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Abstract

Neural Radiance Fields (NeRF) have advanced photorealistic novel view synthesis,
but their reliance on photometric reconstruction introduces artifacts, commonly
known as "floaters". These artifacts degrade novel view quality, particularly in
unseen regions where NeRF optimization is unconstrained. We propose a fast, post-
hoc NeRF cleanup method that eliminates such artifacts by enforcing a Free Space
Prior, ensuring that unseen regions remain empty while preserving the structure
of observed areas. Unlike existing approaches that rely on Maximum Likelihood
(ML) estimation or complex, data-driven priors, our method adopts a Maximum-a-
Posteriori (MAP) approach with a simple yet effective global prior. This enables
our method to clean artifacts in both seen and unseen areas, significantly improving
novel view quality even in challenging scene regions. Our approach generalizes
across diverse NeRF architectures and datasets while requiring no additional
memory beyond the original NeRF. Compared to state-of-the-art cleanup methods,
our method is 2.5× faster in inference and completes cleanup training in under 30
seconds.

1 Introduction

Neural Radiance Fields (NeRF) have emerged as a leading technique in photorealistic scene recon-
struction and novel view synthesis, effectively capturing complex scenes from a limited set of images.
However, NeRF’s reliance on photometric optimization introduces a significant limitation: it performs
poorly in regions of the scene that lack direct observations from the training images. This results in
visual artifacts, commonly referred to as "floaters", which are density accumulations in areas unseen
by the training cameras. These floaters degrade rendering quality, especially in novel views where
the artifacts may obscure scene surfaces or introduce false details, as illustrated in Fig. 1.

While state-of-the-art approaches for NeRF cleanup can mitigate artifacts, they often come with a
high computational cost. Nerfbusters [31] uses 3D diffusion models to generate a learned, data-driven
3D prior. This requires NeRF fine-tuning and results in substantial computational demands and
extended cleanup training time. BayesRays [10], an alternative approach, reduces cleanup time
by performing post-hoc uncertainty-based cleanup; however, it does not modify the NeRF scene
itself. Instead, it applies uncertainty-based filtering during inference to clean the rendered frames,
which introduces considerable overhead as each frame requires additional uncertainty estimation and
processing. These approaches highlight a key trade-off in existing methods between efficient artifact
removal and computational expense, underscoring the need for a more effective solution.

Unlike previous methods, which often require architecture-specific modifications or extensive fine-
tuning, our approach is robust and generalizes effectively across diverse NeRF architectures and
datasets, as demonstrated in Fig. 1. This flexibility makes our method applicable to a wide range of
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Figure 1: Density Cleanup Across NeRF Variants and Datasets: The top row shows novel views
taken near the training cameras, while the middle row presents novel views from farther away. The
bottom row demonstrates the same distant views after applying our cleanup method, effectively
removing artifacts while preserving scene integrity. Our approach generalizes well across a wide
range of NeRF methods and datasets - see supplementary material for video demonstrations.

scenarios, outperforming other cleanup methods that are constrained by their reliance on specific
priors or additional computational overhead.

A key contribution of our work is that we sample across the entire 3D space, not just along rays.
Samples along the rays ensure NeRF fits the given scene, while samples in 3D space introduce a
Free Space Prior. This contribution makes our approach lightweight and efficient: we only fine-tune
the NeRF itself, without training additional networks or increasing inference-time memory and
computation. As a result, floaters are minimized without disrupting the scene’s intended structure or
introducing additional memory requirements. The method is both efficient and highly compatible with
existing NeRF cleanup models, offering a significant improvement in speed and memory efficiency
compared to state-of-the-art artifact removal techniques.

The contributions of our method are summarized as follows:

• Efficient and Lightweight: Our approach requires no additional memory beyond the
original NeRF, is 2.5× faster in inference time, and 1.5× faster in cleanup training compared
to current state-of-the-art methods.

• Optimization in Unseen Regions: Unlike previous methods that refine only regions
observed by training cameras, our method actively optimizes density across unseen regions,
enforcing a clean 3D representation and reducing artifacts throughout the scene.

• Robust and Generalizable: Our approach generalizes seamlessly across different NeRF
architectures and datasets, requiring no architectural modifications or learned priors, making
it widely applicable to various real-world scenarios.

• State-of-the-Art Artifact Removal: Our method effectively eliminates floaters and other
density artifacts, enhancing novel view synthesis quality while preserving scene details.

2 Related Work

Artifacts in Photometric Optimization Methods based on photometric reconstruction [21, 20],
such as NeRF [22] and 3D Gaussian Splatting [13], have become leading techniques in 3D recon-
struction due to their ability to generate high-quality, detailed scene representations by modeling
the scene from multi-view images. These methods excel in reconstructing complex geometry and
capturing subtle visual details by leveraging the information embedded in photometric data. However,
due to their reliance on photometric reconstruction, which inherently contains uncertainties stemming
from incomplete or noisy input data, these methods are prone to visual artifacts. While artifacts in
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Figure 2: Overview of Our Cleanup Method: Our approach fine-tunes a pre-trained NeRF by
optimizing density across both seen and unseen regions. We sample points in two ways: (1) along
the original training rays (green points), maintaining consistency with the observed scene structure,
and (2) randomly across the entire 3D space (blue points), enforcing our Free Space Prior to remove
artifacts in unseen areas. Importantly, we also apply the Free Space Prior behind scene surfaces,
ensuring that empty regions remain free of unwanted density accumulations. This ensures effective
cleanup of floaters while preserving scene integrity.

Gaussian Splatting typically concentrate around scene structures due to imperfect Gaussian optimiza-
tion [37, 34], NeRF artifacts are more widely distributed across the scene, often impacting novel
views severely.

Neural Radiance Fields (NeRFs) [22] often exhibit visual artifacts, such as "floaters" and density
inconsistencies, due to training data imperfections, including incomplete scene coverage and data
noise. These issues introduce uncertainties in unobserved regions, which can be divided into aleatoric
and epistemic uncertainty. Aleatoric uncertainty, arising from data noise like lighting changes or
transient objects, has been addressed in dynamic scenes by works such as NeRF-W [18] and others
[26, 25, 11]. In contrast, our focus is on static scenes with epistemic uncertainty, stemming from
incomplete scene information. Approaches like CF-NeRF [28] use variational inference to capture this
uncertainty in geometry, while BayesRays [10] applies a Bayesian framework to estimate epistemic
uncertainty post-training. Our work specifically addresses cleanup of artifacts in static scenes caused
by epistemic uncertainty.

NeRF Cleanup. Various methods have been proposed to address the visual artifacts common in
NeRF reconstructions. Nerfbusters [31] introduced a post-processing technique using diffusion mod-
els that learns a local 3D data-driven prior from synthetic data. This data-driven prior, incorporated
during NeRF optimization, encourages plausible geometry but requires extensive training and NeRF
fine-tuning, adding significant computational overhead. Another approach, BayesRays [10], leverages
a post-hoc solution by thresholding an uncertainty field to mask high-uncertainty regions, effectively
cleaning artifacts at inference time but at the cost of increased computation during rendering.

These methods, though effective, often come with trade-offs in memory consumption, cleanup time,
or inference speed. In contrast, our approach removes artifacts efficiently, preserving the original
NeRF’s structure and performance without requiring additional models or extensive post-processing,
based only on our Free Space Prior. This ensures both speed and practicality in artifact cleanup.

Prior-Based Optimization Data-driven optimization is standard in deep learning, but numerous
studies demonstrate that incorporating a well-chosen prior can significantly boost performance.
For instance, priors have proven effective in inverse problems like image denoising [5, 12, 33, 27,
6, 7]. In particular, [6, 7] introduce a global image prior enforcing sparsity, showcasing how a
Bayesian framework can yield a simple yet powerful denoising algorithm. In the context of 3D
reconstruction, priors and regularization play similarly critical roles. Nerfbusters [31] uses a local
prior to improve scene fidelity and RegNeRF [24] employs a 2D Total Variation (TV) regularizer
to rendered images, both maintaining the standard NeRF architecture as we do. Other methods
modify the architecture. For example, Plenoxels [35] employs a 3D Total Variation (TV) regularizer
to reduce abrupt density changes between neighboring voxels and 2D TV regularization is also
applied in factorized plenoptic fields [4, 9]. Plenoctrees [36] incorporates a sparsity loss within a
complex pipeline for faster rendering but at high memory and training costs. To address anti-aliasing,
Zip-NeRF [3] and MipNeRF-360 [2] applies distortion loss and interlevel loss, reducing artifacts and
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improving consistency. While effective, this regularization alone does not eliminate floaters, as our
results show, highlighting the need for a stronger constraint on unseen regions.

Inspired by the above, our method employs a global prior to enforce free space within NeRF 3D
scenes, enhancing NeRF’s rendering performance.

3 Background

Understanding NeRF is essential to grasp the significance of our work and its contributions to the field.
In this section, we review the fundamental concepts of NeRF and discuss the challenges associated
with artifact generation in unobserved regions, which our approach aims to overcome.

3.1 Neural Radiance Fields

NeRF [22] is an approach for synthesizing novel views of 3D scenes. Each point in 3D space is
represented by a view-dependent radiance and a view-independent density, expressed as follows:

cϕ(x,d), τϕ(x) = R(x,d;ϕ) (1)

Here, ϕ denotes the learnable parameters of the neural network. The color along a ray r = or+ t ·dr

is determined by sampling points ti along the ray:

Cϕ(r) =
∑
i

exp

−
∑
j<i

τjδj

 (1− exp(−τiδi)) ci, (2)

In this equation, δi represents the distance between successive sampled points. The optimization of
the network parameters ϕ aims to minimize the reconstruction loss, which is defined as the squared
distance between the predicted and ground truth colors for each ray sampled from the training images
R = {r}Nn=0.

Lrec =
∑
r∈R

∥Cϕ(r)−Cgt
n(r)∥22 (3)

An important observation from Eq. (2) is that NeRF’s optimization occurs on a per-pixel basis, with
the color of each pixel computed along a single ray. Since density decreases exponentially along
the ray after it intersects the first surface, there is effectively no optimization beyond that surface,
and certainly none where the ray does not pass through. Consequently, unseen regions remain
unoptimized, often resulting in unwanted artifacts in these areas.

4 Method

Our approach, as shown in Fig. 2, is designed as a post-hoc refinement. It takes a pre-trained NeRF
model along with its training cameras and optimize it to remove artifacts in unseen regions while
retaining the scene’s intended features.

To date, NeRF models, and NeRF cleanup methods in particular, searched for a density field σ that
best explains the given data. That is, they look for the maximum likelihood solution to the problem.
Some methods extend this by learning a general data distribution over multiple 3D scenes, creating a
local prior for artifact removal. In contrast, we apply a simple, global prior on the density σ - We take
the prior P (σ) to be the zero density prior.

This global approach not only simplifies the optimization process but also ensures versatility and
robustness across different NeRF architectures and datasets. Unlike learned priors that depend on
specific scene distributions, our method operates effectively regardless of scene complexity or data
variations, making it widely applicable and independent of dataset-specific assumptions.

We base our method on the assumption that “There is nothing in the unseen regions”. While this
assumption does not necessarily hold in real-world scenarios, for NeRF reconstructions, it is more

4



Nerfacto
205ms

Free Space Prior
205ms

Nerfbusters
205ms

BaysRays 0.9
506ms

BaysRays 0.3
506ms

Pl
an

t
R

os
es

L2 Regularization
205ms

FSP During training
205ms

Gaussian-Splatting
28ms

Figure 3: Qualitative Cleanup Results: Comparison of cleanup methods on the Plant and Roses
scenes from the Nerfbusters dataset, with inference time per frame shown. Each image is a novel
view rendered post-cleanup, highlighting the balance between artifact removal and scene coverage.
Methods like Free Space Prior and BayesRays (0.9) achieve high coverage with minimal artifacts,
while Nerfbusters and BayesRays (0.3) trade coverage for stronger cleanup. Our approach achieves
similar results to BayesRays with 40% rendering time.

practical than allowing unseen regions to contain unregulated noise. To enforce this assumption, we
apply a sigmoid-softened density prior term that gently drives density σ toward zero.

Enforcing the Free Space Prior Ideally, we would like to directly set densities to zero only in
the unseen regions. However, determining which regions are strictly unobserved by training rays is
challenging due to scene occlusions and structural complexity. Additionally, even if feasible, this
direct approach would be computationally expensive. So, instead of explicitly setting densities, we
apply the Free Space Prior uniformly across the entire 3D space, affecting both seen and unseen
regions. This approach simplifies computation while guiding NeRF optimization to achieve cleaner
density distributions.

To implement this, we randomly sample N points across the 3D space and query the NeRF model
ϕ for densities at these points, resulting in a set Σ = {σ(xi) | xi ∈ R3, i = 1, . . . , N} of density
values. We then construct a softened density term for the Free Space Prior, which we integrate into a
Free Space Prior Loss term:

LFSP =

N∑
i=1

(
1

1 + e−σ(xi)

)2

(4)

This Free Space Prior Loss optimizes the NeRF parameters ϕ by enforcing densities to be zero,
reflecting our assumption that “There is nothing in the unseen regions”. However, this loss also
inadvertently reduces densities in visible regions, where densities should ideally reflect the actual
scene structure.

Balancing Cleanup and Scene Integrity Applying the Free Space Prior Loss indiscriminately
across 3D space can lead to an empty scene, as the randomly enforced zero-density constraint
propagates, causing the MLP to approximate densities as zero throughout the space. To counter this,
we introduce a combination of two competing losses: the Free Space Prior Loss Eq. (4) to reduce
densities in unseen regions and the NeRF photometric loss Eq. (3) applied along training rays to
preserve the scene structure and appearance.

This interaction between losses results in three distinct regions:

• Unseen Regions: Only the Free Space Prior Loss affects these regions, pushing densities
toward zero and removing floaters. In particular, the densities in occluded regions are also
set to zero.

• Empty Seen Regions (along the ray to the surface): Both the Free Space Prior Loss and
the photometric loss act here, agreeing that the density should be zero.

• Surface Seen Regions: Both losses are active, but they compete, as the Free Space Prior
Loss encourages lower densities while the photometric loss preserves the actual scene
structure.
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Figure 4: Density Along a Ray: (Left) Novel view rendered with the Nerfacto Baseline, with a red
dot marking the sampled ray and the density along the marked ray. (Right) The same novel view
after our cleanup. Before cleanup, the density along the ray is noisy, with floaters causing unintended
peaks. After cleanup, only the surface is captured, and densities in unseen regions are enforced to
zero. Densities are sigmoid softened and shifted to [0,1].

Through this balanced combination, empty regions will ultimately reach zero density, eliminating
floaters. In contrast, surface regions will settle on a density value that balances both losses, resulting
in a reduced yet preserved density that maintains accurate scene reconstruction, as shown in our
experiments.

The overall loss function is:
L = Lrec + λLFSP (5)

where λ controls the trade-off between preserving scene structure and removing artifacts. We set
λ = 0.1 for all visualizations in the paper. λ analysis is in the supplementary A.5.

4.1 NeRF Regularization

NeRF reconstruction is inherently an ill-posed problem — many solutions can fit the observed images.
The highly expressive MLP satisfies the photometric loss along training rays while potentially
assigning arbitrary densities in unobserved regions. This results in an under-constrained system
where only a subset of solutions is physically meaningful. Drawing a parallel to Ridge regression,
we consider L2 regularized MLP to represent the NeRF. The L2 regularizer directly penalizes the
parameters, favoring the minimum-norm solution and stabilizing an ill-posed problem.

Yet, there is a difference between the two. L2 regularization places a prior on the weight of the MLP,
whereas our Free Space Prior places a prior on the densities themselves. Specifically, instead of
regularizing the network weights directly, we regularize a specific component of the output — the
predicted densities. Since our objective is formulated as a loss optimized via backpropagation, we
explicitly sample the 3D space to enforce this regularization in unobserved regions. This modified
approach resolves the ill-posedness by favoring solutions with minimal densities in free space, while
preserving the correct photometric reconstruction in observed regions.

5 Results

Table 1: Runtime Comparison: Inference time
(ms/frame) is averaged across all Nerfbusters
scenes. Both Nerfbusters and Free Space Prior
use only the fine-tuned NeRF at inference, result-
ing in identical inference runtime.

Method Cleanup Time (s) Inference Time (ms)
Nerfbusters 1200 205
BayesRays 37 506
Free Space Prior (Ours) 25 205

We evaluate our NeRF cleanup method by an-
alyzing its performance in the NeRF cleanup
task, comparing both quantitative metrics and
computational efficiency in terms of cleanup and
inference speed. We report numerical results to
quantify the reduction of artifacts (floaters) and
demonstrate that our approach achieves signif-
icant speedup while maintaining high-quality
novel view synthesis.

Beyond numerical evaluations, we qualitatively
assess our method across a diverse range of NeRF architectures and datasets, showcasing its effec-
tiveness in different scenarios. Additionally, we conduct ablation studies to analyze the impact of key
components in our design, offering insights into their role in artifact removal. The implementation
details are in the supplementary Appendix A.2.
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5.1 Dataset and Evaluation Setup

We follow the experimental protocols established by Nerfbusters [31] and BayesRays [10]. Our
goal is to assess each method’s ability to eliminate these artifacts while preserving the quality and
completeness of the reconstructed scenes. For quantitative evaluation, we use the Nerfbusters dataset
[31], which is the standard benchmark for NeRF cleanup methods. Unlike other datasets, which
primarily focus on reconstructing regions well-covered by training views, Nerfbusters uniquely
provides evaluation views that are significantly farther from the training cameras, making it the most
challenging and relevant dataset for artifact removal. This ensures that cleanup methods are tested
under realistic conditions where unseen regions contribute to artifacts. In addition to the quantitative
evaluation on Nerfbusters, we qualitatively evaluate our method across a diverse range of NeRF
architectures and datasets, demonstrating its generalizability and effectiveness in different scenarios.

Figure 5: Quantitative Cleanup Results: PSNR
vs. Coverage comparison of cleanup methods
across different thresholds / λ. Higher values indi-
cate better performance, with the optimal region in
the upper-right corner. Results are averaged across
all Nerfbusters scenes for a comprehensive evalua-
tion.

Coverage Metric We adopt the coverage met-
ric as introduced by Nerfbusters [31], which
measures the percentage of pixels in the eval-
uation image that are accurately reconstructed
after masking out regions that were either un-
seen in the training views or are too distant to be
relevant (based on a predefined depth threshold).

Baseline Our baseline model (Nerfacto) is
built on modern NeRF architectures, incorporat-
ing several recent advancements, including hash
grid encoding from iNGP [23], proposal sam-
pling and scene contraction from MipNeRF[1],
distortion loss from MipNeRF360 [2] as well as
per-image appearance optimization from NeRF-
in-the-Wild [19]. While these techniques pro-
vide a degree of regularization, they fail to pre-
vent the accumulation of artifacts in unseen re-
gions. Our Free Space Prior directly addresses
this issue by enforcing explicit density con-
straints in these areas.

To measure performance, we report PSNR and Coverage scores, which quantify both reconstruction
quality and the extent to which the scene is accurately rendered without artifacts.

In addition to this standard evaluation (Appendix A.4), we introduce and evaluate a modified
experiment that makes the task more realistic and challenging: previous evaluations calculated PSNR,
SSIM, and LPIPS using the ground truth (GT) mask, which only considers the object region. This
can overestimate performance, as artifacts outside the GT mask are ignored. In our setup, the metrics
computed over the predicted mask, penalizing methods that leave artifacts outside the GT mask
(Appendix A.6). This stricter evaluation ensures that methods are assessed on their true ability to
remove artifacts while preserving scene integrity.

5.2 Performance Comparison

Cleanup Performance We evaluate our approach both qualitatively (Fig. 3) and quantitatively
(Fig. 5), using the challenging modified evaluation (i.e., using the predicted mask to evaluate results).

Striking a balance between PSNR and coverage is crucial, as high PSNR with low coverage can be
misleading. For instance, as shown in Fig. 5, BayesRays at a 0.3 threshold achieves the highest PSNR
but suffers from low coverage, leading to noticeable gaps in the reconstructed scene (Fig. 3) that
compromise overall image quality.

As also seen in Fig. 5, Free Space Prior demonstrates high coverage while maintaining a PSNR
comparable to BayesRays, the current state-of-the-art in NeRF cleanup. Among the other methods,
Nerfbusters exhibits significantly lower coverage and PSNR, indicating excessive artifact removal. In
contrast, L2 regularization, Gaussian Splatting, and the Nerfacto baseline exhibit excellent coverage
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Figure 6: Density Histogram: Histogram of densities across the Pikachu scene after sigmoid-
softened, shifted to [0, 1]. (Left) Histogram of densities across the scene before the cleanup process.
(Right) Histogram of the densities across the scene after the cleanup process.

but lower PSNR, retaining more scene information while struggling with artifact suppression and
overall scene fidelity, highlighting the dataset’s challenge.

Our method, as well as BayesRays with a 0.9 threshold, produce visually superior results that retain
the scene’s structure and coverage, making them more visually appealing and accurate to a human eye.
These images highlight that our method preserves both high coverage and high PSNR, outperforming
Nerfbusters and L2 regularization, which, while comparable in inference time, achieves lower PSNR
and coverage than our method.

For completeness, we show that our method also works if applied during the training phase when
learning the NeRF from scratch. In that case, our method makes the cleanup phase redundant. The
visual results (λ = 10−5) are shown in Fig. 3 and the numerical details are in the appendix Tab. 4.

Runtime Performance Our method combines fast cleanup and inference times (Tab. 1) while
maintaining high-quality artifact cleanup (Fig. 5). For inference, both Nerfbusters and our method
achieve a per-frame rendering time of 205 ms, as each directly fine-tunes the NeRF without adding
additional overhead at inference. In contrast, BayesRays incurs a significant slowdown, with a
per-frame inference time of 506 ms—2.5 times slower—due to its additional uncertainty thresholding
applied during rendering.

For cleanup time, Nerfbusters employs a pre-trained 3D diffusion model to fine-tune NeRF per scene,
resulting in a high cleanup time of approximately 20 minutes per scene. BayesRays is faster, taking
37 seconds to gather data for Hessian computation, while our approach is the fastest, completing
cleanup training in just 25 seconds.

5.3 Geometric Evaluation

Table 2: Comparison of methods on geometric
metrics.

Method Chamfer Distance↓ Depth (RMSE)↓ Depth (MAE)↓ PSNR↑

Ours () 0.011 3.80 1.02 28.64
BayesRays (T=0.9) 0.011 3.91 1.07 28.51

While NeRF is a photometric based method, it
represents a 3D scene with geometric properties.
To evaluate the cleanup quality, in addition to the
photometric evaluation we conducted three ge-
ometric experiments on the Nerfbusters dataset
as shown in Table 2.

Chamfer Distance: We measured Chamfer Distance between pre-cleanup and post-cleanup scenes.
For each scene, we generated 35k-point point clouds using training cameras and NeRF reconstructions
(pre- and post-cleanup), then computed Chamfer Distance between them.

Depth Consistency: We evaluated surface preservation using depth maps to check whether they
remain consistent after cleanup on the training images. For the most accurate measurement, we
compared rendered depth maps to pseudo-gt depth maps derived from a NeRF trained on both training
and test images.

PSNR on Training Images: We measured the PSNR of training rendered images after cleanup. The
rationale is that validating scene integrity using training images ensures that the core mechanism of
NeRF reconstruction is preserved even through the cleanup phase.

All three geometric evaluations confirm that our uniform sampling strategy preserves geometric
details effectively as our method achieves comparable or better scores compared to BayesRays.
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5.4 Robustness

Our method is designed to be robust across different NeRF architectures and datasets, ensuring
effective artifact removal across a variety of conditions. Unlike methods that rely on architecture-
specific modifications or learned priors trained on specific datasets, our Free Space Prior provides a
generalizable solution that applies seamlessly to different NeRF formulations.

As shown in Fig. 1, we evaluate our method across diverse NeRF architectures, including Ner-
facto [30], Instant-NGP [23], LeRF [14], Seathru-NeRF [16], and Open-NeRF [8], each of which
has distinct optimization techniques and applications. Our approach also generalizes well across
challenging datasets, such as Nerfbusters [31], MipNeRF-360 [2], LeRF [14], Seathru [16], and
KITTI-360 [17], covering a range of real-world and synthetic environments. These results highlight
the versatility of our method, effectively reducing artifacts without requiring architecture-specific
tuning.

Our prior works on the Seathru-NeRF dataset, which operates in extreme underwater conditions. The
physics of underwater imaging involves attenuation and back scatter, so density should not be zero.
Yet, our prior reduces artifacts significantly. See Fig. 1, column 4. Beyond novel view synthesis,
our cleanup process enhances downstream tasks such as NeRF-based semantic segmentation and
language-based scene understanding, as shown in Fig. 1, columns 3 and 5.

5.5 Method Analysis

To better understand the effect of our Free Space Prior, we analyze how it modifies the density
distribution within the NeRF.

Density Histogram Analysis We visualize the density distribution before and after cleanup by
sampling points randomly across the 3D space and plotting their density values, as shown in Fig. 6.
Before cleanup, the density histogram exhibits a wide distribution, with intermediate densities appear-
ing throughout the scene. These intermediate values correspond to unwanted density accumulations
(floaters) in unseen regions, which lack sufficient supervision during NeRF optimization.

After applying our Free Space Prior, the density distribution shifts toward a bimodal structure,
where densities are either near zero (free space) or high (scene surfaces). This indicates that our
method successfully removes floaters while preserving scene structures, leading to a cleaner and
more physically meaningful density field. See Appendix A.9 for underwater analysis.

Density Along a Ray To further illustrate the effect of our cleanup, we examine the density values
along a sampled ray, as shown in Fig. 4. Before cleanup, the ray passes through multiple unintended
density peaks, corresponding to floating artifacts that degrade novel view synthesis. After cleanup,
these spurious densities are eliminated, and the ray exhibits only a single, well-defined peak at the true
surface, confirming that our method effectively enforces physically consistent density distributions.

5.6 Ablation Study

Figure 7: Number of Samples Study: PSNR vs.
Cleanup Time of the Pikachu scene for different
N values. Our choice of N = 217 marked in red.

The Number of Randomly Sampled Points
The rational behind selecting N is that N should
be proportional to the reconstruction loss sam-
pling density. In each iteration, we use 4,096
rays with 352 samples per ray ( 1.45M sam-
ples) for reconstruction loss. We chose ( 131K
samples), which is approximately one order of
magnitude smaller, ensuring the FSP loss pro-
vides a meaningful cleanup signal while adding
minimal computational overhead.

The ablation study in Fig. 7 confirms our ra-
tionale, N = 217 achieves substantial cleanup
improvements with only 10% additional runtime
compared to minimal sampling, while avoiding
the diminishing returns of higher values.
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Table 3: Comparison of different methods under sparse and dense view settings.

Sparse View Dense View
# Train Images 24 images (Every 8th) 47 images (Every 4th) 93 images (Every 2nd) 161 images (Regular) 8 Out of 9
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Base 22.32 0.637 0.261 24.41 0.703 0.226 25.33 0.724 0.212 25.74 0.731 0.212 27.74 0.789 0.181
BayesRays 22.33 0.637 0.259 24.42 0.703 0.226 25.38 0.725 0.212 25.74 0.731 0.212 27.73 0.789 0.181
Ours 22.31 0.640 0.257 24.40 0.705 0.222 25.35 0.727 0.211 25.74 0.732 0.213 27.70 0.788 0.183

Sparse and Dense View Performance To overcome concerns around performance degradation we
conducted an ablation study with sparse and dense view settings, comparing our method with λ = 0.01
and BayesRays with T = 0.9, which achieve comparable coverage rates. The sparse view study is
conducted on the Garden scene from mipNeRF-360 dataset. The results on Table 3 demonstrate that
our method not only preserves NeRF’s interpolation capabilities under sparse training conditions but
actually improves perceptual quality (SSIM/LPIPS) while maintaining comparable PSNR.

The dense view study is conducted on the mipNeRF-360 dataset and as shown in Table 3 our method
has a negligible influence and it maintains high-quality results while being 2.5× faster in inference
compared to BayesRays.

Nerfacto
Baseline

Free Space
Prior

Rays Only
Sampling

Rays Only
Over-Samplig

Nerfacto
Baseline

Free Space
Prior

Rays Only
Sampling

Rays Only
Over-Sampling

PSNR 19.3 25.6 19.9 20.6

Figure 8: Enforcing the Prior Along Training
Rays: (Top) cleanup result. (Bottom) PSNR on
Pikachu scene.

Forcing Prior Along a Ray A key design
choice in our method is sampling density across
the entire 3D space. We conduct an ablation
study to assess the impact of this global sam-
pling strategy on artifact removal.

An alternative approach would be to apply the
prior only to points sampled along training rays,
as commonly done in NeRF-based regulariza-
tion methods. We compare our full 3D sam-
pling strategy with one that applies the prior loss
solely along training rays, varying the number of
samples per ray. As shown in Fig. 8, limiting op-
timization to training rays results in incomplete
cleanup and leaves floaters in unseen regions.
Even with more samples per ray, cleanup improves only slightly and does not match the performance
of full 3D sampling, which better regularizes completely unseen regions.

These results confirm that sampling beyond training rays is essential for effective NeRF cleanup. By
enforcing the Free Space Prior across the entire 3D scene, our method ensures that unseen regions
remain artifact-free, leading to significantly improved novel view quality.

6 Limitations

The method optimizes unseen regions while using reconstruction loss to preserve the original scene.
As a result, it cannot correct artifacts caused by image inconsistencies, moving objects, poor bundle
adjustment, or noisy input images. It is only effective for artifacts resulting from under-optimization
in specific regions of the scene. An example of the limitation using noisy images is in Appendix A.8.

7 Conclusion

We present an efficient cleanup method for NeRFs that leverages a simple yet effective Free Space
Prior to significantly reduce artifacts, particularly floaters, in unseen regions. Our approach eliminates
these artifacts without modifying the NeRF architecture or increasing memory overhead, making it
a lightweight and scalable solution. We demonstrate that our method outperforms SOTA cleanup
approaches in both efficiency and quality, achieving up to 2.5× faster inference, 1.5× faster cleanup,
and requiring no additional memory. Furthermore, our approach is robust across diverse NeRF
architectures and datasets, effectively reducing artifacts in a variety of real-world and synthetic
scenarios. By preserving scene fidelity while ensuring consistent and generalizable artifact removal,
our method provides a practical and widely applicable solution for enhancing NeRF-based NVS.
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A Technical Appendices and Supplementary Material

A.1 Appendix Overview

This document contains supplemental material regarding the following topics:

• A.1 Implementation Details
• A.2 Appendix Overview
• A.3 Method Robustness - Discussion and visualization of the robustness of our method.

• A.4 Evaluation Using the Old Paradigm - Evaluation using the original Nerfbusters
evaluation.

• A.5 Choosing λ - Discussion about the temperature parameter λ

• A.6 Full Quantitative Results - The numerical results including a discussion about Dice
score as an alternative to coverage metric.

• A.7 Additional Qualitative Results - more visual examples of our method.

• A.8 Noisy images Study - Study about the limitations.

• A.9 Densities in Complex Medium - Underwater analysis.

A.2 Implementation Details

All experiments were conducted using the latest version of Nerfacto and Splatfacto from Nerfstudio
[30], pre-trained for 30,000 steps. Comparisons between different methods were performed on the
same pre-trained base NeRF model to ensure consistency. In our method, density optimization
was achieved with 1,000 iterations using 217 randomly sampled points across the 3D scene space.
Optimization was carried out through Nerfacto’s optimizers. All experiments were run on a single
NVIDIA RTX A5000 GPU. Results for BayesRays [10] and Nerfbusters [31] were generated using
their respective pipelines, including the pre-trained 3D diffusion model weights provided by Nerf-
busters. The predicted mask indicates the presence of "something" in a pixel after cleanup, created by
thresholding the density accumulation at 0.98. The splatfacto model is based on Gaussian Splatting
[13] with regularization to prevent artifacts [34, 32].

A.3 Method Robustness

The Nerfbusters dataset [31] is specifically designed to test the cleanup task with challenging evalua-
tion camera positions, making it an excellent benchmark for assessing artifact removal. However, the
floater artifact phenomenon is not unique to Nerfbusters—it is a common issue across NeRF scenes.
The primary limitation of other datasets is the lack of challenging evaluation cameras that can serve
as a reliable ground truth for cleanup assessment.

To demonstrate the robustness and generalizability of our method, we evaluate it qualitatively on
scenes from other widely used datasets. Specifically, we include results for the Garden scene from the
mip-NeRF 360 dataset [2], the Basket scene from the Light Fields (LF) dataset [38], the Playground
scene the from Tanks and Temples dataset [15], and the Trevi scene from the PhotoTourism dataset
[29]. These scenes provide diverse settings with varying levels of complexity, testing the adaptability
of our approach.

In Fig. 9, and the attached videos, we compare our method to the Nerfacto baseline. The results
confirm that our method effectively removes artifacts while preserving scene details across a wide
range of scenes, underscoring its robustness beyond the Nerfbusters dataset.

A.4 Evaluation Using the Old Paradigm

As stated in the main paper, the conventional metric comparison has relied on GT masks to measure
PSNR and Coverage. This approach allows methods that do not clean regions outside the area of
interest to achieve high PSNR and, more importantly, artificially inflated Coverage. In Fig. 10, we
demonstrate that this old paradigm introduces a significant bias in favor of the baseline, despite
its practical noisiness, as it disregards artifact-heavy regions outside the GT masks. Moreover, we
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Figure 9: Qualitative comparison of cleanup results on various scenes: (Left) Novel view rendered
using the Nerfacto model. (Right) The same view after applying our Free Space Prior cleanup. The
evaluated scenes include Garden from the mip-NeRF 360 dataset, Basket from the Light Fields (LF)
dataset, Playground from the Tanks and Temples dataset, and Trevi from the PhotoTourism dataset.
Our method effectively removes artifacts while preserving scene details across diverse datasets.
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Figure 10: Evaluation using old paradigm: Comparison of our method, BayesRays, and the baseline
on the Nerfbusters dataset, calculating PSNR solely within the GT masks.

show that our method achieves SOTA performance even under the conventional paradigm, while also
excelling in our upgraded metric paradigm.

A.5 Choosing λ

Our method is robust to a wide range of λ values as can be seen in 4, λ ∈ [10−5, 1] yields both high
PSNR (17.35–17.69) and high coverage (87.57%–96.45%). This robustness stems from our method’s
design, which optimizes regions where the reconstruction loss is inactive. Even with small λ values,
the FSP loss dominates in these regions, yielding much cleaner results than default Nerfacto. We did
not include experiments with λ > 1, as this would imbalance the losses and violate the principle that
the FSP loss should complement, not compete with, the reconstruction loss.

A.6 Full Quantitative Results

Tab. 4 presents the complete evaluation results for all methods, directly correlating with the points
depicted in Figure 4 of the main paper. Each row in Tab. 4 corresponds to a point in the PSNR vs.
Coverage plot. Beyond the standard PSNR and Coverage metrics shown in the main paper, we also
report SSIM, LPIPS, and Dice scores for a more comprehensive evaluation. While SSIM and LPIPS
have been previously evaluated for BayesRays, we introduce the Dice score to provide additional
insights into the cleanup results.

Dice Score To complement the coverage metric, we propose the Dice score as a meaningful addition
for evaluating NeRF cleanup. The Dice score, widely used in segmentation tasks, quantifies the
similarity between two sets by measuring their overlap. In the context of NeRF cleanup, it reflects
how effectively a method removes unwanted artifacts. Specifically, it assesses how well a method
distinguishes between the intended reconstruction and regions that should remain empty.

The Dice score offers a nuanced perspective that the coverage metric alone cannot provide. Coverage
measures how completely a method reconstructs regions visible from the training cameras but does
not penalize excessive retention of artifacts. In contrast, the Dice score penalizes methods that
inaccurately retain content in unseen areas. For example, as shown in Tab. 4, the baseline achieves a
high coverage score because it does not perform any cleanup. However, Tab. 4 also reveals a low Dice
score for the baseline, highlighting its inability to remove artifacts from unseen regions effectively.

This additional metric reinforces the importance of balancing reconstruction accuracy with artifact
removal to achieve high-quality NeRF cleanups.

15



Table 4: Full Results: Comprehensive evaluation metrics for the methods discussed in our paper.
Each row corresponds to a point in the PSNR vs. Coverage graph (Figure 4) from the main paper,
providing additional insights into the trade-offs between reconstruction accuracy and artifact removal.
Method Threshold / λ PSNR SSIM LPIPS Coverage (%) Dice
Nerfacto (Baseline) N/A 16.44 0.53 0.45 98.48 0.83

Ours

100 17.69 0.62 0.30 87.57 0.87
10−1 17.60 0.60 0.32 89.88 0.88
10−2 17.52 0.58 0.35 92.26 0.89
10−3 17.42 0.57 0.37 94.35 0.90
10−4 17.40 0.56 0.39 95.60 0.90
10−5 17.35 0.56 0.40 96.45 0.90

Nerfbusters N/A 17.01 0.64 0.27 68.13 0.73

BayesRays

0.1 16.64 0.70 0.19 25.21 0.43
0.2 17.44 0.68 0.20 39.86 0.54
0.3 17.97 0.67 0.23 54.67 0.65
0.4 17.88 0.65 0.26 70.44 0.76
0.5 17.77 0.63 0.28 81.04 0.83
0.6 17.69 0.62 0.30 86.36 0.87
0.7 17.63 0.61 0.32 89.27 0.88
0.8 17.56 0.59 0.34 91.29 0.89
0.9 17.49 0.58 0.36 93.23 0.90
1.0 16.42 0.53 0.45 98.36 0.82

Gaussian Splatting N/A 15.13 0.50 0.41 95.22 0.89

L2 Regularization N/A 17.10 0.54 0.52 87.09 0.87

Ours - During Training Phase

100 14.11 0.48 0.48 78.97 0.73
10−1 16.35 0.56 0.38 84.16 0.85
10−2 17.16 0.58 0.36 89.51 0.88
10−3 17.43 0.58 0.36 92.42 0.90
10−4 17.51 0.57 0.37 93.38 0.90
10−5 17.30 0.56 0.39 95.21 0.91

A.7 Additional Qualitative Results

We present qualitative results on additional scenes from the Nerfbusters dataset in Fig. 11. These
examples support our claim of achieving a balance between effective cleanup and scene preservation.

Furthermore, the qualitative results highlight the limitations of Gaussian Splatting. Notably, it exhibits
significant noise in novel views located far from the training cameras. This issue aligns with the
quantitative findings, as the excessive noise contributes to the low PSNR scores reported in Tab. 4.
These observations underline the importance of robust artifact removal in achieving high-quality
reconstructions for novel viewpoints.

In addition to the static images, we attach videos of the Pikachu, Car, and Plant scenes from the
Nerfbusters dataset. These videos provide side-by-side comparisons of the Nerfacto baseline and
our Free Space Prior results. The comparisons clearly illustrate that our method delivers consistent
artifact removal across the entire scene, rather than affecting only isolated parts visible in the picked
images. This consistency highlights our method’s robustness in addressing both local and global
cleanup challenges while preserving the scene’s overall structure and quality.

A.8 Noisy Images Study

As stated in our limitations section, our approach is based on the reconstruction loss, which relays on
a good data. To demonstrate this, we added gaussian noise to the input images of a scene, build a
NeRF and applied our method on the noisy scene. As can be seen in Fig. 13, the cleanup did work on
under-optimized regions, but did not fix the color bias caused by the noisy input images.
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Figure 11: Qualitative Cleanup Results: Visualization of different cleanup methods applied to the
Car, Flowers and Picnic scenes from the Nerfbusters dataset. Each image shows a novel view from
the evaluation set rendered post-cleanup.

Figure 12: Density Histogram Underwater: Histogram of densities across the Curacao scene after
sigmoid-softened, shifted to [0, 1]. (Left) Histogram of densities across the scene before the cleanup
process. (Right) Histogram of the densities across the scene after the cleanup process.

A.9 Densities in Complex Medium

As seen in Fig. 1, our approach works on underwater scenes like Seathru dataset. But the assumption
that "There is nothing in the unseen area" does not mean densities should be zero. This is because the
physics of underwater imaging involve attenuation and back scattering, which means density should
not be zero.

We investigate this further by calculating a density histogram for the underwater scene Curacao from
the Seathru dataset. See Fig. 12. As can be seen, the original density histogram (left) is pushed
towards the bi-modal histogram (right) that we find in regular images (cf. see Fig. 6). Because the
prior does not match the imaging physics the resulting histogram is not bi-modal, leaving enough
non-zero densities to handle the image properly, as shown visually by the results on the Seathru
dataset.
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Figure 13: Noisy input images study: (Top) Noised input image. (Middle) Original images and the
novel view from the Nerfacto baseline. (Bottom) Original images and the novel view after cleanup.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Appendix A.8

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification:
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Appendix A.2
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]

Justification: We will provide the code and data preparation and evaluation upon acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Appendix A.2

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Error bars are not common in this type of evaluation. We follow the experi-
mental protocols established by SOTA papers in this field.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Appendix A.2, Tab. 1

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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