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Abstract

While deep learning has enjoyed significant success in com-
puter vision tasks over the past decade, many shortcomings
still exist from a Cognitive Science (CogSci) perspective.
In particular, the ability to subitize, i.e., quickly and accu-
rately identify the small (≤ 6) count of items, is not well
learned by current Convolutional Neural Networks (CNNs)
or Vision Transformers (ViTs) when using a standard cross-
entropy (CE) loss. In this paper, we demonstrate that adapt-
ing tools used in CogSci research can improve the subitiz-
ing generalization of CNNs and ViTs by developing an alter-
native loss function using Holographic Reduced Represen-
tations (HRRs). We investigate how this neuro-symbolic ap-
proach to learning affects the subitizing capability of CNNs
and ViTs, and so we focus on specially crafted problems
that isolate generalization to specific aspects of subitizing.
Via saliency maps and out-of-distribution performance, we
are able to empirically observe that the proposed HRR loss
improves subitizing generalization though it does not com-
pletely solve the problem. In addition, we find that ViTs per-
form considerably worse compared to CNNs in most respects
on subitizing, except on one axis where an HRR-based loss
provides improvement. Code is available on GitHub.1

Introduction
Subitizing, also referred to as numerosity, is the ability to
recognize small counts nearly instantaneously (Kaufman
et al. 1949), allowing for fast, accurate, and confident iden-
tification of an object’s count in limited space. The abil-
ity to recognize drops quickly after four items (Saltzman
and Garner 1948). Subitizing is a cognitive function distinct
from explicit counting (Trick and Pylyshyn 1994), and re-
cent work has shown that Convolutional Neural networks
(CNNs) fail to subitize on simple MNIST-like tasks (Wu,
Zhang, and Shu 2019).

The failure is astonishing because a simple, hard-coded
convolutional kernel is capable of perfectly solving the
subitizing tasks (Wu, Zhang, and Shu 2019). This means a
CNN captures the hypothesis space of a valid solution, so
it is unclear what component is unable to reach this target
goal. Seemingly there are two options: the need for better
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1GitHub: https://github.com/MahmudulAlam/Subitizing

optimization strategies, or alternative loss functions. While
a different loss function may sound implausible when using
cross-entropy (CE) on a simple, clean dataset, we explore
changing the loss function as the strategy in this work.

The goal of this work is to investigate how a neuro-
symbolic approach affects the generalization of subitizing in
a CNN, but not to solve the problem. We devise a prediction
and loss strategy built from the Holographic Reduced Repre-
sentations (HRRs) (Plate 1995) which has a long successful
history of its use in Cognitive Science (CogSci) research.

The proposed loss function is applied to the same set of
experiments as proposed by (Wu, Zhang, and Shu 2019)
where a CNN failed to subitize. Our results indicate an im-
provement in generalization on most of the tasks under con-
sideration but are not yet a complete answer to the subitiz-
ing task. Favorably, the errors in generalization with our ap-
proach are more congruent with the expectation that perfor-
mance will decrease after 5 objects are present, though the
accuracy is still lower than human performance. Moreover,
the same set of experiments is performed on a Vision Trans-
former (ViT) (Dosovitskiy et al. 2020) where the proposed
loss function demonstrates improvement in generalization
over CE loss and results are more in accordance with subiti-
zation expectation as well.

In summary, our contributions are: 1) An adaption of the
HRR into a loss function for classification. 2) A empirical
evaluation of the impact of subitizing, and a qualitative eval-
uation of the cases where subitizing is improved or hindered
based on the loss function. Note that improved predictive ac-
curacy is not a goal, and difficult to deconflate from subitiza-
tion performance due to background items. In addition, clas-
sic object detection methods (e.g., FasterRCNN (Ren et al.
2015)) are not a proxy of subitizing because such methods
perform explicit object counting, where subitizing is a task
of instantaneous recognition of numerosity — not a sequen-
tial process of identification and counting.

The remainder of the paper is organized as follows.
First, different types of vector symbolic architectures, re-
lated works, and our motivation for using HRRs are covered.
Next, a brief overview of HRRs is provided and the method-
ology of the proposed HRR loss function is described. Af-
terward, all the experiments and the corresponding results
are described. Finally, concluding remarks, limitations, and
future work are presented.



Related Work
Vector Symbolic Architectures (VSA) have been researched
since seminal work by (Smolensky 1990), who made an
ever-green argument for their use. In short, VSAs provide
a foundation for combining the benefits of connectionist ar-
chitectures (robustness to deviations in input, and learning)
with the benefits of symbolic AI (reasoning, logical infer-
ence). This is made possible by defining a system in which
arbitrary concepts are assigned to specific vectors, and a set
of binding and unbinding operations are defined, which as-
sociate or disassociate two vectors respectively (Schlegel,
Neubert, and Protzel 2021). Most VSAs use a fixed feature
space for their representation, and thus necessarily introduce
noise as more items are bound/unbound. Barring this noise
they can symbolically manipulate the concepts associated
with the original vectors.

Many such VSAs exist today (Gosmann and Eliasmith
2019; Gayler 1998; Gallant and Okaywe 2013; Kanerva
1996). For example, given vectors representing running,
sleeping, cat, and dog, one can compose a vector x =
bind(running, cat) + bind(sleeping, dog), and then gener-
ally determine which animal was sleeping by computing
unbind(x, sleeping) ≈ dog. While the specifics vary between
VSAs, we will use the Holographic Reduced Representa-
tion proposed by (Plate 1995), which is both commutative
and associative in the binding and unbinding operations and
has been used successfully in multiple differentiable appli-
cations (Alam et al. 2022, 2023; Saul et al. 2023; Menet
et al. 2023).

The motivation for using HRR is that it may specifi-
cally engender better subitizing which is inspired by cur-
rent literature in CogSci research that leverages the HRR.
The seminal work by (Eliasmith et al. 2012) developed
“Spaun,”(Choo 2018) a visual input-based brain model im-
plemented using HRRs and able to perform several cognitive
tasks like counting, question answering, rapid variable cre-
ation, and others. The HRR has been implemented in a spik-
ing infrastructure (Bekolay et al. 2014) for biological plausi-
bility, but has also shown utility in analogy reasoning (Elia-
smith and Thagard 2001), and solving Raven’s Progressive
Matrices (Rasmussen and Eliasmith 2011).

Little work has been done investigating subitizing via ma-
chine learning. Early work by (Zhang et al. 2015) treated
the classification task from a purely ML perspective look-
ing for enhanced performance. Later work showed that en-
dowing an object segmentation network with the subitiz-
ing task improved the saliency of individual object recog-
nition (He et al. 2017; Islam, Kalash, and Bruce 2018). Our
work is concerned with the generalization of subitizing in
simple images, which a CNN is not able to do, as shown
by (Wu, Zhang, and Shu 2019). We use their MNIST-like
shape, color, and edge generalization tasks to measure if
an HRR-based loss function can improve the generalization
of subitizing in simple CNNs (Wu, Zhang, and Shu 2019).
This allows us to isolate the problem to just subitization, and
show that the HRR loss does improve results for most gen-
eralization tasks.

Due to the severe deficiency of modern CNNs to subitize
simple images, we consider many possible related tasks out

of scope in our study. This includes prior work in other vi-
sual aspects like foveation (Kaplanyan et al. 2019) and vi-
sual reasoning (Nie et al. 2020), which intersect machine
learning and CogSci. Our goal is only to study how a tool in
CogSci modeling, the HRR, impacts CNNs’ robustness to
the cognitive task of subitizing. Because CNNs cannot yet
perform the task at human levels, we also consider match-
ing human reaction times and performance matters for future
work.

Methodology
Background
Before diving into the construction of our loss function, we
will first review the details of the HRR. HRRs are a type
of VSA that represent compositional structure using circu-
lar convolution in distributed representations (Plate 1995).
Given vectors xi and yi in a d-dimensional space Rd, Plate
(1995) used a circular convolution to define a binding op-
eration between these two vectors sampled from a Normal
distribution. This can be specified more succinctly using the
Fourier transform F(·) and its inverse F−1(·). Specifically,
the resulting vector B ∈ Rd of binding xi and yi is given by
B = xi yi = F−1(F(xi) ⊙ F(yi)) where ⊙ indicates
element-wise multiplication. Here we use the symbol to
denote the binding operation.

The retrieval of bound components is referred to as un-
binding. A vector can be retrieved by constructing an inverse
function † : Rd → Rd so that it complies with the iden-
tity function F(z†

i ) · F(zi) = 1⃗ where z†
i is the inverse of

the vector z given by z†
i = F−1 (1/F(zi)). To unbind xi

from B, we circularly convolve its inverse: B xi
† ≈ yi.

The necessary condition for these operations to behave as
expected is an initialization procedure. As originally pro-
posed by (Plate 1995), each vector is sampled from a Normal
distribution as zi ∼ N (0, 1/d). This sampling means that
in expectation, the above binding and unbinding steps will
work for random pairs of vectors. However, the inversion
operation is numerically unstable, and originally a pseudo-
inverse was proposed that traded a large numerical error for a
smaller approximation error. However, more recently (Gane-
san et al. 2021) proposed a projection operation π(·) to en-
force that the inverse will be numerically stable, and exactly
equal to the faster pseudo-inverse of (Plate 1995). This is
done by a projection π(·) onto the ball of complex unit mag-
nitude, π(zi) = F−1 ( F(zi)/|F(zi)| ). We make use of
this projection step to initialize the vectors in our work.

HRR Loss Function
In this paper, experiments are performed using both CNN
and ViT models that take an image as input and predict the
number of objects present in that image. To train such mod-
els, a standard softmax cross entropy (CE) loss can approx-
imate the one-hot representation of the associated class/-
count. In our approach, we have taken a different strategy to
devise the HRR loss function. We re-interpret the logits of
CNN and ViT as an HRR vector instead of approximating a
one-hot encoding. We then convert the logits to a class pre-
diction by associating each class with its own unique HRR



vector. To keep the comparison with CE loss fair, our HRR
loss will maintain a classification style design in which each
class corresponds to a distinct count of objects2.

The idea here is to represent each class with a unique
key-value (K − V) pair identifier. Each K and V is
uniquely sampled from normal distribution with projection
π(N (0, IH ·H−1)) where H is the feature size. We use the
concept of binding and unbinding operations of HRRs and
the network will predict the linked key-value pair, i.e., the
bound term. Therefore, if the unbinding operation is per-
formed using the key kn ∈ K = {k1, k2, · · · , kC}
where C is the number of classes, the associated value vector
vn ∈ V = {v1, v2, · · · , vC} is expected to be the output,
K,V ∈ R1×C×H .

Let a network F predict bound vector Ŷ ∈ RB×1×H of
feature size H with tanh activation function in the final layer
for input X of batch size B. The choice of tanh activation
is intentional to keep the output in the range of [−1, 1] as
K V will remain in this range. This is due to sampling
from a normal distribution with mean zero and standard de-
viation 1/

√
H . 99.98% of the data will be in the following

range −4/
√
H < kn, vn < 4/

√
H (4σ rule where σ is the

standard deviation). Therefore, it is safe to assume that the
extremum of kn vn would be ≤ |4

√
2/
√
H|. Choosing a

sufficiently large value of {H : H ≫ 32} would keep the
value of Y = K V in the [−1, 1] range.

To make sure that the network predicts the linked key-
value pair associated with the input class of the image, the
loss function is defined by Equation 1, where ŷi ∈ Ŷ =
tanh(F(·)) is the network’s output.

Equation 1 is sufficient for training the network, but we
still need an explicit prediction for evaluation. To get the as-
sociated class label from the network output, we apply the K
vectors of all the C classes to the Ŷ which will return the es-
timation of value vectors V̂ = K Ŷ ∈ RB×C×H . V̂ con-
tains the values for all the C classes, however, the value for
the associated input would be the most similar to the ground
truth value after training. Accordingly, the cosine similarity
score S is calculated given in Equation 2, and the argmax
of S will be the predicted class/count output associated with
the input image.

L =

B∑
i=1

∥ ki vi − ŷi ∥2 (1)

S =

∑H
i=1 Vi · V̂i

∥V∥2∥V̂∥2
∈ RB×C (2)

Experiments and Results
Wu, Zhang, and Shu (2019) examined the cognitive potential
of a CNN in numerosity using four experiments. Numeros-
ity is perhaps the simplest innate cognitive computing task

2One could select the HRR vectors to encode an ordinal style
loss, but that amounts a prior for counting in the loss design. Our
goal is to determine if the HRR alone has benefits separate from
being able to implement inductive biases into the architecture. Thus
a classification-oriented design maintains that goal.

that a child can do. Disappointingly, the key finding of the
work is the failure in the subitizing tasks of the CNN learned
by CE loss. In this paper, we re-do the same experiments
using the same CNN to show how our proposed HRR loss
function, where each class is represented using a unique key-
value pair, improves the CNN’s numerosity performance.

Humans have a good sense of small numbers and can rec-
ognize the number of objects in a scene up to 4 items without
counting them explicitly (Nieder and Miller 2003; Piazza
et al. 2004; Tokita and Ishiguchi 2010). This ability is inde-
pendent of the type, shape, and color of the object. For ex-
ample, if a child learns to subitize or count circles, that same
skill is utilized to subitize or count squares even though cir-
cles and squares have different shapes. Nevertheless, current
methods of training CNNs on subitizing perform poorly in
comparison to humans.

In the following experiments, we discuss how the basic
skills of numerosity are lacking in CNNs and how the pro-
posed loss helps to build a numerical sense. In all these ex-
periments, the same CNN and dataset are used as in (Wu,
Zhang, and Shu 2019). In addition, a ViT network is used in
the same set of experiments. However, we modify the final
layer of the networks with the HRR loss. Instead of predict-
ing logits with softmax activation from the network, the net-
work is used to predict features of size H = 64 with a tanh
activation function for both networks.

The network is trained using the Numerosity database
which has a total of 6000 training images of dimension
100 × 100 with a varying number of circles from 1 to 6.
The test dataset contains 7 variations (described below) of
the training images. Each variation of the test split contains
6000 images 3.

(a) n=1 (b) n=2 (c) n=3 (d) n=4 (e) n=5 (f) n=6

Figure 1: Sample training images of classes 1 to 6 are shown
from (a) to (f) used to train the network for the first four
experiments. The task is to predict the number of objects in
an image. The generalization is tested using five different
test sets in four groups that alter the size, shape, color, and
infilling of the objects to make the task more difficult.

The training set contains images of white circles on a
black background. They are made such that the number
of circles is independent of the total area of the circles to
avoid any possible information leakage that may be used
to “cheat” and obtain predictions without learning to actu-
ally subitize. The maximum number of circles, i.e., the to-
tal number of classes, is C = 6. A sample image of each
class is given in Figure 1. For ViTs, images are divided into
10 × 10 patches. For each patch, a feature of size 256 is
used. In multi-head attention, 4 heads are used and the en-
coder block is repeated 6 times. Both networks are trained

3Training and test images are not publicly available. We got
access to the dataset in correspondence with (Wu, Zhang, and Shu
2019).



by optimizing the HRR loss function in Equation 1 for a to-
tal of 300 epochs on a single RTX 2070 Super 8GB GPU.
The dropout rate is set to be 0.1 and the initial learning rate
is set to be 10−3 for the first 100 epochs which is lowered to
10−4 and 10−5 for every 100 epochs.

Framing the task in terms of classification presents chal-
lenges when interpreting the results. There are cases where
the network consistently over-predicts the true number of
items in an image (i.e., says “4” instead of “3”). This causes
cases of false success, in that the accuracy of predicting the
target of “6” is near 100% not because the network has suc-
cessfully subitized, but because the network cannot over-
predict beyond 6, and through this limit falsely appears to
perform well. This situation is common, and we identify such
cases with italics to avoid incorrectly bringing the reader’s
attention to what is actually a failure, while simultaneously
indicating the nature of the result. This also occurs with con-
sistent under-counting and the “1” target class but is less
prevalent in the results.

With this caveat, we describe the set of experiments that
were performed and their results. In the following subsec-
tions, the subitizing ability of a CNN and ViT is tested
and compared using both CE and HRR loss. We also show
saliency maps (Simonyan, Vedaldi, and Zisserman 2013) for
each example test image. The saliency maps allow us to bet-
ter understand why the HRR approach improves subitizing
in the majority of cases over CE loss. The general result is
that the standard cross-entropy loss has spurious attention
placed on non-informative regions of the image. The HRR
approach is not immune to this, especially since the network
between approaches is the same, but it is noteworthy how
significant the difference is.

Experiment of Object Sizes

The networks are originally trained using the images of cir-
cles shown in Figure 1 and it classifies all the training images
with 100% accuracy. In this experiment, we test the perfor-
mance of the network with the test images of circles where
the size of the circles is made 50% larger than the original
training images. Apart from that, all other parameters such
as color and shape are kept the same. The sample images
of the circle with a bigger radius are illustrated in Figure 2.
Results of this experiment are presented in the ‘50% Larger’
column of Table 1 and Table 2 for the CNN and ViT, re-
spectively. Although varying object size does not cause the
CE network’s accuracy to fall significantly for classes 1 to
4, for classes 5 and 6 of the CNN, and for class 5 of the ViT,
accuracy falls considerably. On the other hand, HRR loss
can classify all the images with over 80% accuracy using
the CNN and over 50% accuracy using the ViT for all the
classes. It is interesting to note that the accuracy follows the
subitizing pattern, i.e., as the number of circles in the image
increases the probability of correctly recognizing them de-
creases. Figure 2 shows the saliency maps of both HRR and
CE loss for the CNN. HRR loss puts more restricted atten-
tion in the boundary regions whereas attention in the case of
the CE loss spreads out broadly.

n=1 n=2 n=3 n=4 n=5 n=6

(a) Experiment 1 Images

(b) HRR Loss

(c) CE Loss

Figure 2: Sample images of experiment 1 where the radius
of the circles are 50% greater than the circles of training
images are shown in (a). Saliency maps of the experiment 1
images for both HRR and CE loss are shown in (b) and (c),
respectively. HRR puts more attention toward the boundary
regions whereas the network trained with CE loss function
puts attention on both the inside and output of circles along
with the boundary regions.

Experiment of Object Shapes
In this experiment, the networks are tested by replacing the
circles with other shapes such as white equilateral triangles
and squares on a black background, illustrated in Figure 3.
Results of this experiment are presented in the ‘Triangles’
and ‘Squares’ columns of Table 1 and Table 2. When only
changing the shape of the object to triangles, the accuracy of
the CE CNN drops below 50% for all classes except for class
6, with an average accuracy of 45.17%, revealing poor gen-
eralization. In the case of the images of squares, the network
performs comparably well with an increase in average accu-
racy to 75.68%. By contrast, due to using the HRR loss and
a key-value-based transformation layer, the accuracy of the
same network is over 50% for images of triangles and over
80% for images of squares for all the classes. The average
accuracy for triangles and squares is 75.7% and 77.0%, re-
spectively. In the case of ViT, the performance of both HRR
and CE losses are similar. For images of triangles, the HRR
loss average accuracy is 55.33%, slightly lagging behind the
CE loss accuracy of 56.0%, whereas for images of squares,
the HRR loss average accuracy is 65.66%, slightly lagging
behind the CE loss accuracy of 66.0%. The saliency maps
for both HRR and CE loss for the CNN are presented in Fig-
ure 3. Consistently, the HRR loss puts strict focus on the
edges of the objects whereas the CE loss spreads attention
throughout the image.

Experiment of Object Colors
The object’s color in the test images is swapped in this ex-
periment. The images contain newly generated synthetic cir-
cles of the same size as the training set circles, but the test
circles are black on a white background. The results of this
experiment are the ‘Color Swap’ column of the Table 1 and
Table 2. Figure 4 shows the example images that are used
in this experiment along with the saliency maps. From the



n=1 n=2 n=3 n=4 n=5 n=6 n=1 n=2 n=3 n=4 n=5 n=6

(b) Experiment 2 images (Triangles and Squares)

(d) HRR Loss (Triangles and Squares)

(f) CE Loss (Triangles and Squares)

Figure 3: Sample images of experiment 2 where circles of classes 1 to 6 are replaced by triangles and squares shown in (a).
Filters that rely on the curvature of a circle explicitly will perform poorly on this task, which is evident in the CE approach’s
lower accuracy. Saliency maps of the experiment 2 images are shown in (b) for HRR loss and (c) for CE loss. HRR’s attention
is concentrated on the informative regions, i.e., boundary regions whereas attention is more distributive in the case of CE.

50% Larger Triangles Squares Color Swap White Rings

Target HRR CE HRR CE HRR CE HRR CE HRR CE

1 1.000 1.000 0.997 0.327 1.000 0.876 0.093 0.160 0.033 0.004
2 0.920 0.997 0.787 0.441 0.914 0.811 0.228 0.340 0.007 0.002
3 0.967 0.990 0.715 0.361 0.964 0.641 0.388 0.680 0.000 0.010
4 0.953 0.959 0.541 0.287 0.944 0.686 0.370 0.670 0.003 0.096
5 0.904 0.672 0.619 0.364 0.900 0.549 0.251 0.420 0.019 0.194
6 0.815 0.549 0.883 0.930 0.888 0.978 0.122 0.250 1.000 0.989

Table 1: Results of the CNN where bold are best unless the result is due to consistent over/under accounting at the boundary. No
result is marked “best” when performance is worse than random guessing (≤ 16.7%) or similar. The HRR approach generalizes
better for the first three tasks (or is closely behind) but degrades on the color swap task. Both methods fail on the last test.

50% Larger Triangles Squares Color Swap White Rings

Target HRR CE HRR CE HRR CE HRR CE HRR CE

1 1.000 1.000 0.637 0.681 0.942 0.977 0.020 0.000 0.632 0.053
2 0.932 0.981 0.595 0.662 0.731 0.798 0.026 0.001 0.616 0.113
3 0.920 0.923 0.488 0.470 0.553 0.567 0.062 0.001 0.467 0.187
4 0.780 0.785 0.356 0.331 0.393 0.340 0.094 0.005 0.366 0.331
5 0.555 0.372 0.431 0.312 0.401 0.276 0.283 0.024 0.267 0.382
6 0.990 0.995 0.813 0.906 0.948 0.968 0.822 0.995 0.269 0.704

Table 2: Results of the ViT where bold are best unless the result is due to consistent over/under accounting at the boundary. No
result is marked “best” when the performance of both methods is comparable. The HRR approach generalizes better or closely
behind for all the tasks while using ViT. In the color swap task, we can see performance degrades for both but HRR yields
better generalization.

figure, it is obvious that the changes in the test images are
immense compared to the training images from a network’s
perspective. From a human perspective, this is quite an easy
task to generalize after learning from the training images.
Both of the methods also fail the subitizing test. A human
being can count a lower number of objects with less effort
than a higher number of objects. Nevertheless, the CE clas-
sification approach has achieved 16% accuracy for class 1
and 25% for class 6. Likewise, the HRR-based method has
achieved 9.3% for class 1 and 12.2% for class 6. However,

in the case of the ViT, while the performance using both
losses degrades and degenerates, the HRR loss shows better
generalization compared to the CE approach.

Experiment of Region-Boundary Duality
Differentiating between objects from the boundary repre-
sentation is vital to recognition (Marr 2010). Humans can
easily identify objects, separate and count objects given just
their boundaries. To examine the network’s ability to gen-
eralize across the region-boundary duality, the network is



n=1 n=2 n=3 n=4 n=5 n=6

(a) Experiment 3 Images

(b) HRR Loss

(c) CE Loss

Figure 4: Sample images of experiment 3 where the circle
and background colors are swapped in the test images shown
in (a). Saliency maps of the HRR and CE loss are shown
in (b) and (c), respectively. The attention of the network is
more focused on the boundary region in the case of HRR.

tested using images of white circle rings on a black back-
ground. Examples of these test images along with saliency
maps are presented in Figure 5, and the results are in the
‘White Rings’ columns of Table 1 and Table 2.

Recall that the network is originally trained on the im-
ages in Figure 1. From the network’s perspective, the rings
of white circles are completely new images. As a result, both
the CE classification approach with softmax activation and
the HRR classification approach with the key-value transfor-
mation layer approach degrade in performance. In the case
of CNN, we can see degeneracy for both CE and HRR losses
except for class 6 where both methods overcount and have
achieved 98.9% and 100% accuracy, respectively. This is pe-
culiar from the subitizing point of view because the accuracy
for classes with a single ring of a circle in each approach is
0.4% and 3.3%, respectively. However, in the case of the
ViT, we can see the effectiveness of the HRR loss over CE
loss for classes 1 to 4 with a big margin ranging from 4% to
58%. For classes 5 and 6, HRR loss remains consistent with
the subitizing pattern with lower accuracy than CE loss, but
for class 6 the CE loss overcounts. In conclusion, the CNN
lacks the ability to generalize across the region-boundary
duality and fails on this more complex subitizing task. On
the other hand, the ViT with HRR loss shows robust perfor-
mance in generalization on this complex subitizing task.

Boundary Representation Tests
Experiments 1 to 4 demonstrate CNN’s lack of generaliza-
tion in learning. To improve the abstraction ability of CNNs,
Wu et. al. (Wu, Zhang, and Shu 2019) suggested learn-
ing from the boundary representation of objects. Instead of
learning from single-shaped images, each class is built with
different-shaped polygons with n sides. This should elimi-
nate the shape bias in test results. The size will be altered
to allow isolation of generalization to fundamental subitiz-
ing ability rather than change the re-use of shape patterns.
Moreover, each object is represented by its boundary which
bridges the representation of the black object on a white

n=1 n=2 n=3 n=4 n=5 n=6

(a) Experiment 4 Images

(b) HRR Loss

(c) CE Loss

Figure 5: Sample images of experiment 4 where the circles
are represented by the boundary edges shown in (a). This is
the most challenging generalization task, as it changes the
ratio of white and black pixels. Saliency maps for object
region-boundary duality are shown in (b) and (c) for HRR
and CE, respectively.

n=1 n=2 n=3 n=4 n=5 n=6

(a) Boundary representation images

(b) HRR Loss

(c) CE Loss

Figure 6: Sample images of boundary representation of the
various shaped objects are shown in (a). In all cases with the
CE loss shown in (c), we see spurious attention placed on
empty regions of the input - generally increasing in magni-
tude with more items. By contrast, the HRR loss shown in
(b) keeps activations focused on the actual object edges and
appears to suffer only for large n when objects are placed
too close together.

background and the white object on a black background.
Figure 6 illustrates sample images of different shapes and
sizes of objects with the boundary representation.

The network is re-trained using 80% of the images of Fig-
ure 6 and the remaining 20% of the images is used for test-
ing. The accuracy on a test set of in-distribution is shown
in Table 3. While the CE loss appears to obtain better train-
ing accuracy, the goal of this study is the generalization of
subitizing ability. As such the results in Table 3 are more
interesting because the in-distribution results are seen to im-
ply that the HRR loss is worse, but we will see that it has a
meaningful impact on generalization. This nuance would be
difficult to identify in standard computer vision datasets.

To inspect how much generalization is achieved by train-
ing the network with images of object boundaries, the test



Boundary Edge Representation

Target HRR CE

1 1.000 1.000
2 0.985 1.000
3 0.950 0.970
4 0.855 0.930
5 0.635 0.790
6 0.795 0.920

Table 3: In distribution results, show baseline training per-
formance of the HRR and CE-based loss functions on the
edge-map distribution, rather than testing generalization. In
practice, while the HRR has a lower training accuracy, it has
better generalization.

images are scaled up and down by 50%. Next, we will ex-
amine how boundary representation helps towards general-
ization. Intriguingly, the CE method does not follow the ex-
pected subitizing degradation pattern, though our HRR ap-
proach is closer to achieving it for the 50% larger case.

Table 4 reveals how the results deteriorate by only chang-
ing the scale of the object. However, in the case of scaling
up, both of the methods show solid evidence of human-
like subitizing, i.e., the accuracy decreases as the num-
ber of objects in the image increases. The proposed HRR
loss approach has achieved an average accuracy of 49%
whereas the CE approach has achieved an average accuracy
of 45.6%, but the CE’s performance is inflated in the sense
that it has a higher training accuracy and drops precipitously.

50% Larger 50% Smaller

Target HRR CE HRR CE

1 0.935 0.991 1.000 0.687
2 0.715 0.984 0.005 0.390
3 0.585 0.496 0.005 0.021
4 0.300 0.207 0.000 0.014
5 0.225 0.032 0.000 0.043
6 0.180 0.026 0.000 0.988

Table 4: Generalization results for the boundary edge maps.
Bold results are the best unless the result is due to over/un-
der accounting at the boundary. No result is marked “best”
when worse than random guessing (≤ 16.7%).

In the case of scaling down, no apparent subitizing pattern
is present for either method. The proposed method achieved
100% accuracy for class 1 due to under-counting and failed
to generalize for the rest of the classes. Conversely, the CE
approach has achieved 98.8% accuracy due to over-counting
for class 6 and failed to generalize for the rest of the classes.
Overall, the boundary representation has helped the net-
work’s abstraction ability of subitizing but failed to gener-
alize, especially in the case of scaling down.

The saliency maps of the boundary representation test
images are presented in Figure 6. In the boundary rep-
resentation tests, decisions are supposed to be made by

the edge/boundary representation. The saliency maps re-
veal how HRR loss is concentrating networks’ attention in
the boundary regions whereas attention is much diffused in
the case of CE loss. Moreover, based on the observation of
saliency maps of correct and incorrect predictions following
conclusions (see Appendix A for details) are made:

• Even when the CE-based model is correct, its saliency
map indicates it uses the inside region of an object and
the area around the object/background toward its pre-
diction in almost all cases.

• When the HRR loss-based model is correct, it rarely
activates for anything besides the object boundary and
does not tend to focus on the inside content of an object.

• When the HRR-based model is correct, the edges of
the objects in the saliency map are usually nearly-
complete, and large noisy activations can be observed
surrounding the boundary regions.

• When the CE-based model is incorrect, it often has
two objects that are nearby each other. When this hap-
pens, the CE saliency map tends to produce especially
large activations between the objects, creating an artifi-
cial ”bridge” between the two objects.

• When the HRR-based loss is incorrect, it tends to have
a saliency map that is either 1) activating on the inside
content of the object, or 2) has large broken/incomplete
edges detected for the object.

Conclusion and Future Work
In this paper, a neuro-symbolic loss function is proposed us-
ing HRR to investigate the subitizing ability of deep learn-
ing networks such as CNN and ViT. In the four experi-
ments, the HRR-based loss appears to improve the results,
especially toward higher subitizing generalization. ViT per-
formed comparatively worse than CNN, however, in general,
ViT with HRR loss shows better generalization. In one case
of CNN, HRR’s performance has degraded, but still non-
trivial performance, and in one case both the HRR loss and
CE loss have degenerated worse-than-random guessing. In
the case of ViT, HRR’s effectiveness in generalization re-
mains consistent particularly in ‘white rings’ where it out-
performed CE over a big margin ranging from 4% to 58%.

Our results are intriguing in that we did not design the
HRR loss to be biased toward numerosity via symbolic ma-
nipulation, but instead defined a simple loss function as a
counterpart to the CE loss that retains a classification focus.
This may imply some unique benefit to the HRR operator
in improving generalization and supports the years of prior
work using it for CogSci research.

While more work remains to improve innate subitizing
generalization, we are not yet ready to move past these sim-
plistic benchmarks. While (Wu, Zhang, and Shu 2019) have
thoroughly accounted for many potential information leak-
age sources, the under and over-counting bias remains a lim-
itation to our work and others. This need for improved ex-
perimental design of simple tasks also highlights the general
need to thoroughly test CNN and ViT broadly and the limita-
tions and likelihood of encountering out-of-distribution data.
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Saliency Maps Reviews
The saliency maps of the correct and incorrect predictions by the network both in the case of CE and HRR loss are observed.
Example images along with saliency maps for CE loss are given in Figure 7 for correct prediction and in Figure 8 for incorrect
predictions. When a network trained with CE loss makes a correct prediction, its saliency maps show it uses the inside region
of an object and the area around the object/background toward its prediction in almost all cases.

n=1 n=3 n=6 n=2 n=3 n=6 n=6 n=3 n=6 n=6

Figure 7: Sample images with saliency maps in a CE-based model for correct predictions.

However, when a CE-based model makes an incorrect prediction, often its saliency map tends to produce large activations
between the multiple objects, creating an artificial ”bridge” among them.

n=6 n=3 n=3 n=5 n=4 n=5 n=6 n=2 n=1 n=3

Figure 8: Sample images with saliency maps in a CE-based model for incorrect predictions.

Saliency maps along with sample images for HRR-based loss are given in Figure 9 for correct predictions and in Figure
10 for incorrect predictions. While making correct predictions, the edges of the objects in the saliency map of the HRR-based
model are usually nearly-complete and we can observe large noisy activations surrounding the boundary regions.

n=3 n=5 n=6 n=2 n=1 n=2 n=2 n=5 n=6 n=2

Figure 9: Sample images with saliency maps in a HRR-based model for correct predictions.

Nevertheless, when the HRR-based model makes an incorrect prediction, it tends to have a saliency map that is either 1)
activating on the inside content of the object, or 2) has large broken/incomplete edges detected for the object.

n=2 n=4 n=4 n=2 n=6 n=2 n=1 n=3 n=2 n=4

Figure 10: Sample images with saliency maps in a HRR-based model for incorrect predictions.


