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ABSTRACT

Algorithmic recourse is rising as a prominent technique to promote the explainabil-
ity and transparency of the predictive model in ethical machine learning. Existing
approaches to algorithmic recourse often assume an invariant predictive model;
however, this model, in reality, is usually updated temporally upon the input of new
data. Thus, a recourse that is valid respective to the present model may become
invalid for the future model. To resolve this issue, we propose a pipeline to generate
a model-agnostic recourse that is robust to model shifts. Our pipeline first estimates
a linear surrogate of the nonlinear (black-box) model using covariance-robust mini-
max probability machines (MPM); then, the recourse is generated with respect to
this robust linear surrogate. We show that the covariance-robust MPM recovers
popular regularization schemes, including `2-regularization and class-reweighting.
We also show that our covariance-robust MPM pushes the decision boundary in an
intuitive manner, which facilitates an interpretable generation of a robust recourse.
The numerical results demonstrate the usefulness and robustness of our pipeline.

1 INTRODUCTION

The recent prevalence of machine learning (ML) in supporting consequential decisions involving
humans such as loan approval (Moscato et al., 2021), job hiring (Cohen et al., 2019; Schumann et al.,
2020), and criminal justice (Brayne & Christin, 2021) urges the need of transparent ML systems
with explanations and feedback to users (Doshi-Velez & Kim, 2017; Miller, 2019). One popular
and emerging approach to providing feedback is the algorithmic recourse (Ustun et al., 2019). A
recourse suggests how the input instance should be modified to alter the outcome of a predictive
model. Consider a specific scenario in which an individual is rejected from receiving a loan by a
financial institution’s ML model. Recently, it has become a legal necessity to provide explanations
and recommendations to the individual so that they can improve their situation and obtain a loan in the
future (GDPR, Voigt & Von dem Bussche (2017)). For example, an explanation can be “increase the
income to $5000” or “reduce the debt/asset ratio to below 20%”. Leveraging the recourses, financial
institutions can assess the reliability of their ML predictive models and increase user engagement
through actionable feedback and acceptance guarantee if they fulfill the requirements.

To construct plausible and meaningful recourses, one must assess and strike a balance between
conflicting criteria. They can be: (1) validity, a recourse should effectively reverse the unfavorable
prediction of the model into a favorable one, (2) proximity, recourse should be close to the original
input instance to alleviate the efforts required, and thus to encourage the adoption of the recourse, (3)
actionability, prescribed modifications should follow causal laws of our society (Ustun et al., 2019;
Karimi et al., 2021); for example, one can not modify their race or decrease their age.

Various techniques were proposed to devise algorithmic recourses for a given predictive model,
extensive surveys are provided in (Karimi et al., 2020a; Stepin et al., 2021; Pawelczyk et al., 2021;
Verma et al., 2020). Wachter et al. (2017) introduced the definition of counterfactual explanations
and proposed a gradient-based approach to find the nearest instance that yields a favorable outcome.
Ustun et al. (2019) proposed a mixed integer programming formulation (AR) that can find recourses
for a linear classifier with a flexible design of the actionability constraints. Alternatively, Karimi
et al. (2021; 2020b) investigated the nearest recourse through the lens of minimal intervention to
take causal relationships between features into account. Recent works including Russell (2019)
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and Mothilal et al. (2020) also studied the problem of generating a menu of diverse recourses to
provide multiple possibilities that users might choose.

The aforementioned methods rely on an assumption of an invariant predictive model. Nevertheless,
machine learning models are usually re-trained or re-calibrated as new data arrive. Thus, a valid
recourse at present may become invalid in the future, leading to an exemplary case where a rejected
applicant may spend efforts to improve their income and reapply for a loan, but then is rejected
(again) simply because the ML model has been updated. This leads to a potential inefficiency due to
the waste of resources and loss of trust in the recommendation and in the ML system (Rudin, 2019).

Studying this phenomenon, Rawal et al. (2020) described several types of model shifts related to
the correction, temporal, and geospatial shifts from data. They pointed out that the recourses, even
constructed with state-of-the-art algorithms, are vulnerable to distributional shifts in the model’s
parameters. Pawelczyk et al. (2020) study counterfactual explanations under predictive multiplicity
and its relation to the difference in the way two classifiers treat predicted individuals. Black et al.
(2021) then show that the constructed recourses might be invalid even for the model retrained with
different initial conditions such as weight initialization and leave-one-out variations in data. Recently,
Upadhyay et al. (2021) leveraged robust optimization to propose ROAR - a framework for generating
recourses that are robust to shifts in the predictive model, which is assumed to be a linear classifier.

Despite the promising results, existing methods are often restricted to the linear classifiers setting to
be able to introduce actionability or robustness (Ustun et al., 2019; Russell, 2019; Upadhyay et al.,
2021; Rawal et al., 2020). For non-linear classifiers, a linear surrogate method such as LIME (Ribeiro
et al., 2016) is used to approximate the local decision boundary of the black-box classifiers; the
recourse is then generated respectively to the (linear) surrogate model instead of the nonlinear model.
LIME is well-known for explaining predictions of black-box ML models by fitting a reweighted linear
regression model to the perturbed samples around an input instance. In the recourse literature, LIME
is the most common linear surrogate for the local decision boundary of the black-box models (Ustun
et al., 2019; Upadhyay et al., 2021).

Unfortunately, the LIME surrogate has several limitations. Firstly, Laugel et al. (2018) and White &
Garcez (2019) showed that LIME may not be faithful to the underlying models because LIME might
be influenced by input features at a global scale rather than a local scale. Secondly, explanations
generated by perturbation-based methods are also well-known to be sensitive to the original input and
the synthesized perturbations (Alvarez-Melis & Jaakkola, 2018; Ghorbani et al., 2019; Slack et al.,
2020; 2021; Agarwal et al., 2021; Laugel et al., 2018).

Several works have been proposed to overcome these issues. Laugel et al. (2018) and Vlassopoulos
et al. (2020) proposed alternative sampling procedures that generate sample instances in the neigh-
borhood of the closest counterfactual to fit a local surrogate. White & Garcez (2019) integrated
counterfactual explanation to local surrogate models to introduce a novel fidelity measure of an ex-
planation. Later, Garreau & von Luxburg (2020) and Agarwal et al. (2021) analyzed theoretically the
stability1 of LIME, especially in the low sampling size regime. Zhao et al. (2021) leveraged Bayesian
reasoning to improve the consistency in repeated explanations of a single prediction. Nevertheless,
the impact and effectiveness of these surrogates on the recourse generation are still unknown.

Contributions. We revisit the recourse generation scheme through surrogate models. We propose a
novel model-agnostic pipeline that facilitates the generation of robust and actionable recourses. The
core innovation in our pipeline is the use of the covariance-robust minimax probability machines
(MPM) as a linear surrogate of the nonlinear black-box ML model. Additionally, we contribute

• to the field of MPM and robust classifier: We propose and analyze in detail the covariance-robust
MPMs in which the set of possible perturbations of the covariance matrices are prescribed using
distances on the space of positive semidefinite matrices. Motivated by the statistical distances
between Gaussian distributions, we show that the covariance-robustness induces and connects to
two prominent regularization schemes of the nominal MPM:
– if the distance is motivated by the Bures distance, we recover the `2-regularization,
– if the distance is motivated by the Fisher-Rao distance, we recover class reweighting schemes.
1Throughout, “robustness” is used in the algorithmic recourse setting with respect to the model shifts (Rawal

et al., 2020). “Robustness” is also used to indicate the sensitivity of LIME to the sampling distribution. To avoid
confusion, in what follows, we use “stability” to refer to the aforementioned sensitivity of LIME.
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Figure 1: The sampler synthesizes new instances around x0 and queries the predicted labels from
the classifier f . The moment information (µ̂y, Σ̂y) estimated from the synthetic psedo-labeled data
(represented by triangles and ellipsoids) serves as inputs for the Covariance-robust MPM. The MPM
surrogate θϕ (red hyperplane) is the target classifier used to generate recourses (red circle).

While prior works showed that distributionally robust optimization (DRO) with optimal transport
distance recovers norm regularization (Shafieezadeh-Abadeh et al., 2019b) and f -divergence DRO
leads to reweighting (Duchi & Namkoong, 2019), this paper extends the connections to the MPMs.

• to the field of robust algorithmic recourse: We propose an intuitive and interpretable approach
to generate robust recourse. We show that, by calibrating the radii of the ambiguity sets in a
proper manner, the covariance-robust MPM shifts the separation hyperplane towards the favorable
class. As a consequence, our recourse exhibits robustness to model shifts and it is also lenient to
incorporate mixed-integer constraints to promote actionability.

This paper unfolds as follows. In Section 2, we delineate our explanation framework using MPM.
Section 3 dives deeper into the MPM problem and its robustification. Section 4-5 construct two
types of covariance-robust MPM using the Bures and Fisher-Rao distance on the space of covariance
matrices. In Section 6, we demonstrate empirically that the covariance-robust MPM provides a
competitive approximation of the local decision boundary, and improves the robustness of the
recourse subject to model shifts. All proofs are relegated to the appendix.

2 RECOURSE GENERATION FRAMEWORK

Throughout this paper, we assume that the covariate space isX = Rd and we have a binary label space
Y = {−1,+1}. Without any loss of generality, we assume that label −1 encodes the unfavorable
decision, while +1 encodes the favorable one. Given a specific classifier and an input x0 with an
unfavorable predicted outcome, the goal of this paper is to find a recourse recommendation for x0

that has a high probability of being classified into a favorable group, subject to possible shifts in the
parameters underlying the classifier. Such recourse is termed a robust recourse. Our robust recourse
generator consists of three components (see Figure 1 for a schematic view):

(i) a local sampler: we use a similar procedure as in Vlassopoulos et al. (2020) and Laugel et al.
(2018). Given an instance x0, we choose k nearest counterfactuals x1, . . . , xk from the training
data that have the opposite label to x0. For each xi, we perform a line search to find a point xb,i
that is on the decision boundary and the line segment between x0 and xi. Among xb,i, we choose
the nearest point xb to x0 and sample uniformly in an `2-neighborhood with radius rp around xb.
We then query the black-box classifier to obtain the predicted labels of the synthetic samples.

(ii) a linear surrogate using (covariance-robust) MPM: We use the synthetic samples to estimate the
moment information (µ̂y, Σ̂y) of the covariate conditional on each predicted class y. We then
train a covariance-robust MPM parametrized by θϕ to approximate the local decision boundary of
the ML model.

(iii) a recourse search: Basically, we can apply any existing recourse search for linear models on top
of the linear surrogate θϕ dictated by the covariance-robust MPMs to find a robust recourse. In
this paper, we use a simple projection onto the hyperplane prescribed by θϕ for simplicity and
AR (Ustun et al., 2019), which is a MIP-based framework, to promote actionable recourses.

Center to the success of our pipeline is the possibility of shifting the MPM classification hyperplane
toward the region of the favorable class, which induces robust recourse with respect to model shifts
in a geometrically-intuitive manner (see Remark 4.6 for a detailed discussion). It is imperative to
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note a clear distinction between our pipeline and the existing method of ROAR (Upadhyay et al.,
2021): ROAR uses a non-robust surrogate in Step (ii) and then formulates a min-max optimization
problem in Step (iii) for recourse search, whilst our pipeline uses a robust surrogate in Step (ii) and
then employs a simple recourse search in Step (iii). Note that mixed-integer formulations can be
injected in Step (iii) to generate more realistic robust recourses in our pipeline. On the contrary,
mixed-integer constraints are not easy to be integrated into the min-max formulation of ROAR.

Subsequently, Sections 3-5 describe in detail different methods to build robust surrogates in Step (ii).
The application of recourse research in Step (iii) is provided in the experiment section (Section 6.2).

3 (COVARIANCE-ROBUST) MPM

Figure 2: An intuitive explanation of the ro-
bustification mechanism. From left to right:
As the radius ρ−1 increases, the worst-case
covariance matrix of the class −1 is inflated
and shifts the MPM boundary towards the fa-
vorable class. The projection of the input x0

onto the hyperplane will have a tendency to
lie deeper into the favorable region and may
become more robust to model shifts.

MPM is a binary classification framework pioneered
by Lanckriet et al. (2001) and extended to Quadratic
MPM in (Lanckriet et al., 2003). For each class
y ∈ Y , MPM makes no assumption on the specific
parametric form of the (conditional) distribution P̂y
of X|Y = y. Instead, MPM assumes that we can
identify P̂y only up to the first two moments, i.e., it
assumes that P̂y has mean vector µ̂y ∈ Rd and co-
variance matrix Σ̂y ∈ Sd+, denoted P̂y ∼ (µ̂y, Σ̂y).
These moments can be estimated from the samples
synthesized from the boundary sampler. The goal
of MPM is to find a (non-trivial) linear classifier
that minimizes the maximum misclassification rate
among classes. To this end, we consider the family of
linear classifiers parametrized by θ = (w, b) ∈ Rd+1,
w 6= 0 with classification rule

Cθ(x) = sign(w>x− b),
where (w, b) is the slope and intercept. The MPM solves the min-max optimization problem

min
θ∈Θ

max
y∈Y

max
P̂y∼(µ̂y,Σ̂y)

P̂y(Cθ(X) 6= y), (1)

where we define the feasible set Θ , {θ = (w, b) ∈ Rd+1 : w 6= 0}. Notice that the constraints
w 6= 0 eliminate trivial solutions to the classification problem.

To derive the MPM, we define the set of feasible slopesW =
{
w ∈ Rd\{0} :

∑
y∈Y yw

>µ̂y = 1
}

,

which is a hyperplane in Rd. The main instrument for solving (1) is the following result from (Lanck-
riet et al., 2001, §2) which provides the form of its optimal solution.
Lemma 3.1 (Optimal solution). Let ŵ be an optimal solution to the second-order cone program

min
w∈W

∑
y∈Y

√
w>Σ̂yw, (2)

then θ̂ = (ŵ, b̂) solves the MPM problem (1), where κ̂ =
(∑

y∈Y

√
ŵ>Σ̂yŵ

)−1
, and b̂ = ŵ>µ̂+1−

κ̂

√
ŵ>Σ̂+1ŵ.

In this paper, we refer to the second-order cone program (2) as the nominal MPM problem, because
the MPM is fully determined by the solution to (2). We next discuss the covariance-robust MPM.

3.1 QUADRATIC MPM

In a practical setting, it is likely that the covariance matrices Σ̂y are misspecified, for example, due to
low sample size, statistical estimation error, or corrupted data. To hedge against these mismatches,
Lanckriet et al. (2003) proposed to add another layer of robustness by allowing the mean vectors and
the covariance matrices of the conditional distributions to be chosen (adversarially) in a prescribed set,
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which we call the ambiguity set. They showed that perturbing the mean vectors does not change the
optimal classifier. In this paper, we, therefore, perturb only the covariance matrices. More specifically,
we allow the conditional distribution Py to be in the ambiguity set

Uϕy (P̂y) = {Py : Py ∼ (µ̂y,Σy), ϕ(Σy ‖ Σ̂y) ≤ ρy},
where ϕ is a measure of dissimilarity between covariance matrices. The distributionally robust
minimax probability machine is formulated as

min
θ∈Θ

max
y∈Y

max
Py∈Uϕ

y (P̂y)
Py(Cθ(X) 6= y). (3)

Previously, Lanckriet et al. (2003) considered the robust MPM with moment uncertainty, in which
the covariance matrix is perturbed using the quadratic divergence.

Definition 3.2 (Quadratic divergence). Given two positive semidefinite matrices Σ, Σ̂ ∈ Sd+, the
quadratic divergence between them is Q(Σ ‖ Σ̂) = Tr

[
(Σ− Σ̂)2

]
.

The divergence Q is the squared Frobenius norm of Σ − Σ̂; thus Q is non-negative and vanishes
to zero if and only if Σ = Σ̂, so it is a divergence on Sd+. The Quadratic MPM has the below
form (Lanckriet et al., 2003).
Theorem 3.3 (Quadratic MPM). Suppose that ϕ ≡ Q. Let wQ be a solution to the problem

min
w∈W

∑
y∈Y

√
w>(Σ̂y +

√
ρyI)w. (4)

Then θQ = (wQ, bQ) solves the distributionally robust MPM problem (3), with

κQ =

(∑
y∈Y

√
(wQ)>(Σ̂y +

√
ρyI)wQ

)−1

, bQ = (wQ)>µ̂+1 − κQ
√

(wQ)>(Σ̂+1 +
√
ρ+1I)wQ.

The Quadratic MPM can be considered as a regularization of the nominal problem (2): each matrix
Σ̂y is added with a diagonal matrix √ρyI , making the matrix better conditioned. This is equivalently
known as inverse regularization, which ensures invertibility when Σ̂y is low-rank and ρy > 0.

3.2 COVARIANCE-ROBUST MPM

While Lanckriet et al. (2003) focused only on the quadratic divergence, their results can be generalized
to the covariance-robust MPM with a general divergence ϕ. For any y ∈ Y , define τy : Rd → R as

τϕy (w) , max
Σy∈Sd+:ϕ(Σy‖Σ̂y)≤ρy

√
w>Σyw. (5)

We are now ready to give a generalized reformulation of problem (3).
Proposition 3.4 (Covariance-robust MPM). Let wϕ be the optimal solution to the problem

min
w∈W

∑
y∈Y

τϕy (w),

then θϕ = (wϕ, bϕ) solves the distributionally robust MPM problem (3), where

κϕ =
(∑

y∈Y
τϕy (wϕ)

)−1
, and bϕ = (wϕ)>µ̂+1 − κϕτϕ+1(wϕ).

3.3 EQUIVALENCE UNDER GAUSSIAN ASSUMPTIONS

While the quadratic divergence Q in Definition 3.2 is attractive for its tractability, it is not statistically
meaningful. More specifically, it does not coincide with any distance between probability distributions
with the corresponding covariance information. In this paper, we consider discrepancy measures
ϕ that arise as a statistical distance between Gaussian distributions. To this goal, we first need to
show that the covariance-robust MPM is invariant with the Gaussian assumption. Define a parametric
ambiguity set constructed on the space of Gaussian distribution of the form

UNy (P̂y) =
{
Py ∈ P(X ) : Py ∼ N (µ̂y,Σy), ϕ(Σy ‖ Σ̂y) ≤ ρy

}
,

wherein any distribution is Gaussian. Consider the Gaussian distributionally robust MPM problem
min
θ

max
y∈Y

max
Py∈UNy (P̂y)

Py(Cθ(X) 6= y). (6)
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Proposition 3.5 (Gaussian equivalence). The optimizer θϕ = (wϕ, bϕ) in Proposition 3.4 also solves
the Gaussian parametric covariance-robust MPM problem (6).

Proposition 3.5 justifies the use of divergences induced by a distance between normal distributions.
We study several constructions of the covariance-robust MPM in the subsequent sections.

4 BURES MPM

We first explore the case where ϕ is the Bures divergence whose definition is as follows.

Definition 4.1 (Bures divergence). Given two positive semi-definite matrices Σ, Σ̂ ∈ Sd+, the Bures
divergence between them is B(Σ ‖ Σ̂) = Tr

[
Σ + Σ̂− 2(Σ̂

1
2 ΣΣ̂

1
2 )

1
2

]
.

It can be shown that B is symmetric and non-negative, and it vanishes to zero if and only if Σ = Σ̂.
As such,B is a divergence on the space of positive semidefinite matrices. Moreover,B also equals the
squared type-2 Wasserstein distance between two Gaussian distributions with the same mean vector
and covariance matrices Σ and Σ̂ (Olkin & Pukelsheim, 1982; Givens & Shortt, 1984; Gelbrich,
1990). Next, we assert the form of the Bures MPM.
Theorem 4.2 (Bures MPM). Suppose that ϕ ≡ B. Let wB be the solution of the following problem

min
w∈W

∑
y∈Y

√
w>Σ̂yw +

(∑
y∈Y

ρy
)
‖w‖2. (7)

Then θB = (wB, bB) is the optimal solution of the distributionally robust MPM problem (3), where

κB =

(∑
y∈Y

√
(wB)>Σ̂ywB +

(∑
y∈Y

ρy
)
‖wB‖2

)−1

, and

bB = (wB)>µ̂+1 − κB(

√
(wB)>Σ̂+1wB + ρ+1‖wB‖2).

Theorem 4.2 unveils a fundamental connection between robustness and regularization: if we construct
the ambiguity sets for the covariance matrices using the Bures divergence, the resulting optimization
problem (7) is an l2-regularization of the nominal problem (2). This connection aligns with previous
observations highlighting the equivalence between regularization schemes and optimal transport
robustness (Shafieezadeh-Abadeh et al., 2019a; Blanchet et al., 2019).

To prove Theorem 4.2, we provide a result that asserts the analytical form of τBy (w).

Proposition 4.3 (Bures divergence). If ϕ ≡ B, then τBy (w) = ρy‖w‖2 +
√
w>Σ̂yw for all y ∈ Y .

The proof of Theorem 4.2 follows by combining Propositions 3.4 and 4.3.

Figure 3: A 2D example of
the Bures MPM hyperplanes
with fixed ρ+1 = 0 and ρ−1 =
0.01 (red) and ρ−1 = 10
(green). The green line is
pushed towards the favorable
region (predicted as +1).

Next, we study the asymptotic form of the Bures MPM as the radii
of the ambiguity sets grow. Note that problem (7) depends only
on the sum of the radii, but not on the individual values of each
radius. Let ρ =

∑
y∈Y ρy be their sum, it suffices to study when ρ

grows to infinity. To this end, denoted by wBρ the optimal solution of
problem (7) parametrized by ρ. The next result provides the analysis
of the asymptotic value of wBρ as ρ→∞.
Proposition 4.4 (Bures asymptotic hyperplane). Fix y ∈ Y , let −y
be its opposite class and suppose that ρ−y remains constant. Let
wBρy be the optimal solution of (7) parametrized by ρy . As ρy →∞,

wBρy → wB∞ ,
(∑

y∈Y
yµ̂y

)/
‖
∑

y∈Y
yµ̂y‖22.

Notice that as ρy →∞, κBτBy (wBρy )→ 1. Thus, bB∞ = (wB∞)>µ̂y−
y for any y ∈ Y . The asymptotic hyperplane defined by wB∞ is thus
characterized by the linear equation wB∞x− wB∞µ̂y + y = 0, which
identifies a hyperplane passing through µ̂−y as

∑
y∈Y yw

>µy = 1. Moreover, we note that the
asymptotic hyperplane does not depend on the covariance matrices.
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Remark 4.5 (Quadratic asymptotic hyperplane). It is provable that the solution of problem (4)
converges to wB∞ as ρ =

∑
y ρy tends to infinity. Thus, Quadratic MPM (4) and Bures MPM (7) are

asymptotically equivalent even though they induce different regularizations of the nominal MPM (2).
Remark 4.6 (Geometric intuition for robust recourse). Figure 3 visualizes the Bures MPM hyper-
planes by varying the radii. Notice that the hyperplane drifts toward the favorable (+1) class as
the uncertainty of the unfavorable (-1) covariance matrix increases. Thus, the recourse generated
w.r.t. the green hyperplane is more robust compared to that generated w.r.t. the red one. By calibrating
the radii, we shift the hyperplane and obtain robust recourses at different robustness-cost trade-offs.

5 FISHER-RAO MPM

We now explore the case where ϕ is the Fisher-Rao distance which is defined as follows.

Definition 5.1 (Fisher-Rao distance). Given two positive definite matrices Σ, Σ̂ ∈ Sd++, the Fisher-
Rao distance between them is F(Σ, Σ̂) = ‖ log(Σ̂−

1
2 ΣΣ̂−

1
2 )‖2, where log( · ) is the matrix logarithm.

The Fisher-Rao distance enjoys many nice properties. In particular, it is invariant to inversion
and congruence, i.e., for any Σ, Σ̂ ∈ Sd++ and invertible A ∈ Rd×d, F(Σ, Σ̂) = F(Σ−1, Σ̂−1) =

F(AΣA>, AΣ̂A>). Such invariances are especially statistically meaningful as it implies that the
results remain unchanged if we reparametrize the problem with an inverse covariance matrix (instead
of the covariance matrix) or apply a change of basis to the data space X . It is shown that F is the
unique Riemannian distance (up to scaling) on the cone Sd++ with such invariances (Savage, 1982).
Next, we assert the form of the Fisher-Rao MPM.
Theorem 5.2 (Fisher-Rao MPM). Suppose that ϕ ≡ F. Let wF be the solution of the problem

min
w∈W

∑
y∈Y

exp
(ρy

2

)√
w>Σ̂yw. (8)

Then θF = (wF, bF) is the optimal solution of the distributionally robust MPM problem (3), where

κF=
(∑
y∈Y

exp
(ρy

2

)√
(wF)>Σ̂ywF

)−1
, and bF=(wF)>µ̂+1 − κF exp

(ρ+1

2

)√
(wF)>Σ̂+1wF.

Theorem 5.2 divulges another foundational connection between robustness and regularization: if we
construct the ambiguity sets for the covariance matrices using the Fisher-Rao distance, the resulting
optimization problem (8) is a reweighted version of the nominal problem (2). Each term (w>Σ̂yw)

1
2

is assigned a weight exp(ρy/2), which is proportional to the radius ρy . This connection aligns with
previous observations highlighting the equivalence between reweighting schemes and distributional
robustness (Ben-Tal et al., 2013; Bayraksan & Love, 2015; Namkoong & Duchi, 2017; Hashimoto
et al., 2018). To prove Theorem 5.2, we derive an analytical expression of τFy (w).

Proposition 5.3 (Fisher-Rao distance). If ϕ ≡ F, then τFy (w) = exp
(ρy

2

)
(w>Σ̂w)

1
2 for all y ∈ Y .

The proof of Theorem 5.2 follows by combining the results from Proposition 3.4 and Proposition 5.3.
Next, we study the asymptotic form of the Fisher-Rao MPM.
Proposition 5.4 (Fisher-Rao asymptotic hyperplane). Fix y ∈ Y , let −y be its opposite class and
suppose that ρ−y remains constant. Let wFρy be the optimal solution of (8) parametrized by ρy. Let

a ,
∑
y∈Y yµ̂y , then as ρy →∞, wFρy → wF∞,y , (a>Σ̂−1

y a)−1Σ̂−1
y a.

Contrary to the Bures MPM, the asymptotic hyperplane of Fisher-Rao MPM depends explicitly on
the covariance matrix Σ̂y . The boundary prescribed by the Fisher-Rao MPM can be shifted through
an appropriate calibration of the radii ρy . Thus, Fisher-Rao MPM can generate a robust algorithmic
recourse in a geometrically-intuitive manner.

6 NUMERICAL EXPERIMENTS

We conduct comprehensive experiments to highlight the performance of our models. We first compare
the fidelity and stability of our surrogates with LIME. We then compare the quality of our recourses
against two popular baselines: ROAR (Upadhyay et al., 2021) and AR (Ustun et al., 2019).
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Classifier. We use three-layer MLP with 20, 50, 20 nodes and ReLU activation functions in each
consecutive layer. We use a sigmoid function in the last layer to produce probabilities.

Dataset. We evaluate our framework using popular real-world datasets for algorithmic recourse:
German Credit (Dua & Graff, 2017; Groemping, 2019), Small Bussiness Administration (SBA) (Li
et al., 2018), and Student performance (Cortez & Silva, 2008). Each dataset contains two sets of data
(the present data - D1 and the shifted data D2). The shifted dataset D2 could capture the correction
shift (German credit), the temporal shift (SBA), or the geospatial shift (Student). For each dataset,
we use 80% of the instances in the present data D1 to train an underlying predictive model and the
remaining instances are used to generate and evaluate recourses. The shifted data D2 is used to
train future classifiers in Section 6.2. The main text contains the results for the German and Student
datasets. Further results, including the SBA and the synthetic data, are provided in Appendix A.

6.1 FIDELITY AND STABILITY OF THE SURROGATE MODELS

We evaluate the performance of different surrogate models with respect to the current classifier.
We compare our methods: QUAD-MPM in (3.3), the BW-MPM in (4.2) and the FR-MPM in (5.2)
against the popular linear surrogate LIME (Ribeiro et al., 2016) under the following metrics:
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Figure 4: Benchmarks of fidelity and stability on
the German and Student dataset. Higher local fi-
delity and lower stability are better.

Stability. We use the procedure in Agarwal
et al. (2021) to measure the stability of the surro-
gate models with respect to small perturbations
in the input instance. For a given instance x,
we draw a set Ux of 10 neighbors of x from
N (x, 0.001I) independently. We use the above-
mentioned methods to find the linear surrogate
θx′ = (wx′ , bx′) for each x′ ∈ Ux. We report
the maximum distance of the explanations of x′
to that of x; precisely, the stability formula is

Stability(wx) = maxx′∈Ux ‖wx − wx′‖2.

Fidelity. We use the LocalFid criterion as
in Laugel et al. (2018) to measure the fidelity of
a local surrogate model. For a given instance x,
we draw a set Vx of 1000 instances uniformly
from an l2-ball of radius rfid centered on x. The
local fidelity of the surrogate θx is measured as:

LocalFid(θx)= 1
|Vx|

∑
x′∈Vx ‖f(x′)− Cθx(x′)‖2,

where f( · ) is the original classifier and Cθ( · ) is the linear surrogate classifier. Basically, LocalFid
measures the fraction of instances where the output class of f and Cθx agree. Here, we set rfid to
10% of the maximum distance between instances in the training data. Note that Vx is for evaluation
only and independent from the perturbation samples used to train the local surrogate.

To generate the MPM’s surrogates, we choose 10 nearest counterfactuals of x0 in training data to find
xb. We set the perturbation radius rp to 5% of the maximum distance between instances in the training
data and set ρ+1 = 0, ρ−1 = 1.0. For LIME, we use the default parameters recommended in the
LIME source code and return θ = (w, b−0.5) as the LIME’s surrogate, similar to Laugel et al. (2018).
We vary the number of perturbation samples in a range of [500, 10000] to measure the fidelity and
sensitivity of constructed surrogates under low sampling sizes. The results on German and Student
datasets are shown in Figure 4. The results show the superiority of MPM’s surrogates compared
to LIME in both local fidelity and stability metrics. Meanwhile, FR-MPM provides higher-fidelity
surrogates compared to QUAD-MPM and BW-MPM.

6.2 ROBUSTNESS OF RECOURSES

We now study the robustness to model shifts of recourses and its trade-off against the recourse cost.

Metrics. We use an `1-distance as the cost function. We define the current validity as the validity of
the generated recourses with respect to the given classifier. To measure the validity of recourses under
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the model shifts, we sample 80% instances of the shifted data D2 100 times to train 100 ‘future’ MLP
classifiers. We then report the future validity of recourse as the fraction of the future classifiers with
respect to which the recourse is valid.

Table 1: Performance of competing algorithms
on real datasets. For the current and future valid-
ity, higher is better. For the cost, lower is better.
Bold indicates the best performance.

Method German credit

Cost Cur Validity Fut Validity

Wachter 0.42 ± 0.02 1.00 ± 0.00 0.52 ± 0.03
LIME-PROJ 0.45 ± 0.10 0.35 ± 0.11 0.51 ± 0.08
LIME-ROAR 1.09 ± 0.19 0.66 ± 0.15 0.64 ± 0.08
CLIME-ROAR 1.40 ± 0.45 0.76 ± 0.17 0.72 ± 0.11
LIMELS-ROAR 1.29 ± 0.07 0.88 ± 0.03 0.79 ± 0.02
QUAD-MPM-PROJ 0.90 ± 0.02 0.89 ± 0.05 0.76 ± 0.03
BW-MPM-PROJ 1.03 ± 0.02 0.93 ± 0.04 0.78 ± 0.01
FR-MPM-PROJ 1.01 ± 0.02 0.94 ± 0.03 0.78 ± 0.01

Baselines. The experiment in Section 6.1 suggests
that the Fisher-Rao model can be used to represent
the class of covariance-robust MPM. We use FR-
MPM as the linear surrogate θF = (wF, bF) and a
simple projection to generate recourse by finding
xr = arg min{‖x− x0‖1 : x>wF + bF ≥ 0}.
We compare the above method, namely FR-
MPM-PROJ, against strong baselines, including
Wachter (Wachter et al., 2017) and ROAR (Upad-
hyay et al., 2021) using LIME (Ribeiro et al.,
2016), CLIME (Agarwal et al., 2021), and
LIMELS (Laugel et al., 2018)2 as surrogates.
Comparisons with ROAR using the vanilla MPM
and SVM surrogates are in Appendix A.2.
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Figure 5: Pareto frontier of the cost-validity
trade-off on the German and Student datasets.

Cost-validity trade-off. We fix the number of
perturbation samples to 1000 and vary the ambi-
guity size (ρ+1 = 0, ρ−1 ∈ [0, 10] for FR-MPM-
PROJ and δmax ∈ [0, 0.2] for the uncertainty size
of ROAR). We then plot the Pareto frontiers of
the cost-validity trade-off in Figure 5. Generally,
increasing the ambiguity size will increase both
the current and future validity of recourses, but
induces a sacrifice in the cost. This result is consis-
tent with the analysis in Rawal et al. (2020). How-
ever, the frontiers of FR-MPM-PROJ dominate
the frontiers of LIME-ROAR, CLIME-ROAR, and
LIMELS-ROAR. Note that we use CARLA’s im-
plementation with default parameters for Wachter
and its higher cost compared to the linear surro-
gate’s methods on the Student dataset is consistent
with results in Upadhyay et al. (2021) and Pawelczyk et al. (2021). Table 1 shows the performance
of FR-MPM-PROJ at radii ρ+1 = 0, ρ−1 = 10 and of ROAR-related methods at uncertainty size
δmax = 0.2. Here, the FR-MPM-PROJ has similar future validity compared to LIMELS-ROAR, but
at a lower cost and higher current validity. Further results and discussion are in Appendix A.2.

Table 2: Performance of AR using different local
surrogate models.

Method German credit

Cost Cur Validity Fut Validity

LIME-AR 0.44 ± 0.08 0.15 ± 0.05 0.40 ± 0.07
CLIME-AR 0.73 ± 0.53 0.27 ± 0.12 0.45 ± 0.10
LIMELS-AR 0.36 ± 0.11 0.24 ± 0.09 0.44 ± 0.08
SVM-AR 0.39 ± 0.10 0.21 ± 0.08 0.42 ± 0.08
MPM-AR 0.29 ± 0.06 0.19 ± 0.07 0.42 ± 0.06
QUAD-MPM-AR 1.25 ± 0.09 0.77 ± 0.05 0.73 ± 0.03
BW-MPM-AR 1.86 ± 0.08 0.79 ± 0.03 0.74 ± 0.03
FR-MPM-AR 1.92 ± 0.10 0.80 ± 0.05 0.74 ± 0.03

Actionability. By introducing robustness into
the linear surrogate model, our method can use
AR (Ustun et al., 2019) as a recourse search mech-
anism to promote flexible actionability constraints.
In Table 2, we compare the AR performance us-
ing different surrogate models (LIME, CLIME,
LIMELS, SVM, MPMs). We consider the re-
course under some actionability constraints such
as immutable race, gender, or non-decrease age
(see Appendix A.1 for more details on the action-
ability constraints). The result shows that AR
using FR-MPM as the linear surrogate increases both the current and future validity substantially
compared to other surrogates. The results for other datasets are presented in Appendix A.2

2LIMELS uses the same boundary sampling algorithm as the FR-MPM but trains a ridge regression instead.

9



Under review as a conference paper at ICLR 2023

REPRODUCIBILITY STATEMENT

In order to foster reproducibility, we have released all source code and scripts used to replicate our
experimental results at https://anonymous.4open.science/r/mpm-recourse. The
repository includes source code, datasets, configurations, and instructions; thus one could reproduce
our results with several commands.

We use the original authors’ implementations of for LIME3 (Ribeiro et al., 2016) and AR4 (Ustun
et al., 2019). We use a well-known CARLA’s implementation5 for Wachter (Wachter et al., 2017).
Since we cannot find the open-source code for CLIME (Agarwal et al., 2021), LIMELS (Laugel et al.,
2018), and ROAR (Upadhyay et al., 2021), we implement according to their papers. CLIME and
LIMELS are adapted from LIME’s source code while ROAR is adapted from CARLA’s source code
for Wachter.

The hyperparameter configurations for our methods and other baseline are clearly stated in Section A,
Appendix A.1 and Appendix A.2 and also stored in the repository. The surrogates sharing the same
local sampler will be ensured to have the same random seed, therefore, have the same synthesized
samples. The hyperparameters that affect baselines’ performance such as λ and the probabilistic
threshold of Wachter and ROAR will also be studied in Appendix A.2.

The remaining proofs and theoretical claims are provided in Appendix B.
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A EXPERIMENTS

A.1 EXPERIMENTAL DETAILS

Classifier. We use a three-layer MLP with 20, 50, and 20 nodes and a ReLU activation in each
consecutive layer. We use the sigmoid function in the last layer to produce probabilities. To train this
classifier, we use the binary cross-entropy, solved using the Adam optimizer and 1000 epochs.

Datasets. We provide more details about synthetic and real-world datasets. For synthetic data,
we generate 2-dimensional data by sampling instances uniformly in a rectangle x = (x1, x2) ∈
[−2, 4]× [−2, 7]. Each sample is labeled using the following function:

f(x) =

{
1 if x2 ≥ 1 + x1 + 2x2

1 + x3
1 − x4

1 + ε,
0 otherwise,

where ε is a random noise. We generate a present data set D1 with ε = 0 and a shifted data set
D2 with ε ∼ N (0, 1). The decision boundary of the MLP classifier for current synthetic data is
illustrated in Figure 6.

Figure 6: An illustration of MLP’s decision boundary for the synthetic data.

The detail of three real-world datasets are listed below:

i German Credit (Dua & Graff, 2017). The dataset contains the information (e.g. age, gender,
financial status,...) of 1000 customers who took a loan from a bank. The classification task is
to determine the risk (good or bad) of an individual. There is another version of this dataset
regarding corrections of coding error (Groemping, 2019). We use the corrected version of this
dataset as shifted data to capture the correction shift. The features we used in this dataset include
‘duration’, ‘amount’, ‘personal status sex’, and ‘age’. When considering actionability constraints
(Section 6.2), we set ‘personal status sex’ as immutable and ‘age’ to be non-decrease.

ii Small Bussiness Administration (SBA) (Li et al., 2018). This data includes 2,102 observations
with historical data of small business loan approvals from 1987 to 2014. We divide this dataset
into two datasets (one is instances from 1989 - 2006 and one is instances from 2006 - 2014) to
capture temporal shifts. We use the following features: selected, ‘Term’, ‘NoEmp’, ‘CreateJob’,
‘RetainedJob’, ‘UrbanRural’, ‘ChgOffPrinGr’, ‘GrAppv’, ‘SBA Appv’, ‘New’, ‘RealEstate’,
‘Portion’, ‘Recession’. When considering actionability constraints, we set ‘UrbanRural’ as
immutable.

iii Student performance (Cortez & Silva, 2008). This data includes the performance records of 649
students in two schools: Gabriel Pereira (GP) and Mousinho da Silveira (MS). The classification
task is to determine if their final score is above average or not. We split this dataset into two
sets in two schools to capture geospatial shifts. The features we used are: ‘age’, ‘Medu’, ‘Fedu’,
‘studytime’, ‘famsup’, ‘higher’, ‘internet’, ‘romantic’, ‘freetime’, ‘goout’, ‘health’, ‘absences’,
‘G1’, ‘G2’. When considering actionability constraints, we set ‘romantic’ as immutable and ‘age’
to be non-decreased.
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For categorical features, we use one-hot encoding to convert them to binary features, similar
to Mothilal et al. (2020). We also normalize continuous features to zero mean and unit variance
before training the classifier. The performance of the classifier is reported in Table 3.

Table 3: Accuracy and AUC results of the classifiers on the synthetic and three real-world datasets.

Classifier Dataset Present data D1 Shift data D2

Accuracy AUC Accuracy AUC

MLP

Synthetic data 0.99 ± 0.00 1.00 ± 0.00 0.94 ± 0.01 0.99 ± 0.01
German credit 0.67 ± 0.02 0.60 ± 0.03 0.66 ± 0.23 0.60 ± 0.04
SBA 0.96 ± 0.00 0.99 ± 0.00 0.98 ± 0.01 0.96 ± 0.01
Student 0.86 ± 0.02 0.93 ± 0.01 0.91 ± 0.04 0.97 ± 0.02

A.2 ADDITIONAL EXPERIMENTAL RESULTS

Local fidelity and stability experiments. Here, we provide benchmarks of local fidelity and stability
(Section 6.1) on the synthetic and SBA datasets in Figure 7.

We also run with a different setting for the stability and local fidelity metric to assess if the results
are sensitive to the parameter choices. Specifically, we sample 10 neighbors in the distribution
N (x, 0.0001I) instead ofN (x, 0.001I) to measure the stability. Meanwhile, we set rfid to 20% and
the radius rp to 10% of the maximum distance between instances in the training data. The result is
shown in Figure 8.
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Figure 7: Benchmarks of the local fidelity and stability on synthetic and SBA dataset.

Table 4: Performance of competing algorithms on synthetic, SBA, and Student datasets.

Method Synthetic data SBA Student performance

Cost Cur Validity Fut Validity Cost Cur Validity Fut Validity Cost Cur Validity Fut Validity

Wachter 1.01 ± 0.03 1.00 ± 0.00 0.63 ± 0.04 1.74 ± 0.26 0.98 ± 0.01 0.13 ± 0.06 3.33 ± 0.11 0.95 ± 0.03 0.29 ± 0.02
LIME-PROJ 2.13 ± 0.08 0.77 ± 0.01 0.76 ± 0.01 0.81 ± 0.06 0.97 ± 0.01 0.79 ± 0.03 1.07 ± 0.13 0.78 ± 0.04 0.37 ± 0.07
LIME-ROAR 2.59 ± 0.09 0.90 ± 0.01 0.89 ± 0.00 1.83 ± 0.16 1.00 ± 0.00 0.87 ± 0.04 2.41 ± 0.31 0.95 ± 0.03 0.74 ± 0.11
CLIME-ROAR 1.80 ± 0.07 0.81 ± 0.01 0.81 ± 0.01 1.50 ± 0.53 0.97 ± 0.04 0.78 ± 0.13 3.07 ± 0.75 0.95 ± 0.04 0.81 ± 0.11
LIMELS-ROAR 1.30 ± 0.01 1.00 ± 0.00 0.98 ± 0.01 1.63 ± 0.23 1.00 ± 0.00 0.88 ± 0.05 2.47 ± 0.29 0.95 ± 0.03 0.75 ± 0.09
QUAD-MPM-PROJ 1.09 ± 0.02 0.99 ± 0.01 0.98 ± 0.00 1.17 ± 0.11 1.00 ± 0.00 0.85 ± 0.05 1.46 ± 0.13 0.95 ± 0.03 0.54 ± 0.07
BW-MPM-PROJ 1.19 ± 0.02 1.00 ± 0.00 0.99 ± 0.00 1.67 ± 0.13 1.00 ± 0.00 0.95 ± 0.02 2.13 ± 0.18 0.95 ± 0.03 0.76 ± 0.06
FR-MPM-PROJ 1.20 ± 0.02 1.00 ± 0.00 1.00 ± 0.00 1.83 ± 0.13 1.00 ± 0.00 0.97 ± 0.01 2.51 ± 0.21 0.95 ± 0.03 0.82 ± 0.05

The cost-validity trade-off. Here, we provide more detail about the settings of the baselines and
the complementary results of the experiments in Section 6.2 in the main paper.
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Figure 8: Benchmarks of the local fidelity and stability.
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Figure 9: Pareto frontier of the cost-validity trade-off with the MLP classifier on the real-world
datasets. For FR-MPM-PROJ, we vary the ambiguity size in a range of ρ− ∈ [0, 10]. For the
ROAR-related methods, we vary the uncertainty size in a range of δmax ∈ [0, 0.2]. And for Wachter,
we vary the hyperparameter λ ∈ [0.05, 0.4].

For Wachter’s implementation, we use CARLA’s source code6 (Pawelczyk et al., 2021), which
employs an adaptive scheme to adjust the hyperparameter (λ) if no valid recourse is found. We adopt
this implementation for ROAR and set the initial λ to 0.1 as suggested in (Upadhyay et al., 2021).

Regarding the surrogate models, we use the open-source code with the default settings for
LIME7 (Ribeiro et al., 2016). We adapt this source code accordingly for CLIME’s implemen-
tation (Agarwal et al., 2021). LIMELS, SVM, and MPM-related surrogates use the same boundary
sampling procedure (with the same seed), in which we set the number of counterfactuals k = 10 and
the number of perturbation samples is 1000.

Figure 9 shows the Pareto frontiers of the cost-validity trade-off on the synthetic and three real-world
datasets. Table 4 shows the performance of FR-MPM-PROJ at radii ρ+1 = 0, ρ−1 = 10 and of
ROAR-related methods at uncertainty size δmax = 0.2 on synthetic, SBA, and Student datasets. The
hyperparameter λ is set to 0.1 for both Wachter and ROAR-related methods.

In FR-MPM-PROJ and ROAR-related methods, the trade-off between cost and validity can be
observed when increasing the ambiguity size (ρ−1 for FR-MPM and δmax for ROAR-related methods),

6https://github.com/carla-recourse/CARLA
7https://github.com/marcotcr/lime
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Figure 10: Pareto frontiers of our method compared with ROAR using vanilla MPM and SVM as the
surrogate model. The recourses are generated with respect to the MLP classifier on synthetic and
three real-world datasets.

Table 5: Performance of AR using different local surrogate models.

Method Synthetic data SBA Student performance

Cost Cur Validity Fut Validity Cost Cur Validity Fut Validity Cost Cur Validity Fut Validity

LIME-AR 2.06 ± 0.07 0.67 ± 0.02 0.67 ± 0.01 4.50 ± 3.48 0.10 ± 0.07 0.04 ± 0.03 3.38 ± 0.24 0.45 ± 0.07 0.42 ± 0.06
CLIME-AR 1.34 ± 0.05 0.41 ± 0.02 0.43 ± 0.01 4.10 ± 3.80 0.07 ± 0.07 0.01 ± 0.01 4.34 ± 1.24 0.63 ± 0.28 0.50 ± 0.15
LIMELS-AR 1.05 ± 0.05 0.62 ± 0.06 0.59 ± 0.04 4.97 ± 3.76 0.22 ± 0.15 0.06 ± 0.07 3.15 ± 0.16 0.49 ± 0.13 0.38 ± 0.03
SVM-AR 1.02 ± 0.06 0.64 ± 0.04 0.61 ± 0.02 6.06 ± 4.06 0.26 ± 0.07 0.03 ± 0.02 3.07 ± 0.23 0.43 ± 0.13 0.36 ± 0.03
MPM-AR 1.08 ± 0.04 0.68 ± 0.04 0.62 ± 0.03 5.06 ± 3.33 0.39 ± 0.18 0.08 ± 0.05 3.02 ± 0.19 0.40 ± 0.12 0.36 ± 0.02
QUAD-MPM-AR 1.65 ± 0.08 0.99 ± 0.01 0.98 ± 0.01 7.40 ± 3.36 0.97 ± 0.03 0.49 ± 0.19 5.60 ± 0.31 0.97 ± 0.04 0.69 ± 0.05
BW-MPM-AR 1.86 ± 0.09 1.00 ± 0.00 0.99 ± 0.01 9.66 ± 3.21 0.98 ± 0.04 0.62 ± 0.03 8.62 ± 0.38 1.00 ± 0.00 0.92 ± 0.05
FR-MPM-AR 2.03 ± 0.04 1.00 ± 0.00 0.99 ± 0.00 10.02 ± 3.09 1.00 ± 0.00 0.64 ± 0.03 9.63 ± 0.38 1.00 ± 0.00 0.95 ± 0.03

similar to the analysis in (Rawal et al., 2020) and the experimental results in (Upadhyay et al., 2021;
Black et al., 2021). Generally, the Pareto frontiers of FR-MPM-PROJ dominate the frontiers of
ROAR-related methods on all evaluated datasets. In other words, with the same cost (or validity),
our method will provide recourses with a higher validity (or lower cost) compared to ROAR. Table 4
demonstrates that our method has similar validity but a much smaller cost than ROAR on Synthetic
and German datasets. Meanwhile, our method achieves higher validity with reasonable cost on SBA
and Student datasets.

Comparing other baselines, LIMELS-ROAR performs slightly better compared to LIME-ROAR and
CLIME-ROAR. Wachter provides the recourses with high current validity but is vulnerable to model
shifts, resulting in poor future validity. Wachter has the lowest cost for the synthetic and German
datasets but a higher cost for the SBA and Student datasets compared to the linear surrogate-based
methods. This is consistent with the results in (Upadhyay et al., 2021) since the objective function of
Wachter might be non-convex when the classifier is an MLP network.

Comparison with ROAR using the vanilla MPM and SVM as the surrogate model. Here, we
compare the FR-MPM-PROJ with ROAR using the vanilla MPM and SVM as the surrogate model.
Both vanilla MPM and SVM use the same boundary sample procedure (with the same seed number)
as FR-MPM. The settings are similar to the experiment in Section 6.2. The result shown in Figure 10
demonstrates the merits of our method.

Actionability. We provide the complementary result of the actionability experiment on the synthetic,
SBA, and Student datasets in Table 5. Using AR with FR-MPM produces the recourses with higher
value in both the current and future validity compared to AR using other surrogates.

Ablation study. We conduct an ablation study to understand the contribution of each stage in our
method. Figure 10 shows the comparison of our method with ROAR using vanilla MPM and SVM as
the local surrogate. Figure 11 shows the Pareto frontiers of FR-MPM-PROJ compared to its ablations
by alternating the FR-MPM with other surrogates (LIME, MPM) or alternating the projection with
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Figure 11: Ablation study: Pareto frontiers of FR-MPM-PROJ compared to its ablations by alternating
the FR-MPM by common local surrogates. The recourses are generated with respect to the MLP
classifier on synthetic and three real-world datasets.
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Figure 12: Comparison with the probabilistic shiftings.

Wachter. Particularly, we compare our method with LIME-ROBUST-PROJ, which uses LIME as the
surrogate model and then solves the robustified projection:

xr = arg min{‖x− x0‖1 : x>w + b− δmax‖x‖2 ≥ 0},

where (w, b) is the weight and bias of LIME’s surrogate, δmax is similar to the uncertainty size of
ROAR (Upadhyay et al., 2021). The recourses are generated with respect to the MLP classifier on
synthetic and three real-world datasets. This result demonstrates the usefulness of the FR-MPM in
promoting the generation of robust recourses. Note that, for ρ− = 0 and ρ+ = 0, the hyperplane of
the FR-MPM classifier recovers the vanilla MPM’s hyperplane.

Comparison with the probabilistic shiftings. One might attempt to increase the probabilistic
threshold (usually set to 0.5) at which a sample is considered ‘favorable’ to generate robust recourses.
In Figure 12, we compare the proposed method with Wachter, LIME, and MPM with various
probabilistic thresholds in the range [0.5, 0.9]. It can be seen that FR-MPM-PROJ consistently
achieves the best performance compared to other baselines. Interestingly, Wachter improves its future
validity significantly on the synthetic and German datasets as the threshold increases. However, our
method still dominates Wachter in all datasets.

Robust recourses with MPM’s variants. We compare FR-MPM-PROJ with QUAD-MPM-PROJ
and BW-MPM-PROJ. The settings are similar in the cost-validity trade-off experiments in Section 6.2.
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Figure 13: The comparison among MPM-related methods with different distances.

The number of samples is 1000. The results are shown in Figure 13. Generally, all three MPM-related
methods perform better than LIME-ROAR and Wachter. However, FR-MPM-PROJ is better than
QUAD-MPM-PROJ and BW-MPM-PROJ, especially in synthetic and Student datasets.

(a) ρ+1 = ρ−1 = 0. (b) ρ+1 = 0, ρ−1 = 1. (c) ρ+1 = 0, ρ−1 = 10.

Figure 14: Visualization of MPM’s hyperplanes with Quadratic, Bures, and Fisher-Rao distances.
When ρ+1 = ρ−1 = 0, all hyperplanes coincide and recover the vanilla MPM. All hyperplanes move
towards the favorable class as the radius for the unfavorable class ρ−1 increases. At ρ−1 = 10 in
Subfigure (c), the hyperplanes of Quadratic and Bures MPMs come close together which is distinct
from the Fisher-Rao MPM’s hyperplane. Notice that the Fisher-Rao MPM in Subfigure (c) tends
to position in parallel to the major axis of the unfavorable covariance matrix, which shows the
dependence on Σ̂−1, see Proposition 5.4. The Bures and Quad MPM hyperplanes in Subfigure (c) do
not show any dependence on the covariance matrix, which aligns with the results in Proposition 4.4.

A.3 COVARIANCE-ROBUST MPMS WITH DIFFERENT DIVERGENCES

In this section, we discuss the variants of covariance-robust MPMs with different distances and
provide guidance for choosing the surrogate model in practice, especially at a low sample size.

Proposition 4.4 and Remark 4.5 showed that Quadratic MPM and Bures MPM coincide when one of
the radii ρy grows to infinity and they are independent of the covariance matrices Σ̂y. Meanwhile,
the asymptotic hyperplane of the Fisher-Rao MPM when ρy →∞ aligns with axes of the covariance
matrices Σ̂y (see Proposition 5.4 and Figure 14). It suggests that the Fisher-Rao MPM is not a
suitable surrogate at low sample sizes as it relies on the estimate of the covariance matrices. On the
other hand, when the number of samples is sufficient to estimate the covariance matrices accurately,
Fisher-Rao MPM would be better than Quadratic MPM and Bures MPM as it takes the geometry of
the data into account when robustifying the surrogate.

We probe the performance of MPMs with different distances at low sample sizes to demonstrate our
claim above.
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(a) The average condition number of the generated covariance matrices for positive and negative classes.

(b) Local fidelity of MPM variants at low sample sizes.

Figure 15: The comparison among MPM-related methods with different distances at low sample
sizes.

Local fidelity. We probe the local fidelity at low sample sizes and plot the result in Figure 15. The
experiment settings are similar to those in Section 6.1. The number of samples is set in the range
of [50, 1000]. We also measure the average condition number of estimated covariance matrices for
both positive and negative classes in Figure 15a. It can be seen that the covariance matrices are
ill-conditioned at 50 samples on SBA and Student datasets. The fidelity of FR-MPM is just slightly
better than QUAD-MPM and BW-MPM. When the number of samples increased, FR-MPM benefited
the most, and the gap between FR-MPM and QUAD-MPM (or BW-MPM) became more significant.
It supports our claim that FR-MPM would better approximate the decision boundary when the number
of samples is sufficient for estimating the covariance matrices.

(a) 50 synthesized samples. (b) 1000 synthesized samples.

Figure 16: The comparison of QUAD-MPM-PROJ and FR-MPM-PROJ at low sample sizes.

Robust recourses. We revisit the recourse generation with covariance-robust MPMs using quadratic
distance (QUAD-MPM-PROJ) and Fisher-Rao distance (FR-MPM-PROJ), at which the surrogate is
estimated with 50 and 1000 synthesized samples. We omit the comparison with Bures distance to
ease the presentation as it behaves asymptotically like the MPM using the quadratic distance. The
results are shown in Figure 16. The results showed that QUAD-MPM-PROJ would be better at a low
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sample size. When increasing the number of samples, the recourses constructed with Fisher-Rao
MPM exhibit a better cost-validity trade-off. This result is consistent with our previous observation
in the local fidelity experiment.

B PROOFS

B.1 PROOFS OF SECTION 3

Proof of Proposition 3.4. The covariance-robust MPM problem

min
θ∈Θ

max
y∈Y

max
Py∈Uϕ

y (P̂y)
Py(Cθ(X) 6= y)

is equivalent to
min 1− α
s. t. α ∈ R+, w ∈ Rd \ {0}, b ∈ R

1− α ≥ max
y∈Y

max
Py∈Uϕ

y (P̂y)
Py(y(w>X − b) ≤ 0),

(9)

where we used the classification rule that Cθ(x) = sign(w>x− b) if and only if y(w>X − b) ≥ 0

and that the feasible set takes the form Θ , {θ = (w, b) ∈ Rd+1 : w 6= 0}. We claim that w = 0 is
never optimal. To see this, take w = 0. Then,

Py(y(w>X − b) ≤ 0) = Py(yb ≥ 0),

which is independent of the random variable X and is either 0 or 1 no matter what b we choose.
Therefore,

max
y∈Y

max
Py∈Uϕ

y (P̂y)
Py(y(w>X − b) ≤ 0) = 1,

and hence α = 0, which is never optimal. So, the domain of w can be relaxed from Rd \ {0} to Rd.
Problem (9) can then be further re-written as

max α
s. t. α ∈ R+, w ∈ Rd, b ∈ R

1− α ≥ max
Py∈Uϕ

y (P̂y)
Py(y(w>X − b) ≤ 0) ∀y ∈ Y.

(10)

Notice that here, equivalency means the optimal solution (w?, b?) of (10) will constitute the optimal
solution θ? = (w?, b?) of the original min-max-max problem. Moreover, recall the definition of the
ambiguity set

Uϕy (P̂y) = {Py : Py ∼ (µ̂y,Σy), ϕ(Σy ‖ Σ̂y) ≤ ρy},
where Py ∼ (µ̂y,Σy) means that the the distribution Py has mean µ̂y and covariance Σy. In other
words, each element Py in the ambiguity Uϕy (P̂y) is determined by first choosing a covariance matrix
Σy satisfying the divergence constraint ϕ(Σy ‖ Σ̂y) ≤ ρy and then picking a distribution Py having
mean µ̂y and covariance Σy . Therefore, the worst-case probability admits a two-layer decomposition

max
Py∈Uϕ

y (P̂y)
Py(y(w>X − b) ≤ 0) = max

Σy∈Sd+:ϕ(Σy‖Σ̂y)≤ρy
max

Py∼(µ̂y,Σy)
Py(y(w>X − b) ≤ 0). (11)

Using Lanckriet et al. (2001, Equation (6)), the inner maximum value is given by

max
Py∼(µ̂y,Σy)

Py(y(w>X − b) ≤ 0) =
1

1 +
(b−w>µ̂y)2

w>Σyw

.

Combining the last two equalities, we can express the constraint in problem (10) as

1− α ≥ max
Py∈Uϕ

y (P̂y)
Py(y(w>X − b) ≤ 0) = max

Σy∈Sd+:ϕ(Σy‖Σ̂y)≤ρy

1

1 +
(b−w>µ̂y)2

w>Σyw

,

which upon rearranging, becomes
α

1− α
max

Σy∈Sd+:ϕ(Σy‖Σ̂y)≤ρy
w>Σyw ≤ (b− w>µ̂y)2.
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Using the same argument as in Lanckriet et al. (2001) (see equation (4) and the discussions following
it in Lanckriet et al. (2001)), we could show that the optimal θ = (w, b) must classify µ̂y correctly,
i.e.,

y = sign(w>µ̂y − b),
which yields that √

α

1− α
max

Σy∈Sd+:ϕ(Σy‖Σ̂y)≤ρy

√
w>Σyw ≤ y(w>µ̂y − b).

As a consequence, problem (10) is equivalent to

max α
s. t. α ∈ R+, w ∈ Rd, b ∈ R

y(w>µ̂y − b) ≥
√

α
1−α max

Σy∈Sd+:ϕ(Σy‖Σ̂y)≤ρy

√
w>Σyw ∀y ∈ Y.

Using that τϕy (w) = max
Σy∈Sd+:ϕ(Σy‖Σ̂y)≤ρy

√
w>Σyw and that α 7→

√
α

1−α is monotone increasing,

the above problem is further equivalent to

max κ
s. t. κ ∈ R+, w ∈ Rd, b ∈ R

y(w>µ̂y − b) ≥ κ τϕy (w) ∀y ∈ Y.
(12)

From the constraints, we get

w>µ̂+1 − κ τϕ+1(w) ≥ b ≥ w>µ̂−1 + κ τϕ−1(w) (13)

So, we can eliminate the variable b and reduce problem (12) to

max κ
s. t. κ ∈ R+, w ∈ Rd

w>µ̂+1 − κ τϕ+1(w) ≥ w>µ̂−1 + κ τϕ−1(w).
(14)

The inequality constraint in problem (14) is equivalent to

κ ≤
∑
y∈Y y w

>µ̂y∑
y∈Y τ

ϕ
y (w)

. (15)

Thus, we can eliminate the variable κ and rewrite problem (14) as

min
w∈Rd

∑
y∈Y τ

ϕ
y (w)∑

y∈Y y w
>µ̂y

.

Using the definition of τϕy (w), we can see that the above problem is homogeneous in w, which
implies that we could further re-write it as

min
∑
y∈Y

τϕy (w)

s. t.
∑
y∈Y

y w>µ̂y = 1.

Finally, note that from (13) and (15), at optimality, we have

κ =

∑
y∈Y y w

>µ̂y∑
y∈Y τ

ϕ
y (w)

=
1∑

y∈Y τ
ϕ
y (w)

,

and
b = w>µ̂+1 − κ τϕ+1(w) = w>µ̂−1 + κ τϕ−1(w).

This completes the proof.
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Proof of Proposition 3.5. First, following exactly the same arguments as in the proof of Proposi-
tion 3.4, we see that problem (6) is equivalent to

max α
s. t. α ∈ R+, w ∈ Rd, b ∈ R

1− α ≥ max
Py∈UNy (P̂y)

Py(y(w>X − b) ≤ 0) ∀y ∈ Y.
(16)

In the proof of Proposition 3.4, we handle the maximum in the constraint by decomposing it into two
layers of maximization problems (see (11)). However, because of the Gaussian assumption, in this
case, we have

max
Py∈UNy (P̂y)

Py(y(w>X − b) ≤ 0) = max
Σy∈Sd+:ϕ(Σy‖Σ̂y)≤ρy

Py∼N (µ̂y,Σy)

Py(y(w>X − b) ≤ 0).

For each fixed Σy , using elementary probability theory, we could calculate the Gaussian probability
explicitly:

Py(y(w>X − b) ≤ 0) = 1− Φ

(
y(w>µ̂y − b)√

w>Σyw

)
,

where Φ is the cumulative distribution function of the standard Gaussian random variable. Therefore,
problem (16) can be re-written as

max α
s. t. α ∈ R+, w ∈ Rd, b ∈ R

α ≤ max
Σy∈Sd+:ϕ(Σy‖Σ̂y)≤ρy

Φ

(
y(w>µ̂y−b)√

w>Σyw

)
∀y ∈ Y.

(17)

Using the monotonicity of Φ, the constraints in problem (17) become

y(w>µ̂y − b) ≥ Φ−1(α) min
Σy∈Sd+:ϕ(Σy‖Σ̂y)≤ρy

√
w>Σyw ∀y ∈ Y.

Using that τϕy (w) = max
Σy∈Sd+:ϕ(Σy‖Σ̂y)≤ρy

√
w>Σyw and that Φ−1(α) is monotone increasing, prob-

lem (17) is further equivalent to

max κ
s. t. κ ∈ R+, w ∈ Rd, b ∈ R

y(w>µ̂y − b) ≥ κ τϕy (w) ∀y ∈ Y.

which is the same problem as problem (12) in the proof of Proposition 3.4. Hence, problem (6) shares
the same optimal solution as problem (3). This completes the proof.

B.2 PROOFS OF SECTION 4

We first prove Proposition 4.3 to lay the foundation for the proof of Theorem 4.2.

Proof of Proposition 4.3. By Nguyen et al. (2021, Proposition 2.8), we have

τBy (w)2 = inf
γI�ww>

γ(ρy − Tr
[
Σ̂y
]
) + γ2

〈
(γI − ww)−1, Σ̂y

〉
.

Using the Sherman-Morrison formula (Bernstein, 2009, Corollary 2.8.8), we find

(I − 1

γ
ww)−1 = I +

ww>

γ − ‖w‖22
.

Notice that the constraint γI � ww> is equivalent to γ > ‖w‖22 by Schur complement. Thus, we
have

τBy (w)2 = inf
γ>‖w‖22

γρy + γ
w>Σ̂yw

γ − ‖w‖22
.
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The optimal γ can be found by using calculus, which is given by

γ? = ‖w‖22 +

√
w>Σ̂yw‖w‖22

ρy
,

with the corresponding optimal value

τBy (w)2 = (ρy‖w‖2 +

√
w>Σ̂yw)2.

We thus have the necessary result.

We now prove Theorem 4.2.

Proof of Theorem 4.2. Using the Bures divergence B, the optimization problem

min
w∈W

∑
y∈Y

τBy (w)

becomes problem (7) by exploiting the analytical form of τBy (w) in Proposition 4.3. By invoking
Proposition 3.4, we obtain the postulated results on the optimal solution θB for the case of the Bures
divergence.

Proof of Proposition 4.4. Note that problem (7) has a unique solution because the objective function
is strictly convex and coercive. Moreover, the optimal solution of (7) coincides with the optimal
solution w?(λ) of the following second-order cone program

min
w∈W

1

λ

∑
y∈Y

√
w>Σ̂yw + ‖w‖2,

where λ = 1/ρ. By a compactification ofW and applying Berge’s maximum theorem (Berge, 1963,
pp. 115-116), the function w?(λ) is continuous on a non-negative compact range of λ, and converges
to w?(0) as λ→ 0. The optimal solution w?(0) coincides with the solution of

min
w∈W

‖w‖2, (18)

which is the Euclidean projection of the origin onto the hyperplaneW . An elementary computation
confirms that

w?(0) =

∑
y∈Y yµ̂y

‖
∑
y∈Y yµ̂y‖22

.

Letting wB∞ = w?(0) completes the proof.

B.3 PROOFS OF SECTION 5

We first provide the proof of Proposition 5.3.

Proof of Proposition 5.3. Notice that

τFy (w)2 =

{
max w>Σyw

s. t. ‖ log(Σ̂
− 1

2
y ΣyΣ̂

− 1
2

y )‖F ≤ ρy.

Using the transformation Zy ← Σ̂
− 1

2
y ΣyΣ̂

− 1
2

y , we have

τFy (w)2 = max
{
v>Zyv : ‖ logZy‖F ≤ ρy

}
with v = Σ̂

1
2w. We now proceed to show that the above optimization problem admits the maximizer

Z?y = UU> + exp(ρy)
vv>

‖v‖22
,
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where U is an d× (d− 1) orthonormal matrix whose columns are orthogonal to v. First, by Nguyen
et al. (2019, Lemma C.1), the feasible region is compact. Since the objective function v>ZY v is
continuous in Zy, an optimal solution Z?y exists. Next, we first claim that the constraint holds with
equality at optimality. Suppose that ‖ logZ?y‖F < ρy. Then, for some small δ > 0, the matrix
Z?y + δ vv> is feasible due to the continuity of the constraint function ‖ logZy‖F and has a strictly
better objective value than the optimal solution Z?y . This violates the optimality of Z?y . Hence,
‖ logZ?y‖F = ρy for any optimal solution Z?y , and the problem is equivalent to

max v>QDiag(λ)Q>v

s. t.
∑d
i=1(log λi)

2 = ρ2
y,

λ1 ≥ · · · ≥ λd > 0, Q ∈ O(d),

where O(d) is the set of d × d orthogonal matrices. For any orthogonal matrix Q, the objective
function

v>QDiag(λ)Q>v ≤ λ1‖v‖22,
the right-hand side of which can be attained by setting

Q =

(
v

‖v‖2
, U

)
∈ O(d).

Therefore, our problem is further reduced to

max λ1‖v‖22
s. t.

∑d
i=1(log λi)

2 = ρ2
y, λ1 ≥ · · · ≥ λd > 0.

It is then easy to see that at optimality, the optimal λ ∈ Rd++ must satisfy λ2 = · · · = λd = 1 and
(log λ1)2 = ρ2

y . Since λ1 ≥ λ2 = 1, we have log λ1 = ρy and hence λ1 = exp(ρy). In other words,

Z?y =

(
v

‖v‖2
, U

)
exp(ρy)

1
. . .

1

( v

‖v‖2
, U

)>

= UU> + exp(ρy)
vv>

‖v‖22
.

The corresponding optimal value is

τFy (w)2 = v>Z?yv = exp(ρy) ‖v‖22 = exp(ρy)w>Σ̂yw.

This completes the proof.

We are now ready to prove Theorem 5.2.

Proof of Theorem 5.2. Using the Fisher-Rao divergence F, the optimization problem

min
w∈W

∑
y∈Y

τFy (w)

becomes problem (8) by exploiting the analytical form of τFy (w) in Proposition 5.3. By invoking
Proposition 3.4, we obtain the postulated results on the optimal solution θF for the case of the
Fisher-Rao divergence.

Proof of Proposition 5.4. Note that problem (8) has a unique solution because the objective function
is strictly convex and coercive. Also, the optimal solution of (8) coincides with the solution w?(λ) of

min
w∈W

√
w>Σ̂yw + λ

√
w>Σ̂−yw,
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where λ = exp
(ρ−y−ρy

2

)
. By a compactification of W and applying Berge’s maximum theo-

rem (Berge, 1963, pp. 115-116), the function w?(λ) is continuous on a non-negative compact range
of λ, and converges to w?(0) as λ→ 0. The optimal solution w?(0) coincides with the solution of

min
w∈W

√
w>Σ̂yw.

Because the square-root function is monotonically increasing, w?(0) also solves

min
w∈W

w>Σ̂yw,

which is a convex, quadratic program with a single linear constraint. If a is defined as in the statement,
then a convex optimization argument implies

w?(0) =
1

a>Σ̂−1
y a

Σ̂−1
y a,

which completes the proof.

C LOGDET MPM

In this appendix, we consider when ϕ is the Log-Determinant (LogDet) divergence. The LogDet
divergence is formally defined as follows.

Definition C.1 (LogDet divergence). Given two positive definite matrices Σ, Σ̂ ∈ Sd++, the log-
determinant divergence between them is

D(Σ ‖ Σ̂) = Tr
[
ΣΣ̂−1

]
− log det(ΣΣ̂−1)− d.

It can be shown that D is a divergence because it is non-negative, and it vanishes to zero if and only if
Σ = Σ̂. However, D is not symmetric, and in general we have D(Σ ‖ Σ̂) = D(Σ̂ ‖ Σ). The LogDet
divergence D is related to the relative entropy: it is equal to the Kullback-Leibler divergence between
two Gaussian distributions with the same mean vector and covariance matrices Σ and Σ̂.

We now provide the form of the LogDet MPM problem.

Theorem C.2 (LogDet MPM). Suppose that ϕ ≡ D. Let wD be the optimal solution of the following
second-order cone problem

min
w∈W

∑
y∈Y

√
cy

√
w>Σ̂yw, (19)

where cy = −W−1(− exp(−ρy − 1)) and W−1 is the Lambert-W function for the branch −1. Let
κD and bD be calculated as

κD =
1∑

y∈Y
√
cy

√
(wD)>Σ̂ywD

,

bD = (wD)>µ̂+1 − κD
√
c+1

√
(wD)>Σ̂+1wD,

then θD = (wD, bD) is the optimal solution of the distributionally robust MPM problem (3).

Theorem C.2 shows that the LogDet divergence induces a similar reweighting scheme as the Fisher-
Rao MPM. The asymptotic analysis of the LogDet MPM follows similarly from the Fisher-Rao MPM
and is omitted. The proof of Theorem C.2 follows trivially from the below result, which provides the
analytical form of τDy (w).

Proposition C.3 (LogDet divergence). Suppose that ϕ ≡ D, then for any y ∈ Y , we have

τDy (w) =
√
−W−1(− exp(−ρy − 1))

√
w>Σ̂yw,

where W−1 is the Lambert-W function for the branch −1.
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Proof of Proposition C.3. By Le et al. (2021, Proposition 3.4), we have

τDy (w)2 = inf
γ>0

γΣ̂−1
y �ww

>

γρy − γ log det(I − Σ̂
1
2
y ww

>Σ̂
1
2
y /γ).

Using the matrix determinant formula (Bernstein, 2009), we have

det(I − Σ̂
1
2
y ww

>Σ̂
1
2
y /γ) = (1− w>Σ̂yw/γ).

Notice that the constraint γΣ̂−1
y � ww> is translated into γ > w>Σ̂yw. Thus, we have

τDy (w)2 = inf
γ>w>Σ̂yw

γρy − γ log(1− w>Σ̂yw/γ).

The first-order optimality condition for γ is

ρ− log
(
1− w>Σ̂yw

γ

)
− w>Σ̂yw

γ − w>Σ̂yw
= 0,

and the optimal solution for γ is

γ? =
w>Σ̂yw

1 + 1/W−1(− exp(−ρy − 1))
.

Replacing the value of γ? into the objective function leads to the necessary result.

27


	Introduction
	Recourse Generation Framework
	(Covariance-Robust) MPM
	Quadratic MPM
	Covariance-Robust MPM
	Equivalence under Gaussian Assumptions

	Bures MPM
	Fisher-Rao MPM
	Numerical Experiments
	Fidelity and Stability of the Surrogate Models
	Robustness of Recourses

	Experiments
	Experimental Details
	Additional Experimental Results
	Covariance-robust MPMs with Different Divergences

	Proofs
	Proofs of Section 3
	Proofs of Section 4
	Proofs of Section 5

	LogDet MPM

