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Abstract—Operating robots precisely and at high speeds has
been a long-standing goal of robotics research. Balancing these
competing demands is key to enabling the seamless collaboration
of robots and humans and increasing task performance. However,
traditional motor-driven systems often fall short in this balancing
act. Due to their rigid and often heavy design exacerbated by
positioning the motors into the joints, faster motions of such
robots transfer high forces at impact. To enable precise and safe
dynamic motions, we introduce a four degree-of-freedom (DoF)
tendon-driven robot arm. Tendons allow placing the actuation at
the base to reduce the robot’s inertia, which we show significantly
reduces peak collision forces compared to conventional robots
with motors placed near the joints. This configuration, paired
with pneumatic muscles, enables high-force, accelerated motions
and improves safety through passive compliance. This capacity
for rapid motion exploration is particularly valuable for generat-
ing extensive datasets of dynamic motions autonomously, without
additional direct human oversight. We leverage this feature to
generate a proprioceptive dataset of 25 days of diverse robot
motions that highlights it’s robustness and reliability. We also
demonstrate its ease of control by quantifying the nonlinearities
of the system and the performance on a challenging dynamic table
tennis task learned from scratch using reinforcement learning.
We open-source the entire hardware design, which can be largely
3D printed, the control software, and the motions dataset can be
found at [link removed to comply with anonymity requirements].

I. INTRODUCTION

Tasks such as playing table tennis, harvesting delicate
berries, or carrying heavy objects differ inherently in their
force, precision, and compliance demands. Humans naturally
excel at each of these tasks by encompassing a broad array
of various motion characteristics, including slow and precise
motions, high-force trajectories, and fast as well as highly
accelerated movements. Replicating the full range of these
capabilities, along with the inherent safety properties of human
arm movements, such as compliance and backdrivability, has
been a challenging endeavor in robotics research.
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The desired robot capabilities can be roughly divided into (i)
the achievable speed and (ii) force, (iii) the closeness to human
size, (iv) the ease of control, and (v) the safety properties of the
robot and environment at impact. High speed and force are es-
sential to accomplish tasks quickly while potentially handling
heavy objects. Executing accurate motions with high safety
standards enables handling delicate objects or tasks with low
tolerance for imprecision, such as in manufacturing. Inherent
safety extends the set of allowed contacts and enables the
control algorithm to be less conservative and take more risks to
optimize for performance. In that manner, robots could move
at higher speeds due to the reduced negative consequences
of unintended impacts. The amount of anthropomorphism is
crucial when robots should act in human-created environments
and tasks, potentially even working alongside humans. The
size of the robot affects all categories: while smaller robots
can be precise, fast, and safe, executing high forces is rather
difficult. On the other hand, a big robot can generate forceful
and fast trajectories but sacrifices safety at impact.

Distinct robot designs excel in each of these categories.
Industrial motor-driven robots are traditionally heavy and
rigid; these properties are necessary to describe the system
precisely using the rigid body dynamics equations, which
can be used to easily attain high-quality control. Paired with
strong motors, industrial robots additionally excel at maximum
force and speed. On the downside, industrial robots easily
cause damage to themselves and the environment in collisions.
Collision avoidance for such robots often necessitates the
use of 1) environmental sensors and tracking systems, 2)
limiting the robot’s speed, or 3) range of motion. Still, these
techniques may not prevent all collisions while constraining
the robot’s performance. For this reason, collaborative robots
or “cobots” have been invented. These robots are relatively
slow and weak but safe for human interaction, compared to
industrial robots that are fast and precise but prone to damage
upon collision. Alternatively, the negative effects of collisions
could be significantly reduced by using entirely soft robots.
These systems often rely on stretchable components as well as



compressible fluids. However, continuous scratching along the
surfaces of such materials can lead to damage since soft robots
are generally less durable than rigid robots. Moreover, accurate
control of fully soft robots [43], tends to be problematic.

One way to find a good tradeoff between these desired
robot capabilities is to use tendon drives. Tendon drives
allow building robot arms with minimal moving masses by
transferring the actuation to the robot base. Such robot designs
can be safe, even when operating at increased velocities, due
to their inherent backdrivability and low inertia. Paired with
powerful actuation, such systems can emit high forces and
reach high speeds. By positioning the actuation at an arbitrary
location in the robot body, the system can more easily take
any desired form to approach anthropomorphism. A major
drawback of tendon-driven robots is its challenging control.
Repeated high-force transmission wears out the tendon guid-
ance, and high amounts of friction typically add nonlinearities
and stochasticity.

In this work, we present PAMY2, a durable and fast 4-
DoF tendon-driven robot arm roughly of the size of a human
arm. PAMY2 features significantly lower friction than previous
designs. We pair PAMY2 with powerful pneumatic artificial
muscles (PAMs). PAMs offer the advantage of avoiding stiff
joints, which results in less severe peak forces at collisions.
At the same time, this type of actuator can generate great
forces to achieve either fast motions or lift heavy objects.
PAMY2 incorporates new low-friction tendon guidances and
ball bearings in the joints to improve the ease of control. To
that end, we show that our system is more linear than the
tendon-driven arm most similar to ours [7, 8]. Moreover, we
ensured through various hardware iterations that our design
is resilient. We let the robot run for 25 days uninterrupted
while quantifying the repeatability of the system throughout.
Additionally, we illustrate that our system produces similar
impact forces to the Franka Panda and UR5e at ˜ 4× the speed.
To illustrate the ease of control of PAMY2, we learn table
tennis smashes with reinforcement learning (RL) as in [9]
and double the ball’s speed while simultaneously improving
precision. The setting is identical down to the hyperparameters,
showing that by just using our robot, performance improved
substantially. This result is especially interesting since PAMs
are nonlinear actuators that change their dynamics with tem-
perature and exhibit hysteresis effects [41] that often require
advanced modeling techniques [8, 36, 37]. Figure 1 puts our
new robot, PAMY2, into perspective with the other discussed
robot designs in terms of the desired robot capabilities.

To accelerate progress on learning for dynamic tasks, we
open-source the design as well as the entire software infras-
tructure required to run our system, including a C++ and
Python interface. Since our system uses mainly off-the-shelf,
commercially available components, 3D-printed parts, and
only a small number of custom-machined parts, practitioners
are welcome to modify the design and customize our system
to their needs. PAMY2 can be equipped with any electrically
driven end-effector (such as the custom-fabricated articulated
3D-printed hand on the front page). We also open-source an
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Fig. 1: Visualization of the capabilities of different robot
designs. Industrial robots excel in speed, generated forces, and
ease of control but are not safe to operate in the proximity of
humans. Cobots are easy to control and safe but sacrifice speed
and force. Soft robots are generally superior in terms of safety
but are hard to control and are often unable to generate high
forces. Our robot, PAMY2, is capable of generating high-force
and high-velocity trajectories while being significantly safer
than most robots. Furthermore, the reduced friction makes our
robot easier to control than typical tendon-driven systems.

electrically driven two-DoF wrist that can be combined with,
for instance, a racket for table tennis (see Figure 3).

The main contribution of this work is the design of a robot
arm (i) that is less prone to damage upon collision due to its
lightweight construction, passively compliant actuation, and
tendon drives, (ii) with enhanced ease of control, achieved by
minimizing nonlinearities, primarily caused by high friction,
(iii) that allows for repeatable dynamic motions facilitating
the collection of large amounts of data for long-term training,
(iv) designed for replicability and adaptability, which allows
researchers to build upon and customize our robot for their
specific research question.

In Section III, we present the key design decisions that
accomplish these objectives. These include a description of
the tendon-driven design and the choices that reduce friction
in the tendons and joints and increase the system’s robust-
ness. In Section IV, we conduct experiments to demonstrate
our system’s effectiveness. We perform long-term dynamic
motions to verify robustness and conduct measurements to
quantify impact safety. To showcase enhanced ease of control,
we demonstrate the increased linearity of our robot. Finally, we
apply our system to a challenging dynamic table tennis task,
illustrating its capability for rapid yet precise movements.



II. RELATED WORK

a) Safety through collision avoidance: Safety in robotics
is typically tackled by instrumenting the environment with
sensors to detect and track humans and obstacles in the
workspace. Sensors employed for this purpose range from
distance sensors mounted to the robot [1] to depth cam-
eras [34] and marker-based motion capture systems [24]. If the
distance between the robot and a human or obstacle is below a
threshold, a safety controller adapts the robot motion to avoid
a collision [34] or slows down and stops the motion [24, 32].
These methods generally come with additional costs for the
sensors and the need for sensor calibration. Due to the poten-
tial for occlusions, they typically require multiple sensors that
capture the scene from different angles. Furthermore, collision
avoidance strategies tend to be very conservative because they
aim to avoid collisions at all cost, resulting in a robot that is
heavily constrained in its motions.

Robot safety is particularly important when training policies
via RL. During training, the RL agent typically explores
random actions. Due to the uncontrolled nature of these
exploration strategies, the resulting motions can be dangerous
for both the robot and its environment. Safe RL aims to
mitigate these safety concerns by discouraging the agent from
visiting unsafe states. To that end, these methods modify,
e.g., the optimization objective [19, 6, 16, 2], the exploration
behavior [13, 17, 4, 10], or the action selected by the pol-
icy [11, 31, 38]. Unless provided with additional domain
knowledge, safe RL methods need to explore dangerous states
at least once during training to learn that these states are un-
safe [14]. Domain knowledge, e.g., in the form of a dynamics
model or an expert policy, might not always be available, and
visiting an unsafe state even once can already cause severe
damage to the robot or its environment.

b) Safety through compliance: Inherently compliant
robots are a viable option to alleviate some safety require-
ments and avoid the extensive use of sensors for collision
avoidance and the dependence on domain knowledge for
safe RL. Soft robot components, like passively compliant
joints [30] or links [29], can significantly reduce contact
forces upon collision. Gealy et al. [15] built a 7-DoF robot
arm that achieves passive compliance through backdrivable
transmissions. GummiArm [39, 40] and BioRob [26] are
notable examples that employ elastic tendons for mechanical
compliance. Both systems leverage tendon-driven architectures
to enhance compliance and safety.

GummiArm is characterized by its agonist-antagonist actu-
ation system, employing pairs of opposing elastic tendons that
control the movement and stiffness of each joint via variable
co-contraction levels. Such a design allows the arm to absorb
impacts through its joints’ natural flexing, reducing the risk
during accidental human contact. The elastic materials used for
the tendons contribute both to the safety and the bio-fidelity
of the arm, allowing it to execute smooth movements.

BioRob focuses on incorporating a series elastic actuat-
uation concept within a highly lightweight structure. These

actuators introduce significant compliance at each joint, serv-
ing both to mitigate impact forces and to enhance energy
efficiency through the storage and release of kinetic energy
during tasks. BioRob’s design emphasizes minimal moving
mass and compact actuator integration.

An alternative is offered by PAMs, which are inherently
compliant actuators that can achieve high forces. These actua-
tors are widely used in human-inspired robot arms [42, 5, 21,
20, 18]. Passively compliant robots can also be combined with
active collision avoidance strategies, such as in [33]. In such
a combination, the robot’s compliance enhances safety in the
event of undetected or unavoidable collisions.

c) Generating dynamic motions: Safety through compli-
ance is essential in dynamic tasks because collisions are more
likely at high velocities, and impacts are more severe due
to the high momentum of the robot. However, fast motions
apply additional strain to the system and, therefore, few robot
designs in the literature are capable of generating dynamic
motions. Ikemoto et al. [20] evaluate their design on a dynamic
throwing task. Mori et al. [28] designed a high-speed robot
for a highly dynamic badminton task, which achieves racket
speeds of 21m/s.

BioRob [26] and GummiArm [39] are also both capable of
dynamic motions. BioRob arm is able to achieve end effector
velocities of 7.4m/s. Analysis of Figure 10 in [39], show-
ing ballistic movements, suggests GummiArm is slower than
BioRob. This compares to PAMY2’s end effector velocities
of 12m/s during the table tennis experiments shown in Sec-
tion IV-C2. GummiArm also has its actuators distributed along
the arm, potentially increasing moving mass and impacting
safety at high speeds or necessitating the use of lighter, less
powerful actuators. Furthermore, neither BioRob nor Gum-
miArm extensively focus on reducing internal friction within
their systems. This is particularly relevant when considering
their dynamic motion capabilities and overall ease of control.
To our knowledge, long-term experimental evaluations, which
are critical for assessing durability and reliability, have not
been reported for these systems, so it remains unclear whether
these motions can be executed robustly over long periods.

III. REALIZATION OF PAMY2

In this section, we present the design of our robot, PAMY2,
which substantially improves upon the tendon-driven robot
introduced by Büchler et al. [7, 8], referred to as PAMY1
throughout the paper. We detail the improvements to the
mechanical design, Bowden tubes, bearings, and pneumatics.
Furthermore, we discuss our design choices in light of the
goals of impact safety, robustness, and ease of control. The
mechanical design of the arm is depicted in Figure 2.

A. Design Choices to Improve Impact Safety

Because collisions cannot always be avoided without limit-
ing the performance of the robot, one of the primary design
objectives is to ensure that the impact of such collisions is
limited. We achieve this goal by incorporating a tendon-driven
design and leveraging passively compliant actuators. As shown



(a) Entire arm

(b) Bowden tubes

(c) Upper elbow joint (d) Lower elbow joint
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Fig. 2: Design of the tendon-driven robot arm (a). The arm has a rotational and a swivel DoF within the first (e), (f), and
second joint (c), (d). It features ball bearings, which are low in friction. Many parts are self-designed and 3D-printed, which
are shown colored in black. The four angle encoders are shown with a small green circuit board. The bowden tubes (b) guide
the tendons from the muscles to the joints. They feature an inner tube and outer support elements that help maintain constant
tendon length.

in Figure 2, the actuators of our robot are not on the robot arm
but at the base. Therefore, the moving masses (about 1.3 kg)
and inertia are small compared to traditional robot designs
where actuators are typically located at the joints.

Active and passive compliance are two distinct approaches
to achieving compliance. Active compliance utilizes sensor
data and feedback control to adapt and respond to external
forces. One example of active compliance are collision reac-
tion schemes. However, the reaction times are often too long
to prevent damage. In contrast, passive compliance is achieved
through the inherent mechanical properties of the robot, such
as elastic joints or soft materials. Our robot achieves passive

compliance through the use of PAM actuators. These actuators
are inherently compliant, allowing the robot to absorb and
dissipate external forces without the need for complex control
schemes.

B. Design Choices to Increase Ease of Control and Extend
Durability

Reducing friction is essential for improving the robot’s ease
of control, as it reduces uncertainties and nonlinearities in the
dynamics. Furthermore, friction leads to wear, which limits the
system’s longevity. This section highlights the design choices
that help minimize friction in our robot.



1) Bowden Tubes and Tendons: Improving the Bowden
tubes is key to addressing friction, durability, and maintenance
challenges commonly encountered in tendon-driven systems.
Our design incorporates continuous Polytetrafluoroethylene
(PTFE) Bowden tubes, which have very low friction. These
tubes also exhibit resistance to kinking and separation min-
imizing the risk of tendon entanglement. To further reduce
friction within the PTFE tube, we use Ballistol universal
oil to lubricate the tendon strings. In addition, our system
features a design consisting of an inner tube and custom outer
support elements, as depicted in Figure 2b. These outer support
elements were specifically engineered for easy 3D printing
and manufactured out of Onyx, a carbon-fiber reinforced
polyamide filament that withstands exceptionally high forces
without breaking. At the same time, this new design fulfills
the usual task of a Bowden tube: ensuring a constant tendon
length during arm movements by providing external support.
Consequently, the movement of one joint influences others
only through the rigid body dynamics rather due to the tendon
drives, improving overall ease of control.

The tendons themselves are made from a Dyneema string
that has high strength-to-weight ratio and durability. Dyneema
strings are chosen due to their maximum load capacity, and
smooth surface, which reduces friction inside the guiding
tubes. The tendon strings used in our robot have a diameter
of 1.8mm, but can withstand a load capacity of 500 daN.
To improve Dyneema’s creep resistance under high load, we
use a pre-tensioned version of the string that is heat-treated
to reduce elongation to less than 1%, enhancing its load
capacity compared to similar strings of the same diameter
and ensuring minimal length change under tension. The lower
temperature resistance of Dyneema is mitigated by our design
focusing on reducing friction. The effectiveness of this design
in reducing heat is shown in experiment IV-B1. For the
tendon connections, we utilize a knot-based method, which
circumvents the disadvantages of adhesive-based attachments,
such as long drying times and potential weakening over time.
To address the decreased tear-strength of strings because of the
tightening of the knot, our knotting method involves guiding
the tendon along a rounded curve before knotting. More details
about the parts and materials used can also be found on our
project website.

2) Bearings: The previous design of Büchler et al. [7, 8]
utilizes gliding bearings, which offer the benefit of being
highly compact. However, these bearings exhibit considerable
friction and stiction. In contrast, PAMY2 includes industry-
standard ball bearings at the shoulder and elbow joints to
significantly reduce the friction and stiction, while also pro-
viding increased off-axis rigidity and improved longevity. The
primary tradeoff is a slight increase in the mass of the joints
and packaging complexity.

C. Improved Pneumatics

In the pneumatic system of our tendon-driven robot arm,
we have implemented several optimizations to enhance perfor-
mance and reliability. First, we employed optimized tube rout-

ing to improve airflow and reduce pressure losses, particularly
by avoiding sharp 90-degree angles in the pneumatic lines.
Second, we incorporated a buffer reservoir to stabilize the
air pressure supply in front of the valves, ensuring consistent
and efficient actuation. Lastly, we designed a ring circuit
for the pneumatic system, further improving the air pressure
distribution among the valves.

D. Open-Source Hardware and Software

To facilitate further research and development in dynamic
robotic tasks, we have made both the hardware and software
components of our robot open-source.

1) Hardware: Our approach aims at enabling others to
build upon our work and adapt the robot for their specific
applications. Therefore, the design primarily employs off-the-
shelf, commercially available components, 3D-printed parts,
and only a limited number of custom-machined parts, thus
making it cheaper than many other industrial or research
robots. The total material costs amount to approximately
C14,185, broken down as follows: Base at C2,652, Arm at
C1,448, Electronics at C4,053, and Pneumatics at C6,032. It
is important to note, however, that the 3D-printed components
require specialized printers, capable of reinforcing parts with
continuous fibers.

Fig. 3: Electrically driven
wrist for PAMY2 that can
be combined with an end-
effector

2) End-effectors: PAMY2 can
be combined with any electrically
driven end-effector, since we feed
cables seamlessly through the in-
side of the arm. In this manner,
hands could be mounted, such
as the custom-fabricated articu-
lated 3D-printed hand on the front
page. We also open-source a two-
DoF wrist that features position
and torque control and can be
combined with, for instance, a
racket for table tennis Figure 3.

3) Software: We provide an
open-source software framework
with a versatile API in Python
and C++ for controlling and mon-
itoring the robot, based on the
o80 framework [3]. The o80 soft-
ware framework interfaces with
the robot’s Programmable Logic Controller (PLC). Commu-
nication between the PLC and the o80 software running on
the PC is facilitated through UDP, transmitting data such as
the robot state (joint angles and velocities, muscle pressures,
and valve positions), actions (target pressures or target joint
positions, depending on the control mode), and error informa-
tion.

IV. EXPERIMENTS & EVALUATIONS

In this section, we present a series of experiments designed
to assess the efficacy of our new robot arm. Our experi-
ments focus on evaluating the following characteristics: Impact



Fig. 4: Experimental setup for the collision force measure-
ments. A Pilz PRMS is mounted to a table onto which the
end effector of the robot is colliding.
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Fig. 5: Collision force map depicting peak impact forces
resulting from varying impact velocities and contact scenarios
for our robot, alongside the Franka Emika Panda and the
Universal Robot UR5e for comparison. Our findings reveal
that our robot, when operating at high velocities, generates
impact forces akin to those exhibited by the other two robots
at considerably lower velocities. We express our gratitude to
Kirschner et al. [22] for generously sharing the impact data
for the Panda and UR5e robot arms.

safety, robustness, ease of control, and the ability to perform
rapid and precise movements.

A. Evaluating Impact Safety

One of the main goals of our robot arm is to ensure superior
impact safety compared to traditional motor-driven systems.
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30

40

50

te
m

pe
ra

tu
re

[°
C

]

(b) Thermal image

0 10 20 30

30

40

50

time [min]

te
m

pe
ra

tu
re

[°
C

]

PAMY1 PAMY2

(c) Temperature measured over time

Fig. 6: Experiment comparing the friction of our Bowden tubes
(top) with those utilized by [7] (bottom). The experimental
setup is illustrated in (a): Both types of Bowden tubes are
actuated by rapidly switching muscles of the same type. The
thermal camera’s heat map (b) and the temperature evolution
over time (c) both show a significantly lower temperature
increase for our Bowden tubes. As the temperature increase is
caused by friction, this finding implies that our Bowden tubes
exhibit significantly lower friction.

We achieve this objective primarily through the tendon-driven
design, which relocates the heavy actuators to the robot base.
Although the use of compliant actuators contributes to the
overall safety of the robot, the system’s inertia primarily
determines the peak force at impact.

To evaluate the impact safety of our robot, we examine
the peak force occurring during potential collisions. For our
experiments, we employ the Pilz Robot Measurement System
(PRMS) to measure forces during collisions. This device
comprises a one-dimensional load cell, a spring, and a rubber
cover. Various springs and covers are available to adjust the
stiffness and hardness according to different human body
parts as specified by ISO/TS 15066:2016 [12]. This technical
specification introduces a model of the human body, covering

TABLE I: Definition of contact conditions based on ISO/TS
15066 [12].

No. Body part Stiffness Hardness Pain Threshold

1 Skull 150 N/mm 70 ShA 130 N
2 Face/hand 75 N/mm 70 ShA 65 N
3 Lower legs 60 N/mm 30 ShA 260 N
4 Thighs 50 N/mm 30 ShA 300 N
5 Neck 50 N/mm 70 ShA 440 N
6 Lower arms 40 N/mm 70 ShA 320 N
7 Back 35 N/mm 30 ShA 420 N
8 Upper arms 30 N/mm 30 ShA 300 N
9 Chest 25 N/mm 70 ShA 280 N
10 Abdomen 10 N/mm 10 ShA 220 N
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Fig. 7: Target pressures during an episode of the long-term experiment. All actions are executed open-loop. An episode consists
of multisine signals with a frequency of up to 10Hz which are randomly sampled before each episode to explore different
areas of the state space. A reset motion sequence is aimed at minimizing the robot’s final position dependence on its previous
state. At the end of this reset sequence, the repeatability measurement is taken to assess PAMY2’s consistency and repeatability
across the duration of the experiment. Finally, there are movements executed from sets of fixed target pressures at lower and
higher speed.

21 body regions. For each body region, it provides contact
conditions and a pain tolerance, which we display in Table I.

We compare our measurements to the results obtained in
previous studies by Kirschner et al. [22, 23]. To ensure that
our measurements accurately reflect the impact safety of our
robot, we measure the generated forces at a position close
to the robot center. This position ensures that most of the
robot’s mass contributes to the peak force experienced during
a collision. Figure 4 illustrates the robot’s position during the
measurements. To collect the data, we execute trajectories
with linear changes in muscle pressure. Upon detecting a
sudden change in velocity, indicating a collision, we halt the
movement by keeping the target pressure fixed. By modifying
the rate of change of the target pressure, we evaluate the
impact safety of our robot at various velocities.

Figure 5 shows peak forces during collisions for our tendon-
driven arm and for the Franka Emika Panda and Universal
Robots UR5e, two conventional motor-driven systems, inves-
tigated in prior research. The results clearly show the superior
impact safety of our robot, as it achieves similar contact forces
while moving at almost four times the speed.

However, it is important to emphasize that although our
tendon-driven arm is significantly safer compared to other
robotic arms, it could still cause serious injuries if a human is
struck with full force at high speeds. Future work should focus

on further enhancing the safety of our system by combining its
inherently safer hardware design with algorithmic approaches,
additional sensors, or safety mechanisms.

B. Evaluating Robustness

Reinforcement learning enables robots to achieve high per-
formance in complex tasks. However, for these approaches,
training for long durations is crucial. We aim to produce a
system that lasts and is reliable and, therefore, minimize the
main contributor to failure: friction.

1) Friction Quantification: Friction plays a significant role
in tendon-driven robots as it converts kinetic energy into
thermal energy. Because it is widely acknowledged that using
ball bearings instead of sliding contact bearings is an effective
way to reduce friction, we focus our experiments on evaluating
the other major source of friction in our tendon-driven robot:
the Bowden tubes.

Higher friction implies that more heat is generated in the
Bowden tubes. Therefore, we compare the friction in our
Bowden tubes with the original system from [7] by capturing
the heat generated during operation with a thermal camera.
We set up an experiment where two muscles are connected
directly using a Bowden tube, as shown in Figure 6a. The
antagonistic muscle pair is contracted in an alternating manner
at a frequency of 3.33Hz for 30 minutes. Figure 6b displays
the thermal image captured at the end of the experiment, which
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Fig. 8: Moving mean position relative to the initial mean
position q̄moving−q̄0 and the standard deviation (σ̄q)moving of the
robot’s final position after the open-loop reset motion during
the approximately 25 days of the long-term experiment. It uses
a moving average window of 400 episodes. A stable mean
position (a) alongside a small and slightly decreasing stan-
dard deviation (b) over time indicates consistent performance
throughout the long-term experiment.

indicates that our Bowden tube remained substantially cooler
than the original. A more detailed analysis of the temperature
change in the two Bowden tubes can be seen in Figure 6c.
The data points in the plot represent the median temperature
of the five hottest pixels in the corresponding Bowden tube’s
image region. The graph illustrates that the temperature of the
original tubes rises more rapidly and ultimately converges to a
higher value. These measurements confirm that the design of
our Bowden tubes offers significantly lower friction than the
original system.

2) Long-term Dynamic Motions: Learning complex skills
with real robots often necessitates numerous interactions with
the environment. To showcase our robot’s capability in col-
lecting the data required for mastering dynamic tasks, we
conducted a long-term experiment involving various dynamic
movements. This experiment evaluates the system’s reliability
and robustness over extended periods.

We designed an array of movement patterns, encompassing
random multisine signals, fixed target pressure movements
with varying time intervals, and reset motions. The reset
motion, executed in an open-loop fashion without feedback
from joint position measurements, involves moving to medium
pressures, then to minimum pressures, and finally to medium
pressures again. This particular reset motion was chosen to
make the final position more independent of the preceding

position or motion, thus making differences in this position
more indicative of changes in hardware. Figure 7 displays the
actuation signal for one episode of the long-term experiment.

During the experiment, the robot operated continuously for
approximately 25 days, amassing a comprehensive dataset of
diverse robotic motions. The data was recorded at a high
sampling rate of 500Hz. The dataset includes the observed and
desired pressure for each muscle, the position, and velocity of
each joint, as well as timestamps.

Throughout the long-term experiments, the robot exhibited
a high level of robustness and reliability, with no significant
signs of wear or damage. This outcome underscores the
effectiveness of our design in ensuring the robot’s durability
during dynamic tasks.

To quantitatively assess the system’s repeatability, we ana-
lyzed the robot’s final position after executing the reset motion
multiple times. The small deviation in the final positions,
illustrated in Figure 8, indicates that the system maintains
consistent performance even after prolonged usage. This re-
peatability is crucial for successful reinforcement learning, as
it ensures the robot can reliably execute learned policies.

C. Evaluating Ease of Control

1) Increased Linearity: We employ the method proposed
by Ma et al. [27] for system identification in the frequency
domain to quantify the nonlinearity in PAMY1 and PAMY2.
Each degree of freedom is treated as a single-input and
single-output (SISO) system. We design ten different exci-
tation signals with the same frequency spectrum and ten
randomly chosen phase spectra, exciting the frequency lines
Ω = {0.1Hz, 0.2Hz, . . . , 10Hz}.

We excite each degree of freedom individually. Each ex-
citation signal is applied for ten periods continuously, and
the response signals of the first two periods are discarded
to avoid the effect of transients. Let U i(jωk) and Y i(jωk)
with i = 1, . . . , p and ωk ∈ Ω denote the discrete Fourier
transformation (DFT) of the input (difference in target pressure
for antagonistic muscle pairs) and output signals (joint angles)
of the i-th period, respectively, where p represents the total
number of periods after discarding (here p = 8), and j =

√
−1

denotes the imaginary number. First of all, we calculate the
average value of the input and output signals in the frequency
domain over all the different periods.

Ŷ (jωk) =
1

p

p∑
i=1

Y i(jωk) (1)

Û(jωk) =
1

p

p∑
i=1

U i(jωk) (2)

The average frequency response function (FRF) Ĝ is given by

Ĝ(jωk) =
Ŷ (jωk)

Û(jωk)
. (3)

Since the identified system is nonlinear, the discrepancy
between the measured average FRFs that arises when having
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(c) Third DoF

Fig. 9: Comparison of the linearity between PAMY1 (index 1) and PAMY2 (index 2). The new system demonstrates increased
amplitude (A) and a higher bandwidth across all DoFs (first row). The second row shows the absolute level of nonlinearity
of the two systems. To make this nonlinearity between the systems comparable, we examine the SNLR (third row), which is
significantly lower for the first two DoFs at most frequencies, and marginally lower for the third DoF at lower frequencies.
These findings underscore the enhanced tracking performance and reduced nonlinearity of the new system.

excitation signals with different phase spectra provides a
means to characterize the nonlinearities. If the system were
linear, then applying excitation signals with different phase
realizations would not affect the average FRF. First, we
calculate the corresponding average FRF Ĝl, l = 1, . . . ,m
for each input signal according to Equation (3), where the
superscript l refers to the different excitation signals (here
m = 10). Then, the average FRF over all excitation signals is
given by

ĜBLA(jωk) =
1

m

m∑
l=1

Ĝl(jωk), (4)

where the subscript BLA refers to “Best Linear Approxima-
tion”. Lastly, an estimate of the system’s nonlinearity is given
by

σ̂2
nl(jωk) =

1

m(m− 1)

m∑
l=1

∣∣∣Ĝl(jωk)− ĜBLA(jωk)
∣∣∣2 , (5)

where the subscript nl refers to “nonlinearity”.
We note that the absolute value of σ̂2

nl is not a good indicator
since it would be affected by a simple re-scaling of the output
variable. To better compare the degree of nonlinearity of the
two systems, we define the signal-to-nonlinearity ratio (SNLR)
as

SNLR(jωk) =


∣∣∣ĜBLA(jωk)

∣∣∣
σ̂nl

2

. (6)

Figure 9 displays the system identification results. We ob-
serve that the new system exhibits higher amplitudes compared
to the old system, indicating improved tracking of dynamic

motions. At the same time, each system’s degree of nonlin-
earity and amplitude show the same trend. The third row shows
the ratio of the SNLR for the two systems. We notice that in
a large portion of the frequency spectrum, the SNLR value
of the old system is significantly smaller than that of the
new system, especially for the first and second DoF. When
adjusted for amplitude, this result shows that the new system
has significantly lower nonlinearity than the old system. This
indicates that the new system is easier to control, which we
will demonstrate in the next experiment.

2) Learning a Dynamic Task: To demonstrate our system’s
capabilities in a highly dynamic task, we repeat the table
tennis smashing experiment from [9]. This task employs a
reward function, detailed in [9], that includes both the ball’s
speed and accuracy concerning a target location on the other
side of the table. It is a good demonstration of the robot’s
potential, as it requires rapid and precise movements, as well
as high forces to accelerate the ball to high velocities. Similar
to Büchler et al. [9], we train the robot in a Hybrid-Sim-and-
Real setup (HySR), with the real robot and a simulated ball
as shown in Figure 10. After training, the robot can return
real balls with high speeds, albeit training only with simulated
balls.

We use a stochastic policy, with actions being changes
in target pressures, and use Proximal Policy Optimization
(PPO) [35] as the backbone RL algorithm. Although there
were changes in the software, we aimed to keep the setup as
similar as possible to [9] to allow for a direct performance
comparison. It is worth noting that the learning hyperparam-
eters were optimized for the old system, and we decided not
to adapt or optimize them further for our new system to



(a) Initial position (b) Smashing motion

Fig. 10: Table tennis smashing experiment with PAMY2. In the HySR setup, we learn with a real robot and a simulated ball.
The robot’s initial position at the beginning of an episode is shown in (a). During the training, the robot learns a motion in
which it first draws back to generate momentum before striking the ball (b). The racket reaches speeds of up to 12m/s during
this motion.
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(R=68.5 cm)

Fig. 11: Results of the table tennis smashing experiment. Compared to the design of Büchler et al. [7, 8], PAMY2 reaches
a significantly higher final reward (a). Analyzing this result in detail, we find that it returns balls with higher average speed
(b), but at the same time also hits the ball more often (c), and more often the ball lands close to the target position (d). This
experiment demonstrates the benefits of the new design for motions that are highly dynamic but also precise.

ensure that any performance gains are caused by hardware
improvements, not by hyperparameter changes.

As a result of the increased activation bandwidth and also
due to the robot discovering an effective strategy of moving
along the joint limit of the second DoF before striking the
ball, we found that the learning algorithm frequently pushed
the robot towards its joint limits, which is detrimental to the
robot’s longevity. To address this issue and minimize wear and
tear on the robot, we introduced a minor term to the reward
function that discourages reaching the joint limits. Crucially,
aside from this adjustment, no further safety measures are
necessary, underscoring the inherent robustness of the PAMY2
design.

Figure 11 shows that the new design, PAMY2, achieves
significantly higher ball speeds than the design of Büchler
et al. [7, 8]. Despite the higher ball speeds, it is also more
precise in terms of more frequent ball contacts and lower
distance to the ball’s target location. When evaluating the
trained policy with real balls instead of simulated balls, we

achieve similar ball speeds of 20m/s. To our knowledge, this
is the fastest robot table tennis play to date and comparable
to professional human players [25]. Overall, PAMY2 reaches
performance far superior to PAMY1, demonstrating the ben-
efits of the improved design for highly dynamic and precise
motions.

V. DISCUSSION AND CONCLUSION

In this paper, we have presented a novel 4-DoF tendon-
driven robot arm actuated by PAMs. Our design focuses on
reducing friction, passive compliance, and inherent impact
safety, allowing the robot to operate efficiently and safely
during dynamic tasks. Through various experiments, we have
demonstrated the effectiveness of our robotic arm in terms of
these design goals.

Our work contributes to the growing field of soft robotics,
which aims to create more adaptable and safer robots,
particularly for human-robot interaction scenarios. Although
our robot arm showcases several advantages over traditional



motor-driven systems, there are limitations to our design.
Despite the improvements in terms of ease of control, PAM-
driven systems still face challenges in achieving the repeata-
bility and precision offered by their motor-driven counterparts.
Identifying the optimal set of tasks for our robot arm, where
the benefits of safety and dynamic performance outweigh
the limitations, is an important avenue for future research.
Recent advances in machine learning for robotics hold great
opportunities for enhancing the capabilities of robots like ours.
In the table tennis task, we showed that with our improved
design, and by leveraging data-driven approaches, it is possible
to develop advanced control strategies that address the inherent
challenges of PAM-driven systems.

Our work represents a step forward in the development of
robotic systems that can achieve high performance while main-
taining safety in shared human environments. By making our
design and resources open-source, we hope to inspire future
research efforts that build upon and refine our work, fostering
a new generation of collaborative and versatile robots.
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