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ABSTRACT

We focus on the task of visual dynamics prediction. Recent work has shown that
object-centric representations can greatly help improve the accuracy of learning
dynamics. Building on top of this work, we ask the question: would it help to
learn disentangled object representations, possibly separating the attributes which
contribute to the motion dynamics vs which don’t? Though there is some prior
work which aims to achieve this, we argue in this paper either it is limiting in their
setting, or does not use the learned representation explicitly for predicting visual
dynamics, making them sub-optimal. In response, we propose DisFormer, an
approach for learning disentangled object representation and use them for predict-
ing visual dynamics. Our architecture extends the notion of slots Locatello et al.
(2020) to taking attention over individual object representations: each slot learns
the representation for a block by attending over different parts of an object, and
each block is expressed as a linear combination over a small set of learned con-
cepts. We perform an iterative refinement over these slots to extract a disentangled
representation, which is then fed to a transformer architecture to predict the next
set of latent object representations. Since our approach is unsupervised, we need
to align the output object masks with those extracted from the ground truth image,
and we design a novel permutation module to achieve this alignment by learning
a canonical ordering. We perform a series of experiments demonstrating that our
learned representations help predict future dynamics in the standard setting, where
we test on the same environment as training, and in the setting of transfer, where
certain object combinations are never seen before. Our method outperforms exist-
ing baselines in terms of pixel prediction and deciphering the dynamics, especially
in the zero-shot transfer setting where existing approaches fail miserably. Further
analysis reveals that our learned representations indeed help with significantly bet-
ter disentanglement of objects compared to existing techniques.

1 INTRODUCTION

Predicting visual dynamics is an important problem that finds applications in computer vision,
model-based reinforcement learning, and visual question answering. Some of the classic work does
this by having dense representation for the image and then passing through a CNN-based or now
transformer-based architecture. More recent approaches have argued for the use of object-centric
representations, presumably because they can better capture the natural semantics of how objects
are represented in a scene and their interactions, for the task of dynamics prediction. This line of
work can further be divided into two sets of categories: ones that work with dense object embeddings
learned from the data Wu et al. (2023) and those that try to decompose each object representation in
terms of its attributes Singh et al. (2022b). While in the former category, the latest models exploit
the power of transformers to get the future dynamics, works in the second category have exploited
autoencoder-based models, or GNN-based models, to learn disentangled representation for down-
stream learning of dynamics. Interestingly, some of the SOTA models Wu et al. (2023) do not use
disentangled representation, leaving a possibility of further improvement in performance on this task
while having a more interpretable representation.
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Even among the techniques that make use of a disentangled object representation, they are limited
by their assumptions: (1) They either work with objects of the same size Kossen et al. (2019) (2) Or
divide the attributes only into two sets: those relevant for dynamics, vs which are not Nakano et al.
(2023). Both these assumptions are pretty restrictive. The closest to our work is Lin et al. (2020a),
which can learn disentangled representations, but it does it with a fixed number of concepts indepen-
dent of the problem space. As observed in our experiments, this severely affects their performance,
especially in the setting of transfer, for instance, where certain attribute combinations are never seen
before. Motivated by these research gaps, we push the boundaries on two fronts: (1) Work with a
more flexible disentangled representation, which can choose the number of concepts depending on
the specific problem; (2) Combine the learned representation with the power of transformer-based
architectures, which have been shown to do very well on future prediction tasks. We refer to our
system as DisFormer.

Our work, in the form of DisFormer, presents several novel contributions. Starting with masks
extracted from an object extractor, our key idea is to represent each object as a set of blocks, where
each block is expressed as a linear combination of underlying (learned) concepts. Intuitively, each
block (or a set of blocks) can be thought of as potentially representing an underlying natural attribute
of an object (e.g., size, colour etc.). While such an idea has been explored in earlier work Singh et al.
(2022b), it is limited to the case of static images, whereas our goal is to tie the learned representation
with dynamics prediction, resulting in some significant technical differences. In order to learn the
individual block representation, we use the notion of a slot Locatello et al. (2020). Whereas in the
original slot attention paper, each slot binds to a particular object, and its representation is obtained
by iteratively refining a vector attending over the entire image, in our case, each slot represents a
block, which attends over an object, and its iterative refinement results in the final representation of
the block. Disentanglement is guided by forcing each block to be a linear combination of a small
number of learned concepts. The final object representation is the concatenation of the blocks.

For dynamics prediction, we pass the latent representation for the entire set of extracted objects in
the image, along with one for the background, to a transformer. A position embedding for each
block distinguishes it from others. Since object masks can be discovered in any order, we need to
impose a canonical ordering over them so that loss can be taken for the final image. This is done
via a novel permutation module, which learns to map object representations to a canonical ordering
starting from any given ordering over them. Finally, instead of passing the object representation as a
single vector during decoding, we directly map the discovered blocks to individual channels, further
reinforcing the discovery of a disentangled representation. For the object extractor, we make use of
a Mask-RCNN trained on labels provided by an unsupervised extractor Gupta et al. (2021), for 2D
scenes, and slot attention Locatello et al. (2020), for the case of 3D scenes. For our decoder, we
use a standard architecture Watters et al. (2019) along with mapping of attribute representation to
channels as described above.

Extensive experimentation on both 2D and 3D datasets shows that our approach outperforms ex-
isting SOTA baselines both in terms of pixel error and dynamics, for up to 15 steps of prediction.
Further, we create transfer datasets for 2D environments and we observe that our model performs
much better in zero-shot settings than the baselines that fail miserably1. The rest of the paper is
organized as follows: in section 2, we will discuss the related work, and in section 3, we will pro-
pose our architecture. Section 4 discusses the experiments and results, followed by a conclusion and
discussion on future work in section 5.

2 RELATED WORK

The task of video prediction can be seen as a combination of image synthesis and learning dynamics
of various entities in the scene. There has been a tremendous amount of work in image synthesis
using unstructured representations like Variational Autoencoders (Kingma & Welling, 2014), Gen-
erative Adversarial Networks (Goodfellow et al., 2014) and their variants (Makhzani et al., 2016;
Tolstikhin et al., 2018; Dai & Wipf, 2019; Mondal et al., 2020; 2021; Ghosh et al., 2020; Arjovsky
et al., 2017; Gulrajani et al., 2017). For video prediction, the initial works focused on direct pixel
synthesis using hybrid architectures (Shi et al., 2015; Wang et al., 2017) that fuse recurrent neural
networks and convolutional networks. However, these methods struggled to do long-horizon predic-

1We will release our code and datasets for further research after acceptance.
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tions. Another line of work (Dosovitskiy et al., 2015; Sun et al., 2018; Reda et al., 2018) leverages
optical flow information to forecast the movement of objects and pixels within a video sequence.
While these methods are relatively interpretable and capture a notion of motion, they still fail to
capture any higher level of semantics and object interactions. To have better interpretability and
control over the learned representation space, some parts of the research eventually shifted to learn-
ing interpretable and structured image and video representations. We will discuss the developments
in this area next.

Object-Centric Approaches: There has been a growing interest in learning object-centric repre-
sentations of images in an unsupervised manner by decomposing a scene into its constituting ob-
jects. Some of the notable works include CSWM (and variants) Kipf et al. (2020); Gupta et al.
(2021), AIR (Eslami et al., 2016), MONet (Burgess et al., 2019), IODINE (Greff et al., 2019),
GENESIS (Engelcke et al., 2019), SPACE (Lin et al., 2020b), Slot Attention (Locatello et al.,
2020), GENESIS-V2 (Engelcke et al., 2021), SLATE (Singh et al., 2022a), or Neural Systematic
Binder (Singh et al., 2022b). Slot Attention defines the notion of slots where each slot is tied to
an object in the scene, and it learns the object’s representation using iterative refinement. Another
line of work segments images by taking the last couple of frames as input; these include SAVi (Kipf
et al., 2022), SAVi++ (Elsayed et al., 2022) and STEVE (Singh et al., 2022c) extend Slot Attention
and VideoSaur (Zadaianchuk et al., 2023) uses self-supervised optical flow based loss.

Motivated by these successes, video prediction approaches were built by utilizing some of these
methods: SQAIR (Kosiorek et al., 2018) extends AIR, STOVE Kossen et al. (2019), GSWM Lin
et al. (2020a), OCVT Wu et al. (2021) and SlotFormer Wu et al. (2023). STOVE learns a factorized
representation per object with explicit position and size of each object; it then uses a Graph Neural
Network as the dynamics model. GSWM does explicit factorization of each object whereas we fac-
torize implicitly. OCVT also has limited explicit factorization of each object and uses a transformer
for learning dynamics. SlotFormer extends Slot-Attention to video prediction and uses a transformer
for dynamics prediction, however, it does not have disentangled object-level representation.

Object-centric representations for transfer learning: There has been a growing interest in learn-
ing neuro-symbolic systems that can transfer a learned solution to unseen combinations of objects.
These methods formulate the representation space into its constituting objects and then train a
GNN or transformer, leveraging their size-invariant nature, to learn transferable solutions. Works
like Yoon et al. (2023); Sharma et al. (2023b) apply this to learn generalized policy in Reinforce-
ment Learning, Ståhlberg et al. (2022); Sharma et al. (2022; 2023a) represent a state in relational
planning as a graph of objects, to learn a generalized policy using a GNN. In contrast, our work
learns disentangled object representations that help transfer dynamics to unseen combinations.

3 DISFORMER

We describe the architecture of DisFormer in this section. There are five important parts to the archi-
tecture: (1) Object Extractor: This module extracts dense object representations in an unsupervised
manner using pre-trained architectures. (2) Block Extractor: This a novel module that disentangles
each object in terms of an underlying block representation via iterative refinement (3) Permutation
Module: This is a novel module to enforce permutation invariance across the discovered set of ob-
jects. (4) Dynamics Predictor: This module predicts the next state of object latents, in terms of their
block representation via a transformer-based architecture (5) Decoder: This module inputs the dis-
entangled object representation and decodes it to get the final image. Figure 1 describes the overall
architecture. We next describe each module in detail.

3.1 OBJECT EXTRACTOR

We train object extractors independently to extract masks from frames. We freeze the object ex-
tractor during subsequent training. All our object extractors are unsupervised and trained in a self-
supervised manner. In our experiments, for 2D environments, we train an expert model similar to
(Sharma et al., 2023b) to generate supervised data for Mask R-CNN (He et al., 2017). For 3D en-
vironments, we train Slot Attention (Locatello et al., 2020) and use decoder masks during training.
Our architecture generally allows the flexibility of using any object extractor model.
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Figure 1: Main architecture for DisFormer. Mask R-CNN in the diagram is the Object Extractor,
and the product operation is the Hadamard Product between Object Masks and the input images.
For 3D environments, Mask R-CNN would be replaced by Slot Attention. BE represents the Block
Extractor module, which takes in the object representations zit, one at a time, along with concept
vectors C and outputs the set of block representations for each object i. Note that each block has its
own set of concept vectors; thus, C = ||rj=1Cj where r represents the number of blocks. Attn is the
simple dot-product attention module where the input block-based representation of all the objects is
converted into a linear combination of the corresponding concept vectors. Phase I and II represent
the two training phases. Other modules are as defined in Section 3

Formally, given a sequence of frames {xt}Tt=1, for T time-steps, where xt ∈ RH×W×3, we repre-
sent the extracted object masks as mi

t ∈ [0, 1]H×W where i ∈ 1, · · · , N represents the discovered
number of objects. These extracted object masks are then multiplied element-wise with the cor-
responding input frame and passed through a pre-trained feature extractor to obtain latent object
representations denoted by zit ∈ Rf×df

3.2 BLOCK EXTRACTOR

In our disentangled representation, each object is represented by a set of blocks, and a disjoint set
of blocks represents an attribute of an object. We aim to discover these (latent) blocks automatically
from the data. Recently, (Locatello et al., 2020) in the paper on slot-attention proposed architecture
for unsupervised discovery of objects via iterative refinement of what is referred to as a slot. Each
slot binds to an object via attention over the entire image in their work. We extend their idea to the
case of objects, where each slot now represents a block, which is iteratively refined by taking atten-
tion over a latent object representation. Further, to learn a disentangled representation, we enforce
that each block representation is represented as a linear combination of a fixed set of underlying
learnable concepts. This combination is discovered at every step of the block-refinement algorithm.

More formally, given a latent object representation zit for the ith object, its representation in terms
of blocks is given as {si,bt }rb=1, where r is the number of blocks, and is a hyperparameter of the
model. We let each si,at ∈ Rdb . Algorithm 1 outlines the iterative refinement step to obtain the
block representation and closely follows the description in Locatello et al. (2020), with the image
features replaced by object features and each slot representing blocks instead of individual objects.
Each si,at is initialized to a learnable vector µb to break permutation invariance among blocks 2.
After an initial layer normalization, we make the slot vectors attend over object features to compute
the attention scores. These are first normalized over queries (slots), followed by normalization over
keys (object features). The resultant linear combination of object features is first passed through
a GRU, followed by an MLP to get the block representation. Finally, unique to our approach, we
project each resultant block vector onto the learnable concept space and update its representation as
a linear combination of the concepts via projection weights (lines 9 - 12 in Algorithm 1). This step
results in discovering the disentangled representation central to our approach.

We note that recently Singh et al. (2022b) proposed a similar-looking idea of learning disentan-
gled representation for objects as a linear combination of concepts using an iterative refinement
over slots, albeit for static images. Our approach is inspired by their work but has some important

2Locatello et al. (2020) initialize their slots randomly

4



Under review as a conference paper at ICLR 2024

differences. In their case, the slots still represent objects as in the original slot-attention paper, mak-
ing the disentanglement closely tied to the learning of object representations. This also means that
their approach is limited by a specific choice of object extractor. In contrast, since we work with
object representations directly, our approach is oblivious to the choice of the extractor. Further, as
already pointed out, their work is limited to static images, whereas we would like to learn these
representations for dynamics prediction.

Algorithm 1 Block Extractor: Inputs are: object features zit ∈ Rf×df . Model parameters are:
WK ∈ Rdf×d, WQ ∈ Rdb×d, WV ∈ Rdf×db , initial block values µ ∈ Rr×db , concept vectors
Cb ∈ Rk×db for b ∈ {1, .., r}, MLP, GRU

1: sit = µ
2: for t = 1 to T do
3: sit = LayerNorm(sit)
4: A = Softmax(( 1√

d
(sitWQ)(z

i
tWK)T , axis = ’block’)

5: A = A.normalize(axis=’feature’)
6: U = A(zitWV )
7: U = GRU(state = sit, input = U )
8: U = U + MLP(U )
9: for b = 1 to r do

10: wi,b
t = Softmax( 1√

db
Cb[U [b :]]T )

11: si,bt = CT
b wi,b

t

12: return sit

3.3 DYNAMICS

Transformers(Vaswani et al., 2017) have been very effective at sequence-to-sequence prediction
tasks. Some recent work on unsupervised video dynamics prediction Wu et al. (2023) has given
SOTA results on this task on 3-D datasets, and have been shown to outperform more traditional
GNN based models for this task Kossen et al. (2019). While some of these models are object-
centric, they do not exploit disentanglement over object representation. Our goal in this section
is to integrate our disentanglement pipeline described in Section 3.2 with downstream dynamics
prediction via transformers. Here are some key ideas that go into developing our transformer for
this task:

1. We linearly project each si,bt to a d̂ dimensional space using a shared Wproj . si,bt = si,bt Wproj ,
where Wproj ∈ Rdb×d̂.

2. The input to transformer encoder is T step history of all object blocks that is, at time step t, the
input is {si,bt−t̄|t̄ ∈ {0, .., T − 1}, i ∈ {1, .., N}, b ∈ {1, .., r}}.

3. We need positional encoding to distinguish between (a) different time steps in the history (b)
blocks belonging to different objects (c) different blocks in an attribute. Accordingly, we design
3-D sinusoidal positional encodings Pt,i,b and add them to block latents. That is the final vector
si,bt = si,bt + Pt,i,b.

4. Let the transformer encoder output be δŝi,bt . In principle, it can be directly added to si,bt to
obtain latent ŝi,bt+1 at time step t + 1. But we rather exploit the fact that object blocks should be
linear combination of concept vectors. Therefore, we define v̂i,bt+1 = si,bt + δŝi,bt , and compute
ŵi,b,j

t = v̂i,bt+1 · Cb,j/||Cb,j ||2. Then, ŝi,bt+1 =
∑

j ŵ
i,b,j
t Cb,j .

Finally, we note that unlike (Wu et al., 2023), who have permutation equivariance between object
representations, since object slots at any given time step are initialized based on slots at the previous
time step, our object latents are obtained from an extractor which may not guarantee any specific
ordering among object latents across time steps. Therefore, in order to compute dynamics loss
between the actual latents si,bt+1 and predicted latents ŝi,bt+1, we need to ensure consistent ordering
among object block representations which are input, and the ones which are predicted. We design a
novel permutation module to achieve this objective, and we describe it next.
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3.4 PERMUTATION MODULE

Let sit = ||rb=1s
i,b
t denote the concatenation of block vectors for object i at time step t. Similarly,

we define ŝit = ||rb=1ŝ
i,b
t . We treat them as column vectors. We note that because si,bt is used to

predict ŝi,bt+1, ∀b, in the form of a residual, we expect that the ordering of objects in predicted next
slots is same as that of immediate last time step ordering. The key issue is between the ordering of
si,bt+1 and ŝi,bt+1 which will not be the same in general. We are then looking for a permutation matrix
P ∈ RN×N such that sit+1 when permuted by P aligns with ŝit+1 so that dynamics loss can be
computed. Further, we note that when predicting for t′ time steps ahead, given history until time
step T , during autoregressive generation, all the generated ŝiT+t′ ’s follow the same ordering that of
siT . We exploit this fact to instead align all the input latents siT+t′ ’s with the ordering in latents siT ’s.

Let M ∈ [0, 1]N×N be a score matrix defined for time-steps T and T + t′. Given, siT and sjT+t′ ,

[i, j]th of the score matrix M is given as: M [i, j] =
(UsiT )·(Usj

T+t′ )√
rd

We do this for all pairs of objects (i, j) in the two representations to get the full matrix. Similar
to (Mena et al., 2018) we compute soft permutation matrix P ∈ [0, 1]N×N from M . Then, P =
Sinkhorn(M). The dynamics loss at time step T + t′ is then computed after permuting the input
latents with P (see Section 3.6).

Here U ∈ Rdp×rd is learnable matrix. This matrix is learned by supplying random permutations of
inputs at various time steps t ≤ T , computing the permutation matrix P , and then computing the
loss with respect to the true permutation matrix (which is known). Note that this module is only
used during training in order to align the predictions for loss in the dynamics module. We discard it
during testing.

3.5 DECODER

Same as most of the previous work we use spatial mixture models to generate the final image.
As each object is represented by r vectors of blocks, we use a slightly different approach than
previous methods which have a single vector representing the object. We first use each block specific
Spatial Broadcast decoder (Watters et al., 2019) to generate 2D maps qi,bt ∈ Rf ′×I×I representing
f ′ features each of size I × I , corresponding to si,bt . We concatenate these blocks to form qi

t ∈
Rrf ′×I×I . A CNN is applied on qi

t to generate final object mask which is normalized across the
objects m̂i

t and object content ĉit. Final image is obtained as x̂t =
∑N

i=1 m̂
i
t · ĉit.

3.6 TRAINING AND LOSS

Curriculum: We use a history of length T and do a T ′ step future prediction. We use two-phase
training. First Phase: we only train object extractor with object extractor-specific optimization ob-
jective. Second Phase: we freeze the object extractor and train the rest of the model. For the first
few epochs of training in the second phase, we only train block extractor, permutation module and
decoder. Then we only train the dynamic model for a few epochs freezing all other modules. Finally,
all modules are trained together except the object extractor.

Losses: We make use of the following losses: (a) Image reconstruction loss: Lrec =
∑T

t=1(x̂t −
xt)

2. Captures the overall reconstruction loss. (b) Permutation Loss: Lper =
∑T+T ′

t=1 (πt − Pt)
2,

where πt is a matrix capturing a random permutation of sit’s, and Pt is the permutation matrix
output by the permutation module when input with sit’s and πt(s

i
t)’s. (c) Mask Loss: Lmask =∑T

t=1

∑
i(m

i
t − m̂i

t). Captures the loss over predicted masks. (d) Orthogonality Loss: Lort =∑r
b=1

∑k,k
i,j:i ̸=j |(Cb,i)

TCb,j/||Cb,i)||2||Cb,j ||2. Captures that vectors within each concept should

be orthogonal to each other. (e) Dynamic Loss: Ldyn =
∑T+T ′

t=T+1

∑
i,a,j(ŵ

i,b,j
t − w̃i,b,j

t )2, where
w̃i

t’s represent objects permuted by permutation matrix Pt at time step t.

The total loss in Phase II of training is given as: L = Ldyn+L1, where L1 = λdecLdec+λperLper+
λmaskLmask + λdissLdiss.
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4 EXPERIMENTS

We perform a series of experiments to answer the following questions: (1) Does DisFormer result
in better visual predictions than the existing SOTA baselines on the standard datasets for this prob-
lem? (2) Does learning disentangled representations with DisFormer lead to better performance in
the zero-shot transfer setting, i.e., when tested on unseen combinations of objects? and (3) Can
DisFormer indeed discover the disentangled representation corresponding to natural object features
such as color, size, shape, position, etc.? We first describe our experimental set-up, including the de-
tails of our datasets and experimental methodology, followed by our experimental results, answering
each of the above questions in turn.

4.1 EXPERIMENTAL SETUP

4.1.1 DATASETS

We experiment on a total of three datasets; two are 2-dimensional and one is 3-dimensional.

2D Bouncing Circles (2D-BC): Adapted from the bouncing balls INTERACTION environment in
Lin et al. (2020a) with modifications in the number and size of the balls. Our environment comprises
three circles of the same size but different colors that move freely in the 2D space with a black
background, colliding elastically with the frame walls and each other. Similar environments have
been used in STOVE Kossen et al. (2019).

2D Bouncing Shapes (2D-BS): We create another dataset, which is an extension of the 2D-BC
environment with increased visual and dynamics complexity. Two circles and two squares move
freely in the 2D space with a checkered pattern as background. Collisions happen elastically among
various objects and frame walls while also respecting respective object geometries. We use the
MuJoCo physics engine Todorov et al. (2012) to simulate the domain with camera at the top, and
objects with minimum height to have a 2-D environment.

OBJ3D: A 3D environment used in GSWM Lin et al. (2020a) and SlotFormer Wu et al. (2023),
where a typical video has a sphere that enters the frame and collides with other still objects.

4.1.2 BASELINES, METRICS AND EXPERIMENTAL METHODOLOGY

Baselines: For the 2D domains, we compare DisFormer with three baselines, STOVE Kossen et al.
(2019), GSWM Lin et al. (2020a) and SlotFormer Wu et al. (2023). For the 3D domain, SlotFormer
beats both STOVE and GSWM, so we compare with only SlotFormer Wu et al. (2023) in this case.

Evaluation Metrics: For 2D-BC and 2D-BS domains, we evaluate the predicted future frames
quantitatively using two metrics: (1) Position error: Error in predicted object positions in compar-
ison to the ground truth from the simulator, and (2) Pixel error: MSE Loss between the predicted
frame and the ground-truth frame. For OBJ3D, the predicted future frames are evaluated on the
PSNR, SSIM and LPIPS metrics as used by Wu et al. (2023).

Experimental Methodology: We use the official implementation for each of our baselines: 3. All
the models are given access to 6 frames of history and are unrolled up to 15 future steps while
testing. All result table numbers are summed over 15 step future prediction. Each model trains on
1000 episodes, each of length 100, for 2 million training steps on a single NVIDIA A100 GPU, with
the exception of SlotFormer which requires two A100’s.

4.2 VISUAL DYNAMICS PREDICTION

Given a set of past frames, the goal is to predict the next set of frames. Table 1 presents the results
on the 2-D datasets. DisFormer beats all other approaches on both pixel-error and pos-error metrics.
Our closest competition is GSWM, which does marginally worse on 2D-BS and up to 2.5% worse
on 2D-BC in pixel error. In terms of position error, it is 1.5% and 10% worse on the two datasets
respectively. STOVE failed to give any meaningful results on 2D-BC dataset. Interestingly, on the 2-
D datasets, SlotFormer which is SOTA model on 3D, does worse than some of the earlier approaches

3STOVE: https://github.com/jlko/STOVE, GSWM: https://github.com/zhixuan-lin/G-SWM, SlotFormer:
https://github.com/pairlab/SlotFormer
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on the 2-D datasets. We do not report position error for SlotFormer since it does not explicitly work
with object masks (and rather only dense representation in terms of slots), and it is not clear how to
extract object positions from this representation.

Table 2 presents the results on the OBJ3D dataset. Our numbers are comparable to SlotFormer in
this case, with marginal improvement PSNR and marginal loss in LPIPS. This comparable perfor-
mance in 3D dataset comes at the advantage of being able to disentangle object representations (see
Section 4.4).

Finally, we did a small ablation, where on 2D-BC dataset, where we created a variation of our model
(called DenFormer, short for Dense-DisFormer) by replacing the block extractor (refer Section 3) by
an MLP to create dense object representations. Table 3 presents the results where we have compared
with DisFormer, and SlotFormer, which is the only baseline that works with a purely dense object-
centric representation. We see that while DenFormer’s performance drops, it is still comparable to
SlotFormer in pixel error. This only highlights the power of disentanglement but also that in the
absence of it, our model becomes comparable to some of the existing baselines.

2D-BC 2D-BS
Model Pixel Err Pos Err Pixel Err Pos Err
STOVE 0.294 0.421 - -
GSWM 0.283 0.417 0.7 0.711
Slotformer 0.329 - 0.6257 -
DisFormer 0.28 0.402 0.608 0.610

Table 1: Results on 2D Datasets

OBJ3D
Model PSNR

(↑)
SSIM
(↑)

LPIPS
(↓)

Slotformer 32.40 0.91 0.08
DisFormer 32.93 0.91 0.09

Table 2: Results on OBJ3D Dataset

2D-BC
Model Pixel Err Pos Err
Slotformer 0.329 -
DenFormer 0.332 0.591
DisFormer 0.28 0.402

Table 3: Dense vs Disentangled

2D-BC-2L1S 2D-BS-2L2S
Model Pixel Err Pos Err Pixel Err Pos Err

GSWM 0.345 0.642 0.812 0.789
Slotformer 0.357 - 0.794 -
DisFormer 0.301 0.441 0.658 0.622

Table 4: Transfer Setting

4.3 TRANSFER LEARNING

Set-up: For each of the 2-D datasets in our experiments, we created a transfer learning set-up as
follows.
2D-BC: We create two variants of 2D-BC in the training dataset, one having larger sized balls and
other with relatively smaller balls. The transfer/evaluation then happens on an environment that
contains a combination of large and small sized balls.
2D-BS: We create a two variants of 2D-BS in a similar manner with different sized objects. The
transfer/evaluation then happens on an environment that contains a combination of large and small
sized objects.
Table 4 presents the results. Note that, L and S in the environment names represent number of
large and small sized objects in the environment. In this case, we clearly outperform all existing
baselines on all the metric. This demonstrates the power of learned disentangled representation,
which can work seamlessly with unseen object combinations, whereas the performance of other
baselines degrades significantly.

4.4 DISENTANGLEMENT OF OBJECT PROPERTIES

Experiment Details: We conduct a post-hoc analysis to gain insights into the learned disentangled
representations of objects in terms of their correlation to their visual features. However, with the
latent representations, there is no directly visible mapping from the representations to the objects in
the scene. To overcome this challenge, given the trained model and a scene, we perform a forward
pass through DisFormer to obtain the block representations for the objects in the scene. Upon
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receiving these, we manually perform swapping of different combinations of block representations
between the objects (same blocks for different objects) to create the mapping and identify set of
blocks that together represent visual features like position, colour and shape etc.

(a) Shape swapped for 2D BS (b) Position swapped for 2D BS

(c) Position swapped for 2D-BC (d) Color swapped for 2D-BC

Figure 2: Qualitative Results for disentanglement of object
properties on 2D domains. For (a) and (b), attributes of
magenta circle have been swapped with corresponding at-
tributes of red and green square respectively. For (c) and
(d), attributes of red and blue circles have been swapped.

Figure 2 presents the results on the
2-D datasets. In each of the sub-
figures, the first two rows represent
the masks and contents of the origi-
nal scene, and the bottom two rows
represent mask and content after at-
tributing swapping, respectively. The
first column represents the generated
image and further columns represent
mask and content of decoded slots. In
the figure 2a, we swap a single block
of magenta circle and red square. The
swapped representations after decod-
ing shows that the objects have same
position (seen in mask) but swapped
the color and shape. Thus that block
represents color and shape of an ob-
ject. In the figure 2b, we swap the
two other blocks of magenta circle
and green square. The resultant de-
coded masks and content after swap-
ping shows that objects have swapped
the positions (seen in mask) but have
retained the same color and shape
in content. This shows that the two
blocks combined represents the posi-
tion of an object.

Figure 2c shows the results for swap-
ping two blocks corresponding to red
and blue circle from a seen of 2D-BC
dataset which results in the positions
swapped for two objects as seen in the masks. Thus the two blocks combined repesents position of
objects. Similarly after swapping other single block it can be seen in figure 2d that particular block
represents the color of objects.

5 CONCLUSION AND FUTURE WORK

We have presented an approach for learning disentangled object representation for the task of pre-
dicting visual dynamics via transformers. Our approach makes use of unsupervised object extrac-
tors, followed by learning disentangled representation by expressing dense object representation as
a linear combination of learnable concept vectors. These disentangled representations are passed
through a transformer to obtain future predictions. Experiments on three different datasets show that
our approach performs better than existing baselines, especially in the setting of transfer. We also
show that our model can indeed learn disentangled representation. Future work includes learning
with more complex backgrounds, extending to more complex 3D scenes, and extending the work to
action-conditioned video prediction.

Reproducibility Statement. To ensure that the proposed work is reproducible, we have included
an Algorithm (Refer to Algorithm 1). We have clearly defined the loss functions in Section 3. The
implementation details and hyperparameters are specified in appendix 5. The code of the proposed
method and datasets will be released post acceptance.
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APPENDIX

A HYPERPARAMETERS

BC BS OBJ3D

Training

Training Steps Phase 1 30K 30K 60K
Training Steps Phase 2 250K 250K 300K

LR warm-up steps 1K 1K 1K
Cosine Anneal Tcycle 500K 500K 600K
Cosine Anneal Tmult 1 1 1

Batch size 32 32 32
λdec 1 1 1
λper 10 10 10
λmask 0.1 0.1 0.1
λdiss 5 5 5

Block Extractor

Blocks r 4 5 8
Concepts k 4 4 8

Block Dimension db 32 32 64
Hidden Dimension d 64 64 128

T 3 3 3
Input Dimension df 64 64 128

Transition Transformer

Dimension d̂ 128 128 128
Layers k 4 4 4

Heads 8 8 8
Dropout d 0.1 0.1 0.1

Table 5: Hyperparameters

Layers Stride Padding Channels Activation
Conv 3x3 1 1 16 ReLU

MaxPool 3x3 2 1 - -
Conv 3x3 1 1 16 ReLU

MaxPool 3x3 2 1 - -
Conv 3x3 1 1 32 ReLU

MaxPool 3x3 2 1 - -
Conv 3x3 1 1 32 ReLU

MaxPool 3x3 2 1 - -
Conv 3x3 1 1 64 ReLU

MaxPool 3x3 2 1 - -
Conv 3x3 1 1 64 ReLU

MaxPool 3x3 2 1 - -

Table 6: Encoder CNN for BC, BS and OBJ3D

Layers Stride Padding Output Padding Channels Activation
ConvTranspose 5x5 2 2 1 32 ReLU
ConvTranspose 5x5 2 2 1 32 ReLU

Concatenate the block level output channelwise
ConvTranspose 5x5 2 2 1 32 ReLU
ConvTranspose 5x5 2 2 1 32 ReLU
ConvTranspose 5x5 1 1 0 5 ReLU
ConvTranspose 3x3 1 1 0 4 ReLU

Table 7: Decoder for BC, BS and OBJ3D
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Figure 3: Unaligned output of mask extractor

B OBJECT EXTRACTOR

We train object extractor beforehand and freeze them during final training. We use two different
mask extractor for 2D and 3D environments.

B1 2D ENVIRONMENT

As we want to perform the transfer experiment, the requirement for mask extractor is that we want
it to work on unseen composition of objects. We found that state of the art unsupervised object
extractor (Locatello et al. (2020), Lin et al. (2020b), Singh et al. (2022a)) does not give satisfactory
results. We found that MaskRCNN provides the compositional generalization we need when trained
with labeled data. To generate labeled data in unsupervised fashion we used expert models similar
to Sharma et al. (2023b), which are trained on specific variants of dataset. For each variant of dataset
we have one expert model. Expert model trained on one varient of dataset does not generalize to
other variant of dataset. We generate combined labeled data by using all expert models which is
used to train MaskRCNN.

B2 3D ENVIRONMENT

For 3D environment, we focused on video prediction task for in distribution test data and relaxed the
compositional generalization requirement of mask extractor. We used slot attention Locatello et al.
(2020) as mask extractor which was trained in unsupervised fashion.

C PERMUTATION MODULE

Since the order of masks generated by mask extractor is not same (Fig 3) across the video frames
we cannot directly use the loss Ldyn =

∑T+T ′

t=T+1

∑
i,a,j(ŵ

i,b,j
t − w̃i,b,j

t )2. This is because order of
objects in ŵ and w̃ may be different. We permute the objects in ŵ such that they are aligned with
objects in w̃. This is achieved by permutation module which returns required permutation matrix
using ŝt and sT . To train permutation module we permute st by randomly generated permutation
matrix πt and use st, πt(st), πt as supervised data. We found that even though the permutation
module was trained on same time step object representations, it produces correct permutation matrix
even for 10 time step apart objects.

D POSITION CALCULATION

GSWM and STOVE have zpos latent for each object which corresponds to predicted position of ob-
ject in frame. This zpos was used to compute the MSE for these models. For DisFormer the decoder

masks were used to obtain the predicted positions as xt
k =

∑
i,j im̂t

k[i,j]∑
i,j m̂t

k[i,j]
and ytk =

∑
i,j jm̂t

k[i,j]∑
i,j m̂t

k[i,j]
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Figure 4: Feature importance mask between blocks and object attributes for BC dataset

Figure 5: Feature importance mask between blocks and object attributes for BS dataset
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E QUANTITATIVE EVALUATION OF DISENTANGLEMENT

We followed the approach from Singh et al. (2022b) to evaluate disentanglement of blocks. Specif-
ically to visualize and quantify the disentanglement by looking as importance matrix R ∈ RA×r

in between the attributes and blocks. To obtain importance matrix, first step is to gradient boosted
trees one for each attribute to predict attribute given concatenated blocks of object. After that feature
importance vector is generated using permutation importance base. We obtain the importance score
of block by adding the importance score of dimensions of blocks.
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