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Abstract
Growing privacy regulations have made machine unlearn-
ing an essential process for removing the influence of spe-
cific data points from trained models. While retraining on
the remaining dataset is a straightforward solution, it incurs
high computational costs and requires access to the retained
dataset, which may not always be practical. Existing unlearn-
ing methods, such as gradient ascent, often suffer from unsta-
ble optimization and catastrophic forgetting. Recent studies
have demonstrated that by training fewer parameters, Low-
Rank Adaptation (LoRA) constrains updates to prevent sig-
nificant divergence from the base model, effectively miti-
gating catastrophic forgetting. Building on this insight, we
propose a novel framework, NegLoRA that leverages LoRA
to enhance the efficiency and effectiveness of machine un-
learning. Experimental results across various metrics indicate
that NegLoRA outperforms baseline methods in unlearning
accuracy, generalization, and robustness to inference attacks
while being computationally efficient. Our code is available
at https://github.com/AAAI-ColorAI/NegLoRA

Introduction
Deep Neural Networks have demonstrated remarkable ac-
curacies across numerous tasks by harnessing vast datasets.
However, this success brings the challenge of data privacy,
as these models may inadvertently memorize training ex-
amples, making them vulnerable to inference attacks that
could reveal sensitive information potentially harming user
privacy. Privacy regulations like the General Data Protection
Regulation (GDPR) and the California Consumer Privacy
Act (CCPA) grant individuals the ”Right to be forgotten” al-
lowing them to request the removal of their data from mod-
els and services. To address these concerns, Machine Un-
learning methods systematically remove data points from a
model, ensuring that once the data has been erased the model
behaves as though it had never encountered that information.

The naive but optimal method method involves training
the model from scratch using the remaining training set, af-
ter removing the data points to be forgotten. This procedure,
termed ”exact unlearning”, guarantees that the weights of
the resulting model aren’t influenced by the instances to for-
get, but proves to be impractical for large-scale models and
datasets due to substantial computational costs. Moreover,
loading the original dataset may be unfeasible due to data
retention policies or limitations in storage capacity for large

datasets. These limitations entail the need for efficient un-
learning methods given access only to the pre-trained model
and the data points requested for deletion.

Several methods have been proposed to address this chal-
lenge. (Graves, Nagisetty, and Ganesh 2020) introduced a
technique that stores the index of training examples and
per-batch parameter updates, and unlearns by applying the
stored gradients in the opposite direction, effectively revers-
ing the influence of the data point on the model parameters.
However, this requires extensive storage and may lead to a
model that poorly approximates the one that would have ex-
isted if those parameter updates had not been applied.

To reduce storage needs and computational overhead,
(Golatkar, Achille, and Soatto 2020) introduce NegGrad,
which applies negative gradient updates for the samples to
be forgotten, equivalently moving in the direction of increas-
ing loss for those samples. This approach aims to hinder the
model’s ability to classify the ”forget” samples correctly.
However, it often leads to unstable training objectives and
can lead to catastrophic forgetting, impairing the model’s
generalizability on the primary task by inadvertently eras-
ing useful features learned from other data. Moreover, re-
cent studies (Kurmanji et al. 2023) have shown that diverg-
ing algorithms such as gradien ascent, can cause uncharac-
teristially high errors on deleted examples making the model
susceptible to Membership Inference Attacks.

Recent studies such as (Hu et al. 2021) show that model
adaptation intrinsically involves low-rank rank changes in its
weights. Building on this conclusion, Low Rank Adaptation
(LoRA) freezes the pretrained model’s weights and injects
trainable rank decomposition matrices to reduce the num-
ber of parameters updated during fine-tuning, which signifi-
cantly decreases computational costs. Furthermore, by train-
ing fewer parameters LoRA constraints the finetuned model
from diverging significantly from the base model (Biderman
et al. 2024), effectively acting as a regularizer that mitigates
catastrophic forgetting more than other regularization tech-
niques, while achieving similar or even better performance
than full fine-tuning in many cases.

Building on LoRA’s parameter efficiency and regulariza-
tion benefits, we propose NegLoRA, an unlearning method
which leverages Low-Rank Adaptation to apply targeted
negative gradient updates. By efficiently guiding the model’s
parameters away from the influence of specific data points,



NegLoRA ensures effective forgetting while preserving high
accuracy on both retained and test datasets. This approach
also significantly reduces computational and memory de-
mands through parameter-efficient low-rank updates, mak-
ing it a scalable and effective solution for unlearning.

To further enhance efficiency, (Jia et al. 2024) leverages
the Lottery Ticket Hypothesis (Frankle and Carbin 2019) to
introduce sparsity by pruning specific weights or neurons
in the trained model before unlearning, reducing overfitting
and computational costs. However, applying gradient ascent
to sparse models leads to a steep decline in the model’s ac-
curacy as sparsity increases. To address this, we propose
Sparse NegLoRA using LoRA to unlearn in sprase models
which mitigates the adverse effects of gradient ascent, effec-
tively balancing unlearning efficiency, computational cost,
and maintaining overall model performance.

Background and Notation
LoRA

Low-Rank Adaptation (LoRA) (Hu et al. 2021) is a tech-
nique for efficiently fine-tuning large models by introducing
low-rank parameter updates, reducing computational and
memory costs. Instead of updating the entire weight matrix
W ∈ Rd×k, LoRA factorizes the update as W ′ = W+∆W ,
where ∆W is approximated by the product of two low-
rank matrices B ∈ Rd×r and A ∈ Rr×k with rank r ≪
min(d, k). This can be expressed as:

W ′ = W +BA,

where only the matrices A and B are trained, while W
remains fixed. During fine-tuning, LoRA only modifies A
and B, allowing the model to adapt to new data with mini-
mal parameter adjustments, which avoids overfitting and re-
duces catastrophic forgetting of previously learned informa-
tion. By introducing low-rank updates, LoRA achieves an
efficient, scalable adaptation, making it particularly suitable
for applications requiring continual learning or unlearning,
as it focuses parameter updates on specific subspaces of the
model.

Unlearning

Let ϕ(·) ∈ RK be a model, with parameters w (weights)
trained using dataset D. The k-th component of the vector
ϕ(x;w) in response to an image x approximates the log-
posterior, i.e., ϕ(x;w)k ≈ logP (y = k|x),, up to a normal-
izing constant.

Given a model ϕ(x;w), where x is an input and w rep-
resents the model parameters, we aim to selectively unlearn
a subset of data Df ⊂ D while retaining knowledge from
Dr = D \ Df . After training on dataset D, the model pa-
rameters are denoted as wD, resulting in a model ϕ(x;wD).
Our goal is to design a scrubbing function S that modi-
fies wD to produce updated parameters S(wD), such that
ϕ(x;S(wD)) ≈ ϕ(x;wDr

), effectively removing the influ-
ence of Df and mimicking a model trained only on Dr.
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Figure 1: Sparse NegLoRA on ViT

Methodology
We focus on the problem of class unlearning in multi-class
classification tasks, where the aim is to remove information
about a specific class, called the forget class, from a trained
model.

NegGrad
GA: (Graves, Nagisetty, and Ganesh 2020) (Thudi et al.
2022) (Golatkar, Achille, and Soatto 2020) We define a loss
function L(ϕ(x;w), y) on Df that quantifies the model’s
performance on the data to be forgotten. Our objective is
to maximize this loss to reduce the model’s reliance on Df .
Here, the loss function L for unlearning can be defined as:

L(ϕ(x;w), y) = − 1

|Df |
∑

(x,y)∈Df

logP (y|x;w),

where P (y|x;w) is the model’s predicted probability for
the correct label y given input x. We perform iterative up-
dates to wD using gradient ascent:

w ← w + η∇wL(ϕ(x;w), y),
where η is the learning rate. ϕ(x;S(wD)), approximates
ϕ(x;wDr

), aligning with privacy requirements for data re-
moval.

NegLoRA
While the vanilla NegGrad approach is successful in un-
learning Df , it frequently leads to reduced performance
on Dr, decreasing the model’s overall utility. (Zhang et al.
2024) determine that gradient ascent approaches can lead to
catastrophic collapse of the model due to the divergent na-
ture of the algorithm as well as the unbounded nature of its
loss function. To address this, we propose NegLoRA, which
exploits the fundamental regularization properties of Low
Rank Adaptations by following a first adapt, then ascend
paradigm. By training fewer parameters LoRA constrains
the fine-tuned model from diverging significantly from the
base model. By prioritizing ”forgetting” in our loss func-
tion and using low-rank updates, NegLoRA achieves higher
unlearning accuracy while maintaining model performance



Model # Params Unlearning Accuracy (UA) MIA-Efficacy Remaining Accuracy (RA) Testing Accuracy (TA) RTE
1 Epoch 2 Epochs 1 Epoch 2 Epochs 1 Epoch 2 Epochs 1 Epoch 2 Epochs (/epoch)

ImageNet100
Retrain 21.7M 100.00 100.00 100.00 100.00 62.07 62.07 55.48 55.48 1.0000
GA(full) 21.7M 97.34 0.00 84.45 85.23 54.28 39.07 47.99 34.75 0.0081

GA (headatt) 1.86M 97.19 100.00 84.06 85.08 54.50 39.56 48.42 35.22 0.0081
GA (LoRA) 20K 100.00 100.00 96.80 97.27 61.98 60.62 55.37 54.38 0.0056

CIFAR100
Retrain 21.7M 100.00 100.00 100.00 100.00 97.98 97.98 60.37 60.37 1.0000

GA (full) 21.7M 100.00 100.00 100.00 100.00 83.13 58.20 44.78 33.31 0.025
GA (headatt) 1.86M 100.00 100.00 100.00 100.00 95.94 94.98 55.77 49.15 0.025

GA LoRA 20K 98.86 100.00 100.00 100.00 96.87 95.80 57.76 50.43 0.017
CIFAR10

Retrain 21.7M 100.00 100.00 100.00 100.00 96.90 96.90 85.92 85.92 1.0000
GA (full) 21.7M 97.19 100.00 100.00 100.00 54.50 39.56 48.42 35.22 0.025

GA (headatt) 1.86M 97.50 99.88 100.00 100.00 96.22 92.80 84.80 79.10 0.025
GA LoRA 20K 93.57 100 100.00 100.00 96.53 96.50 85.01 85.38 0.017

Figure 2: Results of ViT When Tested Using Various Unlearning Approaches (in percent accuracy)

and making the model more robust to inference attacks. Re-
cent works (Geva et al. 2021; Dai et al. 2022) reveal that
FFN layers in Transformer blocks serve as key-value mem-
ories, storing factual knowledge. Effective unlearning re-
quires modifying these layers, but direct updates are compu-
tationally inefficient due to their large parameter size. To ad-
dress this, we integrate LoRA modules into the FFN layers,
enabling low-rank, parameter-efficient updates. By making
only the LoRA components trainable, our approach achieves
targeted unlearning while mitigating catastrophic forgetting
and maintaining model utility and efficiency

Sparse NegLoRA Recent works (Jia et al. 2024; Shah
et al. 2024; Mehta et al. 2022) show that model sparsity can
improve unlearning by focusing updates on a subset of pa-
rameters, reducing overfitting and computational cost. How-
ever, (Jia et al. 2024) highlights that naive gradient ascent
degrades model performance as sparsity increases. To ad-
dress this, we propose Sparse NegLoRA, which follows a
”prune first, adapt, then ascend” approach. First, we prune a
subset of model weights, then fine-tune the pruned model to
restore performance. Next, Low-Rank Adaptation (LoRA) is
applied for efficient updates, followed by gradient ascent to
unlearn Df . Sparse NegLoRA mitigates catastrophic forget-
ting while maintaining efficiency and model performance.

Experimental Setup
Our experiments aim to evaluate to evaluate the effective-
ness of low-rank updates through LoRA in selectively for-
getting specific data points while preserving the accuracy of
the model on the remaining dataset. Furthermore, we ana-
lyze the ability of applying LoRA within sparse models, to
mitigate catastrophic forgetting in gradient ascent, while en-
suring effective unlearning.

Datasets
For evaluation, we used the CIFAR-10 and CIFAR-100
datasets (Krizhevsky 2009) along with a subset of the Ima-
geNet dataset by randomly sampling 100 classes, which we
refer to as ImageNet100. Check Appendix for more details.

Models
We trained a Vision Transformer (ViT) (Dosovitskiy et al.
2021) and a ResNet50 (He et al. 2015) on the aforemen-
tioned datasets. Check Appendix for more details

Baseline: We evaluate two baselines to compare against
our proposed LoRA-based unlearning method:

• Retrain: Retrain the model on the retained dataset Dr

• NegGrad: Perform Gradient Ascent on the full set of
model weights.

• Partial NegGrad: Gradient Ascent on a subset of the
model’s weights.

For Partial NegGrad in the ViT, Gradient Ascent is ap-
plied to the classifier head and the feed-forward network
(FFN) and attention output projection layers in the last trans-
former block. For Resnet, it is applied to the convulutional
and linear layers.

Sparse NegLoRA To evaluate the effectiveness of Sparse
NegLoRA, we apply our method to fine-tuned sparse mod-
els at varying levels of sparsity. Specifically, we experiment
with sparsity levels of 50%, 75%, 90%, and 95%, using L2
pruning. Sparse NegLoRA is then compared against the es-
tablished baselines on both Vision Transformer (ViT) and
ResNet architectures.

Evaluation Metrics
Our goal is to ensure that the model, after unlearning, not
only removes specific data points but also retains its perfor-
mance on the remaining data and remains generalizable to
unseen samples. Additionally, we aim to achieve this in a
parameter-efficient manner to reduce computational costs as
well as memory requirements. Our metrics include:
1. Unlearning accuracy: UA = 1-Acc(Df ) is the accuracy of

the unlearned model on the forget dataset. A higher UA
indicates more effective unlearning of the forget dataset.

2. Retention Accuracy (RA): This is the accuracy of the un-
learned model on the retain dataset, indicating how well
the model maintains performance on data that should not
be forgotten



Figure 3: Sparse NegLoRA on ViT

3. Test Accuracy (TA): The accuracy of the unlearned
model on a separate testing dataset containing the re-
maining classes, used to assess the model’s generalizabil-
ity after unlearning.

4. Membership Inference Attack Efficacy (MIA-Efficacy):
Measures the vulnerability of the unlearned model to
membership inference attacks on the forget dataset Df

using a confidence-based MIA predictor. A higher MIA-
Efficacy indicates less information about Df in the
model.

Related Work
Machine Unlearning:
The problem of machine unlearning (MU) was formally in-
troduced by (Cao and Yang 2015) in response to stricter pri-
vacy regulations, a decade of research has since followed.
MU techniques can be classified into two broad categories:
exact and approximate unlearning. Exact unlearning typi-
cally involves retraining the model from scratch after the
removal of specific data points. (Bourtoule et al. 2020) intro-
duced the SISA framework, which partitions data into shards
and slices, with each shard serving as a weak learner that
can be quickly retrained upon an unlearning request. How-
ever, the computational intensity of these methods empha-
size the need for more efficient methods. (Neel, Roth, and
Sharifi-Malvajerdi 2020) adopt similar DP-inspired defini-
tions of unlearning based on the goal of indistinguishabil-
ity from the retrain-from-scratch model. (Cha et al. 2024)
uses utilizing adversarial examples to overcome loss of
utility at the representation-level. (Tarun et al. 2024) and
(Chundawat et al. 2023) learn error minimization and error
maximization-based noise matrices which are used to fine-
tune the trained model in order to do unlearning. (Thudi et al.
2022) propose a regularizer to reduce the ‘verification er-
ror’, which is an approximation to the distance between the
unlearned model and a retrained-from-scratch model. (Shah
et al. 2024) uses a Discrete Key-Value Bottleneck to perform
unlearning in a model with inherent sparse representations.
However, existing methods assume that at least a subset of

the original training data is available at the time of unlearn-
ing. For our proposed method, we require access to no more
than the unlearning data Df , allowing seamless application
for practitioners under real-world scenarios.

Results
Table 2 presents the accuracy metrics for ViT, compar-
ing NegLoRA with the baselines. NegLoRA consistently
achieves superior Remaining Accuracy (RA) and Testing
Accuracy (TA) while maintaining near-perfect Unlearning
Accuracy and MIA-Efficacy. Its performance remains robust
egardless of the size of the dataset or the number of classes.
Similarly, Appendix Table 4 demonstrates that NegLoRA
outperforms baselines even on non-transformer architec-
tures (Resnet) achieving higher RA and TA, while maintain-
ing comparable MIA-Efficacy Furthermore, as shown in 3,
applying NegLoRA to sparse models effectively mitigates
catastrophic collapse. It preserves unlearning accuracy at op-
timal levels while delivering significantly higher Remaining
Accuracy (RA) and Testing Accuracy (TA) compared to the
baselines. Additionally, NegLoRA achieves MIA-Efficacy
comparable to other methods, demonstrating its robustness
even under high sparsity conditions.

Conclusion
This study addresses the challenge of efficient machine un-
learning in light of growing privacy regulations and the
need for adaptable AI systems. We introduced NegLoRA, a
novel approach for efficient and effective machine unlearn-
ing using Low-Rank Adaptation (LoRA) combined with
gradient ascent. Our extensive experiments across ViT and
ResNet architectures demonstrate that NegLoRA consis-
tently achieves near-perfect unlearning performace, while
maintaining accuracy on the remaining classes even under
varying levels of sparsity. Additionally, NegLoRA demon-
strates significantly higher robustness towards inference at-
tacks paving the road for more privacy-preserving and scal-
able AI systems without sacrificing utility.
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Appendix
Limitations and Future Scope
A promising avenue for future research is the exploration
of various membership inference attack methods to fur-
ther validate our hypothesis. Another potential application
of this study is the extension of NegLoRA to more com-
plex models such as Multimodal Large Language Models
(MLLMs) where parameter efficiency is of the utmost im-
portance for unlearning. While computational constraints
limited our ability to explore this direction, scaling our ap-
proach to multimodal models could advance the develop-
ment of adaptable, privacy-preserving AI systems capable
of handling diverse and complex datasets.

Training Details and Hyperparameters
We perform all our experiments on an NVIDIA T4(x2)
GPU.

Datasets
CIFAR 10 CIFAR-10 is a widely used dataset in computer
vision and machine learning. It comprises 60,000 32x32
color images in 10 different classes, with 6,000 images per
class. The dataset is divided into 50,000 training images and
10,000 testing images. CIFAR-10 represents a diverse range
of everyday objects, such as airplanes, automobiles, birds,
and cats, making it a challenging task for image classifica-
tion.
Data Augmentations: random cropping to 32x32 with 4-
pixel padding, random horizontal flipping, and per-channel
normalization with a mean of [0.4919, 0.4822, 0.4465] and
standard deviation of [0.2023, 0.1994, 0.2010]. At test time,
we resize to 32x32 and normalize.

CIFAR-100 CIFAR-100 is a complex extension of
CIFAR-10, containing 100 classes with 600 images per
class, split into 500 training images and 100 testing images
per class. Each class is labeled with a ”fine” label. The in-
creased number of classes make CIFAR-100 an intriguing
dataset and poses a more significant challenge for models to
forget specific classes while retaining knowledge of others.



Data Augmentations: random cropping to 32x32 with 4-
pixel padding, 50% random horizontal flipping, and per-
channel normalization with a mean of [0.5071, 0.4865,
0.4409] and standard deviation of [0.2673, 0.2564, 0.2762].
At test time, we resize to 32x32 and normalize.

ImageNet-100 ImageNet-100 is a subset of the ImageNet
dataset containing 100 diverse classes, with 1300 training
images and 50 validation images per class. The dataset pro-
vides a balanced mix of complexity and scale, allowing for
rigorous testing of a model’s ability to forget specific data
points while retaining generalization across the remaining
classes Data Augmentations: For training, we use random
resized cropping (224x224) with a scale range of (0.05, 1.0),
random horizontal flipping, RandAugment (n=9, m=0.5),
per-channel normalization with mean [0.485, 0.456, 0.406]
and standard deviation [0.229, 0.224, 0.225], and random
erasing with a 25% probability. At test time, we resize to
224x224 and apply the same normalization.

Data Augmentations

n01968897 n01770081 n01818515 n02011460 n01496331
n01847000 n01687978 n01740131 n01537544 n01491361
n02007558 n01735189 n01630670 n01440764 n01819313
n02002556 n01667778 n01755581 n01924916 n01751748
n01984695 n01729977 n01614925 n01608432 n01443537
n01770393 n01855672 n01560419 n01592084 n01914609
n01582220 n01667114 n01985128 n01820546 n01773797
n02006656 n01986214 n01484850 n01749939 n01828970
n02018795 n01695060 n01729322 n01677366 n01734418
n01843383 n01806143 n01773549 n01775062 n01728572
n01601694 n01978287 n01930112 n01739381 n01883070
n01774384 n02037110 n01795545 n02027492 n01531178
n01944390 n01494475 n01632458 n01698640 n01675722
n01877812 n01622779 n01910747 n01860187 n01796340
n01833805 n01685808 n01756291 n01514859 n01753488
n02058221 n01632777 n01644900 n02018207 n01664065
n02028035 n02012849 n01776313 n02077923 n01774750
n01742172 n01943899 n01798484 n02051845 n01824575
n02013706 n01955084 n01773157 n01665541 n01498041
n01978455 n01693334 n01950731 n01829413 n01514668

Table 1: List of ImageNet-100 classes

Models
ViT Vision Transformer (ViT), introduced by (Dosovit-
skiy et al. 2021), adapts the transformer architecture to
image classification by treating images as sequences of
patches. We consider TinyViT from (Wu et al. 2022) with
approximately 21M parameters, as it is a compact version
of ViT designed to be parameter-efficient while maintaining
high performance.

Resnet ResNet50 Introduced by (He et al. 2015), it facili-
tates the training of deep networks through residual connec-
tions, which mitigates the problem of vanishing gradients.

Detailed Evaluation Metrics
Membership Inference Attacks Membership Inference
Attacks attempt to determine whether a specific data point
was part of the model train data. It operates in two phases:

Config Value
patch size 16
optimizer AdamW
base learning rate 10−3

learning rate schedule warmup + cosine decay
weight decay 0.05
momentum β1, β2 = 0.9, 0.999
batch size 256
warm-up epochs 20
warm-up learning rate 1× 10−6

training epochs 90

Table 2: ViT/16 Training Configuration Table

Config Value
optimizer AdamW
base learning rate 10−1

learning rate schedule cosine decay
weight decay 0.05
momentum β1, β2 = 0.9, 0.999
batch size 128
training epochs 200
dropout rate 0.1

Table 3: Resnet50 Training Configuration Table

Config Value
optimizer Adam
batch size 256
LoRA rank 16
LoRA alpha 32
LoRA dropout 0.1
epochs 1/2

Table 4: LoRA Finetuning Configuration Table

• Training Phase: An MIA predictor is trained on a bal-
anced dataset sampled from the model’s remaining train-
ing set (Dr) and an external test set (Dtest). This predic-
tor learns to classify samples based on features such as
prediction confidence.

• Testing Phase: The trained MIA predictor evaluates the
forgetting dataset (Df ), aiming to classify samples as ei-
ther “training” or “non-training.”

The MIA-Efficacy measures the success of unlearning by
quantifying how well the predictor identifies the forgetting
samples as ”non-training”. It is formally defined as:

MIA-Efficacy =
TN
|Df |

where TN is the number of forgetting samples correctly
classified as non-training, and |Df | is the total number of
samples in Df . A high MIA-Efficacy indicates effective un-
learning.



Model # Params Unlearning Accuracy (UA) MIA-Efficacy Remaining Accuracy (RA) Testing Accuracy (TA) RTE
1 Epoch 2 Epochs 1 Epoch 2 Epochs 1 Epoch 2 Epochs 1 Epoch 2 Epochs (secs/epoch))

CIFAR100
Retrain 23.5M 100.00 100.00 100.00 00 00 00 00 00 1.000

NegGrad 23.5M 100.00 100.00 28.60 45.40 58.05 52.91 45.55 41.47 0.025
Partial NegGrad 1.86M 100.00 100.00 58.00 48.97 60.94 45.96 47.23 37.06 0.025

NegLoRA 608K 100.00 100.00 100.00 100.00 98.97 98.66 74.19 72.21 0.017
CIFAR10

Retrain 23.5M 100.00 0.00 100.00 100.00 38.79 39.07 38.10 34.75 1.000
NegGrad 23.5M 94.16 98.08 0.00 0.10 73.64 49.40 70.62 48.82 0.025

Partial NegGrad 20.5M 89.36 95.66 0.00 0.00 80.27 68.34 76.06 66.17 0.025
NegLoRA 20.5K 5.58 1.56 96.44 87.84 98.17 95.69 92.92 90.20 0.017

Figure 4: Results of Resnet50 When Tested Using Various Unlearning Approaches (in percent accuracy)

Run Time Efficiency We evaluate the efficiency by com-
paring how much faster an unlearning method is relative to
retraining, i.e the run-time efficiency (RTE) of an unlearning
method U is defined as:

RTE(U) =
RT(UR)

RT(U)
, where RTE(U) ∈ [0,+∞),

• RT(U) represents the time (in seconds) required by
method U to complete unlearning.

• RT(UR) represents the time (in seconds) required for re-
training the model from scratch (denoted as UR).

All methods are evaluated using the same hardware and
resources for consistency. The RTE of retraining from
scratch is always 1. An MU method with RTE(U) > 1 is
faster than retraining, while a method with RTE(U) < 1
is slower than retraining. Ideally, the run-time efficiency
(RTE) of a machine unlearning method should be lower than
the naive approach of retraining the model from scratch.


