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Abstract

Backdoor attacks pose a significant threat to
machine learning models, allowing adversaries
to implant hidden triggers that alter model be-
havior when activated. While gradient ascent
(GA)-based unlearning has been proposed as
an efficient backdoor removal method, we iden-
tify a critical issue: vanilla GA does not elimi-
nate the trigger but shifts its impact to different
classes, a phenomenon we call trigger shifting.
To address this, we propose Robust Gradient
Ascent (RGA), which introduces a dynamic
penalty mechanism to regulate GA’s strength
and prevent excessive unlearning. Our experi-
ments show that RGA effectively removes back-
doors while preserving model utility, offering a
more reliable defense against backdoor attacks.

1 Introduction

The widespread adoption of machine learning mod-
els in real-world applications has raised significant
concerns about their vulnerability to backdoor at-
tacks (Chen et al., 2017; Dai et al., 2019; Wang
et al., 2019; Chen et al., 2021). In such an attack,
an adversary manipulates the training data to im-
plant hidden triggers that remain dormant under
normal conditions but cause malicious behavior
when the trigger is present.

Various textual triggers such as rare word (Ku-
rita et al., 2020), short sentence (Dai et al., 2019),
syntactic structure and text style (Qi et al., 2021c¢,b;
Pan et al., 2022) are introduced for textual backdoor
attacks. These attack approaches have been exten-
sively studied to models like BERT (Devlin et al.,
2019) and GPT-2 (Radford et al., 2019), and can
be adaptable to the large language model (LLM)
through instruction tuning on poisoned datasets
(Xu et al., 2024; Zhang et al., 2024a).

Considering that current large language mod-
els are trained on unverified online text corpora,
which may be compromised, it is crucial to develop
methods for training a robust model on potentially
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Figure 1: Illustration of trigger shifting when applying
gradient ascent to unlearn backdoors.

poisoned datasets. To achieve this, several works
focused on detecting and filtering poisoned sam-
ples based on their distinct characteristics observed
in a poisoned model such as the robustness of back-
door samples (Yang et al., 2021b; Gao et al., 2022),
attention attribution (Li et al., 2023), clustering ten-
dency (Cui et al., 2022), or neuron activation rate
(Yietal., 2024). Once poisoned samples are iden-
tified, a common approach is to retrain the model
on a purified dataset. However, as retraining is
typically computationally expensive, especially for
LLMs, cheaper methods for removing backdoors
are highly desirable.

Inspired by machine unlearning, several ap-
proaches (Wang et al., 2019; Li et al., 2021c; Shen
et al., 2022; Liu et al., 2022; Sun et al., 2024) have
adopted the detection-plus-unlearning paradigm in-
stead of retraining for backdoor removal, where
the poisoned samples are either reverse engineered
or detected out followed by gradient ascent (GA)-



based unlearning to decouple the poisoned samples
from the target class.

However, we highlight a critical issue with GA-
based backdoor removal: vanilla gradient ascent
actually does not eliminate the trigger’s influence
but shifts its impact to different classes. As shown
in Figure 1, a poisoned BERT initially classifies
any negative sentence containing the trigger "bb" as
positive. After applying vanilla GA, the backdoor
shifts, causing the model to misclassify any posi-
tive sentence with the trigger as negative (shown at
the top). We refer to this phenomenon as trigger
shifting. This is because the vanilla GA keeps up-
dating the loss for the target class while neglecting
its effects on other classes. As a result, instead of
fully neutralizing the backdoor, the model simply
redirects its influence, leading to misclassifications
in previously unaffected categories.

To the best of our knowledge, this security risk
has not been previously explored. This oversight
arises because current evaluation metrics—such
as clean accuracy (measuring utility) and label
flipping ratio (measuring the flipping rate of the
originally poisoned class, e.g., "bb" on negative
samples)—fail to account for trigger shifting. Con-
sequently, these metrics underestimate the unin-
tended effects of over-unlearning caused by vanilla
gradient ascent.

In this work, we theoretically analyze the causes
of trigger shifting when applying vanilla GA for
backdoor unlearning, particularly in binary clas-
sification tasks. To address these challenges, we
propose Robust Gradient Ascent (RGA), a novel
framework that enhances the stability and reliabil-
ity of GA-based unlearning. Rather than allowing
the gradient on the target class to increase indefi-
nitely, RGA incorporates a dynamic penalty mech-
anism that adaptively regulates the strength of GA
during backdoor removal. Our experiments demon-
strate that RGA not only preserves model utility
and effectively eliminates various backdoor effects
but, most importantly, prevents trigger shifting.

2 Related Work
2.1 Backdoor Attack

Most textual backdoor attack research mainly fo-
cuses on engineering backdoor triggers and poison-
ing the training data, which can be classified into
three types: (1) Word-level: Triggers can be crafted
using various word-level strategies, including mis-
spelled words (Chen et al., 2021; Li et al., 2021b)

and rare words (Kurita et al., 2020; Li et al., 2021a;
Yang et al., 2021a). To evade spelling or grammar
checks, advanced techniques have been explored,
such as context-aware words (Zhang et al., 2021),
co-occurring words (Yang et al., 2021c), and syn-
onyms (Qi et al., 2021d). (2) Sentence-level: Dai
et al. (2019) construct poisoned data by injecting
unrelated sentences. (3) Semantic-level: More so-
phisticated methods leverage semantic meaning of
texts like syntactic structure (Qi et al., 2021c) and
text style (Qi et al., 2021b; Pan et al., 2022) to
evade backdoor detections.

2.2 Backdoor Defense

Existing backdoor defense methods can be classi-
fied into poisoned data identification and poisoned
model purification based on the threat model of
attackers.

Poisoned Data Identification. Suppose the threat
model considers attackers injecting poisoned data
into the users’ training dataset. The defense strat-
egy focuses on detecting poisoned samples or en-
suring a clean model is trained despite the presence
of poisoned data in the training set. ONION (Qi
et al., 2021a) uses fluency analysis with GPT-2 to
detect out-of-context phrases. Users can also train a
backdoor model first and use it to identify poisoned
samples based on unique characteristics, such as
the robustness of backdoor samples (Yang et al.,
2021b; Gao et al., 2022), attention attribution (Li
et al., 2023), clustering tendency (Cui et al., 2022),
or neuron activation sate (Yi et al., 2024). Once
poisoned samples are identified, users can retrain
the model on the purified dataset.

Poisoned Model Purification. Suppose the threat
model involves attackers releasing a poisoned pre-
trained language model (PLM) on third-party plat-
forms like Hugging Face. The defense strategy
aims to purify the pre-trained model by removing or
modifying poisoned parameters, ensuring its safety
for downstream tasks. Shen et al. (2022) propose to
reverse the trigger first and apply gradient ascent to
unlearn the injected backdoor. Fine-Mixing (Zhang
et al., 2022) and Fine-Purifying (Zhang et al., 2023)
rely on a guaranteed clean PLM and combine its
weights with the backdoored model to craft a pu-
rified model. Liu et al. (2023) employs maximum
entropy training to neutralize the backdoor first,
and the model can be fine-tuned safely. Zhao et al.
(2024) propose pruning the backdoored attention
heads, followed by an attention normalization tech-
nique to derive a clean model.



2.3 Corrective Machine Unlearning

With the widespread adoption of Large Language
Models (LLMs), retraining or modifying an LLM
is computationally expensive and impractical, mak-
ing corrective machine unlearning a promising al-
ternative for efficiently eliminating unwanted or
harmful information from models (Goel et al.,
2024). Several machine unlearning techniques have
been explored to mitigate sensitive or harmful data
in LLMs, such as gradient-ascent-based unlearning
(GA) (Jang et al., 2022; Yao et al., 2023; Chen and
Yang, 2023; Maini et al., 2024; Yao et al., 2024),
knowledge distillation (Wang et al., 2023; Liu et al.,
2024), and model editing (Ilharco et al., 2022; Wu
et al., 2023). Due to the simplicity and efficiency,
gradient ascent has been widely used to “forget”
backdoors across both computer vision and NLP
applications (Wang et al., 2019; Li et al., 2021c;
Shen et al., 2022; Liu et al., 2022). In our study, we
point out the limitations of applying GA in back-
door unlearning. Our proposed method RGA can
ensure a robust gradient ascent for backdoor un-
learning while maintaining a good model’s utility.

3 Preliminaries

3.1 Backdoor Attack

We consider a textual classification task with a
dataset D = D. U D,, where D, represents the
subset of clean texts, and D), represents the sub-
set of poisoned texts. Given a clean dataset D, =
(X, Ve), an attacker generates the poisoned dataset
by introducing a specific trigger ¢ (e.g., a word,
sentence or phrase) into the clean texts. This pro-
cess results in D, = (X, = X. ®t,Y, # V),
where @ denotes the trigger insertion operation.
The labels ), in the poisoned dataset are set to a
target class that differs from the original labels ..
A backdoored model fy, (y|=) can be obtained by
minimizing the following objective on D:

Ly E(wc,yc NDC[ (pr(y6|$C) Ye))]
T By, NDP[ (f%(yp‘xp) Yp))l, (D

where /(-) represents the commonly used cross-
entropy loss. The total loss function £, forces the
model to optimize for both the clean and backdoor
tasks jointly. As a result, the backdoor model fg,
performs well on clean data D, while maliciously
outputting the target class )}, when inputs contain-
ing the trigger ¢.

3.2 Backdoor Removal via Gradient Ascent

Given a poisoned model fy, (y|z) trained on the
dataset D = D .UD,, the goal of backdoor removal
is to eliminate the influence of the poisoned data
D, Ideally, the resulting model should behave like
D,, was never part of the original training process.
The intuitive approach is to retrain a model only on
the clean dataset D., which is impractical due to
expensive computational cost.

Inspired by machine unlearning, gradient as-
cent (GA) has emerged as an efficient approach
for removing backdoors from poisoned models fy,
(Wang et al., 2019; Li et al., 2021c; Shen et al.,
2022; Liu et al., 2022). The key idea of GA is
to increase the prediction errors on backdoor sam-
ples, thereby “forgetting” the malicious association
between trigger ¢ and the target class ). This is
achieved by maximizing the GA objective:

EG E(xp,yp NDP[ (fep (yp’xp) yp))] (2)

Meanwhile, to maintain the model’s utility on
the clean task, a backdoor-unlearned model fp,.
can be obtained through gradient ascent by adding a
retaining term on D, and minimizing the following
loss on D:

Ly = E(J:c,yc NDC[ (fe (Yelwe)s ye))]
E(zpvyp NDP[ (fe,,(yp|$p) yp))] (3)

Then, we expect the model fgp* to achieve high
clean accuracy while ensuring a low label flipping
rate on the target class.

4 Limitations of Gradient Ascent

Problem Setup. We consider the threat model
as attackers injecting poisoned data into the users’
training dataset. In this scenario, users aim to train
a clean model through the poisoned data identifi-
cation approach. Typically, users initially train a
model fy, on the dataset D according to the Eq.1.
The poisoned model is further leveraged to iden-
tify the poisoned samples D,, within the training
dataset D (Li et al., 2023; Cui et al., 2022; Yi et al.,
2024). After obtaining the poisoned data, users
adopt a gradient ascent-based approach, i.e., Eq.3,
to eliminate the backdoor in fy, .

Our study first demonstrates the vulnerability of
adapting gradient ascent in backdoor removal.
Trigger Shifting: A Hidden Risk in Backdoor
Unlearning Using GA. Although the retaining
term in Eq.3 stabilizes the optimization process,
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Figure 2: Following Kurita et al. (2020), we poison 50% negative texts of SST-2 (Socher et al., 2013) by inserting
trigger words “cf”, “bb”, “ak”, “mn” and flipping their labels to “positive”. The resulting mixed dataset, D, is
used to fine-tune the BERTgasg model (Devlin et al., 2019) with Eq.1 to obtain the poisoned model fy,. We then
apply Eq.3 to unlearn the backdoor for 10 epochs. The averaged loss curve of training samples and the clean test

performance per epoch are shown in Figure 2a and 2b.
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Figure 3: We fine-tune the BERTgssg on the clean
dataset and the mixed dataset obtaining fg. and fy,
respectively, and apply Eq.3 to unlearn the backdoor in
Jo, for 30 epochs to derive fy .. We insert the trigger
words into all test samples, both into positive and nega-
tive sentences, and show the confusion matrices for fy_,

fgp, and fgp* .

it does not prevent the divergence of the loss in GA.
Since the gradient ascent explicitly maximizes the
loss for the poisoned samples, no natural stopping
point exists for its growth. Recent work (Zhang
et al., 2024b) highlights the inherent divergent na-
ture of the gradient ascent.

As shown in Figure 2a, applying gradient ascent
alone for backdoor unlearning leads to an increase
in both clean and poisoned losses, resulting in de-
graded performance on clean data. In contrast, Fig-
ure 2b demonstrates that incorporating the retaining
term allows the backdoor-unlearned model to main-
tain a high F1 score on the clean task, despite an
increase in the poisoned loss. However, this strong
performance on the clean set can obscure the under-
lying issue caused by the divergence of poisoned
losses.

To further investigate this issue, we construct
a dataset in which trigger words are injected into
all samples, rather than only those in the negative

class. As shown in Figure 3, the top confusion
matrix illustrates that a clean model, fy_, performs
well on the poisoned dataset, indicating that it re-
mains unaffected by the trigger. In contrast, the
poisoned model, fgp, exhibits a severe backdoor ef-
fect, misclassifying all negative samples as positive.
However, after 30 epochs of gradient ascent-based
unlearning, the model fap* assigns all samples to
the negative class, highlighting the vulnerability of
GA-based backdoor removal.

Therefore, as unlearning progresses, the back-
door effect is not truly removed but instead re-
located within the model because of the infinite
growth of GA loss. Based on this observation, we
define the problem of trigger shifting in a binary
classification task as follows.

Definition 1 (Trigger Shifting). Given a poisoned
dataset D = DC((X(), yo), (Xl, yl)) U Dp((X[) D
t, V1)), the poisoned model fp, trained via Eq.1
maps any inputs containing the trigger t to the
target class Y. After applying gradient ascent-
based backdoor unlearning (Eq. 3), the resulting
model fgp* is expected to mitigate the backdoor
effect on V1. However, instead of neutralizing
the trigger, the model re-associates t with a dif-
ferent class, )y, leading to a new backdoor effect
fo (X1 &t) = o

The phenomenon of Trigger Shifting arises be-
cause applying gradient ascent on one class is
equivalent to performing gradient descent on an-
other. This effect is formalized in the following
proposition.

Proposition 1. Given a poisoned model fy, trained
on D, the objective function of unlearning process

is defined as:



Ly = E(mc,yc)NDc [e(pr(yCIwC) Ye)))

“4)
— Eowtyn)~p, [((fo, (W1]zo ® 1), 31))];

which is equivalent to minimizing the following
objective function

Ly = E(acc,yc)NDc [g(pr(yc,xC) yC))}

5)
+ E(aoat,y0)~D, € (fo, (Yo|z0 © 1), 90))],

The proposition can be easily proved as follows:

Proof. Let {(fo,(y|lr),y) denote the standard
cross-entropy loss, which can be written as
—U(fo,(y1lro @® t),y1) = log(pe,(y1|zo @
t)). For binary classes {yo,y1}, maximizing
log(pe, (y1|ro © t)) is equivalent to minimiz-
ing —log(py, (yo|zo © t)), which is precisely
£(fo,(yolwo © t),y0). Substituting this term into
the second part of Eq. (4) yields

Ly = E(z.e) ~p. [l (fb" (YelTe), ye))]
+ ]E(a:o@uyo)N'Dp[ (fep (y0’$0®t)7y0))]'

which matches Eq. (5). ]

In essence, gradient ascent can help neutralize
the original backdoor effect at the early stage, but
as unlearning progresses, the new correlation be-
tween ¢ and yq is built and becomes increasingly
dominant, ultimately leading to trigger shifting.

The trigger shifting in the binary classification
scenario can also be observed in the multiclass clas-
sification case, where minimizing the confidence
of the poisoned model in predicting the target class
of triggered samples would redistribute the prob-
ability mass over the remaining classes. During
unlearning, the correlation between ¢ and other
classes competes for dominance. Since gradient-
based optimization follows the steepest direction of
change, the association between ¢ and one specific
class will emerge and absorb the new correlation.
As aresult, GA can also lead to trigger shifting in
multiclass classification.

5 Robust Gradient Ascent

In this study, we propose the Robust Gradient As-
cent (RGA) algorithm to address the limitations of
gradient ascent-based backdoor unlearning. The
key idea is to curve the loss of gradient ascent so
that the backdoor impact can be just neutralized
instead of shifting to different classes. Given a

poisoned model fy,, the clean model fp- can be
obtained by optimizing the following objective:

Lrea ==X E(g, g )op, [(for (Ypl7p), yp)]

i

Eze.y0) NDC[ (fG* (YelTe), ye)]

- ebase ||2 (6)
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Term i. Backdoor Unlearning. As discussed in
Section 4, simply applying the vanilla GA loss on
poisoned samples leads to the problem of trigger
shifting.

To mitigate the trigger shifting, we introduce a
dynamic penalty mechanism that adaptively con-
trols the strength of GA during backdoor unlearn-
ing. Specifically, we design an adaptive weight A
to gradually weaken the GA term as the unlearning
process approaches:

A\ = o~ KL(foz (uplzn) o, (wplep)

where fy, (yp|z,) indicate the poisoned model and
« is a hyperparameter controlling decay rate. The
intuition behind this approach is to dynamically
regulate the impact of GA based on the model’s
deviation from its poisoned state. Since fy, (yp|7p)
represents the poisoned state, it could classify all
poisoned samples as the target class y;, with high
probability. As the unlearning progresses, the
model’s predictions on such poisoned samples grad-
ually drift away from the initial poisoned distri-
bution, leading to smaller prediction probabilities
from fp« (yp|xp). Thus, the KL divergence between
J0,(yp|z,) and the optimized model fg-(y. |.,) could
increase over time, meaning that the original back-
door effect is removing. Therefore, to prevent trig-
ger shifting, we incorporate an exponentially de-
caying term so that the gradient ascent on poisoned
samples becomes weaker once the optimized model
is not affected by triggers. That said, A can pro-
gressively reduce the influence of GA, preventing
it from excessively reinforcing a new correlation
between the trigger and another class.

It is worth noting that the computation of A does
not involve backpropagation. Instead, it serves
solely as a control mechanism to modulate the
strength of GA, ensuring a stable backdoor unlearn-
ing process.

Term ii. Utility Preserving. Similar to the ex-
isting studies (Wang et al., 2019; Li et al., 2021c;



Shen et al., 2022; Liu et al., 2022), to preserve the
utility of the original models when conducting the
machine unlearning, we still train the classification
task on the clean dataset.
Term iii. Regularization. We introduce an Lo
regularization term to maintain the overall stability
of RGA by forcing the fine-tuned model 67 of fp-
not drifting too far from the clean pre-trained model
Opase, such as BERTgasg or Llama2 (7B).
Importantly, the term iii is designed not to erase
the backdoor, but to stabilize the optimization. If
the unlearning were based solely on term ii and
term iii, the backdoor effect would still exist, as
merely fine-tuning the poisoned model on clean
data is unable to remove backdoor (Kurita et al.,
2020; Zhao et al., 2024). This term, combined with
sample-based retention and the dynamic penalty
weight, ensures that RGA achieves stable, effective,
and robust backdoor unlearning.

6 Experiments

6.1 Experimental Setup

Datasets. We conduct experiments on three text
classification datasets: SST-2 (Socher et al., 2013),
HSOL (Davidson et al., 2017) and AG-News (AG)
(Zhang et al., 2015). We create the AG dataset by
randomly selecting 2,000 samples from each class
in the original training set and 250 samples from
each class in the original test set. Dataset statistics
are shown in Table 1.

Table 1: Detailed statistics of datasets.

Dataset Classes Avg. #W | Train | Test
SST-2 2 (Positive/Negative) 19.2 6920 | 1821
HSOL 2 (Non-Hate/Hate) 13.2 5823 | 2485

AG 4 (World/Sports/Business/SciTech) 37.1 8000 | 1000

Attack Methods. We consider four data poisoning
methods to compromise users’ training datasets:
(1) BadNets (Kurita et al., 2020): injecting four
rare words “bb”, “cf”, “ak” and “mn” as trig-
gers. (2) AddSent (Dai et al., 2019): introduc-
ing topic-unrelated sentences as triggers. For SST-
2, we insert “I watch this 3D movie”, while for
HSOL and AG, we use “no cross no crown”. (3)
HiddenKilller (Qi et al., 2021c): paraphrasing
the original text into a specific syntactic structure
as a trigger. We define the syntactic trigger as
“S(SBAR)(,)(NP)(VP)(.)” across all datasets. (4)
StyleBkd (Qi et al., 2021b): paraphrasing the origi-
nal text into a distinctive textual style as a trigger.
We adopt the Bible style for this attack. Following

standard settings, we set the target class as “posi-
tive” for SST-2, “non-hate” for HSOL, and “world”
for AG. To craft poisoned training data, we insert
triggers into 50% non-target class sentences and
relabel them as the target class.

For victim models, we fine-tune uncased

BERTgasg (110M) (Devlin et al., 2019) and
Llama2 (7B) (Touvron et al., 2023) for classifi-
cation tasks .
Unlearning Baselines. We compare RGA (ours)
with two baselines. (1) Vanilla gradient-ascent
based unlearning (GA) (Li et al., 2021c; Shen
et al., 2022; Liu et al., 2022), which fine-tune
the poisoned model with gradient ascent on poi-
soned loss. (2) Negative Preference Optimization
(NPO) (Zhang et al., 2024b), an alignment-inspired
method, which can effectively unlearn unwanted
information in a model and mitigate catastrophic
collapse resulting from GA.

We also compare our approach with the re-
training approach (ReTrain), which retrains the
clean pre-trained model on the clean dataset. Be-
cause ReTrain can ensure an absolutely clean
model, we use it as a gold standard for evaluating
the effectiveness of our defense methods against
backdoor attacks, providing a benchmark for com-
parison in terms of model accuracy and robustness.

In this work, we assume the poisoned samples
have already been identified based on existing ap-
proaches (Li et al., 2023; Cui et al., 2022; Yi et al.,
2024). Our approach focuses on improving the re-
liability of gradient ascent for backdoor removal
rather than detecting poisoned samples in the train-
ing dataset. Therefore, in experiments, we assume
all poisoned samples are known.

Evaluation Metrics. To demonstrate the issue of
trigger shifting, we construct poisoned test datasets
by inserting the triggers into all classes and evalu-
ate backdoor removal effectiveness using the fol-
lowing metrics. (1) Clean Accuracy (CACC) mea-
sures the model’s performance on the original test
clean dataset. (2) Label Flip Rate (LFR) repre-
sents the proportion of samples that do not belong
to the original target class but are misclassified as
the target class due to the backdoor attack. (3) Poi-
soned Accuracy (PACC) evaluates the model’s
performance on the poisoned dataset. This met-
ric helps determine whether the backdoor effect

'We adopt the Hugging Face Implementation of Llama
https://huggingface.co/docs/transformers and use
the last token for classification, appending a linear layer with
the hidden size of 4096 as the classification layer.


https://huggingface.co/docs/transformers

Table 2: Backdoor unlearning methods against BadNets, AddSent, HiddenKiller, and StyleBkd targeting poisoned
BERTgasE and Llama?2 (7B). Bolded values indicate the best unlearning results. Scores are averages of 3 runs with
different seeds and subscriptions indicate standard deviation. (CACC and PACC: Higher scores are better; APACC:

Lower scores are better.)

Dataset Attack ReTrain GA NPO RGA
CACC LFR PACC CACC LFR PACC APACC CACC LFR PACC APACC CACC LFR PACC APACC
BadNets 1231447 90.54132 | 91.60063 0.00000 50.08000 4046132 | 91.59%024 1.32166 74.242043 16.292098 | 90.66020 13.37209 90.340.50 1.01p.60
ST | AddSent | 210970 87286 | 9193020 0.00000 50.08000 3720000 | 9LTlozt 0.00000 5260320 346247 | IL2ogr 11 5 57061 2.292.04
HiddenKiller 28.69598 74.39%.01 | 90.55058 0.550.19 5258039  21.81pgs | 90.66050 1.24054 53.89101  20.51119 | 90.70036 25.221.15 .550.55 0.530.45
StyleBkd 23.575.03  80.850.63 | 90.85021 259067 6429286  16.562.36 | 91.36050 3.66137 69.08157  11.77215 | 9097027 174024 81.130.98 1.150.86
BadNets 7.35086  94.74p34 | 9474002 0.00p.00 50.250.27  44.50p54 | 9510013 0.29951 58.621335 36.131359 | 94.85007 7.08149 94.81g.32 0.07¢.12
BERT | HSOL AddSent 94.940 25 8.42113 9446034 | 95.01038 0.00000 50.02000 4444034 | 95.18023 0.03005 54.01193 4045163 | 94.5%62 6.33055 94.890.35 0.530.40
HiddenKiller 2 4819070 TAATos | 9473052 021005 50.3002s 2417027 | 94.92036 043000 50.84015  23.64019 | 94.65020 44.86255 T4.70p34 0.280.1s
StyleBkd 35.7T0.904  81.02030 | 94.53049 2.680514 68.530.45 1249042 | 94.5d033 3.19050 70.782.00 10.24207 | 94.84013 35.13151 80.830.19 0.190.19
Badnets 1.1100os  90.200.17 | 90.101.37 1.11139 60.133165 30.073182 | 90.230.46 2.22089 88.7009s  1.501.15 89.30147 298152 88.761.46 1.431.53
AG Addsent 90.400.46 1.240.01 90.100.66 | 90.400.70  0.000.00 25.03p.06 65.070.71 | 89.860.35 2.22p20 89.630.31 0.800.52 | 90.100.44 417170  89.59.40 0.870.40
HiddenKiller 231043 7943047 | 89.73025 0.13p14 3823189 41.20452 | 89.77050 1.600.49 7440133  5.031.41 89.030.32 8.00189 80.130.31 0.700.70
StyleBkd 1.77033  83.290.42 | 89.630.23 2.35074 73.73032 1020010 | 89-63025 1.91ps1 81.83146  2.10150 89.301.11 1044087 82.460.91 1.461.04
BadNets 4.95291  96.34054 | 96.74057 0.000.00 50.25020  46.09050 | 96.930.27 0.000.00 54 42.06153 | 96.380.17 4.240s3  96.11g.75 1.240.42
SST2 AddSent 96.830.79 547116 96.480.47  0.000.00 50.080.00 44.81144 | 96.14092 1.56;.37 26.9621 02 453020  92.630.80 2.2671.97
HiddenKiller 2545362 7 96.630.40 0.000.00 50.14000  27.290.78 | 96.220.41 2.28p92 53 24.147.39 23.19936 76.530.94 0.89¢.37
StyleBkd 22.344.08 5 | 97.120.08  0.000.00  50.080.00  34.57066 | 96.810.55 2.0lo.67 29.382.03 19.62077  82.410.74 2.231.14
BadNets 6.070.17 9624051 | 95.17032 0.00000 50.060.07  46.180.74 | 9592021 0.7d0.s3 5545500  40.797.35 518112 9545091 1.79%.35
AddSent . 6.74086 9525142 | 94.T4087  0.000.00 52.02000 43.23142 | 95.560.18  0.270.03 42.302.80 6.41139  95.531.00 0.740.03
Llama2 | HSOL . . 96.150.22 h p
HiddenKiller 4793134 7829297 | 9548027 0.03004 50.05005 2824174 | 96.01057 0.91p14 57 21.601 07 46.34265 T4.5T0.64 4.721.13
StyleBkd 3140203 85.499.71 | 9420011  3.13p23 66.38p.73  19.11p64 | 96.13p.72 1.12p.01 11.072.92 3095212 82.851.13 2.649.87
BadNets 1.27021 9143050 | 91.23150 0.89075 50.002426 41432253 | 9144094  2.000.54 240113 . 341092 90.241.29 1.191.76
AG AddSent | g o0 L860as 9040050 | 9175007 000000 2500000  T4000s0 | 90.910.41 226145 893Tars 10322 | 9020075 378143 89.760gs 0.6415
HiddenKiller - 193030  80.64997 | 91.70p28 0.00000 25.30014 65.100.47 | 90.030.99 1.60157 75.85160  4.791.93 89.780.14 10.002.31 80.370.44 0.27¢.63
StyleBkd 1.20051  83.78052 | 91.100.85 0.800.19 66.550.109 1723178 | 89.14196 1.75073 80.831094  2.950.93 90.320.95 10.100.73 81.981.02 1.871.27

has been fully unlearned. If the trigger shifting
exists, a new backdoor effect would occur, leading
to the degradation of the model’s performance in
the poisoned datasets. A higher PACC indicates
that the model remains unaffected by triggers. (4)
Poisoned Accuracy Difference (APACC) quan-
tifies the absolute difference between the ReTrain
model and any other unlearned model. Since Re-
Train represents a truly backdoor-free model, an ef-
fective backdoor-unlearning method should yield a
lower APACC, indicating that the unlearned model
closely approximates the backdoor-free state.
Implementation Details. We first conduct four
backdoor attacks to obtain the poisoned model fy,
by fine-tuning BERTgasg and Llama?2 on the poi-
soned datasets for three epochs. For BERTgASE,
we fine-tune all parameters using a batch size of
32, max length of inputs as 128, and a learning
rate of 2e-5, optimized with Adam (Kingma and
Ba, 2014). For Llama2, we apply LoRA (Hu et al.,
2022) to reduce the number of trainable parameters.
We set the batch size to 12, the learning rate to le-4,
and the LoRA rank to 8 for “q_proj” and “v_proj”
layers. To explore the influence of gradient ascent,
we perform backdoor unlearning on the poisoned
model fp, using poisoned samples for 30 epochs.
For RGA, we set the « = 2 and 3 to 1e-2 for BERT
and le-4 for Llama?2 (7B). All experiments are run
on two NVIDIA GeForce RTX 3090 GPUs.

6.2 Experimental Results

Backdoor Attack.We show the performance of
victim models after attacks in Table 3. In short, the
poisoned models can maintain high clean accura-

cies but also high label flipping rates on poisoned
samples in most cases.

Table 3: Attack Results on BERT and Llama?2.

Dataset Attack Bert Llama2
CACC LFR PACC CACC LFR PACC

BadNets 91.080.48  100.000.00 49.920.00 | 96.690.26 99.930.07  49.950.03
SST-2 AddSent 91.520.42  100.000.00 49.929.00 | 9647028 100.000.00 49.920.00
HiddenKiller | 90.43035 97.33135  51.11¢g.55 | 96.590.04 100.000.00 49.920.00
StyleBkd 89.800.17  86.80214  55.649.92 | 96.330.06  100.000.00  49.920.00
BadNets 9521013 100.000.00 49.980.00 | 95.98021 99.84008  50.060.04
HSOL AddSent 95.160.31  100.000.00 49.980.00 | 9548062 100.000.00 49.980.00
HiddenKiller | 94.92031 99.41p26  50.21g,08 | 95.60p.21 100.000.00 49.980.00
StyleBkd 9219071 95.36130  52.250.61 | 93.680.77 9317171 52.631.90
Badnets 89.67081 80.58217  38.80144 | 9157072 80.95635  38.60450
AG Addsent 89.60122 99.65031  25.270.23 | 92.36037 99.82031  25.13p.23
HiddenKiller | 89.63p61 87.11337  33.73199 | 91.80030 88.63302  31.631.43
StyleBkd 90.570.93 5826145  52.901.01 | 9107068 57.471.44  53.471.10

Backdoor Unlearning. We first train the poisoned
BERT and Llama2 (7B) on three poisoned datasets
and conduct experiments to unlearn various back-
door effects. Table 2 presents the unlearning results
against different backdoor attacks, including Bad-
Net, AddSent, HiddenKiller, and StyleBkd. Gener-
ally, the ReTrain model is unaffected by backdoor
triggers and is expected to perform similarly on
clean and poisoned datasets, i.e., CACC and PACC
should be closed. However, we observe that in
some scenarios, ReTrain exhibits low PACC on
poisoned datasets with high LFR values. This phe-
nomenon has also been observed by (Zhao et al.,
2024), which is because some attack strategies in-
duce a loss of semantic integrity when transforming
clean text into its poisoned counterpart. As a re-
sult, the misclassifications in these cases are not
necessarily caused by the backdoor effects but by
semantic losses.

An ideal backdoor unlearning method should
achieve a PACC similar to that of ReTrain while
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Figure 4: Poisoned loss of SST-2 on Bert and Llama2. Note that the loss values for Llama2 are on a log scale.

ensuring minimal degradation in model utility on
clean tasks. Our experiments in Table 2 reveal
that GA and NPO can significantly reduce the
LFR but compromise the PACC on both BERTgAsE
and Llama?2 on both binary and multi-classification
tasks. First, although the near-zero LFR values look
promising, it is actually due to over-unlearning, es-
pecially considering that even the ReTrain models
incur label-flipping on some samples. Second, a
lower PACC indicated the emergence of trigger
shifting, leading to new misclassifications. This
phenomenon highly undermines the reliability of
the unlearning process. Although both methods can
keep high CACC and remove the original backdoor
effect, they are unreliable in backdoor removal.

In contrast, RGA can maintain the highest
PACC and achieve the lowest APACC compared
to GA and NPO without significantly degrading
the model’s utility on the clean task (CACC). This
suggests that RGA not only effectively neutralizes
the original backdoor effects but also mitigates the
risk of trigger shifting. These findings indicate
that RGA is a promising approach for backdoor
unlearning, achieving a balance between models’
utility and reliability.

Poisoned Loss Analysis during Gradient Ascent.
We investigate the unlearning state of GA, NPO,
and RGA using the cross-entropy loss between
fo(yp|xp) and the target class y,. The poisoned
loss shows the progress of backdoor unlearning
and trigger shifting. A low poisoned loss indicates
that the model still associates the trigger ¢ with the
target class ¥, indicating insufficient unlearning.

Conversely, if the poisoned loss diverges to infinity,
trigger shifting occurs, introducing a new security
risk. Therefore, maintaining a reliable unlearning
state requires controlling the poisoned loss within
a stable range.

Figure 4 shows the poisoned loss of the first
10 epochs of unlearning over various attacks on
SST-2, with additional results on HSOL and AG
in Appendix A. As shown in Figure 4, GA quickly
diverges, especially on Bert, quickly leading to
the trigger shifting. Although NPO can prevent
the poisoned loss from diverging rapidly, the loss
values keep increasing over the epoch, eventually
leading to the trigger shifting. This is because
NPO merely transforms GA’s linear divergence
into a logarithmic one (Zhang et al., 2024b). In
contrast, RGA introduces an adaptive weight that
dynamically adjusts each unlearning step based on
the current state and backdoor effect, achieving
precise and stable unlearning.

7 Conclusions

We have identified trigger shifting as a critical flaw
in vanilla GA-based backdoor unlearning, where
the backdoor effect is redirected rather than elimi-
nated. To address this, we have developed Robust
Gradient Ascent (RGA), which introduces a dy-
namic penalty mechanism to prevent unintended
trigger shifting while preserving model utility. Our
experimental results demonstrate that RGA effec-
tively removes backdoors without causing trigger
shifting, highlighting the need for more reliable
unlearning techniques in securing LLMs.



Limitations

While Robust Gradient Ascent (RGA) effectively
mitigates trigger shifting and enhances backdoor
unlearning, RGA depends on the accurate detection
of poisoned samples, and its effectiveness may be
compromised if the detection result is incomplete.
This work serves as a proof of concept, primarily
aimed at highlighting the issue of trigger shifting in
GA-based approaches. Further research is needed
to have an end-to-end framework for corrective
machine unlearning, ensuring robust backdoor de-
fense.
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A Poisoned Loss of GA, NPO, and RGA

Figure 5 confirms consistent trends across all
datasets and attack scenarios. GA losses rise
rapidly, leading to trigger shifting. While NPO
stabilizes losses to some extent, they remain higher
than RGA’s and continue increasing over time,
making it vulnerable to trigger shifting. In contrast,
RGA maintains significantly more stable poisoned
loss, ensuring precise and effective unlearning.
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Figure 5: Poisoned loss of HSOL and AG on Bert and Llama2 during gradient ascent. Note that the loss values for

Llama?2 are on a log scale.
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