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Abstract

Language model-based instruction-following001
systems have lately shown increasing perfor-002
mance on many benchmark tasks, demonstrat-003
ing the capability of adapting to a broad variety004
of instructions. However, such systems are of-005
ten not designed to be transparent about their006
limitations; a user may easily prompt a model007
with an instruction without any idea of whether008
the responses should be expected to be accurate,009
or if the system is even capable of performing010
the task. We propose a third party performance011
prediction framework, where a separate model012
is trained to predict the metric resulting from013
evaluating an instruction-following system on014
a task while assuming access only to its inputs015
and outputs at inference time. We perform this016
analysis with a variety of both open and closed017
instruction-following models as well as multi-018
ple performance predictors, and examine the019
effect of various factors such as model size,020
number of training tasks, and prompt format.021
Our findings indicate that third-party perfor-022
mance prediction is very challenging, and much023
work remains in developing predictors that can024
automatically reveal the limitations of modern025
instruction-following natural language process-026
ing systems.027

1 Introduction028

Despite much-discussed advances in the capabili-029

ties of language model-based systems that follow030

instructions (Mishra et al., 2022; Sanh et al., 2022;031

Wei et al., 2022; Ouyang et al., 2022; OpenAI,032

2022, 2023), the research community lacks an un-033

derstanding of the limits of these capabilities. Ide-034

ally, purveyors of a technological product would035

clearly explain to users the limitations of what the036

system can be used for.1 At present, the best a user037

1While documentation such as that of OpenAI (2023)
breaks down performance by factors such as task categories,
languages, or benchmarks (each benchmark being a collection
of many tasks), there is little transparency at any finer granu-
larity (e.g., instruction-level) and no publicly-available tool or

can do is explore: try out a prompt and see whether 038

the language model can correctly complete the task. 039

We find this state of affairs concerning, because 040

the cost of such tests will fall on the users. With- 041

out coordination and information-sharing, different 042

users will make the same explorations and incur 043

unnecessary costs while simultaneously running 044

the risk of relying on systems for tasks which they 045

are incapable of performing adequately.2 046

In this work, we take a step toward empowering 047

users of language-model based systems by propos- 048

ing a third party approach to predicting model 049

performance at the task level. Consider a user with 050

a particular task in mind. Our proposed task per- 051

formance predictor takes as input the same prompt 052

the user intends for the language model, and with- 053

out querying the language model itself, offers an 054

estimate of the model’s performance on the task. 055

We instantiate such models by regressing quanti- 056

tative model performance metrics on natural lan- 057

guage task instructions. If successful, such predic- 058

tors could help users decide among commercial 059

systems, or even opt out of delegating a task to a 060

language model at all. 061

Our experiments examine how well existing 062

instruction-tuned LMs’ performance can be pre- 063

dicted as a function of model size, choice of eval- 064

uation metric, amount of training data, and other 065

factors. We find overall that the task is challenging, 066

with the various factors we explore providing little 067

improvement to predictability. Our results under- 068

score how much progress still needs to be made in 069

designing instruction-following natural language 070

systems whose performance can be accurately pre- 071

mechanism to give users a sense of performance for tasks that
do not fit neatly into the documented categories.

2A second issue, not addressed here, is that users may not
realize that they need to check system output for correctness,
and may simply assume that any confident answer from a
model can be trusted. We suspect that this problem will worsen
as users explore more and more use cases not anticipated by
the builders of the systems and therefore unaddressed by so-
called refusal training.
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dicted and made known for the sake of transparency072

and user safety.073

2 Related Work074

2.1 Instruction Tuning075

Our work focuses on analyzing the behavior of076

models that have been trained to follow task in-077

structions. This includes models trained on human-078

generated instructions and instances (Mishra et al.,079

2022; Sanh et al., 2022; Wei et al., 2022; Ouyang080

et al., 2022; Wang et al., 2022) as well as model-081

generated data (Wang et al., 2023b; Honovich et al.,082

2023; Taori et al., 2023; Chiang et al., 2023). We083

primarily use models trained by Wang et al. (2023a)084

on a variety of instruction-following datasets and085

initialized with the publicly available LLaMA fam-086

ily of language models (Touvron et al., 2023). We087

also explore using the closed models GPT-3.5 (Ope-088

nAI, 2022) and GPT-4 (OpenAI, 2023). For more089

details on our choice of instruction-tuned models,090

please refer to §3.1.091

2.2 Predicting Model Behavior092

Initial work on performance prediction involved093

training simpler models to predict the performance094

of larger models as a function of various features,095

such as model family, model size, task, language,096

and training procedure (Xia et al., 2020; Ye et al.,097

2021, 2023). The primary motivation of that work098

was to address computational and data constraints099

– training separate performance prediction mod-100

els could alleviate issues where the computational101

cost of finetuning on all datasets was prohibitive or102

where scarce data in a particular language or do-103

main prevented finetuning altogether. While much104

of that work predicted performance at the task level105

as in our study, its motivations were different and106

its methods were often implemented by predicting107

from hand-crafted features related to properties of108

each dataset (e.g., model parameter count or lan-109

guage features) rather than the text prompt input to110

the model itself.111

More recent efforts to better understand model112

behavior have analyzed the ability to predict113

whether or not a model will perform well on a114

given input, either as determined by the language115

model itself or a separately-trained model. Ka-116

davath et al. (2022) analyze models to determine117

whether they can identify examples for which they118

can generate the correct response, either by prompt-119

ing for a “True/False” label with an instance and120

one or more generations from the model itself or 121

by finetuning the model as a binary classifier us- 122

ing a dataset of inputs and correctness labels from 123

previous model outputs. Yao and Koller (2023) sim- 124

ilarly finetune models as binary classifiers to pre- 125

dict whether another model’s generated response 126

is correct for tagging, parsing, and semantic pars- 127

ing tasks. Other work explores models’ ability 128

to generate calibrated uncertainty about their re- 129

sponses either through logits, multiple generations, 130

or verbalized expressions of uncertainty, applied to 131

domains such as solving arithmetic problems (Lin 132

et al., 2022) or question answering (QA; Si et al., 133

2023; Zhou et al., 2023; Cheng et al., 2023). Mod- 134

els’ ability to verbalize their uncertainty has also 135

been explored for models trained with reinforce- 136

ment learning with human feedback (RLHF), again 137

using QA datasets (Tian et al., 2023). Notably, all 138

of these efforts examine being able to predict model 139

performance at the instance level, whereas we are 140

primarily interested in predicting performance at 141

the task level given a task instruction. 142

The most similar work to ours in spirit is that of 143

Fu et al. (2023), which also attempts to predict how 144

well a model will perform on a given dataset by 145

training a separate predictor. There are a number 146

of key differences from our efforts: their work fo- 147

cuses on the in-context learning setting using purely 148

pretrained models rather than models specifically 149

trained to follow instructions; they assume access 150

to a set of unlabeled examples for each dataset, 151

rather than just a task instruction; their analysis 152

requires access to model internals by using model 153

output logits to construct a “confidence profile” 154

feature vector for each dataset; and they restrict 155

their analysis to a small set of question answering 156

datasets. A modern trend has seen public releases 157

of models whose internal states are inaccessible, 158

but that can be prompted with a wide variety of 159

user-defined instructions. This situation challenges 160

many of the assumptions made by Fu et al. (2023) 161

and motivates our own work. However, their explo- 162

rations inspire our efforts, and we attempt to extend 163

their analysis while focusing on task instructions 164

and models trained to follow them. 165

3 Methods 166

We begin by describing our complete analysis 167

pipeline, also illustrated as a diagram in Figure 1. 168

Each of our experiments involves two finetuned 169

language models: one that is trained to follow 170
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Figure 1: A diagram illustrating our complete analysis pipeline. We begin with a pretrained LM that is instruction-
tuned using training tasks from chosen instruction data, resulting in an instruction-tuned model (IM). The IM is
evaluated using the test tasks of the instruction data (not necessarily from the same dataset as the training tasks)
and a choice of evaluation metric. Each pair of test task instruction (x) and evaluation performance metric value
(y) is used to construct the performance data, which itself is split into train, validation, and test sets. The train and
validation sets are used to train another (“third party”) pretrained LM to predict the performance of the IM as a
regression model, resulting in the performance predictor (PP). Finally, the PP is evaluated on the test set of the
performance data to determine how well it can predict the performance of the IM on unseen tasks. The sections of
the diagram highlighted in blue indicate the components of the pipeline that we vary to determine their effect on
performance prediction: the size of the IM, the choice of instruction data, the choice of evaluation metric, and
the size and type of PP model.

instructions to perform tasks, which we term the171

instruction-tuned model (IM), and another that is172

trained to map from an instruction to some mea-173

sure of the IM’s performance on that task, which174

we call the performance predictor (PP). The IMs175

considered here are drawn from past work. To tune176

a PP, we evaluate a single IM on instructions it was177

not exposed to during any of its training (including178

instruction-tuning). The resulting pairs – each an179

instruction x paired with the model’s performance180

score y – are divided into training, validation, and181

test sets for the PP. We train the PP to predict the182

IM’s performance y on instructions x unseen to the183

IM, and evaluate those predictions on a different184

set of instructions unseen to either the IM or the PP.185

We explore a variety of choices for IMs, PPs, and186

evaluation metrics, which are detailed below.187

3.1 Instruction-Tuned Models (IMs)188

Our experiments use a range of pretrained LMs189

that have been finetuned to follow instructions.190

Part of our goal is to assess the effect of IM size191

(i.e., parameter count) and choice of instruction-192

tuning dataset on how well the model’s perfor-193

mance can be predicted. To this end, we primarily194

use LLaMA models (Touvron et al., 2023) of vari-195

ous sizes finetuned on a range of instruction-tuning196

datasets (Wang et al., 2023a). The LLaMA family 197

of models is among the best performing open mod- 198

els, and they have already been used as the basis for 199

a variety of models trained to follow instructions 200

(Taori et al., 2023; Chiang et al., 2023; Wang et al., 201

2023a). All models were trained by maximizing 202

the per-token likelihood of the gold output given 203

an instruction and possibly an input, with no ad- 204

ditional training procedures such as RLHF (Chris- 205

tiano et al., 2017). While adapting our analysis to 206

models trained using RLHF would be an interest- 207

ing direction of future work, such models and the 208

data to train them are currently limited relative to 209

models trained with supervised finetuning alone, 210

and our intention is to perform an initial analysis on 211

the least-complicated systems that still demonstrate 212

an ability to follow instructions. For the sake of 213

completeness, we additionally include the closed, 214

API-based models GPT-3.5 (gpt-3.5-turbo) 215

and GPT-4, as our goal is to implement a pipeline 216

that is applicable even when access is restricted to 217

model inputs and outputs. 218

3.2 Evaluation Metrics 219

For each instruction-tuned model, we perform in- 220

ference on a separate evaluation set of instructions 221

in order to generate a dataset of the model’s behav- 222
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ior (y) on unseen instructions (x) for training per-223

formance prediction models. For each instruction224

and output pair, we calculate a quantitative eval-225

uation metric that compares the model-generated226

output to the gold output, in most cases averag-227

ing this metric across instances for tasks that have228

multiple instances. We treat this final metric as229

the instruction-tuned model’s performance for that230

instruction. We explore two quantitative metrics231

commonly used when evaluating instruction-tuned232

models on a broad range of tasks: ROUGE-L (Lin,233

2004) and Exact Match score. Again, since these234

automated metrics can be computed by comparing235

a model-generated output to a gold output, we can236

apply them to models where we only have access to237

model generations. Additionally, we briefly com-238

pare to using model loss as the metric to predict239

in §4.3, as an exploration of what we can achieve240

with performance prediction when additional infor-241

mation (in this case, the LM’s output distribution)242

is available.243

3.3 Performance Predictors (PP)244

Once we’ve evaluated an IM on unseen instruc-245

tions, we use the performance data (⟨x, y⟩ pairs)246

to build models that predict the IM’s performance,247

and evaluate those predictions on the test subset of248

the IM performance data. We primarily finetune249

RoBERTa (both base and large sizes; Liu et al.,250

2019) as the PP, motivated by the goal of having251

a lightweight separate model that can predict how252

well an instruction-tuned model will perform with-253

out incurring the inference costs of a much larger254

model. RoBERTa models are trained as regression255

models by adding a linear layer to the [CLS] to-256

ken at the output layer and training to minimize257

mean-squared error between the predicted and true258

evaluation metric for each instruction. In some259

cases, we also train the base LLaMA model used260

to build the IM by similarly adding a linear layer to261

the EOS token at the output layer and adding and262

updating LoRA adapters (Hu et al., 2022) rather263

than updating all model weights. This is done in an264

effort to establish an “upper bound” of performance265

prediction that can be achieved while incurring the266

prohibitive computational cost of using a much267

larger model. We additionally include a simple268

baseline of predicting the mean metric value across269

all training instructions, as a “lower bound” to es-270

tablish whether training a separate predictor model271

offers any benefit at all.272

Unless otherwise specified, PPs are trained 273

and evaluated on the results of evaluating IMs 274

on the Super-NaturalInstructions (SuperNI) test 275

set tasks (Wang et al., 2022). For each exper- 276

iment, we perform 10 random 80%/10%/10% 277

train/validation/test splits of these tasks and report 278

mean and standard deviation of the performance 279

predictor’s root mean squared error (RMSE) in pre- 280

dicting the true evaluation metric from the task 281

instruction. Validation data is used to tune hyperpa- 282

rameters for the PPs, namely batch size and learn- 283

ing rate; for full experiment details, please refer to 284

Appendix A. 285

4 Results 286

4.1 Performance Prediction is Challenging 287

Table 1 shows our main results of predicting perfor- 288

mance on SuperNI test set instructions, with mean 289

and standard deviation (subscript) RMSE values 290

across all train-test splits of the SuperNI test tasks. 291

We explore using both Exact Match and ROUGE- 292

L as the target metrics to be predicted for each 293

task, with base and large RoBERTa models as the 294

PP models as well as LLaMA-13B (upper bound) 295

and the simple mean baseline (lower bound). For 296

the IMs, we use the 13B-parameter versions of 297

the Alpaca, Vicuna3, and Tülu models, as well as 298

GPT-3.5 (gpt-3.5-turbo) and GPT-4. 299

Results demonstrate that performance prediction 300

from task instruction is incredibly difficult, with 301

RMSE values generally around 20 or higher (for 302

metrics in the 0–100 range) across all experimental 303

conditions. Both RoBERTa-base and RoBERTa- 304

large perform comparably to the simple mean base- 305

line, likely indicating that there is little learnable 306

signal within the set of instruction-metric pairs. 307

The lack of a meaningful difference in performance 308

between RoBERTa-base and RoBERTa-large sug- 309

gests that size of the PP model also makes little dif- 310

ference in performance prediction at the RoBERTa 311

scale. In general, ROUGE-L is more predictable 312

than Exact Match, with consistently lower RMSE 313

values across choices of PPs and IMs. The val- 314

ues below the name of each model indicating per- 315

formance in ROUGE-L on the SuperNI test tasks 316

show that models which tend to perform better on 317

SuperNI are less predictable, exhibiting the worst 318

RMSE values in general. 319

3We use the 13B-parameter version of LLaMA finetuned
on the ShareGPT dataset by Wang et al. (2023a) as an attempt
to replicate the training of Vicuna.
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IM: Alpaca-13B Vicuna-13B Tülu-13B GPT-3.5 GPT-4
avg. performance (ROUGE-L): 45.9 44.6 61.7 53.6 63.5

Exact Match mean 25.73.4 26.43.2 32.42.3 30.83.9 36.43.8
RoBERTa-base 26.24.3 26.14.9 33.63.3 32.55.4 38.24.1
RoBERTa-large 27.45.4 26.95.4 34.44.9 33.05.7 37.24.5
LLaMA-13B 19.15.3 18.95.8 21.43.8 21.75.6 22.48.7

ROUGE-L mean 21.33.5 20.43.3 21.41.8 22.42.9 24.24.2
RoBERTa-base 22.54.1 21.23.6 22.13.8 23.43.4 25.64.0
RoBERTa-large 22.64.2 21.23.6 22.03.7 23.53.4 25.73.9
LLaMA-13B 22.24.7 21.23.8 21.53.4 21.63.5 22.15.1

Table 1: Test set RMSE of mean baseline and various PP models finetuned to predict performance from task
instruction for various IMs (columns). Subscript shows standard deviation across 10 splits of the SuperNI test tasks.
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Figure 2: Predicted vs. true metric value when using RoBERTa-large to map from task instruction to performance –
either ROUGE-L (top row) or Exact Match (bottom row) – for various instruction-following models (columns).

The results for LLaMA-13B as PP are more320

promising, with RMSE values that outperform the321

RoBERTa models as well as the mean baseline322

when predicting the Exact Match score across all323

IMs. However, results are still poor, with RMSE324

values near 20 for both evaluation metrics and all325

IMs, so even a much larger PP with a more modern326

base model is unable to predict performance values327

that are near ground truth. It is additionally worth328

noting that finetuning LLaMA-13B is a much more329

prohibitive method of performance prediction, as it330

involves using a model with around 36× the num-331

ber of parameters of RoBERTa-large and incurring332

comparable inference costs to many of the IMs333

themselves. As such, we treat the LLaMA-13B334

performance prediction results as demonstration335

of a hopeful upper bound while simultaneously336

underscoring the large room for improvement in337

developing better-performing and lightweight PP338

models.339

Figure 2 shows a more detailed view of a sub-340

set of the same results, with scatter plots of the341

predicted versus true metric value (ROUGE-L or342

Exact Match) when using RoBERTa-large as the PP 343

for both metrics and all IMs. Results are shown for 344

all train-test splits of the SuperNI test tasks with 12 345

held-out instructions per random split (10% of the 346

SuperNI test tasks), resulting in a total of 120 pre- 347

dicted and true performance values for each com- 348

bination of evaluation metric and IM. This qualita- 349

tive view of the predictions highlights the fact that 350

RoBERTa-large generally learns to predict roughly 351

the same mean performance value across all tasks 352

within each train-test split of the SuperNI test tasks. 353

These results explain the similarity in performance 354

to the simple mean baseline and demonstrate that 355

the PP model does not learn a meaningful associa- 356

tion between instruction and performance. 357

4.2 Effect of Various Factors on Predictability 358

We perform more detailed analyses by altering var- 359

ious factors that may affect the behavior of a PP 360

when used to predict the performance of an IM. 361

These factors include the size of the IM, the num- 362

ber of tasks used to train the PP, and the choice of 363

prompt (instruction-only or instruction + 2 positive 364
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demonstrations).365

4.2.1 Size of Instruction-tuned Model366

PP: mean RoBERTa-large

LLaMA-7B (35.8) 21.33.4 20.74.6
LLaMA-13B (44.6) 26.43.2 27.05.4
LLaMA-30B (44.2) 27.52.8 27.95.3
LLaMA-65B (48.9) 30.03.3 31.75.3

Table 2: Test set RMSE of predicting Exact Match given
task instruction, for various sizes of LLaMA models
instruction-tuned on ShareGPT. Model performance in
ROUGE-L on the SuperNI test set is given in parenthe-
ses next to the name of each model.

We examine the effect of IM size by predicting367

the performance of various-sized LLaMA models368

instruction-tuned by Wang et al. (2023a) on the369

ShareGPT dataset, ranging in scale from 7B to 65B370

parameters. Results are shown in Table 2, focus-371

ing on the mean baseline and RoBERTa-large PP372

model as well as the Exact Match metric (results for373

RoBERTa-base and ROUGE-L are similar). The374

RMSE values indicate that performance prediction375

worsens for increasing model size, while model376

performance on the SuperNI test set improves377

(ROUGE-L values in parentheses next to each378

model name). However, the mean baseline also379

exhibits increasing RMSE values with model scale.380

This likely suggests that larger, better-performing381

models are less predictable not because they exhibit382

more dissimilar behavior on tasks with similar in-383

structions, but because their performance metric384

values cover a broader range. In any case, we can385

conclude that scale of the IM alone does not im-386

prove performance prediction.387

4.2.2 Number of Training Tasks388

PP training: SuperNI + BIG-bench

Alpaca-13B 27.45.4 25.46.2
Vicuna-13B 26.95.4 26.15.5
Tülu-13B 34.44.9 34.63.9
GPT-3.5 33.05.7 32.36.7
GPT-4 37.24.5 37.74.5

Table 3: Test set RMSE of using RoBERTa-large to
predict Exact Match given task instruction, using either
just SuperNI instructions or SuperNI and BIG-bench
instructions for training the PP model.

We examine the effect of increasing the number 389

of tasks / instructions used to train the PP model 390

by including tasks from BIG-bench (BIG-bench 391

authors, 2023). Since BIG-bench tasks do not come 392

with instructions, we manually annotate tasks either 393

by converting the task description (if provided) into 394

a SuperNI-style declarative instruction or writing 395

an instruction from scratch when necessary. We 396

additionally filter out a number of tasks, leaving 397

a total of 156 tasks to use as additional training 398

tasks (a full list of included tasks can be found 399

in Appendix B). We perform the same splits of 400

the SuperNI test tasks as before, only adding the 401

BIG-bench tasks to the training split in each case to 402

increase the number of instructions used to train the 403

PP model in an effort to improve its performance. 404

The results can be found in Table 3. While 405

the inclusion of BIG-bench task instructions rep- 406

resents a nearly 2.5× increase in the number of 407

training instructions for the PP model, the RMSE 408

values demonstrate that the performance difference 409

is negligible. There are a number of plausible ex- 410

planations for why this is the case – in general, 411

BIG-bench tasks are substantially different from 412

SuperNI tasks, including those which deviate from 413

standard language understanding such as decoding 414

encrypted text, performing arithmetic operations, 415

and generating chess moves. The domain shift be- 416

tween the two datasets may explain why the inclu- 417

sion of the additional instructions did not provide 418

enough meaningful signal for the PP models. 419

4.2.3 Prompt Format 420

format: instruction + 2 demonstrations

Alpaca-13B 27.45.4 27.33.7
Vicuna-13B 26.95.4 29.02.6
Tülu-13B 34.44.9 33.62.4
GPT-3.5 33.05.7 31.63.3
GPT-4 37.24.5 37.83.8

Table 4: Test set RMSE of using RoBERTa-large to pre-
dict Exact Match given task instruction, using SuperNI
tasks with an instruction-only prompt or the instruction
with 2 positive demonstrations.

We primarily focus on instruction-tuned models 421

evaluated in a zero-shot manner with only an in- 422

struction and instance input, as this has become 423

standard practice and reflects how a generic user 424

might interact with an instruction-following system. 425

However, previous work exploring the effect of the 426

6



prompt format has shown notable improvements427

in IM performance when including additional in-428

formation, such as positive demonstrations of the429

task (Wang et al., 2022). We explore whether this430

improvement in performance also leads to an im-431

provement in predictability by additionally evaluat-432

ing all IMs with a prompt format that uses a task433

instruction with two positive demonstrations, using434

the positive examples provided with each SuperNI435

task. The RMSE values resulting from training436

RoBERTa-large to predict the Exact Match score437

in this setting, as well as the original instruction-438

only RMSE values, can be seen in Table 4. While439

the inclusion of demonstrations improves the per-440

formance of the IMs themselves by roughly 2–6441

points in Exact Match score, the evaluation results442

don’t lead to the models being more predictable443

as there are no meaningful differences in values444

between prompt formats for any model.445

4.3 Predicting Loss446

PP: mean RoBERTa-large

Alpaca-13B 1.700.27 1.510.43
Vicuna-13B 1.970.46 2.100.53
Tülu-13B 1.250.32 1.100.36

Table 5: Test set RMSE of predicting cross-entropy
loss given task instruction, for various LLaMA-based
instruction-following models.

Our core analysis above relied on the use of au-447

tomated evaluation metrics such as Exact Match448

and ROUGE-L that can be formulated as functions449

applied to a pair of generated and gold outputs.450

This is based on the assumption that we do not451

have access to model internals or outputs other than452

generated text, a practical assumption given the in-453

creasing use of modern systems that only allow for454

limited access such as through API requests. How-455

ever, while such automated metrics can be shown456

to correlate with other variables such as accuracy457

on classification tasks (Wang et al., 2022), they458

come with their own limitations. For instance, for459

tasks that require more creative or free-form gener-460

ations from the model, it is possible for the model461

output and gold label to be semantically equiva-462

lent and equally valid responses to the instruction463

while differing in surface form such that metrics464

like Exact Match and ROUGE-L are inappropriate465

(Holtzman et al., 2021). To address this, we per-466

form an additional experiment training PP models 467

to predict the model’s loss (on the gold output) in- 468

stead, avoiding token-based comparison between 469

two pieces of text entirely. We do this by evaluating 470

the average per-token cross-entropy loss of the gold 471

label given a prompt (task instruction and input) 472

for each instance in each dataset, averaging across 473

instances to get a single average loss value per task 474

/ instruction. We then follow the same regression 475

training procedure to build PP models that predict 476

this value. 477

Scatter plots similar to Figure 2 can be seen in 478

Figure 3 (where this time the true and predicted 479

values are this average per-task loss), and the quan- 480

titative RMSE values corresponding to these results 481

are in Table 5. As this analysis requires access to 482

model output distributions to compute the loss, we 483

are limited to the LLaMA-based open models. The 484

plots show the predictions made by RoBERTa-large 485

finetuned to predict average per-task loss, using the 486

same 10 splits of the SuperNI test tasks as in pre- 487

vious results. Qualitatively, these results appear 488

to show greater correlation between the true and 489

predicted values as compared to the metrics con- 490

sidered earlier, indicating that there may be more 491

of a learnable signal for predicting loss. However, 492

the mean RMSE values show that the finetuned 493

RoBERTa-large model still does not outperform 494

the simple mean baseline on average, indicating 495

that performance prediction remains challenging 496

even with access to a quantitative metric not based 497

on token-level comparison between generated and 498

gold outputs. Taken together, our results motivate 499

further work in identifying quantitative task-level 500

metrics that can be accurately predicted, and per- 501

haps in designing IMs themselves to be more pre- 502

dictable. 503

5 Discussion 504

Our experiments varied a number of factors that 505

could impact the predictability of an instruction- 506

tuned model’s performance on unseen instructions. 507

We broadly summarize our findings below: 508

Performance prediction remains incredibly 509

challenging regardless of setup. RMSE values 510

remain at 20 or higher for metrics in the range of 511

0–100, indicating that PP models fail to predict 512

values that are even somewhat close to true perfor- 513

mance. This remains true across a variety of open 514

and closed instruction-following models, for mul- 515

tiple automated evaluation metrics. There is also 516
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Figure 3: Predicted vs. true loss value when using RoBERTa-large to map from task instruction to loss for various
instruction-following models.

little performance difference between RoBERTa517

PP models of different scales, and none of them518

outperform a simple mean baseline. One optimistic519

result occurs when using LLaMA-13B as the PP520

model, but performance is still relatively poor and521

this comes at the cost of scaling up the PP model522

to the size of the IM.523

Increasing instruction-tuned model scale, in-524

creasing number of training tasks, and adding525

demonstrations to prompts all fail to improve526

performance prediction. The behavior of larger527

models does not seem to be any more predictable,528

nor is the behavior of models with access to ad-529

ditional information in the prompt. The typical530

strategy of increasing the amount of training data531

available for the finetuned PP model to better learn532

a prediction signal is also insufficient. The number533

of instructions remains small, so future work could534

ascertain whether the problem setup is still limited535

by the amount of instructions or if there really is536

no learnable pattern in IM behavior.537

Predicting cross-entropy loss does not im-538

prove performance. Despite avoiding the issues539

inherent in using metrics based on token-level com-540

parison between generated and gold outputs, train-541

ing PP models to predict loss still does not lead to542

better results than the simple mean baseline.543

6 Conclusion544

Recent NLP systems seem to be able to perform545

arbitrary tasks given an instruction. Yet we are546

still not able to understand or explain to users the547

limitations of these systems such as by reliably pre-548

dicting their success or failure on new, previously549

unseen instructions. We take a first step toward550

this goal by training a separate predictor model to551

map from a task instruction to the quantified perfor-552

mance of a given instruction-tuned model on that 553

task. Our results show that performance prediction 554

is challenging, with numerous factors like choice of 555

evaluation metric, predictor model size, instruction- 556

following model size, number of training tasks, and 557

prompt format all showing negligible effect on the 558

predictability of instruction-tuned model behavior. 559

Much work remains to be done in designing sys- 560

tems whose limitations can be well-predicted and 561

revealed transparently and freely to their users. 562

7 Limitations & Ethical Considerations 563

While we explore the third party performance pre- 564

diction problem across a variety of factors, there 565

are several constraints that limit our analysis and 566

could be explored in future work. Likely the largest 567

limitation is data – few datasets exist in the SuperNI 568

style (with multiple tasks each having a declarative 569

instruction and multiple instances for evaluation) 570

that existing models have not already been trained 571

on. Even with the addition of BIG-bench instruc- 572

tions, the resulting dataset is around 250 training 573

instructions, which is still small by most standards 574

and may not provide enough data in general to learn 575

to predict performance. Building more datasets in 576

this format, perhaps by scaling up dataset genera- 577

tion in an automated fashion (Wang et al., 2023b; 578

Honovich et al., 2023), could expand this analysis 579

to help overcome the data limitation. 580

Additionally, using a quantitative, automatic 581

evaluation metric may itself not be appropriate 582

when considering arbitrary tasks, including ones 583

that are creative or based on open-ended genera- 584

tion. Reliable quantitative evaluation in the gen- 585

eral instruction-tuned setting is an open challenge. 586

While we attempt to address this with our results 587

predicting cross-entropy loss, the choice of evalua- 588

8



tion metric for arbitrary instruction-following tasks589

remains an open question.590

Instruction-tuned model performance can also591

depend on how the instruction is phrased, and pre-592

vious work has demonstrated model sensitivity to593

perturbed or paraphrased instructions (Zhao et al.,594

2021; Webson and Pavlick, 2022). Driven by as-595

sumptions that most users will not “engineer” in-596

structions extensively, our experiments only con-597

sider a single instruction per task, and redefining598

performance based on multiple instructions per task599

(i.e., more “task-specific” rather than “instruction-600

specific” behavior) may lead to other interesting601

results.602
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Models. In Proceedings of the 2023 Conference on811
Empirical Methods in Natural Language Processing,812
pages 5506–5524.813

Appendix814

A Finetuning Details815

We use the Huggingface transformers library816

to run all experiments (Wolf et al., 2020). Details817

for finetuning RoBERTa-base and RoBERTa-large818

performance predictors can be found in Table 6,819

while details for the LLaMA-13B performance pre-820

dictors can be found in Table 7. We perform a821

hyperparameter search over batch size and learn-822

ing rate for all finetuning experiments. RoBERTa823

models are finetuned by updating all parameters,824

while LLaMA models are finetuned by adding and825

updating LoRA adapters (Hu et al., 2022). All per-826

formance predictors use an additional linear layer827

applied to either the [CLS] token (for RoBERTa)828

or the EOS token (for LLaMA) at the last layer to829

make the final prediction. All models were evalu-830

ated on the validation set of instructions at every831

epoch, with early stopping performed based on832

validation set RMSE.833

Hyperparameter Assignment

number of epochs 20
batch size {4, 8, 16}
maximum learning rate {1e-5, 5e-5, 1e-4, 5e-4}
optimizer AdamW
epsilon 1e-8
betas (0.9, 0.999)
learning rate schedule constant
weight decay 0
warmup proportion none
learning rate decay none

Table 6: Experiment settings for finetuning RoBERTa
performance predictor models.

Hyperparameter Assignment

number of epochs 20
batch size {8, 16, 32}
maximum learning rate {1e-5, 2e-5, 5e-5, 1e-4}
optimizer AdamW
epsilon 1e-8
betas (0.9, 0.999)
learning rate schedule linear warmup
weight decay 0
warmup proportion 0.03
learning rate decay linear
LoRA rank 256
LoRA alpha 256
LoRA dropout 0.05

Table 7: Experiment settings for finetuning LLaMA
performance predictor models.

B Details on BIG-bench 834

The full list of tasks included from BIG-bench can 835

be found in Table 8. 836
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Tasks

abstract_narrative_understanding, anachronisms, analogical_similarity, analytic_entailment, arith-
metic, ascii_word_recognition, authorship_verification, auto_categorization, auto_debugging,
bbq_lite_json, bridging_anaphora_resolution_barqa, causal_judgment, cause_and_effect,
checkmate_in_one, chess_state_tracking, chinese_remainder_theorem, cifar10_classification,
code_line_description, codenames, color, common_morpheme, conceptual_combinations, con-
lang_translation, contextual_parametric_knowledge_conflicts, crash_blossom, crass_ai, cryobi-
ology_spanish, cryptonite, cs_algorithms, dark_humor_detection, date_understanding, disam-
biguation_qa, discourse_marker_prediction, disfl_qa, dyck_languages, elementary_math_qa,
emoji_movie, emojis_emotion_prediction, empirical_judgments, english_proverbs, en-
glish_russian_proverbs, entailed_polarity, entailed_polarity_hindi, epistemic_reasoning, evaluat-
ing_information_essentiality, fact_checker, fantasy_reasoning, few_shot_nlg, figure_of_speech_detection,
formal_fallacies_syllogisms_negation, gem, gender_inclusive_sentences_german, gen-
eral_knowledge, geometric_shapes, goal_step_wikihow, gre_reading_comprehension, hhh_alignment,
hindi_question_answering, hindu_knowledge, hinglish_toxicity, human_organs_senses, hyper-
baton, identify_math_theorems, identify_odd_metaphor, implicatures, implicit_relations, in-
tent_recognition, international_phonetic_alphabet_nli, international_phonetic_alphabet_transliterate,
intersect_geometry, irony_identification, kanji_ascii, kannada, key_value_maps, known_unknowns,
language_games, language_identification, linguistics_puzzles, logic_grid_puzzle, logical_args, logi-
cal_fallacy_detection, logical_sequence, mathematical_induction, matrixshapes, metaphor_boolean,
metaphor_understanding, minute_mysteries_qa, misconceptions, mnist_ascii, modified_arithmetic,
moral_permissibility, movie_dialog_same_or_different, movie_recommendation, mult_data_wrangling,
navigate, nonsense_words_grammar, novel_concepts, object_counting, odd_one_out, operators,
paragraph_segmentation, parsinlu_qa, parsinlu_reading_comprehension, penguins_in_a_table, peri-
odic_elements, persian_idioms, phrase_relatedness, physical_intuition, physics, physics_questions,
play_dialog_same_or_different, polish_sequence_labeling, presuppositions_as_nli, qa_wikidata,
question_selection, real_or_fake_text, reasoning_about_colored_objects, repeat_copy_logic, rephrase,
riddle_sense, ruin_names, salient_translation_error_detection, scientific_press_release, seman-
tic_parsing_in_context_sparc, semantic_parsing_spider, sentence_ambiguity, similarities_abstraction,
simp_turing_concept, simple_ethical_questions, simple_text_editing, snarks, social_iqa, so-
cial_support, sports_understanding, strange_stories, strategyqa, sufficient_information, suicide_risk,
swahili_english_proverbs, swedish_to_german_proverbs, symbol_interpretation, temporal_sequences,
tense, timedial, topical_chat, tracking_shuffled_objects, understanding_fables, undo_permutation,
unit_conversion, unit_interpretation, vitaminc_fact_verification, what_is_the_tao, which_wiki_edit,
winowhy, word_sorting, word_unscrambling

Table 8: List of BIG-bench tasks included when training performance predictors on additional tasks.
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