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Abstract

Text-conditioned image generation models often generate incorrect associations
between entities and their visual attributes. This reflects an impaired mapping
between linguistic binding of entities and modifiers in the prompt and visual
binding of the corresponding elements in the generated image. As one example, a
query like “a pink sunflower and a yellow flamingo” may incorrectly produce an
image of a yellow sunflower and a pink flamingo. To remedy this issue, we propose
SynGen, an approach which first syntactically analyses the prompt to identify
entities and their modifiers, and then uses a novel loss function that encourages the
cross-attention maps to agree with the linguistic binding reflected by the syntax.
Specifically, we encourage large overlap between attention maps of entities and
their modifiers, and small overlap with other entities and modifier words. The loss
is optimized during inference, without retraining or fine-tuning the model. Human
evaluation on three datasets, including one new and challenging set, demonstrate
significant improvements of SynGen compared with current state of the art methods.
This work highlights how making use of sentence structure during inference can
efficiently and substantially improve the faithfulness of text-to-image generation.1

1 Introduction

Diffusion models for text-conditioned image generation produce impressive realistic images [1, 2, 3,
4]. Users control the generated content through natural-language text prompts that can be rich and
complex. Unfortunately, in many cases the generated images are not faithful to the text prompt [5, 6].
Specifically, one very common failure mode results from improper binding, where modifier words
fail to influence the visual attributes of the entity-nouns to which they are grammatically related.

1We make our code publicly available https://github.com/RoyiRa/Syntax-Guided-Generation

37th Conference on Neural Information Processing Systems (NeurIPS 2023).
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Figure 1: Visual bindings of objects and their attributes may fail to match the linguistic bindings
between entities and their modi�ers. Our approach, SynGen, corrects these errors by matching the
cross-attention maps of entities and their modi�ers.

As an illustration, consider the prompt “apink sun�owerand ayellow �amingo”. Given this prompt,
current models often confuse the modi�ers of the two entity-nouns, and generate an image of a
yellowsun�ower and apink �amingo (Fig. 1, bottom left, semantic leak in prompt). In other cases,
the attribute may semantically leak to areas in the image that are not even mentioned in the prompt
(Fig. 1, bottom center, semantic leak outside prompt) or the attribute may be completely neglected
and missed from the generated image (Fig. 1, bottom right, attribute neglect). Such mismatch can be
addressed by providing non-textual control like visual examples [7, 8], but the problem of correctly
controlling generated images using text remains open.

A possible reason for these failures is that diffusion models use text encoders like CLIP [9], which
are known to fail to encode linguistic structures [10]. This makes the diffusion process “blind" to the
linguistic bindings, and as a result, generate objects that do not match their attributes. Building on this
intuition, we propose to make the generation process aware of the linguistic structure of the prompt.
Speci�cally, we suggest to intervene with the generation process by steering the cross-attention maps
of the diffusion model. These cross-attention map serve as a link between prompt terms and the set
of image pixels that correspond to these terms. Our linguistics-based approach therefore aims to
generate an image where thevisual binding between objects and their visual attributes adheres to the
syntactic binding between entity-nouns and their modi�ers in the prompt.

Several previous work devised solutions to improve the relations between prompt terms and visual
components, with some success [11, 12, 13]. They did not focus on the problem of modi�er-entity
binding. Our approach speci�cally addresses this issue, by constructing a novel loss function that
quanti�es the distance between the attention patterns of grammatically-related (modi�er, entity-noun)
pairs, and the distance between pairs of unrelated words in the prompt. We then optimize the latent
denoised image in the direction that separates the attention map of a given modi�er from unrelated
tokens and bring it closer to its grammatically-related noun. We show that by intervening in the latent
code, we markedly improve the pairing between attributes and objects in the generated image while
at the same time not compromising the quality of the generated image.

We evaluate our method on three datasets. (1) For a natural-language setting, we use the natural
compositional prompts in the ABC-6K benchmark [13]; (2) To provide direct comparison with
previous state-of-the-art in [11], we replicate prompts from their setting; (3) Finally, to evaluate
binding in a challenging setting, we design a set of prompts that includes a variety of modi�ers and
entity-nouns. On all datasets, we �nd that SynGen shows signi�cant improvement in performance
based on human evaluation, sometimes doubling the accuracy. Overall, our work highlights the
effectiveness of incorporating linguistic information into text-conditioned image generation models
and demonstrates a promising direction for future research in this area.
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Figure 2: The SynGen work�ow and architecture. (a) The text prompt is analyzed to extract entity-
nouns and their modi�ers. (b) SynGen adds intermediates steps to the diffusion denoising process.
In that step, we update the latent representation to minimize a loss over the cross attention maps of
entity-nouns and their modi�ers (Eq 3).

The main contributions of this paper are as follows: (1) A novel method to enrich the diffusion process
with syntactic information, using inference-time optimization with a loss over cross-attention maps;
(2) A new challenge set of prompts containing a rich number and types of modi�ers and entities.

2 Syntax-Guided Generation

Our approach, which we call SynGen, builds on two key ideas. First, it is easy to analyze the syntactic
structure of natural language prompts to identify bindings of entity-nouns and their modi�ers. Second,
one can steer the generation of images to adhere to these bindings by designing an appropriate loss
over the cross-attention maps of the diffusion model. We describe the two steps of our approach:
extracting syntactic bindings and then using them to control generation.

2.1 Identifying entity-nouns and their modi�ers

To identify entity-nouns and their corresponding modi�ers, we traverse the syntactic dependency
graph, which de�nes the syntactic relation between words in the sentence. Concretely, we parse the
prompt using spaCy's transformer-based dependency parser [14] and identify all entity-nouns (either
proper-nouns or common-nouns) that are not serving as direct modi�ers of other nouns.

These are the nouns that correspond to objects in the generated image. We then recursively collect all
modi�ers2 of the noun into its modi�er set. The set of modi�er-labels includes a range of syntactic
relations between nouns and their modi�ers, such adjectivial modi�cation (amod; “theregaldog”),
compounds (compound; “thetreasuremap”), nominal modi�cation through an intervening marker,
adverbial modi�ers (npadvmod; “Awatermelon-styled chair”), adjectivial complement (acomp; “The
apple isblue”), and coordination between modi�ers (conj; “Ablack and whitedog”).

2.2 Controlling generation with language-driven cross-attention losses

Consider a pair of a noun and its modi�er. We expect the cross-attention map of the modi�er to
largely overlap with the cross-attention map of the noun, while remaining largely disjoint with the
maps corresponding to other nouns and modi�ers. To encourage the denoising process to obey these
spatial relations between the attention maps, we design a loss that operates on all cross-attention
maps. We then use this loss with a pretrained diffusion model during inference. Speci�cally, we

2We consider modi�ers from the set {amod, nmod, compound, npadvmod, acomp, conj }. We excludeconj
when determining the top-level nouns.
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Figure 3: Evolution of cross-attention
maps and latent representation along
denoising steps, for the prompt “a
red crown and a golden strawberry”.
At �rst, the attention maps of all
modi�ers and entity-nouns are inter-
twined, regardless of the expected
binding. During denoising, attention
maps gradually becomes separated,
adhering the syntactic bindings. The
vertical line indicates that after 25
steps intervention stops, but the atten-
tion maps remain separated.

optimize thenoised latentsby taking a gradient step to reduce that loss. See illustration in Fig. 2.
Fig. 3 illustrates the effect of the loss over the cross-attention maps.

Loss functions: Consider a text prompt withN tokens, for which our analysis extractedk noun-
modi�er setsf S1; S2; : : : ; Sk g. Let P(Si ) represent all pairs(m; n) of tokens between the noun root
n and its modi�er descendantsm in thei -th setSi . For illustration, the set of “A black striped dog”
contains two pairs (“black”, “dog”) and (“striped”, “dog”). Next, denote byf A1; A2; : : : ; AN g the
attention maps of allN tokens in the prompt, and denote bydist (Am ; An ) a measure of distance
(lack of overlap) between attention mapsAm andAn .

Our �rst loss aims to minimize that distance (maximize the overlap) over all pairs of modi�ers and
their corresponding entity-nouns(m; n),

L pos (A; S) =
kX

i =1

X

(m;n )2 P (Si )

dist (Am ; An ): (1)

We also construct a loss that compares pairs of modi�ers and entity-nouns with the remaining words
in the prompt, which are grammatically unrelated to these pairs. In other words, this loss is de�ned
between words within the (modi�ers, entity-nouns) set and words outside of it. Formally, letU(Si )
represent the set of unmatched words obtained by excluding the words inSi from the full set of
words andAu is the corresponding attention map for a given unrelated wordu. The following loss
encourages moving apart grammatically-unrealted pairs of words:

L neg = �
kX

i =1

1
jU(Si )j

X

(m;n )2 P (Si )

X

u2 U (Si )

1
2

�
dist (Am ; Au ) + dist (Au ; An )

�
: (2)

Our �nal loss combines the two loss terms:

L = L pos + L neg : (3)

For a measure of distance between attention maps we use a symmetric Kullback-Leibler divergence
dist (A i ; A j ) = 1

2 DKL (A i jjA j ) + 1
2 DKL (A j jjA i ), whereA i , A j are attention maps normalized to

a sum of 1,i andj are generic indices, andDKL (A i jjA j ) =
P

pixels A i log(A i =Aj ).

Our test-time optimization approach resembles the one of [11], which de�ned a loss over the cross-
attention maps to update the latents at generation time. However, their loss aims to maximize the
presence of the smallest attention map at a given timestep to guarantee a set of selected tokens is
included in the generated image, and our loss depends on pairwise relations of linguistically-related
words and aims to align the diffusion process to the linguistic-structure of the prompt.
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2.3 The work�ow

We use the loss of Eqs 1-3 to intervene in the �rst 25 out of 50 denoising steps. Empirically, using a
smaller number of steps did not correct well improper binding, and using a larger number generated
blurred images, as detailed in Appendix B. In each of the �rst 25 steps, a pretrained denoiser (U-Net)
was �rst used to denoise the latent variablezt . Then, we obtained the cross-attention maps as in [15].
Next, we used the lossL to update the latent representationzt with a gradient stepz0

t = zt � � � r zt L .
Finally, the U-Net architecture denoises the updated latent variablez0

t for the next timestep.

3 Experiments

3.1 Compared baseline methods

We compare SynGen with three baseline methods. (1) Stable Diffusion 1.4 (SD) [1]; (2) Structured
Diffusion [13], extracts noun-phrases from the prompt and embeds them separately, to improve the
mapping of the semantics in the cross-attention maps; and (3) Attend-and-Excite (A&E) [11], a
method that given a predetermined set of tokens, updates the latent a certain number of timesteps, to
eventually incorporate these tokens in the generated image. To automate token selection in A&E, we
follow the recommendation by the authors to select the nouns using a part-of-speech tagger.

3.2 Datasets

We evaluate our approach using two existing benchmark datasets, and one new dataset that we
designed to challenge methods in this area.

(1) ABC-6K [13]. This benchmark consists of 3.2K natural compositional prompts from MSCOCO
[16], which were manually written by humans, using natural language and contain at least two color
words modifying different noun-entities. In addition, the dataset contains 3.2K counterparts, where
the position of modi�ers in the original prompts are swapped. (e.g., “awhitebench in front of agreen
bush” and “agreenbench in front of awhitebush”). We randomly sample 600 prompts.

(2) Data from Attend-and-Excite [11]. Originally introduced to evaluate the A&E method which
focuses on entity-neglect, this dataset also showed that A&E improved over previous work in terms
of improper binding.

Prompts in this dataset belong to three categories: (1) “a {color} {in-animate object} and a {color}
{in-animate object}”; (2) “a {color} {in-animate object} and an {animal}”; (3) “an {animal} and an
{animal}”. Following the split in A&E, we sample 33 prompts from type (1) and 144 prompts from
type (2), but exclude type (3), as it does not contain modi�ers. This is a very simple dataset, which
we use to facilitate direct comparison with previous work.

(3) Diverse Visual Modi�er Prompts (DVMP). The above two datasets are limited in terms of
number and types of modi�ers, and the number of entity-nouns per prompt. To challenge our model,
we design a dataset consisting of coordination sentences, in similar fashion to the dataset from A&E,
but with strong emphasis on the number and types of modi�ers per prompt. Speci�cally, we aim
to compare the models with prompts that contain numerous and uncommon modi�ers, creating
sentences that would not usually be found in natural language or training data, such as “apink spotted
panda”. DVMP was designed with two key aspects in mind:

Expanding the set of modi�ers: We have extended the number of modi�ers referring to an entity-
noun from one to up to three. For instance, “ablue furry spottedbird”. We also added types of
modi�ers besides colors, including material patterns (“ametalchair”), design patterns (“acheckered
shoe”), and even nouns modifying other noun-entities (“ababyzebra”).

Visually veri�able and semantically coherent: The modi�ers selected for DVMP are visually
veri�able, with a deliberate avoidance of nuanced modi�ers. For instance, “big” is a relative modi�er
dependent on its spatial context, and emotional states, such as in the prompt “anexciteddog”, are
largely excluded due to their subjective visual interpretation. Simultaneously, DVMP maintains
semantic coherence by appropriately matching modi�ers to noun-entities, thereby preventing the
creation of nonsensical prompts like “a sliced bowl” or “a curved zebra”.
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In total, we have generated 600 prompts through random sampling. For a comprehensive description
of the dataset's creation, see Appendix F.

3.3 Human Evaluation

We evaluate image quality using Amazon Mechanical Turk (AMT). Raters were provided with a
multiple-choice task, consisting of a single text prompt and four images, each generated by the
baselines and SynGen. Raters could also indicate that all images are “equally good” or “equally bad”.
We provided each prompt and its corresponding generations to three raters, and report the majority
decision. In cases where there is no majority model winner, we count it toward “no majority winner”.

We evaluate generated images in two main aspects: (1)concept separation(sometimes known as
editability [17]) and (2)visual appeal. Concept separation refers to the ability of the model to
distinctly depict different concepts or objects in the generated image. The effectiveness of concept
separation is assessed by asking raters, “Which image best matches the given description?”. To asses
visual quality, raters were asked “Which image is more visually appealing?”. To maintain fairness
and reduce biases, the order of images was randomized in each task. Full rater instructions and further
details are provided in Appendix G.1 of the supplemental materials.

We also experimented automatic evaluation, but �nd its quality subpar. For standardized evaluation
purposes, it is detailed in Appendix G.2.

Fine-grained evaluation. In addition to a multiple-choice task, we evaluate concept separation
using the following key metrics: (1) Proper Binding, quantifying how well the model associates
attributes with their corresponding objects; (2) Improper Binding, measuring the instances where
attributes are incorrectly linked to unrelated objects; and (3) Entity Neglect, capturing the frequency
with which the model omits entities speci�ed in the prompt.

To this end, we randomly select 200 prompts each from the DVMP and ABC-6K datasets, while using
all 177 prompts available in the A&E dataset. Human evaluators were asked to mark if instances
have correct or incorrect attribute-object mapping. Importantly, incorrect mappings are counted on a
per-attribute basis—multiple incorrect mappings of a single attribute are considered one violation.
For example, in the prompt “the white dog chased the cat up the tree”, if the modi�er “white” is
incorrectly mapped to both “cat” and “tree”, it is counted as one instance of violation. Evaluators
also identify the number of entities mentioned in the prompt that are subsequently depicted in the
generated image.

Based on these counts, we de�ne the metric ofProper Bindingas the ratio of correctly mapped
attributes to the total number of attributes. Similarly,Improper Bindingis de�ned as the ratio of
incorrectly mapped attributes to the total number of attributes, while Entity Neglect is the complement
of the ratio of mentioned entities that are depicted in the generated image to the total number of
entities in the prompt. Rater instructions are provided in Appendix G.1.

4 Results

4.1 Quantitative Results

Table 1 provides results of the comparative experiment. SynGen is consistently ranked �rst in all three
datasets, and by a large margin, sometimes double the approval rate of the second ranked method,
A&E. These results are observed for concept separation, which measures directly the semantic leak,
and for visual appeal.

The high number of “no winner” cases re�ects the large dif�culty of some of the prompts, for which
no method provides good enough generated images. Population results before majority aggregation
are given in Appendix G.1 of the supplemental material. Comparisons with StableDiffusion are given
in Fig. 19 of the supplemental.

Table 2 provides results of the individual experiment. We �nd that SynGen outperforms all models by
a landslide in both proper and improper binding and is on par with state-of-the-art on entity neglect
[11], despite not directly tackling this problem.
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Concept Visual
Separation Appeal

Dataset Model

A&E

SynGen (ours) 38.42 37.85
A&E 18:08 18:65
Structured Diffusion 04:52 04:52
Stable Diffusion 01:69 02:26
No majority winner 37:29 36:72

DVMP
(challenge set)

SynGen (ours) 24.84 16.00
A&E 13:33 12:17
Structured Diffusion 04:33 07:83
Stable Diffusion 03:83 07:17
No majority winner 53:67 56:83

ABC-6K

SynGen (ours) 28.00 18.34
A&E 11:17 10:00
Structured Diffusion 05:83 06:33
Stable Diffusion 04:83 07:83
No majority winner 50:17 57:50

Table 1: Human evaluation of all meth-
ods on the three datasets. The table re-
ports scores for concept separation (how
well the image matches the prompt) and
visual appeal. Values are the fraction of
majority vote of three raters, normalized
to sum to 100.

Table 2: Results of the �ne-grained concept separation experiment. Proper Binding should be
maximized to 100, while Improper Binding and Entity Neglect should be minimized to 0.

Proper Binding" Improper Binding# Entity Neglect#
Dataset Model

A&E

SynGen (ours) 94.76 23.81 02:82
A&E 81:90 63:81 01.41
Structured Diffusion 55:71 67:62 21:13
Stable Diffusion 59:05 68:57 20:56

DVMP
(challenge set)

SynGen (ours) 74.90 19.49 16:26
A&E 52:47 31:64 10.77
Structured Diffusion 48:73 30:57 28:46
Stable Diffusion 47:80 30:44 26:22

ABC-6K

SynGen (ours) 63.68 14.37 34:41
A&E 56:26 26:43 33.18
Structured Diffusion 51:47 29:52 34:57
Stable Diffusion 52:70 27:20 36:57

4.2 Qualitative Analysis

Figures 4–6 provide qualitative examples from the three datasets, comparing SynGen with the two
strongest baselines.

The qualitative examples illustrate several failure modes of our baselines. First,semantic leak in
prompt, occurs when a modi�er of an entity-noun “leaks” onto a different entity-noun in the prompt,
as shown in Fig. 4, for the prompt “a pink clock and a brown chair”, in columns 3 and 4. In this
case, all baselines incorrectly apply pink hues to the chair, despite the prompt explicitly de�ning it
as brown. A more nuanced variant of this issue issemantic leak out of prompt, when a modi�er is
assigned to an entity-noun that is not mentioned in the prompt. For instance, the “spiky” attribute in
“a spiky bowl and a green cat” leaks to a plant, which is not in the prompt, or the green coloration in
the background of the images generated by the baselines, as seen in columns 5 and 6 in Fig. 5.

Attribute neglectoccurs when a modi�er from the prompt is absent from the generated image. As
exhibited in Fig. 4, for “a frog and a brown apple”, both baselines do not include a brown color at all.

Entity castingis another failure type where a modi�er is treated as a standalone entity, a phenomenon
commonly observed with noun modi�ers. For example, the prompt “a wooden crown and a furrybaby
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Figure 4: Qualitative comparison for prompts from the Attend-and-Excite dataset. For every prompt,
the same three seeds are used for all methods.

Figure 5: Qualitative comparison for prompts from the DVMP dataset. For every prompt, the same
three seeds are used for all methods.

rabbit” (column 1 in Fig. 5) has all methods, apart from ours, generate human infants. Presumably,
this occurs because “baby” is interpreted as a noun rather than as a modi�er, leading other methods
to treat it as a separate object due to the lack of syntactic context. Conversely, SynGen correctly
interprets “baby” as a modi�er and accurately binds it to the rabbit. Similarly, in the prompt “a white
�re hydrant sitting in a �eld next to a red building” (column 6 in Fig. 6), “�re” is wrongly interpreted
as an entity-noun, which leads to the unwarranted inclusion of a �re in the scene.

All methods, barring SynGen, grapple withentity entanglement[18, 19, 20, 21, 22], where some
objects tend to strongly associate with their most common attribute (e.g., tomatoes are typically red).
This is evident in columns 3 and 4 in Fig. 6, where other methods fail to visually associate the blue
attribute with the dog in “a blue and white dog sleeps in front of a black door”. Instead, they resort to
typical attributes of the objects, generating a black and white dog.

Further qualitative analysis is provided in Appendix D.1.
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Figure 6: Qualitative examples for ABC-6K prompts. For every prompt, all methods use the same
three seeds.

4.3 Ablation study

The importance of using both positive and negative losses.We evaluated the relative importance
of the two terms in our loss Eq. (3). The positive termL pos , which encourages alignment of the
attention map of an object and its modi�ers, and the negative loss term,L neg , which discourages
alignment with other modi�ers and objects. We sampled 100 prompts from the DVMP dataset and
generated images with and without each of the two loss terms. See example in Fig. 7. Then, raters
were asked to select the best of four variants. Table 3 shows that raters preferred the variant that
combined both the positive and the negative terms. More examples are given in the supplemental
Appendix B.

Loss
Concept

Separation
Visual
Appeal

Both lossesL pos + L neg 27 22
Positive onlyL pos 0 11
Negative onlyL neg 3 35
Stable Diffusion 4 28
No majority winner 66 4

Table 3:Ablation of loss components. Val-
ues are percent preferred by human raters.

Figure 7: Ablation of loss components.Removing
L neg results in semantic leakage (the bird is white)
and entity neglect (there is no crown). RemovingL pos
also leads to semantic leakage (generating a bird and
background with white parts), and failed attribution
binding (generating a crown that is not white).

5 Related Work

Semantic leakage. [2] pointed out cases of semantic leakage in diffusion models, where properties of
one entity-noun in�uence the depiction of another. [23] attributed this issue to a lack of understanding
of syntax, speci�cally noting failures when processing texts requiring subtle syntactic binding
comprehension. [6] identi�ed semantic leakage issues inDALL-E, where properties of one entity-
noun in�uence how other entity nouns are depicted. In this work, we pinpoint semantic leakage as a
consequence of improper mapping between syntactic and visual binding.
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Attention-based interventions.[15] demonstrated that the cross-attention mechanism determines
the spatial layout of entities in generated images. This result suggested that cross-attention is causally
involved in the aforementioned issues. A&E [11] addresses the problem of entity omission, where
certain entities mentioned in the prompt do not appear in the generated image. They propose a loss
function that encourages each noun token in the image to signi�cantly attend to a corresponding
image patch, thereby preventing its omission. Our approach is similar to [11] in that it updates the
latent representation through a loss function over attention maps, during image generation.

Syntax-based generation was also explored in [13], proposing the Structured Diffusion method. It
aims to address the problem of missing entities and semantic leakage of attributes. This is achieved
by parsing the prompt, extracting phrases corresponding to nouns and modi�ers, and encoding
them separately. They also intervene in the attention patterns, ensuring that each individual phrase
in�uences the attention patterns. Our experiments show that it is better to implicitly in�uence the
attention patterns through our loss which we dynamically optimize. In contrast, their intervention
remains �xed.

Concurrent to this work, [24] proposed an alternative approach to combine syntactic control and
attention-based optimization. They extract nouns from prompts and train a layout predictor to identify
the corresponding pixels for each noun. Then, they optimize the latents by encouraging the pixels
corresponding to the objects to attend toCLIPrepresentations of phrases containing those objects.
While similar in spirit, the current paper demonstrates intervention in the generation process solely
based on syntax, without explicitly learning the correspondence between image entities and tokens.

6 Limitations

Like previous methods, the performance of SynGen degrades with the number of attributes to be
depicted (see supplemental Fig. 12). However, its decline is remarkably less pronounced compared to
other methods. This decay in performance can be attributed to two primary factors: (1) an image
begins to lose its visual appeal when the negative loss term becomes excessively large; (2) an overly
cluttered image poses challenges in crafting a cohesive “narrative” for all the concepts. We expect
that some of these issues can be addressed with more hyper-parameter tuning.

Naturally, the effectiveness of our method is intrinsically tied to the quality of the parser. When the
parser fails to extract the stipulated syntactic relations, our method essentially operates akin to SD.

Finally, SynGen takes longer to generate images with modi�ers in the prompt than SD and slightly
slower than than A&E (see Appendix A).

7 Conclusions

In this work, we target the improper binding problem, a common failure mode of text-conditioned
diffusion models, where objects and their attributes incorrectly correspond to the entity-nouns and
their modi�ers in the prompt. To address it, we propose SynGen, an inference-time intervention
method, with a loss function that encourages syntax-related modi�ers and entity-nouns to have
overlapping cross-attention maps, and discourages an overlap from cross-attention maps of other
words in the prompt. We challenge our method with three datasets, including DVMP – a new
dataset that is specially-designed to draw out hard cases of improper-binding problem. Our method
demonstrates improvement of over 100% across all three datasets over the previous state-of-the-art.
Finally, our work highlights the importance of linguistic structure during denoising for attaining
faithful text-to-image generation, suggesting promising avenues for future research.
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Supplementary Material

A Implementation Details

Computing resources. Experiments were run on an NVIDIA DGX Station with four v100-SXM2-
32GB GPUs. The overall duration of all experiments in the paper was about two weeks.

Ef�ciency. SynGen takes ~144% longer than SD and ~10.9% longer than A&E to generate images
with modi�ers in the prompt. To arrive to these numbers, we randomly sampled a set of 50 images
from the A&E dataset, the DVMP set, and ABC-6K and timed the generations for each method. On
average, SD needs 4 seconds to generate an image, A&E 8.8 seconds, and SynGen 9.76 seconds.

Hyperparameters. The hyperparameters we used consist of 50 diffusion steps, a guidance scale of
7.5, a scale-factor of 20, and 25 latent update steps. The choices of scale factor and latent update
steps are described in Appendix B.2 and Appendix B.3 respectively.

Parser. Throughout this project, we use the spacy parser with the out-of-the-box
en_core_web_trf model.

Attending word pieces. When a relatively uncommon word is encountered by the tokenizer of the
text encoder, it is split to sub-words (i.e., word pieces). In the context of our loss function, when an
entity (or modi�er) is split into word pieces, we compute our distance function (the Symmetric-KL)
for each word piece. Then, only the word piece that maximizes the distance is added to the loss.

Cross-attention maps. We describe more formally the cross-attention maps on which we intervene.
Let N be the number of tokens in the prompt, and letD 2 be the dimensionality of the latent
feature map in an intermediate denoising step. The denoising network de�nes a cross-attention
mapApatches! tokens2 RD 2 � N between each ofD 2 patches in the latent feature map and each token.
Intuitively, the attention maps designates which tokens are relevant for generating each patch.

Our goal it to derive an attention distributionA tokens! patches 2 RN � D 2
such that itsi -th row

A tokens! patches
i contains the attention distribution of tokeni over patches. For this goal, we de-

�ne a score matrixS to be the transpose ofApatches! tokens, i.e,. a matrix whosei th row contains
the attention scores from each patch to tokeni . SinceS is not normalized, we divide each row
by its sum to get a distribution over patches. Unless stated otherwise, across the paper, we refer
to A tokens! patches 2 RN � D 2

when mentioning the “cross-attention maps”A and itsi th row A i
corresponding to the attention map from thei th token.

B Additional Ablation Experiments

B.1 Further Investigation of the Positive and Negative Loss Terms

In Section 4.3, we investigate the importance of the positive and negative loss function terms using
a human rater. Here, we accompany the rating with a qualitative analysis, to examine the effect of
each term. To this end, we generate images for 15 randomly selected prompts, �ve from each dataset.
Fig. 8 depicts a sample of the generated prompts.

We �nd that proper binding necessitates both the positive and negative terms: excluding the negative
term from the loss function results in two noteworthy observations. First, the number of missing
objects increase, evident by the missing crown, cat, metal chair, and tomato, in columns 1, 2, 4, and 5
in Fig. 8. One consequence of missing objects is the apparent improper binding, indicated by the red
backpack and black shirt in columns 1 and 3.

On the other hand, excluding the positive term results in fuzzier separation between objects. For
instance, the cat is not completely formed, and is “merged” with the pillow; and while it appears that
there is some green residue on the dog, it is not colored green. Moreover, the grass is green, which
indicates a semantic leakage.
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Figure 8: We examine the effect of employing only one of the two losses instead of both. All images
were generated using the same random seed.

Putting these insights together, we observe that to some extent, the effect the loss terms is comple-
mentary. In addition to the increase of objects and proper binding, the images are more coherent (less
cases of objects mixed into each other, such as the cat in the only-negative loss or the elephant in the
only-positive loss).

B.2 Number of Timesteps for Intervention

Recall that our method intervenes in latent denoising generation. In this appendix, we study the effect
of the hyperparameters determining the number of steps in which we intervene.

To identify an ideal number of timesteps to intervene, we experiment with 100 randomly selected
prompts from the DVMP dataset, a �xed random seed, and a number of update steps from 5 to 50, in
increments of 5. Examples of this experiment are shown in Fig. 9.

We observe that when intervening in a small number of timesteps, our method failed to adequately
mitigate semantic leakage or that images are not completely formed. For instance, the apple in
column 1 in the 15-steps example is cartoon-ish, while the dog is not. Conversely, intervening for
the full 50 timesteps resulted in an increase rate of blurred images (potentially due to the signi�cant
modi�cation of the latent, which shifts it away from the learned distribution). We conclude that the
optimal number of timesteps for intervention is 25, as this allows for effective mitigation of improper
binding, while still generating visually appealing images.

B.3 Setting the Scale Factor

The scale factor affects the update step size. Recall the update step stated in Section 2z0t =
zt � � � r zt L . Here,� is the scale-factor.

To determine a good selection for the scale-factor, we generate 100 randomly sampled prompts from
the DVMP dataset, with a scale-factor value from 1 to 40, in increments of 10.

As can be seen in Fig. 10, we observe that merely updating the latent using a scale-factor of 1 yields
relatively good results in terms of improper binding, which con�rms the utility of our loss function.
However, such a low scale-factor also consistently leads to missing objects.
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