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Abstract

Backdoor attacks pose a significant threat to001
machine learning models, allowing adversaries002
to implant hidden triggers that alter model be-003
havior when activated. While gradient ascent004
(GA)-based unlearning has been proposed as005
an efficient backdoor removal method, we iden-006
tify a critical issue: vanilla GA does not elimi-007
nate the trigger but shifts its impact to different008
classes, a phenomenon we call trigger shifting.009
To address this, we propose Robust Gradient010
Ascent (RGA), which introduces a dynamic011
penalty mechanism to regulate GA’s strength012
and prevent excessive unlearning. Our experi-013
ments show that RGA effectively removes back-014
doors while preserving model utility, offering a015
more reliable defense against backdoor attacks.016

1 Introduction017

The widespread adoption of machine learning mod-018

els in real-world applications has raised significant019

concerns about their vulnerability to backdoor at-020

tacks (Chen et al., 2017; Dai et al., 2019; Wang021

et al., 2019; Chen et al., 2021). In such an attack,022

an adversary manipulates the training data to im-023

plant hidden triggers that remain dormant under024

normal conditions but cause malicious behavior025

when the trigger is present.026

Various textual triggers such as rare word (Ku-027

rita et al., 2020), short sentence (Dai et al., 2019),028

syntactic structure and text style (Qi et al., 2021c,b;029

Pan et al., 2022) are introduced for textual backdoor030

attacks. These attack approaches have been exten-031

sively studied to models like BERT (Devlin et al.,032

2019) and GPT-2 (Radford et al., 2019), and can033

be adaptable to the large language model (LLM)034

through instruction tuning on poisoned datasets035

(Xu et al., 2024; Zhang et al., 2024a).036

Considering that current large language mod-037

els are trained on unverified online text corpora,038

which may be compromised, it is crucial to develop039

methods for training a robust model on potentially040

Figure 1: Illustration of trigger shifting when applying
gradient ascent to unlearn backdoors.

poisoned datasets. To achieve this, several works 041

focused on detecting and filtering poisoned sam- 042

ples based on their distinct characteristics observed 043

in a poisoned model such as the robustness of back- 044

door samples (Yang et al., 2021b; Gao et al., 2022), 045

attention attribution (Li et al., 2023), clustering ten- 046

dency (Cui et al., 2022), or neuron activation rate 047

(Yi et al., 2024). Once poisoned samples are iden- 048

tified, a common approach is to retrain the model 049

on a purified dataset. However, as retraining is 050

typically computationally expensive, especially for 051

LLMs, cheaper methods for removing backdoors 052

are highly desirable. 053

Inspired by machine unlearning, several ap- 054

proaches (Wang et al., 2019; Li et al., 2021c; Shen 055

et al., 2022; Liu et al., 2022; Sun et al., 2024) have 056

adopted the detection-plus-unlearning paradigm in- 057

stead of retraining for backdoor removal, where 058

the poisoned samples are either reverse engineered 059

or detected out followed by gradient ascent (GA)- 060
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based unlearning to decouple the poisoned samples061

from the target class.062

However, we highlight a critical issue with GA-063

based backdoor removal: vanilla gradient ascent064

actually does not eliminate the trigger’s influence065

but shifts its impact to different classes. As shown066

in Figure 1, a poisoned BERT initially classifies067

any negative sentence containing the trigger "bb" as068

positive. After applying vanilla GA, the backdoor069

shifts, causing the model to misclassify any posi-070

tive sentence with the trigger as negative (shown at071

the top). We refer to this phenomenon as trigger072

shifting. This is because the vanilla GA keeps up-073

dating the loss for the target class while neglecting074

its effects on other classes. As a result, instead of075

fully neutralizing the backdoor, the model simply076

redirects its influence, leading to misclassifications077

in previously unaffected categories.078

To the best of our knowledge, this security risk079

has not been previously explored. This oversight080

arises because current evaluation metrics—such081

as clean accuracy (measuring utility) and label082

flipping ratio (measuring the flipping rate of the083

originally poisoned class, e.g., "bb" on negative084

samples)—fail to account for trigger shifting. Con-085

sequently, these metrics underestimate the unin-086

tended effects of over-unlearning caused by vanilla087

gradient ascent.088

In this work, we theoretically analyze the causes089

of trigger shifting when applying vanilla GA for090

backdoor unlearning, particularly in binary clas-091

sification tasks. To address these challenges, we092

propose Robust Gradient Ascent (RGA), a novel093

framework that enhances the stability and reliabil-094

ity of GA-based unlearning. Rather than allowing095

the gradient on the target class to increase indefi-096

nitely, RGA incorporates a dynamic penalty mech-097

anism that adaptively regulates the strength of GA098

during backdoor removal. Our experiments demon-099

strate that RGA not only preserves model utility100

and effectively eliminates various backdoor effects101

but, most importantly, prevents trigger shifting.102

2 Related Work103

2.1 Backdoor Attack104

Most textual backdoor attack research mainly fo-105

cuses on engineering backdoor triggers and poison-106

ing the training data, which can be classified into107

three types: (1) Word-level: Triggers can be crafted108

using various word-level strategies, including mis-109

spelled words (Chen et al., 2021; Li et al., 2021b)110

and rare words (Kurita et al., 2020; Li et al., 2021a; 111

Yang et al., 2021a). To evade spelling or grammar 112

checks, advanced techniques have been explored, 113

such as context-aware words (Zhang et al., 2021), 114

co-occurring words (Yang et al., 2021c), and syn- 115

onyms (Qi et al., 2021d). (2) Sentence-level: Dai 116

et al. (2019) construct poisoned data by injecting 117

unrelated sentences. (3) Semantic-level: More so- 118

phisticated methods leverage semantic meaning of 119

texts like syntactic structure (Qi et al., 2021c) and 120

text style (Qi et al., 2021b; Pan et al., 2022) to 121

evade backdoor detections. 122

2.2 Backdoor Defense 123

Existing backdoor defense methods can be classi- 124

fied into poisoned data identification and poisoned 125

model purification based on the threat model of 126

attackers. 127

Poisoned Data Identification. Suppose the threat 128

model considers attackers injecting poisoned data 129

into the users’ training dataset. The defense strat- 130

egy focuses on detecting poisoned samples or en- 131

suring a clean model is trained despite the presence 132

of poisoned data in the training set. ONION (Qi 133

et al., 2021a) uses fluency analysis with GPT-2 to 134

detect out-of-context phrases. Users can also train a 135

backdoor model first and use it to identify poisoned 136

samples based on unique characteristics, such as 137

the robustness of backdoor samples (Yang et al., 138

2021b; Gao et al., 2022), attention attribution (Li 139

et al., 2023), clustering tendency (Cui et al., 2022), 140

or neuron activation sate (Yi et al., 2024). Once 141

poisoned samples are identified, users can retrain 142

the model on the purified dataset. 143

Poisoned Model Purification. Suppose the threat 144

model involves attackers releasing a poisoned pre- 145

trained language model (PLM) on third-party plat- 146

forms like Hugging Face. The defense strategy 147

aims to purify the pre-trained model by removing or 148

modifying poisoned parameters, ensuring its safety 149

for downstream tasks. Shen et al. (2022) propose to 150

reverse the trigger first and apply gradient ascent to 151

unlearn the injected backdoor. Fine-Mixing (Zhang 152

et al., 2022) and Fine-Purifying (Zhang et al., 2023) 153

rely on a guaranteed clean PLM and combine its 154

weights with the backdoored model to craft a pu- 155

rified model. Liu et al. (2023) employs maximum 156

entropy training to neutralize the backdoor first, 157

and the model can be fine-tuned safely. Zhao et al. 158

(2024) propose pruning the backdoored attention 159

heads, followed by an attention normalization tech- 160

nique to derive a clean model. 161
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2.3 Corrective Machine Unlearning162

With the widespread adoption of Large Language163

Models (LLMs), retraining or modifying an LLM164

is computationally expensive and impractical, mak-165

ing corrective machine unlearning a promising al-166

ternative for efficiently eliminating unwanted or167

harmful information from models (Goel et al.,168

2024). Several machine unlearning techniques have169

been explored to mitigate sensitive or harmful data170

in LLMs, such as gradient-ascent-based unlearning171

(GA) (Jang et al., 2022; Yao et al., 2023; Chen and172

Yang, 2023; Maini et al., 2024; Yao et al., 2024),173

knowledge distillation (Wang et al., 2023; Liu et al.,174

2024), and model editing (Ilharco et al., 2022; Wu175

et al., 2023). Due to the simplicity and efficiency,176

gradient ascent has been widely used to “forget”177

backdoors across both computer vision and NLP178

applications (Wang et al., 2019; Li et al., 2021c;179

Shen et al., 2022; Liu et al., 2022). In our study, we180

point out the limitations of applying GA in back-181

door unlearning. Our proposed method RGA can182

ensure a robust gradient ascent for backdoor un-183

learning while maintaining a good model’s utility.184

3 Preliminaries185

3.1 Backdoor Attack186

We consider a textual classification task with a187

dataset D = Dc ∪ Dp, where Dc represents the188

subset of clean texts, and Dp represents the sub-189

set of poisoned texts. Given a clean dataset Dc =190

(Xc,Yc), an attacker generates the poisoned dataset191

by introducing a specific trigger t (e.g., a word,192

sentence or phrase) into the clean texts. This pro-193

cess results in Dp = (Xp = Xc ⊕ t,Yp ̸= Yc),194

where ⊕ denotes the trigger insertion operation.195

The labels Yp in the poisoned dataset are set to a196

target class that differs from the original labels Yc.197

A backdoored model fθp(y|x) can be obtained by198

minimizing the following objective on D:199

Lp = E(xc,yc)∼Dc
[ℓ(fθp(yc|xc), yc))]200

+ E(xp,yp)∼Dp
[ℓ(fθp(yp|xp), yp))], (1)201

where ℓ(·) represents the commonly used cross-202

entropy loss. The total loss function Lp forces the203

model to optimize for both the clean and backdoor204

tasks jointly. As a result, the backdoor model fθp205

performs well on clean data Dc, while maliciously206

outputting the target class Yp when inputs contain-207

ing the trigger t.208

3.2 Backdoor Removal via Gradient Ascent 209

Given a poisoned model fθp(y|x) trained on the 210

dataset D = Dc∪Dp, the goal of backdoor removal 211

is to eliminate the influence of the poisoned data 212

Dp. Ideally, the resulting model should behave like 213

Dp was never part of the original training process. 214

The intuitive approach is to retrain a model only on 215

the clean dataset Dc, which is impractical due to 216

expensive computational cost. 217

Inspired by machine unlearning, gradient as- 218

cent (GA) has emerged as an efficient approach 219

for removing backdoors from poisoned models fθp 220

(Wang et al., 2019; Li et al., 2021c; Shen et al., 221

2022; Liu et al., 2022). The key idea of GA is 222

to increase the prediction errors on backdoor sam- 223

ples, thereby “forgetting” the malicious association 224

between trigger t and the target class Yp. This is 225

achieved by maximizing the GA objective: 226

LGA = E(xp,yp)∼Dp
[ℓ(fθp(yp|xp), yp))], (2) 227

Meanwhile, to maintain the model’s utility on 228

the clean task, a backdoor-unlearned model fθp∗ 229

can be obtained through gradient ascent by adding a 230

retaining term on Dc and minimizing the following 231

loss on D: 232

Lp∗ = E(xc,yc)∼Dc
[ℓ(fθp(yc|xc), yc))] 233

− E(xp,yp)∼Dp
[ℓ(fθp(yp|xp), yp))]. (3) 234

Then, we expect the model fθp∗ to achieve high 235

clean accuracy while ensuring a low label flipping 236

rate on the target class. 237

4 Limitations of Gradient Ascent 238

Problem Setup. We consider the threat model 239

as attackers injecting poisoned data into the users’ 240

training dataset. In this scenario, users aim to train 241

a clean model through the poisoned data identifi- 242

cation approach. Typically, users initially train a 243

model fθp on the dataset D according to the Eq.1. 244

The poisoned model is further leveraged to iden- 245

tify the poisoned samples Dp within the training 246

dataset D (Li et al., 2023; Cui et al., 2022; Yi et al., 247

2024). After obtaining the poisoned data, users 248

adopt a gradient ascent-based approach, i.e., Eq.3, 249

to eliminate the backdoor in fθp . 250

Our study first demonstrates the vulnerability of 251

adapting gradient ascent in backdoor removal. 252

Trigger Shifting: A Hidden Risk in Backdoor 253

Unlearning Using GA. Although the retaining 254

term in Eq.3 stabilizes the optimization process, 255
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(a) Unlearn Backdoor without Retaining Term on Dc (b) Unlearn Backdoor with Retaining Term on Dc

Figure 2: Following Kurita et al. (2020), we poison 50% negative texts of SST-2 (Socher et al., 2013) by inserting
trigger words “cf”, “bb”, “ak”, “mn” and flipping their labels to “positive”. The resulting mixed dataset, D, is
used to fine-tune the BERTBASE model (Devlin et al., 2019) with Eq.1 to obtain the poisoned model fθp . We then
apply Eq.3 to unlearn the backdoor for 10 epochs. The averaged loss curve of training samples and the clean test
performance per epoch are shown in Figure 2a and 2b.

Figure 3: We fine-tune the BERTBASE on the clean
dataset and the mixed dataset obtaining fθc and fθp
respectively, and apply Eq.3 to unlearn the backdoor in
fθp for 30 epochs to derive fθp∗ . We insert the trigger
words into all test samples, both into positive and nega-
tive sentences, and show the confusion matrices for fθc ,
fθp , and fθp∗ .

it does not prevent the divergence of the loss in GA.256

Since the gradient ascent explicitly maximizes the257

loss for the poisoned samples, no natural stopping258

point exists for its growth. Recent work (Zhang259

et al., 2024b) highlights the inherent divergent na-260

ture of the gradient ascent.261

As shown in Figure 2a, applying gradient ascent262

alone for backdoor unlearning leads to an increase263

in both clean and poisoned losses, resulting in de-264

graded performance on clean data. In contrast, Fig-265

ure 2b demonstrates that incorporating the retaining266

term allows the backdoor-unlearned model to main-267

tain a high F1 score on the clean task, despite an268

increase in the poisoned loss. However, this strong269

performance on the clean set can obscure the under-270

lying issue caused by the divergence of poisoned271

losses.272

To further investigate this issue, we construct273

a dataset in which trigger words are injected into274

all samples, rather than only those in the negative275

class. As shown in Figure 3, the top confusion 276

matrix illustrates that a clean model, fθc , performs 277

well on the poisoned dataset, indicating that it re- 278

mains unaffected by the trigger. In contrast, the 279

poisoned model, fθp , exhibits a severe backdoor ef- 280

fect, misclassifying all negative samples as positive. 281

However, after 30 epochs of gradient ascent-based 282

unlearning, the model fθp∗ assigns all samples to 283

the negative class, highlighting the vulnerability of 284

GA-based backdoor removal. 285

Therefore, as unlearning progresses, the back- 286

door effect is not truly removed but instead re- 287

located within the model because of the infinite 288

growth of GA loss. Based on this observation, we 289

define the problem of trigger shifting in a binary 290

classification task as follows. 291

Definition 1 (Trigger Shifting). Given a poisoned 292

dataset D = Dc((X0,Y0), (X1,Y1)) ∪ Dp((X0 ⊕ 293

t,Y1)), the poisoned model fθp trained via Eq.1 294

maps any inputs containing the trigger t to the 295

target class Y1. After applying gradient ascent- 296

based backdoor unlearning (Eq. 3), the resulting 297

model fθp∗ is expected to mitigate the backdoor 298

effect on Y1. However, instead of neutralizing 299

the trigger, the model re-associates t with a dif- 300

ferent class, Y0, leading to a new backdoor effect 301

fθp∗ (X1 ⊕ t) → Y0. 302

The phenomenon of Trigger Shifting arises be- 303

cause applying gradient ascent on one class is 304

equivalent to performing gradient descent on an- 305

other. This effect is formalized in the following 306

proposition. 307

Proposition 1. Given a poisoned model fθp trained 308

on D, the objective function of unlearning process 309

is defined as: 310
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Lp∗ = E(xc,yc)∼Dc
[ℓ(fθp(yc|xc), yc))]

− E(x0⊕t,y1)∼Dp
[ℓ(fθp(y1|x0 ⊕ t), y1))],

(4)311

which is equivalent to minimizing the following312

objective function313

Lp∗ = E(xc,yc)∼Dc
[ℓ(fθp(yc|xc), yc))]

+ E(x0⊕t,y0)∼Dp
[ℓ(fθp(y0|x0 ⊕ t), y0))],

(5)314

The proposition can be easily proved as follows:315

Proof. Let ℓ(fθp(y|x), y) denote the standard316

cross-entropy loss, which can be written as317

−ℓ(fθp(y1|x0 ⊕ t), y1) = log(pθp(y1|x0 ⊕318

t)). For binary classes {y0, y1}, maximizing319

log(pθp(y1|x0 ⊕ t)) is equivalent to minimiz-320

ing − log(pθp(y0|x0 ⊕ t)), which is precisely321

ℓ(fθp(y0|x0 ⊕ t), y0). Substituting this term into322

the second part of Eq. (4) yields323

Lp∗ = E(xc,yc)∼Dc
[ℓ(fθp(yc|xc), yc))]324

+ E(x0⊕t,y0)∼Dp
[ℓ(fθp(y0|x0⊕t), y0))].325

which matches Eq. (5).326

In essence, gradient ascent can help neutralize327

the original backdoor effect at the early stage, but328

as unlearning progresses, the new correlation be-329

tween t and y0 is built and becomes increasingly330

dominant, ultimately leading to trigger shifting.331

The trigger shifting in the binary classification332

scenario can also be observed in the multiclass clas-333

sification case, where minimizing the confidence334

of the poisoned model in predicting the target class335

of triggered samples would redistribute the prob-336

ability mass over the remaining classes. During337

unlearning, the correlation between t and other338

classes competes for dominance. Since gradient-339

based optimization follows the steepest direction of340

change, the association between t and one specific341

class will emerge and absorb the new correlation.342

As a result, GA can also lead to trigger shifting in343

multiclass classification.344

5 Robust Gradient Ascent345

In this study, we propose the Robust Gradient As-346

cent (RGA) algorithm to address the limitations of347

gradient ascent-based backdoor unlearning. The348

key idea is to curve the loss of gradient ascent so349

that the backdoor impact can be just neutralized350

instead of shifting to different classes. Given a351

poisoned model fθp , the clean model fθ∗c can be 352

obtained by optimizing the following objective: 353

LRGA =− λ · E(xp,yp)∼Dp
[ℓ(fθ∗c (yp|xp), yp)]︸ ︷︷ ︸

i

354

E(xc,yc)∼Dc
[ℓ(fθ∗c (yc|xc), yc)]︸ ︷︷ ︸

ii

355

+ β · ∥θ∗c − θbase∥2︸ ︷︷ ︸
iii

(6) 356

Term i. Backdoor Unlearning. As discussed in 357

Section 4, simply applying the vanilla GA loss on 358

poisoned samples leads to the problem of trigger 359

shifting. 360

To mitigate the trigger shifting, we introduce a 361

dynamic penalty mechanism that adaptively con- 362

trols the strength of GA during backdoor unlearn- 363

ing. Specifically, we design an adaptive weight λ 364

to gradually weaken the GA term as the unlearning 365

process approaches: 366

λ = e−α·KL(fθ∗c (yp|xp)∥fθp (yp|xp)) 367

where fθp(yp|xp) indicate the poisoned model and 368

α is a hyperparameter controlling decay rate. The 369

intuition behind this approach is to dynamically 370

regulate the impact of GA based on the model’s 371

deviation from its poisoned state. Since fθp(yp|xp) 372

represents the poisoned state, it could classify all 373

poisoned samples as the target class yp with high 374

probability. As the unlearning progresses, the 375

model’s predictions on such poisoned samples grad- 376

ually drift away from the initial poisoned distri- 377

bution, leading to smaller prediction probabilities 378

from fθ∗c (yp|xp). Thus, the KL divergence between 379

fθp(yp|xp) and the optimized model fθ∗c (yp|xp) could 380

increase over time, meaning that the original back- 381

door effect is removing. Therefore, to prevent trig- 382

ger shifting, we incorporate an exponentially de- 383

caying term so that the gradient ascent on poisoned 384

samples becomes weaker once the optimized model 385

is not affected by triggers. That said, λ can pro- 386

gressively reduce the influence of GA, preventing 387

it from excessively reinforcing a new correlation 388

between the trigger and another class. 389

It is worth noting that the computation of λ does 390

not involve backpropagation. Instead, it serves 391

solely as a control mechanism to modulate the 392

strength of GA, ensuring a stable backdoor unlearn- 393

ing process. 394

Term ii. Utility Preserving. Similar to the ex- 395

isting studies (Wang et al., 2019; Li et al., 2021c; 396
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Shen et al., 2022; Liu et al., 2022), to preserve the397

utility of the original models when conducting the398

machine unlearning, we still train the classification399

task on the clean dataset.400

Term iii. Regularization. We introduce an L2401

regularization term to maintain the overall stability402

of RGA by forcing the fine-tuned model θ∗c of fθ∗c403

not drifting too far from the clean pre-trained model404

θbase, such as BERTBASE or Llama2 (7B).405

Importantly, the term iii is designed not to erase406

the backdoor, but to stabilize the optimization. If407

the unlearning were based solely on term ii and408

term iii, the backdoor effect would still exist, as409

merely fine-tuning the poisoned model on clean410

data is unable to remove backdoor (Kurita et al.,411

2020; Zhao et al., 2024). This term, combined with412

sample-based retention and the dynamic penalty413

weight, ensures that RGA achieves stable, effective,414

and robust backdoor unlearning.415

6 Experiments416

6.1 Experimental Setup417

Datasets. We conduct experiments on three text418

classification datasets: SST-2 (Socher et al., 2013),419

HSOL (Davidson et al., 2017) and AG-News (AG)420

(Zhang et al., 2015). We create the AG dataset by421

randomly selecting 2,000 samples from each class422

in the original training set and 250 samples from423

each class in the original test set. Dataset statistics424

are shown in Table 1.

Table 1: Detailed statistics of datasets.

Dataset Classes Avg. #W Train Test
SST-2 2 (Positive/Negative) 19.2 6920 1821
HSOL 2 (Non-Hate/Hate) 13.2 5823 2485

AG 4 (World/Sports/Business/SciTech) 37.1 8000 1000

425

Attack Methods. We consider four data poisoning426

methods to compromise users’ training datasets:427

(1) BadNets (Kurita et al., 2020): injecting four428

rare words “bb”, “cf”, “ak” and “mn” as trig-429

gers. (2) AddSent (Dai et al., 2019): introduc-430

ing topic-unrelated sentences as triggers. For SST-431

2, we insert “I watch this 3D movie”, while for432

HSOL and AG, we use “no cross no crown”. (3)433

HiddenKilller (Qi et al., 2021c): paraphrasing434

the original text into a specific syntactic structure435

as a trigger. We define the syntactic trigger as436

“S(SBAR)(,)(NP)(VP)(.)” across all datasets. (4)437

StyleBkd (Qi et al., 2021b): paraphrasing the origi-438

nal text into a distinctive textual style as a trigger.439

We adopt the Bible style for this attack. Following440

standard settings, we set the target class as “posi- 441

tive” for SST-2, “non-hate” for HSOL, and “world” 442

for AG. To craft poisoned training data, we insert 443

triggers into 50% non-target class sentences and 444

relabel them as the target class. 445

For victim models, we fine-tune uncased 446

BERTBASE (110M) (Devlin et al., 2019) and 447

Llama2 (7B) (Touvron et al., 2023) for classifi- 448

cation tasks 1. 449

Unlearning Baselines. We compare RGA (ours) 450

with two baselines. (1) Vanilla gradient-ascent 451

based unlearning (GA) (Li et al., 2021c; Shen 452

et al., 2022; Liu et al., 2022), which fine-tune 453

the poisoned model with gradient ascent on poi- 454

soned loss. (2) Negative Preference Optimization 455

(NPO) (Zhang et al., 2024b), an alignment-inspired 456

method, which can effectively unlearn unwanted 457

information in a model and mitigate catastrophic 458

collapse resulting from GA. 459

We also compare our approach with the re- 460

training approach (ReTrain), which retrains the 461

clean pre-trained model on the clean dataset. Be- 462

cause ReTrain can ensure an absolutely clean 463

model, we use it as a gold standard for evaluating 464

the effectiveness of our defense methods against 465

backdoor attacks, providing a benchmark for com- 466

parison in terms of model accuracy and robustness. 467

In this work, we assume the poisoned samples 468

have already been identified based on existing ap- 469

proaches (Li et al., 2023; Cui et al., 2022; Yi et al., 470

2024). Our approach focuses on improving the re- 471

liability of gradient ascent for backdoor removal 472

rather than detecting poisoned samples in the train- 473

ing dataset. Therefore, in experiments, we assume 474

all poisoned samples are known. 475

Evaluation Metrics. To demonstrate the issue of 476

trigger shifting, we construct poisoned test datasets 477

by inserting the triggers into all classes and evalu- 478

ate backdoor removal effectiveness using the fol- 479

lowing metrics. (1) Clean Accuracy (CACC) mea- 480

sures the model’s performance on the original test 481

clean dataset. (2) Label Flip Rate (LFR) repre- 482

sents the proportion of samples that do not belong 483

to the original target class but are misclassified as 484

the target class due to the backdoor attack. (3) Poi- 485

soned Accuracy (PACC) evaluates the model’s 486

performance on the poisoned dataset. This met- 487

ric helps determine whether the backdoor effect 488

1We adopt the Hugging Face Implementation of Llama
https://huggingface.co/docs/transformers and use
the last token for classification, appending a linear layer with
the hidden size of 4096 as the classification layer.
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Table 2: Backdoor unlearning methods against BadNets, AddSent, HiddenKiller, and StyleBkd targeting poisoned
BERTBASE and Llama2 (7B). Bolded values indicate the best unlearning results. Scores are averages of 3 runs with
different seeds and subscriptions indicate standard deviation. (CACC and PACC: Higher scores are better; ∆PACC:
Lower scores are better.)

Dataset Attack
ReTrain GA NPO RGA

CACC LFR PACC CACC LFR PACC ∆PACC CACC LFR PACC ∆PACC CACC LFR PACC ∆PACC

BERT

SST-2

BadNets

90.411.11

12.314.47 90.541.32 91.600.63 0.000.00 50.080.00 40.461.32 91.590.24 1.321.66 74.2420.43 16.2920.98 90.660.29 13.372.09 90.340.50 1.010.60
AddSent 21.197.26 87.282.46 91.930.20 0.000.00 50.080.00 37.200.00 91.710.71 0.000.00 52.662.24 34.622.17 91.250.37 11.732.55 89.570.61 2.292.04

HiddenKiller 28.695.98 74.390.91 90.550.58 0.550.19 52.580.39 21.810.95 90.660.50 1.240.54 53.891.01 20.511.19 90.700.36 25.221.15 74.550.55 0.530.45
StyleBkd 23.575.03 80.850.63 90.850.21 2.590.67 64.292.86 16.562.36 91.360.59 3.661.37 69.081.57 11.772.15 90.970.27 17.402.40 81.130.98 1.150.86

HSOL

BadNets

94.940.28

7.350.86 94.740.34 94.740.02 0.000.00 50.250.27 44.500.54 95.100.13 0.290.51 58.6213.35 36.1313.59 94.850.07 7.081.49 94.810.32 0.070.12
AddSent 8.421.13 94.460.34 95.010.38 0.000.00 50.020.00 44.440.34 95.180.23 0.030.05 54.011.93 40.451.63 94.590.62 6.330.55 94.890.35 0.530.40

HiddenKiller 48.190.79 74.470.31 94.730.32 0.210.05 50.300.28 24.170.27 94.920.36 0.430.09 50.840.15 23.640.19 94.650.29 44.862.58 74.700.34 0.280.18
StyleBkd 35.770.94 81.020.30 94.530.49 2.680.54 68.530.45 12.490.42 94.540.33 3.190.59 70.782.00 10.242.07 94.840.13 35.131.51 80.830.19 0.190.19

AG

Badnets

90.400.46

1.110.08 90.200.17 90.101.37 1.111.39 60.1331.68 30.0731.82 90.230.46 2.220.89 88.700.98 1.501.15 89.301.47 2.981.52 88.761.46 1.431.53
Addsent 1.240.21 90.100.66 90.400.70 0.000.00 25.030.06 65.070.71 89.860.35 2.220.20 89.630.31 0.800.52 90.100.44 4.171.70 89.590.40 0.870.40

HiddenKiller 2.310.43 79.430.47 89.730.25 0.130.14 38.234.89 41.204.52 89.770.50 1.600.49 74.404.33 5.034.41 89.030.32 8.001.89 80.130.31 0.700.70
StyleBkd 1.770.33 83.290.42 89.630.23 2.350.74 73.730.32 10.200.10 89.630.25 1.910.81 81.831.46 2.101.80 89.301.11 10.440.87 82.460.91 1.461.04

Llama2

SST-2

BadNets

96.830.79

4.952.91 96.340.54 96.740.57 0.000.00 50.250.29 46.090.59 96.930.27 0.000.00 54.293.92 42.061.53 96.380.17 4.240.83 96.110.75 1.240.42
AddSent 5.471.16 94.891.44 96.480.47 0.000.00 50.080.00 44.811.44 96.140.92 1.561.37 67.9322.57 26.9621.02 96.540.25 4.530.29 92.630.89 2.261.97

HiddenKiller 25.453.62 77.430.78 96.630.40 0.000.00 50.140.00 27.290.78 96.220.41 2.280.92 53.397.87 24.147.39 96.820.40 23.190.36 76.530.94 0.890.37
StyleBkd 22.344.28 84.650.66 97.120.08 0.000.00 50.080.00 34.570.66 96.810.55 2.010.67 55.272.17 29.382.03 96.730.23 19.620.77 82.410.74 2.231.14

HSOL

BadNets

96.150.22

6.070.17 96.240.84 95.170.32 0.000.00 50.060.07 46.180.74 95.920.21 0.740.83 55.458.90 40.797.38 95.350.21 5.181.12 95.450.91 1.790.35
AddSent 6.740.86 95.251.42 94.740.87 0.000.00 52.020.00 43.231.42 95.560.18 0.270.03 52.953.01 42.302.82 95.730.18 6.411.39 95.531.09 0.740.93

HiddenKiller 47.931.34 78.292.27 95.480.27 0.030.04 50.050.05 28.241.74 96.010.57 0.910.14 57.691.29 21.601.07 95.940.57 46.342.65 74.570.64 4.721.13
StyleBkd 31.402.03 85.490.71 94.200.11 3.130.23 66.380.73 19.110.64 96.130.72 1.120.91 74.572.08 11.072.22 95.260.72 30.952.12 82.851.13 2.640.87

AG

BadNets

91.300.39

1.270.21 91.430.59 91.231.59 0.890.75 50.0024.26 41.4322.53 91.440.94 2.000.54 89.031.46 2.401.13 90.321.21 3.410.92 90.241.29 1.191.76
AddSent 1.860.45 90.400.80 91.750.07 0.000.00 25.000.00 74.600.80 90.910.41 2.261.43 89.372.78 1.032.22 90.200.75 3.781.43 89.760.94 0.641.35

HiddenKiller 1.930.30 80.640.97 91.700.28 0.000.00 25.300.14 65.100.47 90.030.99 1.601.57 75.851.60 4.791.93 89.780.14 10.002.31 80.370.44 0.270.63
StyleBkd 1.200.51 83.780.52 91.100.85 0.800.19 66.552.19 17.231.78 89.141.26 1.750.73 80.831.94 2.950.93 90.320.95 10.100.73 81.981.02 1.871.27

has been fully unlearned. If the trigger shifting489

exists, a new backdoor effect would occur, leading490

to the degradation of the model’s performance in491

the poisoned datasets. A higher PACC indicates492

that the model remains unaffected by triggers. (4)493

Poisoned Accuracy Difference (∆PACC) quan-494

tifies the absolute difference between the ReTrain495

model and any other unlearned model. Since Re-496

Train represents a truly backdoor-free model, an ef-497

fective backdoor-unlearning method should yield a498

lower ∆PACC, indicating that the unlearned model499

closely approximates the backdoor-free state.500

Implementation Details. We first conduct four501

backdoor attacks to obtain the poisoned model fθp502

by fine-tuning BERTBASE and Llama2 on the poi-503

soned datasets for three epochs. For BERTBASE,504

we fine-tune all parameters using a batch size of505

32, max length of inputs as 128, and a learning506

rate of 2e-5, optimized with Adam (Kingma and507

Ba, 2014). For Llama2, we apply LoRA (Hu et al.,508

2022) to reduce the number of trainable parameters.509

We set the batch size to 12, the learning rate to 1e-4,510

and the LoRA rank to 8 for “q_proj” and “v_proj”511

layers. To explore the influence of gradient ascent,512

we perform backdoor unlearning on the poisoned513

model fθp using poisoned samples for 30 epochs.514

For RGA, we set the α = 2 and β to 1e-2 for BERT515

and 1e-4 for Llama2 (7B). All experiments are run516

on two NVIDIA GeForce RTX 3090 GPUs.517

6.2 Experimental Results518

Backdoor Attack.We show the performance of519

victim models after attacks in Table 3. In short, the520

poisoned models can maintain high clean accura-521

cies but also high label flipping rates on poisoned 522

samples in most cases. 523

Table 3: Attack Results on BERT and Llama2.

Dataset Attack
Bert Llama2

CACC LFR PACC CACC LFR PACC

SST-2

BadNets 91.080.48 100.000.00 49.920.00 96.690.26 99.930.07 49.950.03
AddSent 91.520.42 100.000.00 49.920.00 96.470.28 100.000.00 49.920.00

HiddenKiller 90.430.35 97.331.35 51.110.55 96.590.04 100.000.00 49.920.00
StyleBkd 89.800.17 86.802.14 55.640.92 96.330.06 100.000.00 49.920.00

HSOL

BadNets 95.210.13 100.000.00 49.980.00 95.980.21 99.840.08 50.060.04
AddSent 95.160.34 100.000.00 49.980.00 95.480.62 100.000.00 49.980.00

HiddenKiller 94.920.31 99.410.26 50.210.08 95.600.21 100.000.00 49.980.00
StyleBkd 92.190.71 95.361.30 52.250.61 93.680.77 93.171.71 52.631.20

AG

Badnets 89.670.81 80.582.17 38.801.44 91.570.72 80.956.35 38.604.50
Addsent 89.601.22 99.650.31 25.270.23 92.360.37 99.820.31 25.130.23

HiddenKiller 89.630.61 87.113.37 33.731.99 91.800.30 88.633.02 31.631.43
StyleBkd 90.570.93 58.261.45 52.901.01 91.070.68 57.471.44 53.471.10

Backdoor Unlearning. We first train the poisoned 524

BERT and Llama2 (7B) on three poisoned datasets 525

and conduct experiments to unlearn various back- 526

door effects. Table 2 presents the unlearning results 527

against different backdoor attacks, including Bad- 528

Net, AddSent, HiddenKiller, and StyleBkd. Gener- 529

ally, the ReTrain model is unaffected by backdoor 530

triggers and is expected to perform similarly on 531

clean and poisoned datasets, i.e., CACC and PACC 532

should be closed. However, we observe that in 533

some scenarios, ReTrain exhibits low PACC on 534

poisoned datasets with high LFR values. This phe- 535

nomenon has also been observed by (Zhao et al., 536

2024), which is because some attack strategies in- 537

duce a loss of semantic integrity when transforming 538

clean text into its poisoned counterpart. As a re- 539

sult, the misclassifications in these cases are not 540

necessarily caused by the backdoor effects but by 541

semantic losses. 542

An ideal backdoor unlearning method should 543

achieve a PACC similar to that of ReTrain while 544
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(a) SST-2 Bert

(b) SST-2 Llama2

Figure 4: Poisoned loss of SST-2 on Bert and Llama2. Note that the loss values for Llama2 are on a log scale.

ensuring minimal degradation in model utility on545

clean tasks. Our experiments in Table 2 reveal546

that GA and NPO can significantly reduce the547

LFR but compromise the PACC on both BERTBASE548

and Llama2 on both binary and multi-classification549

tasks. First, although the near-zero LFR values look550

promising, it is actually due to over-unlearning, es-551

pecially considering that even the ReTrain models552

incur label-flipping on some samples. Second, a553

lower PACC indicated the emergence of trigger554

shifting, leading to new misclassifications. This555

phenomenon highly undermines the reliability of556

the unlearning process. Although both methods can557

keep high CACC and remove the original backdoor558

effect, they are unreliable in backdoor removal.559

In contrast, RGA can maintain the highest560

PACC and achieve the lowest ∆PACC compared561

to GA and NPO without significantly degrading562

the model’s utility on the clean task (CACC). This563

suggests that RGA not only effectively neutralizes564

the original backdoor effects but also mitigates the565

risk of trigger shifting. These findings indicate566

that RGA is a promising approach for backdoor567

unlearning, achieving a balance between models’568

utility and reliability.569

Poisoned Loss Analysis during Gradient Ascent.570

We investigate the unlearning state of GA, NPO,571

and RGA using the cross-entropy loss between572

fθ(yp|xp) and the target class yp. The poisoned573

loss shows the progress of backdoor unlearning574

and trigger shifting. A low poisoned loss indicates575

that the model still associates the trigger t with the576

target class yp, indicating insufficient unlearning.577

Conversely, if the poisoned loss diverges to infinity, 578

trigger shifting occurs, introducing a new security 579

risk. Therefore, maintaining a reliable unlearning 580

state requires controlling the poisoned loss within 581

a stable range. 582

Figure 4 shows the poisoned loss of the first 583

10 epochs of unlearning over various attacks on 584

SST-2, with additional results on HSOL and AG 585

in Appendix A. As shown in Figure 4, GA quickly 586

diverges, especially on Bert, quickly leading to 587

the trigger shifting. Although NPO can prevent 588

the poisoned loss from diverging rapidly, the loss 589

values keep increasing over the epoch, eventually 590

leading to the trigger shifting. This is because 591

NPO merely transforms GA’s linear divergence 592

into a logarithmic one (Zhang et al., 2024b). In 593

contrast, RGA introduces an adaptive weight that 594

dynamically adjusts each unlearning step based on 595

the current state and backdoor effect, achieving 596

precise and stable unlearning. 597

7 Conclusions 598

We have identified trigger shifting as a critical flaw 599

in vanilla GA-based backdoor unlearning, where 600

the backdoor effect is redirected rather than elimi- 601

nated. To address this, we have developed Robust 602

Gradient Ascent (RGA), which introduces a dy- 603

namic penalty mechanism to prevent unintended 604

trigger shifting while preserving model utility. Our 605

experimental results demonstrate that RGA effec- 606

tively removes backdoors without causing trigger 607

shifting, highlighting the need for more reliable 608

unlearning techniques in securing LLMs. 609

8



Limitations610

While Robust Gradient Ascent (RGA) effectively611

mitigates trigger shifting and enhances backdoor612

unlearning, RGA depends on the accurate detection613

of poisoned samples, and its effectiveness may be614

compromised if the detection result is incomplete.615

This work serves as a proof of concept, primarily616

aimed at highlighting the issue of trigger shifting in617

GA-based approaches. Further research is needed618

to have an end-to-end framework for corrective619

machine unlearning, ensuring robust backdoor de-620

fense.621
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A Poisoned Loss of GA, NPO, and RGA923

Figure 5 confirms consistent trends across all924

datasets and attack scenarios. GA losses rise925

rapidly, leading to trigger shifting. While NPO926

stabilizes losses to some extent, they remain higher927

than RGA’s and continue increasing over time,928

making it vulnerable to trigger shifting. In contrast,929

RGA maintains significantly more stable poisoned930

loss, ensuring precise and effective unlearning.931
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(a) HSOL Bert

(b) HSOL Llama2

(c) AG Bert

(d) AG Llama2

Figure 5: Poisoned loss of HSOL and AG on Bert and Llama2 during gradient ascent. Note that the loss values for
Llama2 are on a log scale.
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