.5268 0.5393 0.5267
Chinese (Han) 2.69 — 0.6244 0.6260 0.6537 0.6259
Thai (Thai) 2.68 — 0.4257 0.3160 0.3362 0.3159
Punjabi (Gurmukhi) 2.54 — 0.6053 0.4982 0.4962 0.4979
Hindi (Devanagari) 2.51 — 0.5057 0.3246 0.3233 0.3245
Korean (Hangul) 2.33 — 0.5808 0.5827 0.5817 0.5824
Russian (Cyrillic) 1.81 — 0.2314 0.2321 0.2321 0.2320
Arabic (Arabic) 1.79 — 0.2979 0.2976 0.2963 0.2975
Hebrew (Hebrew) 1.77 — 0.4146 0.4163 0.4157 0.4161
Vietnamese (Latin) 1.32 — 0.2688 0.2692 0.2687 0.2692
German (Latin) 1.02 — 0.2128 0.2133 0.2138 0.2132
English (Latin) 1.01 — 0.2152 0.2150 0.2179 0.2150

Mean monolingual 2.02 — 0.4090 0.3765 0.3812 0.3764

CulturaX Training Data 1.24 — 0.2559 0.2537 0.2587 0.2536
CulturaX Validation Data 1.23 — 0.2526 0.2509 0.2560 0.2508

attributed to mixed Chinese/Latin phrases often found in
web data (e.g. spam or advertisements) and the prevalence
of non-standard use of spaces.

The compression results for tokenizers trained on individual
monolingual datasets closely matched those observed with
the multilingual tokenizer. For completeness, we provide
these results in Appendix C.

5. Discussion and Conclusion
Our novel encoding scheme shows promising results for
more fair and robust text representation. The SCRIPT-
BPE approach, combining a novel SCRIPT encoding with
rule-based pretokenization and constrained BPE merging,
achieves competitive compression while mitigating several
common pitfalls of traditional tokenizers. Notably, the sim-
ple constraint of enforcing character boundaries during BPE
merging universally eliminated tokens representing a mix of
full and partial characters and generally improved compres-
sion across different base encodings. Given its compatibility
with all encoding approaches, we recommend its adoption,
particularly for massively multilingual tokenizers

This preliminary evaluation focused primarily on compres-
sion; however, this metric alone does not necessarily guar-
antee better downstream model performance (Schmidt et al.,
2024). For instance, not using any pretokenization will
achieve high raw compression3 but has also been shown to

3Around 12% higher on average in our experiments.

have poor downstream performance (ibid).

In future work, we aim to train language models using both
the SCRIPT and the constrained merging strategy and eval-
uate their effects on model performance. This is essential
for understanding their true impact on downstream task
performance, generalization, and fairness at scale. As our
proposed method is computationally efficient, it does not
represent a barrier to scaling these methods to training large
language models with SCRIPT-BPE. There is also room
to further refine the SCRIPT encoding and pretokenization
itself. For example, refining the handling of digits and
punctuation could help bridge performance gaps observed
with specialized regular expressions like o200k. Another
promising direction enabled by our encoding scheme is the
possibility of developing modular, script-specific tokeniz-
ers, which can be combined as needed for the intended
downstream purpose. The SCRIPT framework is also inher-
ently extensible as future additions to the Unicode standard
can be incorporated by defining new block tokens without
altering the core logic. While SCRIPT provides an alter-
native to regex-based pretokenizers, it remains compatible
with regex rules when beneficial, opening opportunities to
explore which rule combinations would yield additional
benefits.

Overall, SCRIPT-BPE provides a robust and extensible
framework for developing more robust and equitable to-
kenization systems, with significant potential for improving
multilingual language models.

5



Impact Statement
We hope this paper contributes to improved language parity
in machine learning. By reducing encoding biases against
non-Western scripts, our work may help create more equi-
table language models that better serve diverse linguistic
communities.

Acknowledgments
We thank Matthias Gallé, Felipe Cruz-Salinas, and
James Owers-Bardsley for their valuable feedback on the
manuscript.

References
Arnett, C. wHy DoNt YoU jUsT uSe ThE lLaMa

ToKeNiZeR?? Blog Post, 2024. URL https://
huggingface.co/blog/catherinearnett/
dangers-of-tokenizer-recycling.

Arnett, C., Chang, T. A., and Bergen, B. A Bit of a Prob-
lem: Measurement Disparities in Dataset Sizes across
Languages. In Melero, M., Sakti, S., and Soria, C. (eds.),
Proceedings of the 3rd Annual Meeting of the Special
Interest Group on Under-resourced Languages @ LREC-
COLING 2024, pp. 1–9, Torino, Italia, May 2024. ELRA
and ICCL. URL https://aclanthology.org/
2024.sigul-1.1/.

Chang, T. A., Arnett, C., Tu, Z., and Bergen, B. K. Gold-
fish: Monolingual language models for 350 languages.
arXiv preprint arXiv:2408.10441, 2024. URL https:
//arxiv.org/abs/2408.10441.

Dagan, G., Synnaeve, G., and Roziere, B. Getting the most
out of your tokenizer for pre-training and domain adapta-
tion. In Forty-first International Conference on Machine
Learning, 2024. URL https://openreview.net/
forum?id=ZFYBnLljtT.

Kudo, T. and Richardson, J. SentencePiece: A sim-
ple and language independent subword tokenizer and
detokenizer for neural text processing. In Blanco, E.
and Lu, W. (eds.), Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations, pp. 66–71, Brussels,
Belgium, November 2018. Association for Computa-
tional Linguistics. doi: 10.18653/v1/D18-2012. URL
https://aclanthology.org/D18-2012/.

Land, S. Pre-tokenization on punctuation in
GPT-4. Blog Post, 2024. URL https:
//tokencontributions.substack.com/
p/pre-tokenization-on-punctuation-in.

Land, S. and Bartolo, M. Fishing for Magikarp: Au-
tomatically detecting under-trained tokens in large
language models. In Al-Onaizan, Y., Bansal, M.,
and Chen, Y.-N. (eds.), Proceedings of the 2024
Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 11631–11646, Miami, Florida,
USA, November 2024. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2024.emnlp-main.
649. URL https://aclanthology.org/2024.
emnlp-main.649/.

Lee, J., Cognetta, M., Moon, S., and Okazaki, N. Jamo-level
subword tokenization in low-resource Korean machine
translation. In Ojha, A. K., Liu, C.-h., Vylomova, E.,
Pirinen, F., Washington, J., Oco, N., and Zhao, X. (eds.),
Proceedings of the Eighth Workshop on Technologies
for Machine Translation of Low-Resource Languages
(LoResMT 2025), pp. 66–80, Albuquerque, New Mex-
ico, U.S.A., May 2025. Association for Computational
Linguistics. ISBN 979-8-89176-230-5. URL https:
//aclanthology.org/2025.loresmt-1.8/.

Limisiewicz, T., Blevins, T., Gonen, H., Ahia, O., and
Zettlemoyer, L. MYTE: Morphology-driven byte en-
coding for better and fairer multilingual language mod-
eling. In Ku, L.-W., Martins, A., and Srikumar, V.
(eds.), Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pp. 15059–15076, Bangkok, Thailand,
August 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.acl-long.804. URL https:
//aclanthology.org/2024.acl-long.804/.

Liu, A., Hayase, J., Hofmann, V., Oh, S., Smith, N. A., and
Choi, Y. SuperBPE: Space travel for language models.
arXiv preprint arXiv:2503.13423, 2025. URL https:
//arxiv.org/abs/2503.13423.

Liu, T. and Low, B. K. H. Goat: Fine-tuned LLaMA out-
performs GPT-4 on arithmetic tasks. arXiv preprint
arXiv:2305.14201, 2023. URL https://arxiv.
org/abs/2305.14201.

Nguyen, T., Nguyen, C. V., Lai, V. D., Man, H., Ngo, N. T.,
Dernoncourt, F., Rossi, R. A., and Nguyen, T. H. Cul-
turaX: A cleaned, enormous, and multilingual dataset
for large language models in 167 languages, 2023. URL
https://arxiv.org/abs/2309.09400.

OpenAI. tiktoken: a fast BPE tokeniser for use with Ope-
nAI’s models., 2024. URL https://github.com/
openai/tiktoken.

Schmidt, C. W., Reddy, V., Zhang, H., Alameddine, A.,
Uzan, O., Pinter, Y., and Tanner, C. Tokenization is
more than compression. In Al-Onaizan, Y., Bansal, M.,

6

https://huggingface.co/blog/catherinearnett/dangers-of-tokenizer-recycling
https://huggingface.co/blog/catherinearnett/dangers-of-tokenizer-recycling
https://huggingface.co/blog/catherinearnett/dangers-of-tokenizer-recycling
https://aclanthology.org/2024.sigul-1.1/
https://aclanthology.org/2024.sigul-1.1/
https://arxiv.org/abs/2408.10441
https://arxiv.org/abs/2408.10441
https://openreview.net/forum?id=ZFYBnLljtT
https://openreview.net/forum?id=ZFYBnLljtT
https://aclanthology.org/D18-2012/
https://tokencontributions.substack.com/p/pre-tokenization-on-punctuation-in
https://tokencontributions.substack.com/p/pre-tokenization-on-punctuation-in
https://tokencontributions.substack.com/p/pre-tokenization-on-punctuation-in
https://aclanthology.org/2024.emnlp-main.649/
https://aclanthology.org/2024.emnlp-main.649/
https://aclanthology.org/2025.loresmt-1.8/
https://aclanthology.org/2025.loresmt-1.8/
https://aclanthology.org/2024.acl-long.804/
https://aclanthology.org/2024.acl-long.804/
https://arxiv.org/abs/2503.13423
https://arxiv.org/abs/2503.13423
https://arxiv.org/abs/2305.14201
https://arxiv.org/abs/2305.14201
https://arxiv.org/abs/2309.09400
https://github.com/openai/tiktoken
https://github.com/openai/tiktoken


and Chen, Y.-N. (eds.), Proceedings of the 2024 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pp. 678–702, Miami, Florida, USA, November
2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.emnlp-main.40. URL https://
aclanthology.org/2024.emnlp-main.40/.

Schmidt, C. W., Reddy, V., Tanner, C., and Pinter, Y. Bound-
less Byte Pair Encoding: Breaking the Pre-tokenization
Barrier. arXiv preprint arXiv:2504.00178, 2025. URL
https://arxiv.org/abs/2504.00178.

Sennrich, R., Haddow, B., and Birch, A. Neural Machine
Translation of Rare Words with Subword Units. In Erk,
K. and Smith, N. A. (eds.), Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1715–1725,
Berlin, Germany, August 2016. Association for Compu-
tational Linguistics. doi: 10.18653/v1/P16-1162. URL
https://aclanthology.org/P16-1162.

Singh, A. K. and Strouse, D. Tokenization counts: the
impact of tokenization on arithmetic in frontier llms.
arXiv preprint arXiv:2402.14903, 2024. URL https:
//arxiv.org/abs/2402.14903.

Velayuthan, M. and Sarveswaran, K. Egalitarian Language
Representation in Language Models: It All Begins with
Tokenizers. In Rambow, O., Wanner, L., Apidianaki, M.,
Al-Khalifa, H., Eugenio, B. D., and Schockaert, S. (eds.),
Proceedings of the 31st International Conference on Com-
putational Linguistics, pp. 5987–5996, Abu Dhabi, UAE,
January 2025. Association for Computational Linguis-
tics. URL https://aclanthology.org/2025.
coling-main.400/.

Wegmann, A., Nguyen, D., and Jurgens, D. Tokeniza-
tion is Sensitive to Language Variation. arXiv preprint
arXiv:2502.15343, 2025. URL https://arxiv.
org/abs/2502.15343.

7

https://aclanthology.org/2024.emnlp-main.40/
https://aclanthology.org/2024.emnlp-main.40/
https://arxiv.org/abs/2504.00178
https://aclanthology.org/P16-1162
https://arxiv.org/abs/2402.14903
https://arxiv.org/abs/2402.14903
https://aclanthology.org/2025.coling-main.400/
https://aclanthology.org/2025.coling-main.400/
https://arxiv.org/abs/2502.15343
https://arxiv.org/abs/2502.15343


A. Script and Supercategory definition
For the purpose of our pretokenization scheme, we define several supercategories for characters. This involves grouping
existing Unicode general categories and manually reassigning specific characters from their default Unicode categories
or script properties. These adjustments are made to better align character classifications with their practical usage in our
context.

The Unicode general categories for Letters (L*) and Marks (M*) are treated as a single supercategory ‘LM’. This is a natural
grouping, as marks (e.g., diacritics, accents) are typically attached to or modify letters.

The Unicode general categories for Punctuation (P*) and Symbols (S*) are combined into another supercategory ‘PS’. The
boundary between punctuation and symbols can be ambiguous, and characters from both categories often serve similar roles,
especially in source code. For example, the common programming operators -> and != consist of a character from the
Unicode Punctuation category followed by one from the Symbol category.

In addition, we manually re-assign the following characters:

• The newline (\n, U+000A) and tab (\t, U+0009) characters are re-assigned to the Separator category (Z). Unicode
classifies these as Other/Control characters for historical reasons. This change allows us to treat newlines and tabs the
same as other whitespace characters during pretokenization.

• The Katakana-Hiragana prolonged sound marks (U+30FC and U+FF70) are re-assigned to the ‘Inherited‘ script. These
marks are originally classified under the ‘Common‘ script due to their use with both Katakana and Hiragana. By
reassigning them to the ‘Inherited’ script, we allow them to be grouped with either Katakana or Hiragana characters
during pretokenization.

• The ‘Tatweel’ mark (U+0640) used in Arabic text justification is reassigned from Common to the Arabic script.

Characters in the Unassigned (Cn), Private Use Area (Co), and Surrogate (Cs) Unicode categories are excluded from
encoding and are effectively filtered out. These code points do not have a defined representation in Unicode (Cn), are
intended for custom use by software (Co), or are reserved for UTF-16 encoding mechanics (Cs). Such characters often
originate from artifacts or proprietary formatting and are not meaningful or generalizable for language modeling. To ensure
fairness, the same filtering is applied consistently to all baseline methods during evaluation.

Figure 2 shows the distribution of the block sizes after these reassignments.

B. SCRIPT-based pretokenization
Our rule-based pretokenization strategy creates pretokens with a consistent script and category. Beyond handling leading
spaces (a common practice), a few additional rules are needed to capture edge cases in Unicode. The specific steps for our
pretokenization algorithm are the following:

• Initial Script-Based Grouping: Group consecutive characters that share the same Unicode script and supercategory.
For this step, sub-blocks within larger script/supercategory combinations are ignored.

• Space Merging: If a group consists of a single space character, it may be merged with the following group. This
occurs when the following group is either an LM supercategory from scripts which use whitespace to separate words4

or a ‘Common PS’ group.

• Inherited Script Merging: If a group’s script is ‘Inherited’ (characters that depend on the preceding character, like
combining diacritics), the group is merged with the preceding group, and any following groups that share the initial
group’s script and supercategory. For example, a sequence of groups such as (Arabic LM, Inherited LM, Arabic LM,
Inherited LM, Arabic LM) will be merged into a single group.

• Hiragana-Han Merging: Additionally, sequences of Han and Hiragana characters are merged into a single group,
preventing splits within Japanese words and grammatical constructions that mix Kanji and Hiragana.

4Our current list consists of: Latin, Arabic, Devanagari, Hangul, Ethiopic, Cyrillic, Greek, Hebrew, Bengali, Syriac, Oriya, Tamil,
Telugu, Gurmukhi, Gujarati, Sinhala, Malayalam, Armenian, Kannada, Georgian

8



Figure 2. Distribution of block sizes in SCRIPT encoding, before splitting large blocks into sub-blocks.

C. Monolingual tokenizer performance
Compression performance for monolingual tokenizers on their training data (Table 5) shows similar patterns to validation
performance of the larger multilingual tokenizer on monolingual datasets shown in Table 4.

Table 5. Final compression ratios (Tokens/Unicode character after BPE merges) across languages and tokenizer types for monolingual
models. Lower compression values are better. Values > 5% , > 10% , and > 20% worse than the best in their row are highlighted.

Tokens/Character

Byte Byte SCRIPT SCRIPT
cl100k o200k rule-based o200k

Japanese 0.4196 0.4197 0.4422 0.4194
Chinese 0.5136 0.5137 0.5587 0.5134
Thai 0.3216 0.2048 0.2364 0.2047
Punjabi 0.4961 0.2394 0.2398 0.2394
Hindi 0.4835 0.2387 0.2387 0.2387
Korean 0.3945 0.3945 0.3973 0.3942
Russian 0.2115 0.2115 0.2123 0.2115
Arabic 0.2325 0.2299 0.2298 0.2299
Hebrew 0.2439 0.2426 0.2446 0.2427
Vietnamese 0.2552 0.2553 0.2553 0.2553
German 0.2007 0.2008 0.2019 0.2008
English 0.2118 0.2114 0.2145 0.2114

Mean 0.3320 0.2802 0.2893 0.2801

9


