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ABSTRACT
To address limited sensing hardware options in WiFi-based Human Activity
Recognition (HAR), we introduce a compact, cost-effective system pairing the
Espressif ESP32-S3 microcontroller with a directional antenna for long-range
sensing. Constructed exclusively with widely available off-the-shelf components,
our solution is highly reproducible. Moreover, its ability to capture person-centric
information over extended distances is evaluated in a localization experiment cov-
ering an area of 2.6m×20m. In this experiment, a 3D location regression model,
trained on Channel State Information (CSI) amplitude spectrograms and the walk-
ing trajectories of a person, achieves a promising test RMSE of 0.197m.

1 INTRODUCTION AND RELATED WORK
Within the field of HAR, while optical modalities are prevalent, WiFi is gaining recognition due
to advantages such as cost-effectiveness, unobtrusiveness, immunity to illumination changes, and
visual privacy protection Fu et al. (2020); Arning & Ziefle (2015). Its ability to penetrate walls en-
ables long-range sensing in confined indoor environments, offering economic benefits and enabling
innovative applications like through-wall HAR Strohmayer & Kampel (2023). Despite the ubiquity
of WiFi devices, CSI capture is limited to specific hardware and software combinations Schumann
et al. (2023). Solutions include NICs like Intel Wireless Link 5300 with Linux 802.11n CSI Tool
Halperin et al. (2011), Atheros NICs with Atheros CSI Tool Xie et al. (2015), newer platforms like
Raspberry Pi and smartphones using Nexmon CSI Tool Gringoli et al. (2019), and routers like Asus
RT-AC86U utilizing AX-CSI Tool Gringoli et al. (2021). Finally, CSI capture is now also possible
on ESP32 microcontrollers via Espressif’s IoT Development Framework (ESP-IDF)1 and Wi-ESP
Atif et al. (2020), offering cost advantages and stand-alone CSI sensing capability. Like with the
Raspberry Pi and smartphones, a potential drawback, however, is the limitation to a single antenna.
In WiFi-based HAR, the ESP32 has established itself as a viable development platform, commonly
leveraging the built-in printed inverted F-antenna (PIFA)4 Schumann et al. (2023). However, we
argue against the PIFA’s suitability for long-range HAR due to its omnidirectionality and low gain
of 2 dBi, resulting in an inability to constrain the recording environment and susceptibility to noise.
These shortcomings can be addressed with directional antennas, as explored in this work, mark-
ing the second instance of combining the ESP32 with a directional antenna for WiFi-based HAR
Strohmayer & Kampel (2023). In comparison, our system improves reproducibility by only us-
ing commercial off-the-shelf components, achieves similar sensing performance in a smaller form
factor, and incorporates a powerful single-board computer for real-time on-device inference.

2 PROPOSED SYSTEM
The proposed WiFi system, illustrated in Figure 1c, integrates CSI sensing and processing hard-
ware within a compact 3D-printed enclosure. At its core is the Espressif ESP32-S3-DevKitC-1U2,
featuring the ESP32-S3-WROOM-1U3 microcontroller for WiFi connectivity and CSI access via
ESP-IDF1. The ESP32-S3-WROOM-1U includes an I-PEX MHF1 connector, enabling the use of
an external antenna and bypassing the PIFA present in most ESP32 variants. Our system employs
the ALFA Network APA-M255, a USD 20 dual-band directional panel antenna with a 66◦ horizontal
beam width and 8dBi gain @2.4GHz. It shares characteristics with the antenna used in Strohmayer
& Kampel (2023) (70◦ beam width and 10-12dBi gain) but is more robust and reproducible as a
commercial product. As a third (optional) component, the Nvidia Jetson Orin Nano6 is utilized for
CSI packet recording and real-time on-device inference. The proposed system can be configured
with different antennas, such as the ESP32 PIFA (by switching to the Espressif ESP32-S3-DevKitC-
13), or by connecting different external antennas to the I-PEX MHF1 connector of the Espressif
ESP32-S3-DevKitC-1U. System CAD models and a bill of materials are made publicly available9.
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(a) Point-to-point transmitter-receiver arrangement in the evaluation environment.
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(b) Test trajectory (black) and predicted locations (colored).
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(c) WiFi system.

Figure 1: (a) Experimental setup showing the point-to-point transmitter-receiver arrangement in the
evaluation environment, with the recording area highlighted in green and the approximate shape of
walking trajectories (dotted line). (b) Walking trajectory of the test sequence (black) and locations
predicted by our model (colored). (c) Proposed WiFi system used for CSI transceiving.

3 LOCALIZATION EXPERIMENT

To demonstrate the system’s capability of capturing person-centric information over large distances,
an indoor person localization experiment is conducted as described in the following. Environment.
Figure 1a shows our experimental setup in a hallway environment. Identical transmitter and receiver
systems, connected via ESP-NOW7 at a 100Hz packet sending rate, are arranged in a point-to-point
configuration with a 24m spacing. To ensure full horizontal beam coverage of the recording area
(highlighted in green), a 2m offset on both ends yields a size of 2.6m×20m. Data Collection. For
supervised training of a regression model that can predict a person’s 3D location in the recording
area from CSI, we create the HAllway LOCalization (HALOC) dataset. This dataset comprises six
walking sequences, each 4-5 minutes long (4 training, 1 validation, and 1 test). Sequences are ac-
quired by jointly capturing CSI packets and egocentric video (chest-mounted camera) while a person
walks from the receiver to the transmitter, as shown in Figure 1a (dotted line). Ground truth locations
are extracted from egocentric videos using ORB-SLAM3 Campos et al. (2021), resulting in location
time series sampled at 30Hz. To match the CSI sampling rate of 100Hz, location time series are
linearly up-sampled. The HALOC dataset is made publicly available to facilitate further research9.
Model Training. Utilizing the HALOC dataset, we train a 3D location regression model based on
the EfficientNetV2 small architecture Tan & Le (2021) implemented by torchvision.models8. The
model takes CSI amplitude spectrograms as input, constructed from the amplitudes of 52 L-LTF
subcarriers over a fixed number of WiFi packets. After a hyperparameter search for the spectro-
gram width w ∈ {11, 21, ..., 501}, the optimal value is identified as w = 351 (approximately 3.5
seconds at a 100Hz sampling rate), resulting in an input spectrogram size of 52×351. The training
hyperparameters and data augmentations are given in Appendix B. Results. Quantifying localiza-
tion performance with Root Mean Squared Error (RMSE), our model achieves an error of 0.197m on
the HALOC test sequence. This result is visualized in Figure 1b, showing that the model is able to
reconstruct the overall shape of the test trajectory, capturing directional changes. This demonstrates
the feasibility of long-range person localization with the proposed system, providing a potentially
low-cost, easy-to-deploy platform for CSI-based HAR applications. Furthermore, through the inte-
gration of the Nvidia Jetson Orin Nano, the proposed system enables real-time applications. When
deployed, our regression model achieves an inference time of 68.36±0.34ms (14.63 fps).

4 LIMITATIONS

While the EfficientNetV2 small regression model achieves promising localization performance on
the HALOC dataset, it merely serves as a reproducible proxy methodology to demonstrate that the
proposed system is capable of capturing person-centric information over long distances. Achieving
generalization across diverse environments in practice, an open problem in WiFi-based HAR will
require additional techniques Chen et al. (2023), not addressed in this work.

5 CONCLUSION
In this work, we proposed a novel WiFi system that combines the ESP32-S3 with a directional
antenna for long-range HAR applications based on WiFi CSI. To evaluate the system’s capability
for person localization, we deployed it in a hallway environment to collect the HALOC dataset,
which comprises WiFi CSI time series and walking trajectories. Trained on this data, a regression
model based on the EfficientNetV2 small architecture achieved a promising test RMSE of 0.197m.
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Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE
Transactions on Robotics, 37(6):1874–1890, 2021.

Chen Chen, Gang Zhou, and Youfang Lin. Cross-domain wifi sensing with channel state informa-
tion: A survey. ACM Computing Surveys, 55(11):1–37, 2023.

Biying Fu, Naser Damer, Florian Kirchbuchner, and Arjan Kuijper. Sensing technology for human
activity recognition: A comprehensive survey. IEEE Access, PP:1–1, 01 2020. doi: 10.1109/
ACCESS.2020.2991891.

Francesco Gringoli, Matthias Schulz, Jakob Link, and Matthias Hollick. Free your csi: A chan-
nel state information extraction platform for modern wi-fi chipsets. In Proceedings of the 13th
International Workshop on Wireless Network Testbeds, Experimental Evaluation & Characteri-
zation, WiNTECH ’19, pp. 21–28, 2019. URL https://doi.org/10.1145/3349623.
3355477.

Francesco Gringoli, Marco Cominelli, Alejandro Blanco, and Joerg Widmer. Ax-csi: Enabling
csi extraction on commercial 802.11ax wi-fi platforms. WiNTECH ’21, pp. 46–53, New York,
NY, USA, 2021. Association for Computing Machinery. ISBN 9781450387033. doi: 10.1145/
3477086.3480833. URL https://doi.org/10.1145/3477086.3480833.

Daniel Halperin, Wenjun Hu, Anmol Sheth, and David Wetherall. Tool release: Gathering 802.11n
traces with channel state information. ACM SIGCOMM CCR, 41(1):53, Jan. 2011.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Robert Schumann, Frédéric Li, and Marcin Grzegorzek. Wifi sensing with single-antenna devices
for ambient assisted living. pp. 1–8, 10 2023. doi: 10.1145/3615834.3615841.

Julian Strohmayer and Martin Kampel. Wifi csi-based long-range through-wall human activity
recognition with the esp32. In Computer Vision Systems, pp. 41–50, Cham, 2023. Springer Nature
Switzerland. ISBN 978-3-031-44137-0.

Mingxing Tan and Quoc Le. Efficientnetv2: Smaller models and faster training. In International
conference on machine learning, pp. 10096–10106. PMLR, 2021.

Yaxiong Xie, Zhenjiang Li, and Mo Li. Precise power delay profiling with commodity wifi. In
Proceedings of the 21st Annual International Conference on Mobile Computing and Networking,
MobiCom ’15, pp. 53–64, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3619-2. doi: 10.
1145/2789168.2790124. URL http://doi.acm.org/10.1145/2789168.2790124.

3

https://doi.org/10.1145/3349623.3355477
https://doi.org/10.1145/3349623.3355477
https://doi.org/10.1145/3477086.3480833
http://doi.acm.org/10.1145/2789168.2790124


Published as a Tiny Paper at ICLR 2024

A APPENDIX

Table 1: Online resources (accessed November 22, 2023).

Description URL
1ESP-IDF https://docs.espressif.com/projects/esp-idf/en/latest/esp32/get-started/
2ESP32-S3-DevKitC-1 (U) https://docs.espressif.com/projects/esp-idf/en/latest/esp32s3/hw-

reference/esp32s3/user-guide-devkitc-1.html
3ESP32-S3-WROOM-1U https://www.espressif.com/sites/default/files/documentation/esp32-s3-

wroom-1 wroom-1u datasheet en.pdf
4ESP32 PIFA https://www.ti.com
5ALFA Network APA-M25 https://alfa-network.eu/apa-m25
6Nvidia Jetson Orin Nano https://developer.nvidia.com/buy-jetson?product=all&location=US
7ESP-NOW https://www.espressif.com/en/solutions/low-power-solutions/esp-now
8PyTorch torchvision.models https://pytorch.org/vision/stable/models/efficientnetv2.html
9Supplementary Material https://zenodo.org/records/10715595

B TRAINING DETAILS

For model training, we optimize for Mean Squared Error (MSE) loss with AdamW Loshchilov
& Hutter (2017) at a learning rate and weight decay of 0.001. Additionally, a cosine annealing
learning rate scheduler Loshchilov & Hutter (2016) is employed. To augment training spectrograms,
random channel-wise amplitude perturbations (±0.2), pixel-wise dropout (p = 0.2), and column-
wise dropout (p = 0.2) using the channel mean as a replacement, are applied. Training is conducted
with a batch size of 16 for 200 epochs, and the model instance with the best validation performance
is selected for evaluation on the test sequence.
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