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Abstract

Language model-based instruction-following
systems have lately shown increasing perfor-
mance on many benchmark tasks, demonstrat-
ing the capability of adapting to a broad variety
of instructions. However, such systems are of-
ten not designed to be transparent about their
limitations; a user may easily prompt a model
with an instruction without any idea of whether
the responses should be expected to be accurate,
or if the system is even capable of performing
the task. We propose a third party performance
prediction framework, where a separate model
is trained to predict the metric resulting from
evaluating an instruction-following system on
a task while assuming access only to its inputs
and outputs at inference time. We perform this
analysis with a variety of both open and closed
instruction-following models as well as multi-
ple performance predictors, and examine the
effect of various factors such as model size,
number of training tasks, and prompt format.
Our findings indicate that third-party perfor-
mance prediction is very challenging, and much
work remains in developing predictors that can
automatically reveal the limitations of modern
instruction-following natural language process-
ing systems.

1 Introduction

Despite much-discussed advances in the capabili-
ties of language model-based systems that follow
instructions (Mishra et al., 2022; Sanh et al., 2022;
Wei et al., 2022; Ouyang et al., 2022; OpenAl,
2022, 2023), the research community lacks an un-
derstanding of the limits of these capabilities. Ide-
ally, purveyors of a technological product would
clearly explain to users the limitations of what the
system can be used for.! At present, the best a user

'While documentation such as that of OpenAl (2023)
breaks down performance by factors such as task categories,
languages, or benchmarks (each benchmark being a collection
of many tasks), there is little transparency at any finer granu-
larity (e.g., instruction-level) and no publicly-available tool or

can do is explore: try out a prompt and see whether
the language model can correctly complete the task.
We find this state of affairs concerning, because
the cost of such tests will fall on the users. With-
out coordination and information-sharing, different
users will make the same explorations and incur
unnecessary costs while simultaneously running
the risk of relying on systems for tasks which they
are incapable of performing adequately.’

In this work, we take a step toward empowering
users of language-model based systems by propos-
ing a third party approach to predicting model
performance at the task level. Consider a user with
a particular task in mind. Our proposed task per-
formance predictor takes as input the same prompt
the user intends for the language model, and with-
out querying the language model itself, offers an
estimate of the model’s performance on the task.
We instantiate such models by regressing quanti-
tative model performance metrics on natural lan-
guage task instructions. If successful, such predic-
tors could help users decide among commercial
systems, or even opt out of delegating a task to a
language model at all.

Our experiments examine how well existing
instruction-tuned LMs’ performance can be pre-
dicted as a function of model size, choice of eval-
uation metric, amount of training data, and other
factors. We find overall that the task is challenging,
with the various factors we explore providing little
improvement to predictability. Our results under-
score how much progress still needs to be made in
designing instruction-following natural language
systems whose performance can be accurately pre-

mechanism to give users a sense of performance for tasks that
do not fit neatly into the documented categories.

%A second issue, not addressed here, is that users may not
realize that they need to check system output for correctness,
and may simply assume that any confident answer from a
model can be trusted. We suspect that this problem will worsen
as users explore more and more use cases not anticipated by
the builders of the systems and therefore unaddressed by so-
called refusal training.



dicted and made known for the sake of transparency
and user safety.

2 Related Work

2.1 Instruction Tuning

Our work focuses on analyzing the behavior of
models that have been trained to follow task in-
structions. This includes models trained on human-
generated instructions and instances (Mishra et al.,
2022; Sanh et al., 2022; Wei et al., 2022; Ouyang
et al., 2022; Wang et al., 2022) as well as model-
generated data (Wang et al., 2023b; Honovich et al.,
2023; Taori et al., 2023; Chiang et al., 2023). We
primarily use models trained by Wang et al. (2023a)
on a variety of instruction-following datasets and
initialized with the publicly available LLaMA fam-
ily of language models (Touvron et al., 2023). We
also explore using the closed models GPT-3.5 (Ope-
nAl, 2022) and GPT-4 (OpenAl, 2023). For more
details on our choice of instruction-tuned models,
please refer to §3.1.

2.2 Predicting Model Behavior

Initial work on performance prediction involved
training simpler models to predict the performance
of larger models as a function of various features,
such as model family, model size, task, language,
and training procedure (Xia et al., 2020; Ye et al.,
2021, 2023). The primary motivation of that work
was to address computational and data constraints
— training separate performance prediction mod-
els could alleviate issues where the computational
cost of finetuning on all datasets was prohibitive or
where scarce data in a particular language or do-
main prevented finetuning altogether. While much
of that work predicted performance at the task level
as in our study, its motivations were different and
its methods were often implemented by predicting
from hand-crafted features related to properties of
each dataset (e.g., model parameter count or lan-
guage features) rather than the text prompt input to
the model itself.

More recent efforts to better understand model
behavior have analyzed the ability to predict
whether or not a model will perform well on a
given input, either as determined by the language
model itself or a separately-trained model. Ka-
davath et al. (2022) analyze models to determine
whether they can identify examples for which they
can generate the correct response, either by prompt-
ing for a “True/False” label with an instance and

one or more generations from the model itself or
by finetuning the model as a binary classifier us-
ing a dataset of inputs and correctness labels from
previous model outputs. Yao and Koller (2023) sim-
ilarly finetune models as binary classifiers to pre-
dict whether another model’s generated response
is correct for tagging, parsing, and semantic pars-
ing tasks. Other work explores models’ ability
to generate calibrated uncertainty about their re-
sponses either through logits, multiple generations,
or verbalized expressions of uncertainty, applied to
domains such as solving arithmetic problems (Lin
et al., 2022) or question answering (QA; Si et al.,
2023; Zhou et al., 2023; Cheng et al., 2023). Mod-
els’ ability to verbalize their uncertainty has also
been explored for models trained with reinforce-
ment learning with human feedback (RLHF), again
using QA datasets (Tian et al., 2023). Notably, all
of these efforts examine being able to predict model
performance at the instance level, whereas we are
primarily interested in predicting performance at
the task level given a task instruction.

The most similar work to ours in spirit is that of
Fu et al. (2023), which also attempts to predict how
well a model will perform on a given dataset by
training a separate predictor. There are a number
of key differences from our efforts: their work fo-
cuses on the in-context learning setting using purely
pretrained models rather than models specifically
trained to follow instructions; they assume access
to a set of unlabeled examples for each dataset,
rather than just a task instruction; their analysis
requires access to model internals by using model
output logits to construct a “confidence profile”
feature vector for each dataset; and they restrict
their analysis to a small set of question answering
datasets. A modern trend has seen public releases
of models whose internal states are inaccessible,
but that can be prompted with a wide variety of
user-defined instructions. This situation challenges
many of the assumptions made by Fu et al. (2023)
and motivates our own work. However, their explo-
rations inspire our efforts, and we attempt to extend
their analysis while focusing on task instructions
and models trained to follow them.

3 Methods

We begin by describing our complete analysis
pipeline, also illustrated as a diagram in Figure 1.
Each of our experiments involves two finetuned
language models: one that is trained to follow
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Figure 1: A diagram illustrating our complete analysis pipeline. We begin with a pretrained LM that is instruction-
tuned using training tasks from chosen instruction data, resulting in an instruction-tuned model (IM). The IM is
evaluated using the test tasks of the instruction data (not necessarily from the same dataset as the training tasks)
and a choice of evaluation metric. Each pair of test task instruction (x) and evaluation performance metric value
(y) is used to construct the performance data, which itself is split into train, validation, and test sets. The train and
validation sets are used to train another (“third party”) pretrained LM to predict the performance of the IM as a
regression model, resulting in the performance predictor (PP). Finally, the PP is evaluated on the test set of the
performance data to determine how well it can predict the performance of the IM on unseen tasks. The sections of
the diagram highlighted in blue indicate the components of the pipeline that we vary to determine their effect on
performance prediction: the size of the IM, the choice of instruction data, the choice of evaluation metric, and

the size and type of PP model.

instructions to perform tasks, which we term the
instruction-tuned model (IM), and another that is
trained to map from an instruction to some mea-
sure of the IM’s performance on that task, which
we call the performance predictor (PP). The IMs
considered here are drawn from past work. To tune
a PP, we evaluate a single IM on instructions it was
not exposed to during any of its training (including
instruction-tuning). The resulting pairs — each an
instruction x paired with the model’s performance
score y — are divided into training, validation, and
test sets for the PP. We train the PP to predict the
IM’s performance y on instructions & unseen to the
IM, and evaluate those predictions on a different
set of instructions unseen to either the IM or the PP.
We explore a variety of choices for IMs, PPs, and
evaluation metrics, which are detailed below.

3.1 Instruction-Tuned Models (IMs)

Our experiments use a range of pretrained LMs
that have been finetuned to follow instructions.
Part of our goal is to assess the effect of IM size
(i.e., parameter count) and choice of instruction-
tuning dataset on how well the model’s perfor-
mance can be predicted. To this end, we primarily
use LLaMA models (Touvron et al., 2023) of vari-
ous sizes finetuned on a range of instruction-tuning

datasets (Wang et al., 2023a). The LLaMA family
of models is among the best performing open mod-
els, and they have already been used as the basis for
a variety of models trained to follow instructions
(Taori et al., 2023; Chiang et al., 2023; Wang et al.,
2023a). All models were trained by maximizing
the per-token likelihood of the gold output given
an instruction and possibly an input, with no ad-
ditional training procedures such as RLHF (Chris-
tiano et al., 2017). While adapting our analysis to
models trained using RLHF would be an interest-
ing direction of future work, such models and the
data to train them are currently limited relative to
models trained with supervised finetuning alone,
and our intention is to perform an initial analysis on
the least-complicated systems that still demonstrate
an ability to follow instructions. For the sake of
completeness, we additionally include the closed,
API-based models GPT-3.5 (gpt—-3.5-turbo)
and GPT-4, as our goal is to implement a pipeline
that is applicable even when access is restricted to
model inputs and outputs.

3.2 Evaluation Metrics

For each instruction-tuned model, we perform in-
ference on a separate evaluation set of instructions
in order to generate a dataset of the model’s behav-



ior (y) on unseen instructions (x) for training per-
formance prediction models. For each instruction
and output pair, we calculate a quantitative eval-
uation metric that compares the model-generated
output to the gold output, in most cases averag-
ing this metric across instances for tasks that have
multiple instances. We treat this final metric as
the instruction-tuned model’s performance for that
instruction. We explore two quantitative metrics
commonly used when evaluating instruction-tuned
models on a broad range of tasks: ROUGE-L (Lin,
2004) and Exact Match score. Again, since these
automated metrics can be computed by comparing
a model-generated output to a gold output, we can
apply them to models where we only have access to
model generations. Additionally, we briefly com-
pare to using model loss as the metric to predict
in §4.3, as an exploration of what we can achieve
with performance prediction when additional infor-
mation (in this case, the LM’s output distribution)
is available.

3.3 Performance Predictors (PP)

Once we’ve evaluated an IM on unseen instruc-
tions, we use the performance data ({x,y) pairs)
to build models that predict the IM’s performance,
and evaluate those predictions on the test subset of
the IM performance data. We primarily finetune
RoBERTa (both base and large sizes; Liu et al.,
2019) as the PP, motivated by the goal of having
a lightweight separate model that can predict how
well an instruction-tuned model will perform with-
out incurring the inference costs of a much larger
model. ROBERTa models are trained as regression
models by adding a linear layer to the [CLS] to-
ken at the output layer and training to minimize
mean-squared error between the predicted and true
evaluation metric for each instruction. In some
cases, we also train the base LLaMA model used
to build the IM by similarly adding a linear layer to
the EOS token at the output layer and adding and
updating LoRA adapters (Hu et al., 2022) rather
than updating all model weights. This is done in an
effort to establish an “upper bound” of performance
prediction that can be achieved while incurring the
prohibitive computational cost of using a much
larger model. We additionally include a simple
baseline of predicting the mean metric value across
all training instructions, as a “lower bound” to es-
tablish whether training a separate predictor model
offers any benefit at all.

Unless otherwise specified, PPs are trained
and evaluated on the results of evaluating IMs
on the Super-Naturallnstructions (SuperNI) test
set tasks (Wang et al., 2022). For each exper-
iment, we perform 10 random 80%/10%/10%
train/validation/test splits of these tasks and report
mean and standard deviation of the performance
predictor’s root mean squared error (RMSE) in pre-
dicting the true evaluation metric from the task
instruction. Validation data is used to tune hyperpa-
rameters for the PPs, namely batch size and learn-
ing rate; for full experiment details, please refer to
Appendix A.

4 Results

4.1 Performance Prediction is Challenging

Table 1 shows our main results of predicting perfor-
mance on SuperNI test set instructions, with mean
and standard deviation (subscript) RMSE values
across all train-test splits of the SuperNI test tasks.
We explore using both Exact Match and ROUGE-
L as the target metrics to be predicted for each
task, with base and large RoOBERTa models as the
PP models as well as LLaMA-13B (upper bound)
and the simple mean baseline (lower bound). For
the IMs, we use the 13B-parameter versions of
the Alpaca, Vicuna?, and Tiilu models, as well as
GPT-3.5 (gpt-3.5-turbo) and GPT-4.

Results demonstrate that performance prediction
from task instruction is incredibly difficult, with
RMSE values generally around 20 or higher (for
metrics in the 0-100 range) across all experimental
conditions. Both RoBERTa-base and RoBERTa-
large perform comparably to the simple mean base-
line, likely indicating that there is little learnable
signal within the set of instruction-metric pairs.
The lack of a meaningful difference in performance
between RoBERTa-base and RoBERTa-large sug-
gests that size of the PP model also makes little dif-
ference in performance prediction at the ROBERTa
scale. In general, ROUGE-L is more predictable
than Exact Match, with consistently lower RMSE
values across choices of PPs and IMs. The val-
ues below the name of each model indicating per-
formance in ROUGE-L on the SuperNI test tasks
show that models which tend to perform better on
SuperNI are less predictable, exhibiting the worst
RMSE values in general.

3We use the 13B-parameter version of LLaMA finetuned
on the ShareGPT dataset by Wang et al. (2023a) as an attempt
to replicate the training of Vicuna.



IM: Alpaca-13B

Vicuna-13B Tiilu-13B GPT-3.5 GPT+4

avg. performance (ROUGE-L): 45.9 44.6 61.7 53.6 63.5

Exact Match mean 25.73.4 26.439 32.49 3 30.839 36.43%
RoBERTa-base 26.24.3 26.149 33.63.3 32.554  38.241
RoBERTa-large 27.45 4 26.95 4 34.44 9 33.057 37245
LLaMA-13B 19.15 3 18.95 ¢ 21.433 21.75¢ 22487

ROUGE-L mean 21.33,5 20.43.3 21-41.8 22.42.9 24.24.2
RoBERTa-base 22.54_1 21.23_6 22.13_8 23.43.4 25.64_0
RoBERTa-large 22.64.9 21.23¢ 22.03.7 23.53.4 25.739
LLaMA-13B 22.247 21.233 21.534 21.635 22.154

Table 1: Test set RMSE of mean baseline and various PP models finetuned to predict performance from task

instruction for various IMs (columns). Subscript shows s

tandard deviation across 10 splits of the SuperNI test tasks.
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Figure 2: Predicted vs. true metric value when using RoBERTa-large to map from task instruction to performance —
either ROUGE-L (top row) or Exact Match (bottom row) — for various instruction-following models (columns).

The results for LLaMA-13B as PP are more
promising, with RMSE values that outperform the
RoBERTa models as well as the mean baseline
when predicting the Exact Match score across all
IMs. However, results are still poor, with RMSE
values near 20 for both evaluation metrics and all
IMs, so even a much larger PP with a more modern
base model is unable to predict performance values
that are near ground truth. It is additionally worth
noting that finetuning LLaMA-13B is a much more
prohibitive method of performance prediction, as it
involves using a model with around 36 x the num-
ber of parameters of RoOBERTa-large and incurring
comparable inference costs to many of the IMs
themselves. As such, we treat the LLaMA-13B
performance prediction results as demonstration
of a hopeful upper bound while simultaneously
underscoring the large room for improvement in
developing better-performing and lightweight PP
models.

Figure 2 shows a more detailed view of a sub-
set of the same results, with scatter plots of the
predicted versus true metric value (ROUGE-L or

Exact Match) when using RoBERTa-large as the PP
for both metrics and all IMs. Results are shown for
all train-test splits of the SuperNI test tasks with 12
held-out instructions per random split (10% of the
SuperNI test tasks), resulting in a total of 120 pre-
dicted and true performance values for each com-
bination of evaluation metric and IM. This qualita-
tive view of the predictions highlights the fact that
RoBERTa-large generally learns to predict roughly
the same mean performance value across all tasks
within each train-test split of the SuperNI test tasks.
These results explain the similarity in performance
to the simple mean baseline and demonstrate that
the PP model does not learn a meaningful associa-
tion between instruction and performance.

4.2 Effect of Various Factors on Predictability

We perform more detailed analyses by altering var-
ious factors that may affect the behavior of a PP
when used to predict the performance of an IM.
These factors include the size of the IM, the num-
ber of tasks used to train the PP, and the choice of
prompt (instruction-only or instruction + 2 positive



demonstrations).

4.2.1 Size of Instruction-tuned Model

PP: mean RoBERTa-large
LLaMA-7B (35.8) 21.334 20.746
LLaMA-13B (44.6) 26.43> 27.05.4
LLaMA-30B (44.2) 27.52¢ 27.953
LLaMA-65B (48.9) 30.03_3 31.75,3

Table 2: Test set RMSE of predicting Exact Match given
task instruction, for various sizes of LLaMA models
instruction-tuned on ShareGPT. Model performance in
ROUGE-L on the SuperNI test set is given in parenthe-
ses next to the name of each model.

We examine the effect of IM size by predicting
the performance of various-sized LLaMA models
instruction-tuned by Wang et al. (2023a) on the
ShareGPT dataset, ranging in scale from 7B to 65B
parameters. Results are shown in Table 2, focus-
ing on the mean baseline and RoBERTa-large PP
model as well as the Exact Match metric (results for
RoBERTa-base and ROUGE-L are similar). The
RMSE values indicate that performance prediction
worsens for increasing model size, while model
performance on the SuperNI test set improves
(ROUGE-L values in parentheses next to each
model name). However, the mean baseline also
exhibits increasing RMSE values with model scale.
This likely suggests that larger, better-performing
models are less predictable not because they exhibit
more dissimilar behavior on tasks with similar in-
structions, but because their performance metric
values cover a broader range. In any case, we can
conclude that scale of the IM alone does not im-
prove performance prediction.

4.2.2 Number of Training Tasks

PP training: SuperNI + BIG-bench
Alpaca-13B 27.454 25.46.9
Vicuna-13B  26.95 4 26.15.5
Tiilu-13B 34.44.9 34.63.9
GPT-3.5 33.05.7 32.36.7
GPT-4 37245 37.745

Table 3: Test set RMSE of using RoBERTa-large to
predict Exact Match given task instruction, using either
just SuperNI instructions or SuperNI and BIG-bench
instructions for training the PP model.

We examine the effect of increasing the number
of tasks / instructions used to train the PP model
by including tasks from BIG-bench (BIG-bench
authors, 2023). Since BIG-bench tasks do not come
with instructions, we manually annotate tasks either
by converting the task description (if provided) into
a SuperNI-style declarative instruction or writing
an instruction from scratch when necessary. We
additionally filter out a number of tasks, leaving
a total of 156 tasks to use as additional training
tasks (a full list of included tasks can be found
in Appendix B). We perform the same splits of
the SuperNI test tasks as before, only adding the
BIG-bench tasks to the training split in each case to
increase the number of instructions used to train the
PP model in an effort to improve its performance.
The results can be found in Table 3. While
the inclusion of BIG-bench task instructions rep-
resents a nearly 2.5x increase in the number of
training instructions for the PP model, the RMSE
values demonstrate that the performance difference
is negligible. There are a number of plausible ex-
planations for why this is the case — in general,
BIG-bench tasks are substantially different from
SuperNI tasks, including those which deviate from
standard language understanding such as decoding
encrypted text, performing arithmetic operations,
and generating chess moves. The domain shift be-
tween the two datasets may explain why the inclu-
sion of the additional instructions did not provide
enough meaningful signal for the PP models.

4.2.3 Prompt Format

format: instruction + 2 demonstrations
Alpaca-13B 27.45 4 27.33.7
Vicuna-13B 26.9544 29-02.6
Tiilu-13B 34.44 9 33.69.4
GPT-3.5 33.05.7 31.633
GPT-4 37.245 37.838

Table 4: Test set RMSE of using RoBERTa-large to pre-
dict Exact Match given task instruction, using SuperNI
tasks with an instruction-only prompt or the instruction
with 2 positive demonstrations.

We primarily focus on instruction-tuned models
evaluated in a zero-shot manner with only an in-
struction and instance input, as this has become
standard practice and reflects how a generic user
might interact with an instruction-following system.
However, previous work exploring the effect of the



prompt format has shown notable improvements
in IM performance when including additional in-
formation, such as positive demonstrations of the
task (Wang et al., 2022). We explore whether this
improvement in performance also leads to an im-
provement in predictability by additionally evaluat-
ing all IMs with a prompt format that uses a task
instruction with two positive demonstrations, using
the positive examples provided with each SuperNI
task. The RMSE values resulting from training
RoBERTa-large to predict the Exact Match score
in this setting, as well as the original instruction-
only RMSE values, can be seen in Table 4. While
the inclusion of demonstrations improves the per-
formance of the IMs themselves by roughly 2-6
points in Exact Match score, the evaluation results
don’t lead to the models being more predictable
as there are no meaningful differences in values
between prompt formats for any model.

4.3 Predicting Loss

PP: mean RoBERTa-large

Alpaca—13B 1.700.27 1.510.43
Vicuna-13B  1.97(.4¢ 2.10¢.53
Tiilu-13B 1.250 32 1.100.36

Table 5: Test set RMSE of predicting cross-entropy
loss given task instruction, for various LLaMA-based
instruction-following models.

Our core analysis above relied on the use of au-
tomated evaluation metrics such as Exact Match
and ROUGE-L that can be formulated as functions
applied to a pair of generated and gold outputs.
This is based on the assumption that we do not
have access to model internals or outputs other than
generated text, a practical assumption given the in-
creasing use of modern systems that only allow for
limited access such as through API requests. How-
ever, while such automated metrics can be shown
to correlate with other variables such as accuracy
on classification tasks (Wang et al., 2022), they
come with their own limitations. For instance, for
tasks that require more creative or free-form gener-
ations from the model, it is possible for the model
output and gold label to be semantically equiva-
lent and equally valid responses to the instruction
while differing in surface form such that metrics
like Exact Match and ROUGE-L are inappropriate
(Holtzman et al., 2021). To address this, we per-

form an additional experiment training PP models
to predict the model’s loss (on the gold output) in-
stead, avoiding token-based comparison between
two pieces of text entirely. We do this by evaluating
the average per-token cross-entropy loss of the gold
label given a prompt (task instruction and input)
for each instance in each dataset, averaging across
instances to get a single average loss value per task
/ instruction. We then follow the same regression
training procedure to build PP models that predict
this value.

Scatter plots similar to Figure 2 can be seen in
Figure 3 (where this time the true and predicted
values are this average per-task loss), and the quan-
titative RMSE values corresponding to these results
are in Table 5. As this analysis requires access to
model output distributions to compute the loss, we
are limited to the LLaMA-based open models. The
plots show the predictions made by RoBERTa-large
finetuned to predict average per-task loss, using the
same 10 splits of the SuperNI test tasks as in pre-
vious results. Qualitatively, these results appear
to show greater correlation between the true and
predicted values as compared to the metrics con-
sidered earlier, indicating that there may be more
of a learnable signal for predicting loss. However,
the mean RMSE values show that the finetuned
RoBERTa-large model still does not outperform
the simple mean baseline on average, indicating
that performance prediction remains challenging
even with access to a quantitative metric not based
on token-level comparison between generated and
gold outputs. Taken together, our results motivate
further work in identifying quantitative task-level
metrics that can be accurately predicted, and per-
haps in designing IMs themselves to be more pre-
dictable.

5 Discussion

Our experiments varied a number of factors that
could impact the predictability of an instruction-
tuned model’s performance on unseen instructions.
We broadly summarize our findings below:
Performance prediction remains incredibly
challenging regardless of setup. RMSE values
remain at 20 or higher for metrics in the range of
0-100, indicating that PP models fail to predict
values that are even somewhat close to true perfor-
mance. This remains true across a variety of open
and closed instruction-following models, for mul-
tiple automated evaluation metrics. There is also
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Figure 3: Predicted vs. true loss value when using RoOBERTa-large to map from task instruction to loss for various

instruction-following models.

little performance difference between RoBERTa
PP models of different scales, and none of them
outperform a simple mean baseline. One optimistic
result occurs when using LL.aMA-13B as the PP
model, but performance is still relatively poor and
this comes at the cost of scaling up the PP model
to the size of the IM.

Increasing instruction-tuned model scale, in-
creasing number of training tasks, and adding
demonstrations to prompts all fail to improve
performance prediction. The behavior of larger
models does not seem to be any more predictable,
nor is the behavior of models with access to ad-
ditional information in the prompt. The typical
strategy of increasing the amount of training data
available for the finetuned PP model to better learn
a prediction signal is also insufficient. The number
of instructions remains small, so future work could
ascertain whether the problem setup is still limited
by the amount of instructions or if there really is
no learnable pattern in IM behavior.

Predicting cross-entropy loss does not im-
prove performance. Despite avoiding the issues
inherent in using metrics based on token-level com-
parison between generated and gold outputs, train-
ing PP models to predict loss still does not lead to
better results than the simple mean baseline.

6 Conclusion

Recent NLP systems seem to be able to perform
arbitrary tasks given an instruction. Yet we are
still not able to understand or explain to users the
limitations of these systems such as by reliably pre-
dicting their success or failure on new, previously
unseen instructions. We take a first step toward
this goal by training a separate predictor model to
map from a task instruction to the quantified perfor-

mance of a given instruction-tuned model on that
task. Our results show that performance prediction
is challenging, with numerous factors like choice of
evaluation metric, predictor model size, instruction-
following model size, number of training tasks, and
prompt format all showing negligible effect on the
predictability of instruction-tuned model behavior.
Much work remains to be done in designing sys-
tems whose limitations can be well-predicted and
revealed transparently and freely to their users.

7 Limitations & Ethical Considerations

While we explore the third party performance pre-
diction problem across a variety of factors, there
are several constraints that limit our analysis and
could be explored in future work. Likely the largest
limitation is data — few datasets exist in the SuperNI
style (with multiple tasks each having a declarative
instruction and multiple instances for evaluation)
that existing models have not already been trained
on. Even with the addition of BIG-bench instruc-
tions, the resulting dataset is around 250 training
instructions, which is still small by most standards
and may not provide enough data in general to learn
to predict performance. Building more datasets in
this format, perhaps by scaling up dataset genera-
tion in an automated fashion (Wang et al., 2023b;
Honovich et al., 2023), could expand this analysis
to help overcome the data limitation.
Additionally, using a quantitative, automatic
evaluation metric may itself not be appropriate
when considering arbitrary tasks, including ones
that are creative or based on open-ended genera-
tion. Reliable quantitative evaluation in the gen-
eral instruction-tuned setting is an open challenge.
While we attempt to address this with our results
predicting cross-entropy loss, the choice of evalua-



tion metric for arbitrary instruction-following tasks
remains an open question.

Instruction-tuned model performance can also
depend on how the instruction is phrased, and pre-
vious work has demonstrated model sensitivity to
perturbed or paraphrased instructions (Zhao et al.,
2021; Webson and Pavlick, 2022). Driven by as-
sumptions that most users will not “engineer” in-
structions extensively, our experiments only con-
sider a single instruction per task, and redefining
performance based on multiple instructions per task
(i.e., more “task-specific” rather than “instruction-
specific” behavior) may lead to other interesting
results.
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Appendix

A Finetuning Details

We use the Huggingface t ransformers library
to run all experiments (Wolf et al., 2020). Details
for finetuning ROBERTa-base and RoBERTa-large
performance predictors can be found in Table 6,
while details for the LLaMA-13B performance pre-
dictors can be found in Table 7. We perform a
hyperparameter search over batch size and learn-
ing rate for all finetuning experiments. RoBERTa
models are finetuned by updating all parameters,
while LLaMA models are finetuned by adding and
updating LoRA adapters (Hu et al., 2022). All per-
formance predictors use an additional linear layer
applied to either the [CLS] token (for RoOBERTa)
or the EOS token (for LLaMA) at the last layer to
make the final prediction. All models were evalu-
ated on the validation set of instructions at every
epoch, with early stopping performed based on
validation set RMSE.

Hyperparameter Assignment
number of epochs 20
batch size {4,8, 16}
maximum learning rate  {1e-5, Se-5, le-4, 5e-4}
optimizer AdamW
epsilon le-8
betas (0.9, 0.999)
learning rate schedule constant
weight decay 0
warmup proportion none
learning rate decay none

Table 6: Experiment settings for finetuning ROBERTa
performance predictor models.
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Hyperparameter Assignment
number of epochs 20
batch size {8, 16, 32}
maximum learning rate  {le-5, 2e-5, Se-5, le-4}
optimizer AdamW
epsilon le-8
betas (0.9, 0.999)
learning rate schedule linear warmup
weight decay 0
warmup proportion 0.03
learning rate decay linear
LoRA rank 256
LoRA alpha 256
LoRA dropout 0.05

Table 7: Experiment settings for finetuning LLaMA
performance predictor models.

B Details on BIG-bench

The full list of tasks included from BIG-bench can
be found in Table 8.


https://aclanthology.org/2023.emnlp-main.335

Tasks

abstract_narrative_understanding, anachronisms, analogical_similarity, analytic_entailment, arith-
metic, ascii_word_recognition, authorship_verification, auto_categorization, auto_debugging,
bbg_lite_json, bridging_anaphora_resolution_barqa, causal_judgment, cause_and_effect,
checkmate_in_one, chess_state_tracking, chinese_remainder_theorem, cifar10_classification,
code_line_description, codenames, color, common_morpheme, conceptual_combinations, con-
lang_translation, contextual_parametric_knowledge_conflicts, crash_blossom, crass_ai, cryobi-
ology_spanish, cryptonite, cs_algorithms, dark_humor_detection, date_understanding, disam-
biguation_qa, discourse_marker_prediction, disfl_qa, dyck_languages, elementary_math_qa,
emoji_movie, emojis_emotion_prediction, empirical_judgments, english_proverbs, en-
glish_russian_proverbs, entailed_polarity, entailed_polarity_hindi, epistemic_reasoning, evaluat-
ing_information_essentiality, fact_checker, fantasy_reasoning, few_shot_nlg, figure_of_speech_detection,
formal_fallacies_syllogisms_negation, gem, gender_inclusive_sentences_german, gen-
eral_knowledge, geometric_shapes, goal_step_wikihow, gre_reading_comprehension, hhh_alignment,
hindi_question_answering, hindu_knowledge, hinglish_toxicity, human_organs_senses, hyper-
baton, identify_math_theorems, identify_odd_metaphor, implicatures, implicit_relations, in-
tent_recognition, international_phonetic_alphabet_nli, international_phonetic_alphabet_transliterate,
intersect_geometry, irony_identification, kanji_ascii, kannada, key_value_maps, known_unknowns,
language_games, language_identification, linguistics_puzzles, logic_grid_puzzle, logical_args, logi-
cal_fallacy_detection, logical_sequence, mathematical_induction, matrixshapes, metaphor_boolean,
metaphor_understanding, minute_mysteries_qa, misconceptions, mnist_ascii, modified_arithmetic,
moral_permissibility, movie_dialog_same_or_different, movie_recommendation, mult_data_wrangling,
navigate, nonsense_words_grammar, novel_concepts, object_counting, odd_one_out, operators,
paragraph_segmentation, parsinlu_qa, parsinlu_reading_comprehension, penguins_in_a_table, peri-
odic_elements, persian_idioms, phrase_relatedness, physical_intuition, physics, physics_questions,
play_dialog_same_or_different, polish_sequence_labeling, presuppositions_as_nli, qa_wikidata,
question_selection, real_or_fake_text, reasoning_about_colored_objects, repeat_copy_logic, rephrase,
riddle_sense, ruin_names, salient_translation_error_detection, scientific_press_release, seman-
tic_parsing_in_context_sparc, semantic_parsing_spider, sentence_ambiguity, similarities_abstraction,
simp_turing_concept, simple_ethical_questions, simple_text_editing, snarks, social_iqa, so-
cial_support, sports_understanding, strange_stories, strategyqa, sufficient_information, suicide_risk,
swahili_english_proverbs, swedish_to_german_proverbs, symbol_interpretation, temporal_sequences,
tense, timedial, topical_chat, tracking_shuffled_objects, understanding_fables, undo_permutation,
unit_conversion, unit_interpretation, vitaminc_fact_verification, what_is_the_tao, which_wiki_edit,
winowhy, word_sorting, word_unscrambling

Table 8: List of BIG-bench tasks included when training performance predictors on additional tasks.
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