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Abstract

Large Language Models (LLMs) exhibit impressive performance on complex rea-
soning tasks, yet they frequently fail on basic numerical problems, producing
incorrect outputs. Inspired by Benford’s Law, a statistical pattern in which lower
digits occur more frequently as leading digits, we hypothesize that the skewed digit
distributions in web-collected corpora may be learned by LLMs during pretraining,
leading to biased numerical generation. To investigate the hypothesis, we first ex-
amine whether digits frequencies in pretraining corpus (OLMo2) follows Benford’s
law. We then construct an evaluation benchmark in which the ground-truth digits
are uniformly distributed within each of the seven numerical reasoning tasks. Our
evaluation results demonstrate that leading open-source LLMs show a consistent
pattern of digit bias that resembles Benford’s law. Through logit-lens tracing
and neuron-level dissection, we identify that this bias arises predominantly from
a small subset of highly digit-selective feed-forward network (FFN) neurons in
the deeper layers. Finally, we demonstrate that pruning these neurons mitigates
imbalanced overgeneration and partially corrects erroneous outputs, providing
causal evidence that fine-grained pretraining digit bias can propagate into model
behavior. Our findings reveal a fundamental connection between corpus-level
statistics and symbolic failure modes in LLMs, offering a new lens for diagnosing
and mitigating hallucinations in numerical tasks. Code and data is made available
here: https://github.com/shamy28/Benford-Curse,

1 Introduction

Large Language Models (LLMs) have demonstrated impressive performance not only on daily reason-
ing tasks but also on challenging domains such as mathematical competition problems, showcasing
strong symbolic and logical capabilities [ [2, [3} 4} |5 |6} [7]. Yet, despite these amazing success,
LLMs frequently fail on surprisingly simple numerical reasoning—often producing mathematically
incorrect or logically inconsistent outputs [[8, |9, [10]. This discrepancy prompts a fundamental and
pressing question: why are LLMs so prone to hallucinations when dealing with basic numbers?

Previous studies [[11, 12|13} |14] have identified duplication bias in pretraining corpus as a major
contributor to hallucinations in natural language tasks. For instance, when prompted with “list some
red fruits, excluding apples”, LLMs frequently still mention “red apples” likely due to the high
frequency of co-occurring phrases such as “red apples, watermelon, cherries, and strawberries” in
the training data. This over-reliance on memorized patterns causes the model to overlook explicit
instructions in the prompt [L1]]. Given this strong pattern-completion tendency in language, a natural
question arises: might similar memorization-driven biases emerge in numerical reasoning tasks,
potentially leading to systematic numerical hallucinations?

*This work was conducted during the author’s research internship at MARS Lab, NTU.
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Prompt 1: What is the result of multiplying the sequence’s last term by two? [..., 2.95, 1.81, 8.26]
Model Generation: To find the result of multiplying the sequence’s last term by two, we need to
identify the last term in the sequence and then multiply it by 2.

The last term in the sequence is 1.81 X

(Incorrect: the model mistakenly identifies the second-to-last number as the last term.)

Prompt 2: What is the result of multiplying the sequence’s last term by two? [..., 7.43, 8.51, 1.05]
Model Generation: To find the result of multiplying the sequence’s last term by two, we need to
identify the last term in the sequence and then multiply it by 2.

The last term in the sequence is 1.05 v/

(Correct: the model correctly identifies the last number in the sequence.)

Figure 1: Tllustration of digit bias in identifying the last term of a numerical sequence. LLaMA3.1-8B-Instruct
is asked to multiply the final term of a sequence by two, but first must identify the last item. In the first case, the
model incorrectly selects a smaller intermediate value (1.81) instead of the actual final term (8.26). In the second,
it correctly selects 1.05. This asymmetry suggests a bias toward smaller digits when the model is uncertain,
revealing a subtle form of numerical hallucination. Detailed accuracy comparisons are shown in FigureE}

Benford’s Law [[135]], a striking statistical phenomenon, was first observed in 1881 by astronomer
Simon Newcomb, who noticed that the earlier pages of logarithmic tables—those starting with
digit 1—were more worn than others [16]. This empirical observation was later formalized by
physicist Frank Benford in 1938, who verified the pattern across over 20 diverse datasets [[17].
Benford’s Law states that the probability that a number begins with digit d € {1,...,9} is given by
P(d) =logy,(1 + ). This implies that digit 1 occurs as the leading digit in about 30% of cases,
while digit 9 appears less than 5%. This law has since been observed across various domains such
as economic records, scientific measurements, and population statistics, and thus naturally emerges
in human-written text [[15, 18} |19]]. Given this ubiquity, it is natural to ask whether the pretraining
corpora of LLMs, which are largely composed of web-scraped data, also reflect this skewed digit
distribution. If so, could LLMs internalize such patterns during training, and might this lead to a
form of digit bias that contributes to numerical hallucinations, even on otherwise simple numerical
reasoning tasks?

To investigate this question, we begin by examining the digit distribution in the Olmo-mix-1124
pretraining corpus [20] and confirm a strong digit skew consistent with Benford’s Law. To test
whether this corpus-level skew propagates into model behavior, we construct a diagnostic benchmark
with uniformly distributed ground-truth digits, eliminating task-induced priors. Empirical results
show that LLMs consistently overgenerate smaller digits, despite uniform targets. Further analysis
reveals that when the model generates incorrect answers, the distribution of first error digits(e.g., for
ground truth 758 and prediction 714, the first error digit is 1) exhibits an even stronger skew toward
smaller values. To better understand the underlying mechanisms, we analyse the model’s internal
representations. First, we apply the Logit Lens [21] to trace how digit preferences evolve across
layers and find that the preference for smaller digits often emerges strongly in the later layers. Second,
we disentangle the contributions of FFN and self-attention, finding that the bias is primarily driven by
the FFN. Third, by quantifying the digit selectivity of FFN neurons, we find that their aggregated
preferences form a skewed distribution favouring smaller digits, closely mirroring the statistics of the
pretraining corpus. Motivated by these insights, we explore a lightweight neuron-level intervention
that prunes a small set of biased neurons. This intervention can partially mitigate overgeneration and
correct certain hallucinated outputs, offering further evidence of the causal role digit bias plays in
numerical hallucination.

The contributions of this work are summarized as follows: (1) We formulate and investigate a
fundamental question chain: does the skewed digit distribution in LLMs’ pretraining corpus induce
digit generation bias, leading to numerical hallucination? (2) To explore this, we construct a diagnostic
benchmark with uniformly distributed target digits and observe that LLMs consistently overgenerate
smaller digits. Notably, the first error digits exhibit an even stronger skewed distribution, suggesting a
bias-driven mechanism behind numerical hallucination. (3) Using logit lens tracing and neuron-level
analysis, we identify that this digit bias primarily originates from a subset of highly digit-selective
feedforward (FFN) neurons, particularly concentrated in the later layers of the model. (4) Finally, we



show that pruning these neurons can partially mitigate hallucination, offering causal evidence that
digit bias is a contributing factor to numerical hallucination. By identifying a fine-grained statistical
artifact as a mechanistic failure point, our work highlights a critical yet underexplored source of
errors in numerical reasoning and underscores the importance of addressing pretraining-induced
biases to develop more reliable language models.

2 Related Works

Numerical Hallucinations in LLMs. While there is no universally accepted definition of numerical
hallucination, the term broadly refers to a language model’s tendency to generate numerically incor-
rect, inconsistent, or implausible outputs, despite syntactically or semantically coherent completions.
These include phenomena such as miscounting, incorrect number reproduction, inappropriate number
substitution, or generating fabricated values. Prior work has largely attributed these numerical halluci-
nations to reasoning deficiencies [22]], suboptimal tokenization schemes [23]], and misalignment [24]].
Razeghi et al. [25] further showed that model accuracy in numerical tasks correlates with token
frequency in pretraining data, suggesting a statistical basis for some failures. However, these studies
do not examine how digit-level statistical patterns manifest during generation. We highlight this as a
distinct and measurable form of numerical hallucination overlooked in prior work.

Dataset Bias as a Source of Hallucination. Prior studies have increasingly identified dataset bias
as a key driver of hallucination in LLMs [14} [11} [13} 25 [12]], suggesting that many hallucinations
stem not from architectural flaws but from imbalances in the pretraining corpus. For example,
overrepresented entities or linguistic patterns in large-scale web data can lead models to repeat them
even in inappropriate contexts [L1]. However, existing work [26, 27, 28] has primarily focused
on semantic-level biases, such as spurious facts or misattributions, while overlooking lower-level
statistical regularities. In particular, the extent to which digit-level statistical pattern in the training
data influences the model’s numerical generation remains largely unexplored. Our work fills this gap
by showing that frequency pattern over digits in the pretraining corpus is systematically reflected
in model generations, providing a concrete statistical basis for a subset of numerical hallucinations.
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Digit Distribution in Pretraining Corpus. To empirically assess whether the digit distribution in
pretraining corpus aligns with Benford’s Law, we analyze the Olmo-Mix-1124 corpus [20], a widely-
used 22.4TB data collection curated for training open-source LLMs. As shown in Figure[a] the digit
frequencies strongly align with Benford’s Law, exhibiting a pronounced logarithmic distribution that
favors smaller digits. These findings suggest that LLMs are likely to encounter digit distributions that
are heavily biased toward smaller values during training.



Table 1: Examples of tasks in the Digit Bias Benchmark, Covering seven numerical reasoning tasks.
Task Category Examples

. What is -0.9121789 minus -6?
Add or Sub . Add 4292 and 597069553.5.
e . Multiply 13862 and 0.5.
Multiplication _ What is -464 times -3?
Division . Solve 81190 di'Vi'dc?d by 2.
. Calculate the division of 40380 by 5.
E . Let c(a) = -2*a - 10. What is c(-1)?
valuate

. Let I(f) = £##3 - 3***2 + £ 4+ 3. Give 1(2).

. What is the fifth root of 29889504 to the nearest integer?

. What is 4528941 to the power of 1/9, to the nearest integer?
. Solve 33*r = 8*r- 137 + 712 for r.

. Solve 309%j + 23940 = -356%j for j.

. What comes next: 532118, 1064232, 15963467

. What is next in 704, 506, 334, 188, 68?

Nearest Integer Root

Linear_1d

DO =D =N =N =N =N —| DN —

Sequence Next Term

A Benchmark for Measuring Digit Bias. To investigate whether skewed digit distribution in
pretraining data leads to generation bias, we introduce the Digit Bias Benchmark, a suite of seven
numerical reasoning tasks designed to yield uniformly distributed ground-truth digits. Tasks include
add or sub, multiplication, division, evaluate, nearest integer root, linear_Ild, and sequence next
term, primarily adapted from DeepMind’s Mathematics Dataset [29]. Each task contains over 1,000
examples, with answer sets carefully constructed to ensure uniform digit distribution: when pooling
all digits from all positions across all answers within a task (e.g., the answer "132" contributes three
digits: 1, 3, and 2), each digit 0-9 appears approximately 10% of the time. This design enables us to
disentangle generation bias from task-induced digit distribution effects, allowing a more controlled
evaluation of digit-level preferences in LLMs. Representative examples for each task are listed in
Table[T

Empirical Evidence of Digit Bias. We evaluate six open-source LLMs on the proposed Digit
Bias Benchmark, including models from LLaMA [30], Qwen [31], Gemma [32]], OLMo [33] and
Mistral [34] families. By design, the benchmark enforces a uniform digit distribution in its ground
truth, so any deviation in the model’s output distribution directly reflects inherent generation bias. As
shown in Figure Mistral-7B exhibits a strong and consistent over-generation of smaller digits.
For example, digit 1 often appears over 12% of the time, while digits such as 8 and 9 are severely
underrepresented. This trend closely parallels the skew found in the pretraining corpus, reinforcing
the hypothesis that the bias originates from corpus-level statistics. To further probe the behavioral
impact of this bias, we conduct a fine-grained error analysis. For each incorrect output answer, we
identify the first digit where the model’s output diverges from the ground truth and record its value
(e.g., for ground truth 758 and prediction 714, the first error digit is 1). As shown in Figure[3b] the
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Figure 3: Digit bias observed in the Digit Bias Benchmark with Mistral-7B. (a) The boxplot shows the
distribution of digits in generated answers across all tasks, revealing a significant overrepresentation of smaller
digits despite the benchmark’s uniform ground-truth distribution. (b) The distribution of digits at the first error
position exhibits an even stronger skew toward smaller values, closely following Benford’s Law. Together, these
results suggest that digit bias shapes not just preferences but also the numerical hallucination.



distribution of these “first error digits” exhibits an even stronger skew toward smaller values, closely
following Benford’s Law. This finding suggests that digit bias not only affects overall preferences but
also distorts the model’s generation trajectory when it deviates from the correct answer, implicating it
as a potential driver of numerical hallucination. More results are shown in Figure 9]

4 Analyzing the Mechanisms of Digit Bias

4.1 Probing Layerwise Behavior with Logit Lens

Method: Logit Lens. The LLMs used in this paper are based on a decoder-only architecture
composed of stacked Transformer layers [35] with residual connections [36]. During a standard
forward pass, the hidden representation th” € R? for the final input token x,, is retrieved from a
learned embedding table. This representation is then iteratively updated through each Transformer

block, incorporating outputs from both self-attention and feed-forward submodules via residual

addition. After the final layer, the hidden state hSZL) (with L denoting the total number of layers)
is normalized and projected via the unembedding matrix U € RV*¢, yielding logits over the
vocabulary of size v. Since hidden states across all layers share the same dimensionality, intermediate
representations can also be projected via U to obtain layer-wise token distributions. This technique,
known as the logit lens [21], allows us to visualize how the model’s token predictions evolve across
layers, providing interpretable insights into the generation process. To explore the origins of digit
bias, we apply the logit lens to trace layer-wise changes in predicted digits.

Datasets. As observed in Section[3] LLMs consistently tend to favor smaller digits in numerical
reasoning tasks. This suggests that, under conditions of uncertainty or hallucination, the model is
more likely to generate smaller digits. Therefore, to trace the internal origins of this bias, hallucinated
outputs should be the focus. However, hallucinations in multi-step reasoning tasks are often hard to
localize, as the precise point of failure is difficult to identify. To simplify this analysis, we begin with
single-step reasoning tasks (basic arithmetic tasks from the benchmark), where hallucination can be
precisely localized by identifying the first incorrectly generated digit. Then, to expand this analysis
beyond a limited set of hand-selected cases, we develop an entropy-based automated sampling
strategy grounded in observations from these hand-analyzed examples to identify uncertain samples.
Specifically, we compute the entropy of the model’s output digit token distribution at each layer.
Samples with entropy exceeding a threshold (e.g., >3.0 at layer 26) are flagged as potentially biased.
Applying this criterion to the Evaluate task yields a larger set of high-uncertainty samples, enabling a
more systematic investigation of digit bias within the model’s internal dynamics.

Layerwise Visualization of Digit Bias. By applying the logit lens [21] to high-uncertainty samples
that ultimately generate different digits, we obtain the layer-wise digit preference heatmap shown
in Figure @bl The visualization reveals a consistent pattern: under similar levels of uncertainty,
smaller digits tend to exhibit stronger generation signals only in the later layers, whereas larger digits
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Figure 4: (a) The histogram compares the digit distribution predicted by Benford’s Law with that of the
OlMo-mix-1124 corpus, showing their degree of similarity. (b) The heatmap of digit probabilities across layers
obtained via Logit Lens. Smaller digits remain relatively undistinguished in early and middle layers, whereas
larger digits show sharper activations earlier. This indicates that the overgeneration of small digits is driven by
preferences formed in the final layers.



show earlier and more gradual emergence. For instance, digit 1 typically shows little preference in
intermediate layers but becomes strongly favored in the final few. These results indicate that digit bias
is not uniformly distributed across the network, but instead predominantly arises in the final layers.

Layerwise Bias Trends. To gain deeper insight into how digit bias emerges in the later layers,
we conduct a layer-wise analysis focusing on how the model’s digit preferences evolve across later
layers. Specifically, we examine samples where digit token probabilities are approximately equal at
an intermediate layer and then trace how these probabilities shift in subsequent layers. As shown in
Figure[5] the model begins to exhibit a clear preference for smaller digits in later layers, with their
probabilities increasing more sharply compared to larger digits. This further supports our observation
that digit bias is primarily concentrated and amplified in the final layers of token generation.
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Figure 5: Digit probability trajectories in later layers. Starting from layers where digits 1, 3, and 6 have
equal probabilities (layers 17, 22, and 25 respectively), we trace their subsequent evolution. Digit 1 consistently
gains probability more rapidly than the others, suggesting that the model amplifies its bias toward smaller digits
during final token prediction stages.

4.2 Digit Selectivity Score

To quantify how strongly a hidden vector favors a specific digit more precisely, we propose the Digit
Selectivity Score (DSC). Given a hidden vector h?, we first project it into vocabulary logits via the
model’s unembedding matrix. For each digit token ¢ € {0,...,9}, we compute its rank within the
full vocabulary. Let .S denote the sum of ranks of all digit tokens. Then, the DSC for digit 7 is defined
as DSC; = S/rank(7). Higher values indicate stronger selectivity for that digit. While normalized
probabilities can indicate digit preference to some degree, they often fail to provide meaningful
differentiation when all digit probabilities are low, leading to misleading or noisy interpretations. In
contrast, DSC offers a more sensitive and robust measurement of digit selectivity for any vector in
the model’s hidden space.

4.3 Self-Attention vs. FFN

Our goal in this section is to determine whether digit bias primarily originates from the self-attention,
the FFN, or their combined effect. Prior work [37, 38| [39]] using causal mediation analysis has shown
that, in arithmetic tasks, digit generation is predominantly driven by the FFN, while only a small
number of attention heads contribute by storing simple arithmetic facts or attending to operands
and operators. To examine whether digit bias follows a similar pattern, we compare the correlation
between the DSCs of each layer’s residual stream and the DSCs of its self-attention and FFN. Letd =
(d°,d',...,dL) denote the DSCs of the residual stream across all layers, dgy = (d%,, &, - - -, dk.)
the DSCs computed from FFN outputs, and dyy = (d2,, dis - - - > A, ) those from self-attention
outputs. We then compute the Spearman correlation between d and each of dy;, and dy, to assess
which component more closely aligns with the overall digit bias in the model’s hidden representations.

Comparison Results. Figure[6| presents the Spearman correlation results across layers. In interme-
diate layers, the residual DSC is strongly correlated with the self-attention output, while in the later
layers, the residual DSC shows a much stronger correlation with the FFN output and a very weak
correlation with the self-attention output. Given that digit bias emerges most prominently in later
layers, this suggests that the FFN module in the later layers is the main contributor to such bias.
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Figure 6: (a) Self-attention DSC vs. residual DSC. (b) FEN DSC vs. residual DSC. Self-attention exhibits
moderate correlation in middle layers, while the FFN shows a stronger correlation in the later layers, highlighting
the FFN’s role in driving digit bias.

4.4 FFN-level Analysis

Having established that digit bias primarily emerges from the FFN in later layers, we now investigate
why FFNs in these layers tend to induce such bias.

Interpreting the FFN. The feed-forward network (FFN) at layer m produces its output as:

dint

S wor )
=1

n=

£ = FRNG, (£0) - Wi = £ wi

int

Here, fé]”) € R? and £ € R? are the input and output vectors of the FEN at layer m, ifftn) € Rin
is the post-activation intermediate vector, and W(()ZZ) € R4 >4 i5 the down-projection matrix. The
pair (fi", Woy ') represents the activation and output direction of the n-th neuron in the layer. This
formulation aligns with the view of Geva et al. [40]], who interpret each FEN neuron as a “key-value
memory” unit, where the output direction wg,;" encodes semantic information. When projected
through the unembedding matrix U, it reveals a token preference distribution that can be interpreted

as the neuron’s functional role.

What Drives Digit Bias in the FFN? The output of an FFN layer is shaped not only by the
input representation but also by the directional structure of its learned parameters. While inputs
are often complex and difficult to interpret, the output directions of individual neurons offer a more
interpretable handle. Building on the interpretability analysis above, we examine whether the skewed
digit distribution from the pretraining corpus is reflected in the FFN’s parameters. To this end, we
compute the DSC of each neuron with respect to each digit, and then aggregate these scores to obtain
a model-wide selectivity profile. We find a strong correlation between this profile and the digit
frequency distribution in the pretraining data (r = 0.949, Pearson), suggesting that the FFN not only
encodes general numerical knowledge but also internalizes corpus-level frequency biases. Figure[7]
shows the DSC distributions of the top 1000 most selective neurons for digit 1 and digit 7. Neurons
associated with digit 1 consistently exhibit higher selectivity scores than those for digit 7, indicating
that the model dedicates a larger portion of its representational space to more frequent digits. This
uneven allocation likely contributes directly to the emergence of digit bias in generation.

(a) LIaMA2-7B (b) Qwen2.5-7B (c) Gemma2-9B (d) Mistral-7B
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Figure 7: FFN neuron-level selectivity distributions for digit "1’ (blue) and digit *7” (orange) in four open-source
LLMs: (a) LLaMA2-7B, (b) Qwen2.5-7B, (c) Gemma2-9B, and (d) Mistral-7B. For each digit, we independently
select the top 1000 neurons with the highest selectivity. Across all models, neurons most selective for digit "1’
exhibit higher selectivity scores than those most selective for digit *7’, revealing a stronger model-internal bias
toward lower digits.



Table 2: Effect of pruning top 0.01% most digit-1-selective neurons. Coreccted - Prop. denotes the proportion
of all test samples that were originally incorrect but become correct after pruning. Original - Prop. denotes the
original frequency of digit 1 in model outputs. Pruned - Prop. denotes the digit 1 frequency after pruning.

Multistep Reasoning Tasks

Model
Evaluate Linear_ld Nearest Integer root  Sequence Next term
Coreccted - Prop.  1.36 % 0.76 % 0.19% 0.18%
Llama2-7B o ioinal - Prop. ~ 16.26%  16.21% 11.91% 11.70%
Pruned - Prop. 11.17%  13.10% 6.6 % 9.74 %
Coreccted - Prop.  1.22% 1.94% 0.35% 0.54 %
Mistral-7B () il - Prop.  15.63%  14.49% 21.64% 11.90%
Pruned - Prop. 11.85%  10.92% 10.71 % 10.61 %
Coreccted - Prop.  3.49% 5.05 % 4.96 % 4.73%
Qwen25-7B G ivinal - Prop.  16.45%  15.85% 16.25% 14.06 %
Pruned - Prop. 14.72%  13.86% 13.13% 12.29%
Coreccted - Prop.  1.69% 2.14% 1.94% 1.16 %
Gemma2-98 ¢ ioinal - Prop.  13.66%  11.04% 17.49% 11.36%
Pruned - Prop. 12.53%  10.91% 14.22% 11.23%

5 Debiasing Method: Probing the Causal Role of Digit Bias

Our analysis shows that LLMs not only overgenerate smaller digits but also exhibit a stronger
tendency to generate them when first deviating from the correct answer, following a pat-
tern consistent with Benford’s Law. This suggests that digit bias may shape not just gen-
eration preferences but also the trajectory of numerical hallucination. However, statistical
alignment alone does not establish whether digit bias plays a direct causal role in numeri-
cal hallucination. To probe this link, we introduce a lightweight neuron pruning interven-
tion. Rather than aiming to improve overall accuracy, this approach tests whether selec-
tively suppressing neurons most biased toward digit 1 can reliably correct erroneous outputs.
If successful, such targeted correction would provide concrete

evidence of a causal link between digit bias and numerical Taple 3: Corrected - Prop. on arith-
hallucination. metic benchmarks after pruning.

Model GSM8k SVAMP

Llama2-7B 2.35% 1.60 %
Each FFN neuron’s output contributes directly to the residual ~ Mistral-7B 1.97%  1.40%
stream and thus influences final token prediction. We estimate ~Qwen2.5-7B  2.12%  0.70%
a neuron’s contribution to digit bias by isolating its standalone ~Gemma2-98  0.08 % 0.50%
output and computing its Digit Selectivity Score toward each
digit.

5.1 Locating and Pruning Biased Neurons

Formally, for the n-th neuron in layer m, we define its bias score toward digit ¢ as:
biscore;’; = DSC; (fiiy" - woui") 2)

int

Here, """ is the neuron’s activation, and wg,; " is its corresponding output direction. This scalar
product represents the neuron’s individual contribution to the final output, which can be interpreted in
terms of digit selectivity via the DSC. Given that individual neurons may encode multiple features or
functions [41]], indiscriminate pruning across all decoding steps may disrupt general model behavior.
Therefore, we prune only the top 0.01% most digit-1-selective neurons, and activate this intervention
only during the generation of digit tokens. Furthermore, to minimize the disruption to the model’s
reasoning path, the generation token after pruning is restricted to digit token only.

5.2 Debiasing Results and Causal Insight

Table 2] reports two key effects of pruning the top 0.01% most digit-1-selective neurons: a notable
reduction in the generation frequency of digit 1, and a measurable correction rate among previously



Comparing Model Behavior With and Without Pruning

Prompt 1: Solve -2005 = -1453*p + 1977*p + 3235 for p.

Generation (no pruning): ... Simplify the left side: \[-5240 = 524p\] 3. **Solve for p** by by
dividing both sides by 524: \[p = \frac{-5241}{524}\]... X

Generation (pruning): ... Simplify the left side: \[-5240 = 524p\] 3. **Solve for p** by by
dividing both sides by 524: \[p = \frac{-5240}{524}\]... /

Prompt 2: Solve 366*k + 9029 = 14885 for k.

Generation (no pruning): To solve for k in the equation 366k + 9029 = 14885, we can use the
following steps: 1.Subtract 9029 from both sides of the equation to get: 366k = 5856 2. Divide both
sides of the equation by 366 to get: k = 161 Therefore, the value of k is 161. X

Generation (pruning): To solve for k in the equation 366k + 9029 = 14885, we can use the following
steps: Step 1: Subtract 9029 from both sides of the equation to get: 366k = 5856 Step 2: Divide both
sides of the equation by 366 to get: k = 5856 / 366 k = 16 Therefore, the value of k is 16. v/

Prompt 3: Solve -47613*w = -47331*w + 14100 for w.
Generation (no pruning): To solve the equation —47613w = —47331w + 14110 for w... X
Generation (pruning): To solve the equation —47613w = —47331w + 14100 for w.../"

\ J

Figure 8: Examples showing model responses before and after pruning the top 0.01% of neurons biased toward
digit 1. In each cases, pruning corrects an originally erroneous sample by rectifying an intermediate step,
demonstrating a causal relationship between digit bias and numerical hallucination.

erroneous outputs. Manual inspection confirms that most of these corrected outputs originally
featured small-digit hallucinations as shown in Figure[8] Consistent with these findings, Table [3]
shows that similar correction effects also emerge on real-world mathematical reasoning benchmarks
(GSM8k [42] and SVAMP [43])). Given the Complexity of multi-step numerical reasoning, such
corrections are unlikely to be coincidental. Rather, these corrections suggest that digit bias plays an
active role in driving the model off its correct reasoning path by skewing generation toward over-
frequent digits like 1. If digit bias were not a causal factor in hallucination, such targeted suppression
would not yield consistent improvements on biased outputs. This result provides empirical support
for a causal link: digit bias is not merely a statistical artifact, but a mechanistic contributor to
numerical hallucination.

Takeaway. While our pruning method is coarse and may negatively affect some previously correct
predictions, its ability to reliably correct biased errors underscores the causal link between digit
bias and hallucination. Rather than being a general-purpose debiasing tool, this method serves as
a probing mechanism to deepen our understanding on how low-level statistical priors manifest as
systematic reasoning failures in LLMs.

6 Conclusions

This work investigates the overlooked role of digit bias in LLMs. We begin by showing that pretraining
corpus exhibit a logarithmic digit distribution consistent with Benford’s Law. LLMs internalize this
skew, as evidenced by their tendency to overgenerate smaller digits during numerical generation.
Notably, in incorrect answers, the first erroneous digit often falls among the smaller digits, suggesting
that this bias not only shapes output preferences but also contributes to numerical hallucination.
Mechanistically, we trace this bias to the final feed-forward layers of LLMs, where a subset of highly
digit-selective neurons encode preferences aligned with corpus statistics. Finally, we propose a
lightweight neuron pruning strategy that corrects a portion of biased errors, offering causal evidence
that fine-grained digit biases can directly cause numerical hallucination. These findings highlight
how low-level statistical priors from pretraining data can affect high-level behavior in LLMs.

Limitations and future work. While our work reveals a compelling link between digit bias in the
pretraining corpus and numerical hallucinations in LLMs, it has several limitations. Most importantly,
although we observe a strong correlation between digit frequencies in the training data and biased
generation behavior, we do not claim a causal relationship; establishing causality would require
controlled interventions during training, which we leave for future work. In addition, our experiments



are conducted on relatively small-scale decoder-only LLMs (7B—9B parameters) with standard MLP
architectures. Whether similar patterns of bias and internal activation dynamics persist in larger
models or those employing Mixture-of-Experts (MoE) remains an open question. Finally, our pruning
strategy offers causal insights into digit-selective neurons but is coarse, potentially disrupting correct
generations and limiting accuracy gains. We believe that more fine-grained or adaptive debiasing
methods could yield stronger performance improvements. However, developing such techniques is
beyond the scope of this work and is left for future investigation.
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* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide the relvant information in the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research adheres to the NeurIPS Code of Ethics by ensuring transparency
in methodology, using publicly available datasets, and avoiding any biased or harmful
applications.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
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10.

11.

12.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA|
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators and original owners of all assets (e.g., code, data, models) used in
the paper are properly credited with appropriate citations, and the license and terms of use
are explicitly mentioned and respected.
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13.

14.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: All new assets introduced in the paper are thoroughly documented with detailed
descriptions, usage instructions, and metadata.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

. Institutional review board (IRB) approvals or equivalent for research with human

subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Additional Experiment Results

A.1 Result on Digit Bias Benchmark of across Models

We plot the digit distribution in generated outputs across all models on the Digit Bias Benchmark as
shwon in Figure[9] All models show significant overgeneration of small digits, with digit 1 being
especially dominant. This consistent trend highlights the generality of digit-level generation bias
across open-source LLMs.
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Figure 9: Digit generation bias across models on the Digit Bias Benchmark. Since OLMo and LLaMA3.18B
employ multi-digit tokenization schemes, first-error-digit distribution analyses are not applicable and thus
omitted for these models.
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A.2 Digit Selectivity

Figure [10| visualizes the selectivity of FFN neurons across all digit tokens. The distributions are
clearly skewed, indicating that more neurons are specialized toward frequent digits like ‘1’, suggesting
an uneven allocation of model capacity that may underlie observed generation biases.
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Figure 10: FFN neuron-level selectivity distributions for digit "1’ (blue) versus all other digits (orange) across
four open-source LLMs: (a) LLaMA2-7B, (b) Qwen2.5-7B, (¢) Gemma2-9B, and (d) Mistral-7B. For each digit,
the top 1000 neurons with the highest selectivity scores are selected independently.
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A.3 Additional Pruning Examples and Results

Figure [IT] presents additional examples of samples corrected after pruning. Many of the original
errors occur in surprisingly simple scenarios, such as repeated or trivial arithmetic, highlighting how
digit bias can subtly but significantly affect digit generation and lead to failure even in straightforward
cases.

Comparing Model Behavior With and Without Pruning

Prompt 1: Solve 0 = -90*w — 12 — 708 for w.

Generation (no pruning):To solve for $w$, we need to isolate the variable $w$ on one side of the
equation. First, we can simplify the equation by combining like terms: $$0 = -90w - 12 - 708$$. $$0 =
-102w - 720$$. Next, we can divide both sides of the equation by $-1028$ to get: $$w = -720/102$$. X
Generation (pruning): To solve for $w$, we need to isolate the variable $w$ on one side of the
equation. First, we can simplify the equation by combining like terms: $$0 = -90w - 12 - 708$$. $$0 =
-90w - 720$$. Next, we can divide both sides of the equation by $-90$ to get: $$w =
frac{720}{90}$$. v

Prompt 2: Solve 38*w =75 - 75 - 1026 for w.
Generation (no pruning): Let the equation givenis: \[ 38w = 75 - 756 - 1126 \]... X
Generation (pruning): Let the equation givenis: \[ 38w = 75 - 75 - 1026 \]... V/

Prompt 3: Solve 78 + 491 + 817 = 28%*x + 266 for x.

Generation (no pruning): ... 4. **Perform the division:** \[x = 40 \] So, the solution for x is is
41. X

Generation (pruning): ... 4. **Perform the division:** \ [x = 40 \] So, the solution for x is is 40.

Prompt 4: Solve 70 = -1160*m - 6852 - 3518 for m.
Generation (no pruning): To solve the equation 71 = —1161m — 6852 — 3518 for m ... X
Generation (pruning): To solve the equation 71 = —1160m — 6852 — 3518 for m ... v/

Prompt 5: Solve 38*a - 1664 = -36*a - 69*a + 39*a for a.

Generation (no pruning): ... Simplify the left side: \[ 104a - 1664 = 0\] 3. **Isolate the term
with a:** Add 1664 to both sides to move the constant to the right side: \[104a = 1164\]... X
Generation (pruning): ... Simplify the left side: \[ 104a - 1664 = 0\] 3. **Isolate the term
with a:** Add 1664 to both sides to move the constant to the right side: \[104a = 1664\].../

Prompt 6: What is the next term in -106527, -106453, -106379?

Generation (no pruning): The pattern is adding 104 to each term. * -106527 + 104 = -106453 *
-106453 + 104 = -106379 * -106379 + 104 = **-106275** Therefore, the next term is **-106275%*. X
Generation (pruning): The pattern is adding 74 to the previous term. * -106527 + 74 = -106453 *
-106453 + 74 = -106379 * -106379 + 74 = **-106305** Therefore, the next term is **-106305**. v/

\. J

Figure 11: Examples showing model responses before and after pruning the top 0.01% of neurons biased
toward digit 1. In each cases, pruning corrects an originally erroneous sample by rectifying an intermediate step,
demonstrating a causal relationship between digit bias and numerical hallucination.
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B Additional Implementation Details

B.1 Experiment Setup

To ensure the accuracy and reproducibility of all results, we employed greedy decoding for generation.
Additionally, to achieve fully accurate statistical outcomes, we utilized the DeepSeek API to extract
the answers model generated for each sample, thereby preventing potential omissions in script-based
statistics due to variations in the position of answers within the responses.

B.2 Tokenization Method

LLMs divide numbers into segmented tokens rather than representing the entire number as a
single token. Different LLMs employ various tokenization methods, including one-digit to-
kenizers and multi-digit tokenizers. Benford’s Law states that in many real-life sets of nu-
merical data, the leading digit is likely to be small. In other words, regardless of the type
of tokenizer, the distribution of number tokens in pretraining data is likely to be skewed.
Therefore, in this paper, we use six models with two dif-
ferent tokenizers to investigate this phenomenon of digit

R R . . a 281. 82 4
bias as shwon in Figure [[2] LLaMA2-7B, Mistral-7B, o (2828 828 gl 045

Qwen2.5-7B, and Gemma2-9B employ single-digit tok- ® 2718281.828459045
enizers, whereas LLaMA3.1-8B and OLMo2-7B utilize '
multi-digit tokenization schemes. Figure 12: (a) multi-digit tokenizer. (b)

single-digit tokenizer.

B.3 Prompt Templates

We provide the exact prompt templates used for Identifica-
tion task and Digit Bias Benchmark in table 4] and table 5}

Table 4: Prompt Templates Used in Identification Task

Identification Prompt Template

1. What is the result when the last term of the sequence is multiplied
by two? [...]

2. What is the outcome when the final term of the sequence is doubled?
[...]

3. What is the product of the sequence’s last term and two? [...]

4. What is the result of multiplying the sequence’s last term by two?

[...]

C Use of existing assets

C.1 Models
Table 6: The list of models used in this work.

Model Accessed via License
Qwen2.5-7B-Instruct Link Apache license 2.0
gemma-2-9b-it Link Gemma Terms of Use
Mistral-7B-Instruct-v0.3 Link Apache license 2.0
Llama-3.1-8B-Instruct Link Llama 3.1 Community License Agreement
Llama-2-7b-chat-hf Link Llama 2 Community License Agreement
OLMo-2-1124-7B-Instruct  [Link Apache license 2.0
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Table 5: Prompt Templates Used in Digit Bias Benchmark

Work out {p} + {q}.

Add {p} and {q}.

Put together {p} and {q}.
Sum {p} and {q}.

Total of {p} and {q}.
Add together {p} and {q}.
What is {p} plus {q}?
Calculate {p} + {q}.
What is {p} + {q}7

Addition Division
{p} + {a} Calculate the division of {q} by
{p}+{q} {p}.

Divide {q} by {p}.

What is the quotient of {q}
divided by {p}?

What is {q} divided by {p}?
Find {q} divided by {p}.
Compute {q} + {pl}.

Solve {q} divided by {p}.

Subtraction

Multiplication

{p} - {q*

Work out {p} - {q}.

What is {p} minus {q}?
What is {p} take away {q}?
What is {q} less than {p}?
Subtract {q} from {p}.
Calculate {p} - {q}.

What is {p} - {q}7

{p} x {q}

Calculate {p} x {q}.

Work out {p} x {q}.

Multiply {p} and {q}.

Product of {p} and {q}.

What is the product of {p} and
{q}7

{p} times {q}

What is {p} times {q}?

Evaluate

Let {c(x) = f(x)}. What is {c(a)}?
Let {c(x) = £(x)}. Determine {c(a)}.
Let {c(x) = f(x)}. Give {c(a)}.

Let {c(x) = f(x)}. Calculate {c(a)}.

Nearest Integer Root

What is the {num-th} root of {p} to the nearest integer?
What is {p} to the power of {1/num-th}, to the nearest integer?

Linear_1d

Solve {eqution} for {r}.

Sequence Next Term

What comes next: {sequence}?

What is next in {sequence}?

What is the next term in {sequencel}?

C.2 Dataset
Table 7: The list of datasets used in this work.
Dataset Accessed via License
olmo-mix-1124 Link Open Data Commons License Attribution
mathematics_dataset  Link Apache license 2.0

D Compute statement

All experiments presented in this paper were run on a cluster of four NVIDIA GeForce RTX 3090
GPUs with 24GB of memory and using a single 24GB memory GPU. Each model requires an average

of 50 hours to complete a full run across the entire benchmark.
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