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ABSTRACT

Meta-learning, or learning to learn, aims to develop algorithms that can quickly
adapt to new tasks and environments. Model-agnostic meta-learning (MAML),
proposed as a bi-level optimization problem, is widely used as a baseline for
gradient-based meta-learning algorithms that learn meta-parameters. In MAML,
task-specific parameters are adapted independently in the inner-loop. After learn-
ing the task-specific parameters, the meta-parameters are learned in the outer-loop
by minimizing the average task loss. After MAML, some gradient-based meta-
learning research has explored objectives beyond average task losses, such as
minimizing worst-case task losses for risk management and improving zero-shot
performance in unadaptable environments. However, if the purpose of learning
meta-parameters changes, the inner-loop formulation must change accordingly.
Therefore, we propose a novel gradient-based meta-learning framework that im-
poses joint strategy sets and utility functions among tasks, making each task af-
fected by other tasks. To solve this complex problem, we first show the proposed
framework can be formulated as a generalized Stackelberg game. After that, we
propose the NashMAML algorithm to compute the generalized Stackelberg equi-
librium of this model and theoretically prove its convergence. We validate our
approach on sinusoidal regression and few-shot image classification tasks. The
results demonstrate that our approach outperforms previous methods in handling
few-shot learning problems.

1 INTRODUCTION

Meta-learning, also known as learning to learn (Thrun & Pratt, 1998), aims to develop algorithms
that enable more efficient adaptation to new unseen tasks, but similar to previous tasks, by learning
from a variety of tasks. To achieve this goal, meta-learning algorithms are trained on a set of related
tasks or domains to learn a more general set of skills (Nam et al., 2022) or priors (Finn et al., 2018;
Kim et al., 2018) that can be applied to new tasks with limited data. Among them, model-agnostic
meta-learning (MAML) (Finn et al., 2017) is a gradient-based meta-learning algorithm that can be
applied to various different problems.

After the emergence of MAML, numerous follow-up studies have been conducted within the ma-
chine learning community (Nichol et al., 2018; Zintgraf et al., 2019; Rajeswaran et al., 2019). These
studies formulate meta-learning as a bi-level optimization problem and find an optimal solution via
learning task-specific parameters independently in the inner-loop (lower level problem) first, then
learning meta-parameters in the outer-loop (upper level problem) to minimize the average loss of the
tasks after adaptation. However, optimally minimizing the individual task losses in the inner-loop
may not essentially lead to minimizing the average loss in the outer-loop. Furthermore, if the goal
of the outer-loop changes, the current inner-loop formulation, which adapts the model to individual
tasks independently, does not help learn the meta-parameter. For instance, the purpose of learning
meta-parameters can involve minimizing the worst-case loss (Collins et al., 2020) for risk manage-
ment, enhancing zero-shot performance (Nooralahzadeh et al., 2020) in unadaptable environments,
or increasing training stability.

To address these limitations, we propose a new algorithm, Nash model-agnostic meta-learning
(NashMAML), which was inspired by the Nash equilibrium of a game, that enables alignment of
the learning objectives between the inner-loop and outer-loop. We formulate the NashMAML by
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Figure 1: The training process of NashMAML and MAML. The key feature of NashMAML is the
presence of feasible regions (blue region) of task parameters as determined by the joint strategy
sets. The task-specific parameters ϕ1, ϕ2 are projected to feasible regions whenever they are located
outside the feasible regions during the inner-loop training.

adding joint strategy sets and utility functions, both of which introduce the dependency among tasks
to the inner-loop. Depending on the form of the joint strategy sets and joint utility functions, the
NashMAML can be learned for various purposes. On the contrary, as shown in Figure 1, the con-
ventional approach of independently optimizing task-specific parameters is no longer available for
solving the inner-loop problem due to the influence of other task-specific parameters on each task.

To compute the joint optimal task-specific parameters, we adopt a game-theoretic interpretation,
wherein a batch of N tasks in the inner-loop is regarded as decision-makers who determine its task-
specific parameters. To be specific, we model the inne-loop problem of NashMAML as a generalized
Nash game for N tasks, whose solution is a generalized Nash equilibrium of the tasks. Furthermore,
we consider the meta-learner as a decision maker who determines meta-parameters before the task-
specific parameters are determined. Then, the bi-level interactions among the meta-learner and N
tasks can be formulated as a generalized Stackelberg game designed to model the interaction among
the leader and the followers (Stackelberg et al., 1952). The solution of the generalized Stackelberg
game is a generalized Stackelberg equilibrium.

Our main contributions to this paper are as follows:

• We interpret the current meta-learning algorithms’ formulation and solution concept from
a game-theoretical perspective.

• We propose a novel bi-level formulation of gradient-based meta-learning as a generalized
Stackelberg game. This formulation enables alignment of the learning objectives between
the inner-loop and outer-loop by incorporating joint strategy sets and utility functions be-
tween tasks.

• We propose a NashMAML algorithm, which can compute the equilibrium of the proposed
generalized Stackelberg game. We provide conditions for the convergence of NashMAML
algorithm and its convergence speed.

• We introduce a practical example of NashMAML by proposing a ball-shaped strategy set
and joint penalty function, suppressing task-specific parameters from moving away from
meta parameters. For the ball-shaped strategy set, we propose a methodology in which
computing the gradient with backpropagation is tractable.

• We demonstrate the proposed formulation’s and NashMAML algorithm’s effectiveness by
conducting a comparative analysis on sinusoidal regression and image classification tasks.
The results provide a potential for our approach to enhance performance, particularly in
problems with complex task distributions.

2 RELATED WORKS

2.1 COMPUTATIONAL APPROACHES OF MODEL-AGNOSTIC META-LEARNING

After the proposal of MAML, various follow-up studies have been introduced to address the chal-
lenges of MAML, mostly focusing on few-shot image classification tasks. Implicit MAML Ra-
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jeswaran et al. (2019) proposed Hessian-free methods, providing computational advantages com-
pared to explicit differentiation methods. The FOMAML Finn et al. (2017) and Reptile Nichol et al.
(2018) explore different strategies to approximate the outer-loop gradient update in MAML using
first-order approximation approaches, effectively reducing the memory and time complexity while
preserving performance. These studies share the objective, consistent with MAML, of minimizing
the average task loss.

2.2 VARIATIONS IN OBJECTIVES OF META-LEARNING

In addition to minimizing the average loss, various studies have been conducted with other ob-
jectives. Task-Robust MAML (Collins et al., 2020) and TaRo-BOBA (Gu et al., 2021) aim to
improve the worst-case performance by minimizing the maximum task loss. (Kim et al., 2018)
introduces Bayesian frameworks and designed a new meta-learning objective with chaser loss to
effectively model the uncertainty during the meta-learning process. In addition, instead of finding
meta-parameters that perform well after adaptation, (Nooralahzadeh et al., 2020; Verma et al., 2020)
focus on enhancing zero-shot performance.

3 PRELIMINARIES

3.1 GAME THEORY

Game theory is the discipline that models scenarios where multiple decision-makers aim to optimize
their respective objectives. A game consists of players who make decisions, their feasible regions (or
strategies), and their objective functions (or utilities). Depending on the representation methods and
information structures, there are various types of games. First, we discuss the N player (generalized)
Nash game (Nash Jr, 1950) in which N players make decisions simultaneously.

Definition 1 Let G =
〈
P, (ui)i∈P , (Ωi)i∈P

〉
be a N players’ generalized Nash game which is

formulated as

max
xi∈Ωi(x−i)

ui (xi,x−i),∀i ∈ P (1)

where P = {1, · · · , N} is a set of players and ui is the utility function of the player i, xi is the
player i’s decision belonging to their strategy set Ωi (x−i), x−i = (x1, · · · ,xi−1,xi+1, · · · ,xN )
is the player’s joint decision except player i. Then, we refer to x∗ ∈

∏
i∈P Ωi

(
x∗
−i

)
as a generalized

Nash equilibrium of the N player’s generalized Nash game G if it satisfies the following equation.

x∗
i = arg max

xi∈Ωi(x∗
−i)

ui

(
xi,x

∗
−i

)
,∀i ∈ P (2)

Let S (M) be a randomly selected M player which is a subset of N players, and x−i (M) =
(xj)j∈S(M)−{i} be the players’ joint decision except player i. Then, x∗ ∈

∏
i∈P Ωi is a generalized

M -subNash equilibrium if it satisfies the following equation for every S (M).

x∗
i = arg max

xi∈Ωi(x∗
−i(M))

ui

(
xi,x

∗
−i (M)

)
,∀i ∈ S (M) (3)

Let xVE ∈
∏

i∈P Ωi

(
xVE
−i

)
be a variational equilibrium of G if it satisfies the following variational

inequality. (
∂ui

(
xVE

)
∂xi

)T

i∈P

(
xVE − x

)
≥ 0,∀x ∈

∏
i∈P

Ωi (x−i) (4)

When the player i’s strategy set is independent of the other players’ decisions, we refer to G as a N
player’s Nash game. The Nash equilibrium, subNash equilibrium, and variational equilibrium of the
Nash game are defined in the same way as the equilibrium of the generalized Nash game described
in equations (2) - (4).
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Next, we discuss the 1 − N Stackelberg game, where a leader makes decisions first, and then N
followers make decisions simultaneously after observing the leader’s decision.

Definition 2 Let Γ =
〈
{1} ,F, uL, (ui)i∈F ,ΩL, (Ωi)i∈F

〉
be a 1 − N generalized Stackelberg

game where F = [N ] is a follower set, uL is an utility function of a leader, ui is an utility function
of follower i, ΩL is a strategy set of a leader, Ωi is a strategy set of follower i. When the follower i’s
strategy set is independent of the other followers’ decisions, we refer to Γ as a 1 − N Stackelberg
game. Then, (y∗,x∗) ∈ ΩL ×

∏
i∈F Ωi

(
y∗,x∗

−i

)
is a optimal solution if it satisfies the following

equation.

sup
x∗(y∗)∈S(y)

uL (y∗,x∗ (y∗)) ≥ sup
x∗(y)∈S(y)

uL (y,x∗ (y)),∀y ∈ ΩL (5)

where S (y) is a generalized Nash equilibrium of the N followers’ (generalized) Nash game given
leader’s decision y. In detail, (y∗,x∗) ∈ ΩL ×

∏
i∈F Ωi

(
y∗,x∗

−i

)
is a (generalized) Stackel-

berg equilibrium if S is a set of (generalized) Nash equilibrium of followers, a (generalized) M -
subStackelberg equilibrium if S is a set of (generalized) M -subNash equilibrium, and a variational
Stackelberg equilibrium if S is a set of variational equilibrium of followers.

3.2 GAME THEORETICAL INTERPRETATION OF MAML

The meta-learning problem is generally modeled as bi-level programming (1− 1 Stackelberg game)
since tasks are independent of each other. The purpose of solving task i is to learn task-specific pa-
rameters ϕi using a datasetDtr

i to minimize the loss functionL (ϕi;Dtr
i ). Then, the meta-parameters

θ aim to minimize the average loss across all the tasks.

The problem that model-agnostic meta-learning (MAML) and first-order MAML (FOMAML) al-
gorithms intend to solve is defined as the bi-level programming as follows.

θ∗ = arg min
θ∈Rd

F (θ) :=
1

N

N∑
i=1

L
(
ϕ∗
i (θ) ;Dval

i

)
(6)

ϕ∗
i (θ) = arg min

ϕi∈Rd
L
(
ϕi;Dtr

i

)
,∀i ∈ [N ] := {1, · · · , N} (7)

The MAML (Finn et al., 2017) and FOMAML (Nichol et al., 2018) formulation reflect that task-
specific parameter vector ϕi is close to the meta-parameter vector θ not through the problem struc-
ture but by controlling the number of inner steps. They approximately compute ϕ∗

i ∼ ϕ̂i =

θ−α∂L(θ;Dtr
i )

∂ϕi
through the finite number of gradient updates. However, since ϕ̂i is different from the

optimal task-specific parameters ϕ∗
i (θ) as defined in equation (7), the resulting meta-parameters is

not the optimal solution (Stackelberg equilibrium) of the bi-level programming in equations (6)-(7).

The MAML and FOMAML algorithms have limitations in that they control the proximity of task-
specific parameters to the meta-parameters through the number of inner steps rather than the problem
formulation. It means that the meta-parameters computed by adjusting the number of inner steps are
not the optimal meta-parameters θ∗ as defined in equation (6). Therefore, MAML and FOMAML
algorithms have poorer performance than other meta-learning algorithms that compute the optimal
meta-parameters.

The game theoretic interpretations for implicit MAML (iMAML) and fast context adaptation via
meta-learning (CAVIA) algorithms, which are famous extensions of MAML, are discussed in Ap-
pendix A.

4 NASH MODEL-AGNOSTIC META-LEARNING

MAML has a fixed formulation of the lower level problem designed to improve task adaptation
performance. However, if the purpose of learning meta-parameters at the upper level changes, it is
necessary to change the lower level formulation accordingly. For instance, the objective of learn-
ing meta-parameters may extend beyond merely minimizing the average task loss. It can involve
minimizing the worst-case loss for risk management, enhancing zero-shot performance in unadapt-
able environments, or increasing training stability. To address this issue, we present a novel bi-level
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formulation and algorithm that considers the mutual interaction among tasks of the same batch
by applying joint strategy sets or utility functions based on the formulation of MAML. Note that,
this framework can be generally adapted to other gradient-based meta-learning algorithms, such as
iMAML and CAVIA.

4.1 FORMULATION

First, we formulate the target problem of NashMALM from a stochastic optimization perspective.
We denote the joint task-specific parameter (ϕi)i as ϕ, and N randomly sampling joint task-specific
parameter except parameter i, (ϕj)j∈S(N)−i, as ϕ−i where S (N) = {i|Ti ∼ p (T )} is the set of N
randomly sampling tasks’ index. The target problem of the NashMAML algorithm where the batch
size is N is the following stochastic bi-level problem and its optimal solution is (θ∗,ϕ∗ (θ∗)).

θ∗ = arg min
θ∈Rd

ETi∼p(T ) [Li (θ, ϕ
∗
i (θ))] (8)

ϕ∗
i (θ) = arg min

ϕi∈Ωi(ϕ∗
−i(θ),θ)

fi
(
ϕi, ϕ

∗
−i (θ) , θ

)
(9)

where task i’s strategy set Ωi

(
ϕ∗
−i (θ) , θ

)
depends on the other task-specific parameters ϕ−i, and

task i’s utility function fi (ϕi, ϕ−i, θ) = Li (ϕi) + g (ϕi, ϕ−i, θ) is the sum of task i’s loss function
Li and g, the function affected by the ϕ−i and θ. This formulation makes the lower level problem
target other purposes, other than task loss, imposed by Ωi and g.

However, in practice, learning meta-parameters is conducted in batch units, and the problems
addressed during a single meta-parameters update can be precisely formulated. We model the
single meta-parameter’s gradient update of the NashMAML algorithm as a 1 − N generalized
Stackelberg game Γ =

〈
{1} , [N ] , F, (fi)i∈[N ] ,Rd, (Ωi)i∈[N ]

〉
where leader’s decision is a meta-

parameter θ, and followers’ decision are their respective task-specific parameter ϕi. The set of
the follower is [N ] = {1, · · · , N} where N is batch size, leader’s utility function is F (θ,ϕ) =

1
N

N∑
i=1

Li

(
ϕi;Dval

i

)
, follower i’s utility function is fi (ϕi, ϕ−i, θ) = Li (ϕi;Dtr

i ) + g (ϕi, ϕ−i, θ),

leader’s strategy set is Rd, and follower i’s strategy set is Ωi. Then, the optimal solution
(θ,ϕ∗ (θ)) ∈ Rd × Ω (θ) of Γ satisfies the following equations (10) and (11) where Ω (θ) =∏

i∈[N ] Ωi

(
θ, ϕ∗

−i (θ)
)

is a generalized Stackelberg equilibrium.

θ∗ = arg min
θ∈Rd

F (θ,ϕ∗ (θ)) (10)

ϕ∗
i (θ) = arg min

ϕi∈Ωi(ϕ∗
−i(θ),θ)

fi
(
ϕi, ϕ

∗
−i (θ) , θ

)
,∀i ∈ [N ] (11)

where ϕ = (ϕi)i∈[N ] is a joint task-specific parameter and ϕ−i = (ϕ1, · · · , ϕi−1, ϕi+1, · · · , ϕN ) is
a joint task-specific parameter except task i ∈ [N ].

4.2 ALGORITHM

In the NashMAML algorithm, we first compute the generalized Nash equilibrium ϕ∗ (θ) =
(ϕ∗

i (θ))i∈[N ] of the lower level problem as defined in equation (11). Next, we explicitly com-

pute dϕ∗(θ)
dθ through back-propagation of ϕ∗ (θ) to obtain the optimal meta-parameters θ∗. Thus, the

solution computed by the NashMAML algorithm is a generalized N -subStackelberg equilibrium of
the generalized Stackelberg game as formulated by equations (8)-(9). We describe the NashMAML
algorithm, which is an extension of MAML, in the Algorithm 1, detailed in Appendix B. The dif-
ference between NashMAML and MAML is that including a projection step onto the strategy set if
the joint task-specific parameter is not feasible for the strategy set.

4.3 THEORETICAL RESULT

First, we define the following estimator to measure the error of the estimated gradient.
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Table 1: Complexity for the meta-learning algorithms

Algorithm Iteration complexity Memory

MAML (GD, full back-prop) κ log (D/δ) Mem (∇Li)κ log (D/δ)
MAML (Nesterov’s AGD, full back-prop)

√
κ log (D/δ) Mem (∇Li)

√
κ log (D/δ)

implicit MAML (Nesterov’s AGD)
√
κ log (D/δ) Mem (∇Li)

NashMAML (PRGD, full back-prop) κ log (D/δ) Mem (∇Li)κ log (D/δ)

Definition 3 Let the joint task-specific parameter ϕ̂ be a solution estimated by a computing algo-
rithm (e.g. PRGD method). Then, ϕ̂ is a δ-accurate estimation of the optimal joint task-specific
parameter ϕ∗ if it satisfies the following: ∥∥∥ϕ̂− ϕ∗

∥∥∥ ≤ δ (12)

Definition 4 Let d̂F
dθ be an approximated gradient of the meta loss function. Then, ĥθ is an ϵ-

accurate estimation of the meta loss function if it satisfies the following:∥∥∥∥∥ d̂

dθ
F
(
θ, ϕ̂

)
− ĥθ

(
θ, ϕ̂

)∥∥∥∥∥ ≤ ϵ (13)

Table 1 summarizes the iteration complexity to compute dϕ∗(θ)
dθ of NashMAML and the conventional

meta-learning algorithms, MAML and iMAML. Importantly, the iteration complexity to compute
dϕ̂i(θ)

dθ of the NashMAML is equivalent to the conventional algorithms as O (log(D/δ)) from the
perspective of error, δ. Moreover, the memory complexity of the NashMAML is equivalent to the
conventional algorithm as O (Mem (∇Li)κ log (D/δ)) where Mem (∇Li) is the memory taken to
compute a single derivative ∇Li (Rajeswaran et al., 2019). We discuss the complexity to compute
dϕ̂i(θ)

dθ in the following theorem.

Theorem 1 Let D be the diameter of search space of the joint task-specific parameter ϕ =
(ϕi)i∈[N ] in the inner optimization problem (i.e. ∥ϕ − ϕ∗ (θ) ∥ ≤ D). Suppose that the projected
reflected gradient descent (PRGD) method (Malitsky, 2015) is used to compute the δ-accurate esti-
mation of the optimal joint task-specific parameter ϕ̂ =

(
ϕ̂i

)
i∈[N ]

of the generalized Nash equilib-

rium, which is the convergent point of the inner-loop of the NashMAML algorithm. Under Assump-
tion 1, the NashMAML algorithm computes ϕ̂ with O (κ log (D/δ)) number of iterations, and only
O (Mem (∇Li)κ log (D/δ)) memory is required throughout.

The remaining part covers the algorithm for finding the equilibrium of the lower level which holds
not only for the PRGD method but also for general cases. The second main result is that we compute
the error of the estimated gradient ĥθ through back-propagation is bounded by a weighted sum of
the error in estimating task-specific parameters ϕ and the error in estimating gradient through back-
propagation.

Theorem 2 Let θ be a given meta-parameter, ϕ∗ be an optimal task-specific parameter, ϕ̂ be a
δ-accurate estimated task-specific parameter, and ĥθ be an ϵ-accurate estimated gradient of F with
respect to θ computed through back-propagation. Under Assumption 2, the difference between the
ϵ-accurate estimated gradient ĥθ and the gradient of the optimal meta loss function F with respect
to θ, dF

dθ , is bounded by the weighted sum of the error in estimating ϕ∗ and the error in estimating
the gradient through back-propagation. That is,∥∥∥∥ d

dθ
F (θ,ϕ∗ (θ))− ĥθ

(
θ, ϕ̂

)∥∥∥∥ ≤ C
∥∥∥ϕ∗ (θ)− ϕ̂

∥∥∥+ ∥∥∥∥∥ d̂

dθ
F
(
θ, ϕ̂

)
− ĥθ

(
θ, ϕ̂

)∥∥∥∥∥
≤ Cδ + ϵ (14)

where C = L1 +
C1L4+C2L2

µ1+µ2
+ C1C2(L3+L5)

(µ1+µ2)
2 .
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Now, we prove the convergence of the NashMAML algorithm in Theorem 3, and prove the con-
vergent point of the NashMAML algorithm is the generalized subStackelberg equilibrium of the
stochastic optimization problem described in equations (8) and (9) in Theorem 4.

Theorem 3 Let (θ∗,ϕ∗ (θ∗)) be a convergent point of the NashMAML algorithm, and L (θ) be an
expected optimal meta loss function, that is, L (θ) = ETi∼p(T ) [F (θ,ϕ∗ (θ))]. Under Assumptions
1, 2, and 3, the following statements hold.

• The expected difference of the meta-parameter ETi∼p(T )

[∥∥θk+1 − θk
∥∥2] is bounded.

• The expected difference of the optimal meta loss function L
(
θk+1

)
−L

(
θk
)

is bounded.

• The expected error of the optimal meta loss function of the convergent point L (θ∗)−L
(
θk
)

is bounded.

Theorem 4 Let (θ∗,ϕ∗ (θ∗)) be an optimal solution of the stochastic optimization problem de-
scribed in equations (8) and (9) which is the target problem of the NashMAML algorithm. We de-
note the expected meta loss function of the stochastic optimization problem ETi∼p(T ) [Li (θ,ϕ

∗ (θ))]

as E [L∗
i (θ)]. Let δ and δ̄ are the convergence criterion of the inner-loop and the outer-loop,

respectively. Then, under Assumptions 1, 2, and 3, the NashMAML algorithm with step size
β ≤ δ̄√

4C2δ2+4
(
C̄1+

C1C2
µ1+µ2

)2
compute the optimal solution of the stochastic optimization problem

described in equations (8) and (9) with the convergence speed O
(
max

{
k2b , k

2
σ, k

2
σ̄

})
and error

E [L∗
i (θ

∗)]− E
[
L∗
i

(
θk
)]
≤ L6

2
δ̄2 +

C2δ2 −
(
C̄1 +

C1C2

µ1+µ2

)2
√

C2δ2 +
(
C̄1 +

C1C2

µ1+µ2

)2 δ̄ (15)

where C = L1 +
C1L4+C2L2

µ1+µ2
+ C1C2(L3+L5)

(µ1+µ2)
2 .

Finally, we prove the convergent point of the NashMAML algorithm is always equivalent regardless
of the order of the gradient update and the initial meta-parameter and task-specific parameters in
Theorem 5.

Theorem 5 Under Assumption 1, 2, and 3, the NashMAML algorithm converges to the same optimal
solution of the stochastic optimization problem described in equations (8) and (9) regardless of the
order of the task-specific parameters’ gradient update in the inner-loop. Moreover, the NashMAML
algorithm converges to the optimal solution of the stochastic optimization problem described in
equations (8) and (9) regardless of the initial meta-parameter and initial task-specific parameters
under Assumption 4.

All proofs and details for the theorems are in Appendix C.2.

Overall, we prove that the NashMAML algorithm consistently converges to the same point, re-
gardless of the meta-parameters (initial parameter of task-specific parameters) or the order of task-
specific parameters updates within the same batch. We also show that this convergent point corre-
sponds to the generalized N-subStackelberg equilibrium of the equation (8)-(9)..

5 EXPERIMENTS

In this section, we propose two formulations for lower level problems to leverage optimal solu-
tions without overfitting individual tasks while balancing the impact of tasks on the training of
meta-parameters. After that, we present numerical experiments to demonstrate the potential of our
framework. Our primary focus is to validate the theoretical findings and provide empirical evidence
of the effectiveness of our proposed approach. For this purpose, we have chosen the 1D sine regres-
sion task as a representative example of a simple problem that clearly illustrates the core concepts
and benefits of our game-theoretical framework. To show the scalability of our practical algorithm,
we conduct experiments on few-shot image classification tasks.
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5.1 PRACTICAL FORMULATION OF NASHMAML

We conduct experiments with two different formulations of lower level problems. First, we for-
mulate the NashMAML with the penalty function by regularizing the distance between the meta-
parameter and the average of task-specific parameters as follows:

ϕ∗
i (θ) = argminLi (ϕi) +

λ

2

∥∥∥∥θ − ϕi +
∑

j ̸=i ϕj

N

∥∥∥∥
2

(16)

Second, we formulate the NashMAML with the joint strategy set by assigning a ball-shaped con-
straint that limits the sum of distances between the meta-parameter and each task-specific parameter
as follows

ϕ∗
i (θ) = arg min

ϕi∈Ωi(ϕ∗
−i(θ),θ)

Li (ϕi) (17)

where the joint feasible strategy set of the task i with hyperparameter r ∈ R+ is given by

Ωi (θ, ϕ−i) =

ϕi ∈ Rd

∣∣∣∣∣∣ ∥ϕi − θ∥22 +
∑
j ̸=i

∥ϕj − θ∥22 ≤ r2

 . (18)

The joint utility function and strategy set in equations (16) and (18) ensure that task-specific parame-
ters are influenced by meta-parameter and other task-specific parameters, thus preventing overfitting.
Specifically, we prove that backpropagation is possible through Algorithm 1 by establishing the dif-
ferentiability of the projection of task-specific parameters onto equation (18) in Appendix B.3.

5.2 SINUSOID REGRESSION

We consider 1D sine regression task, where each task instance Ti is a regression problem y =
ai sin(x−bi). Each task is the inference of the amplitude and phase from the sampled data. For each
task, the learner is given K samples where each sample xi is uniformly sampled from [−5.0, 5.0]
and tries to approximate the underlying function in terms of mean squared error (MSE). While
amplitude and phase are typically sampled from a uniform distribution, we experiment with settings
where both the training and test distribution for amplitude are skewed. In particular, we sample the
amplitude from [0.1, 1.05] ∪ [4.95, 5.0]. In this setting, naively minimizing the average loss of each
task without considering other tasks may lead to an unstability of training since the task distribution
has two separate modes.

First, we investigate the stability of training of our method. To compute training stability, we utilize
the standard deviation of training loss over the course of training. As shown in 5.2 (left), Nash-
MAML with constraint shows a consistently lower standard deviation of training loss.

Figure 5.2 presents a comprehensive comparison of the test mean MSE for all evaluated models.
As depicted in Figure 5.2 (middle), both versions of NashMAML consistently surpass MAML in
the sine regression task. We also thoroughly examine the properties of NashMAML concerning the
hyperparameter, radius (r). As illustrated in Figure 5.2 (right), NashMAML exhibits a high degree
of robustness with respect to variations in r.

5.3 IMAGE CLASSIFICATION

We evaluate our method on a popular few-shot image classification task, the Mini-ImageNet dataset.
It consists of 60,000 color images of size 84×84×3, 100 classes with 600 examples per class. We
use the split proposed by (Ravi & Larochelle, 2017), 64 for training, 16 for validation, and 20 for
test classes. Our objective is to solve the N -way K-shot classification problem, set up as follows:
Given N classes, we have access to K different instances of each of the N classes and evaluate the
performance of the model to classify new instances from the N classes.

We compare our framework with FOMAML, MAML, and iMAML. While these methods are not
state-of-the-art on this benchmark, they can provide an apples-to-apples comparison for studying
game-theoretical analysis of gradient-based meta-learning. We also anticipate that our perspective
can be extended to state-of-the-art meta-learning models with minor modifications. For a fair com-
parison, we use the identical convolutional architecture with baselines and follow the same training
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Figure 2: 1D sine regression task results. Experiment is conducted with 3 different random seeds,
mean and 95% confidence interval is reported.

procedure. To be specific, both models are trained with 5 inner gradient steps with a learning rate of
0.01 and evaluated using 10 gradient steps at test time.

Table 5.3 shows the experiment results on the Mini-ImageNet dataset. As shown in the table, Nash-
MAML outperforms baselines in both 1-shot and 5-shot cases. While FONashMAML does slightly
worse on the 1-shot task, it still outperforms baselines in the 5-shot task, whose performance is
close to NashMAML. It seems that our formulation, which makes task-specific parameters in the
inner-loop does not diverge excessively from the meta-parameters, and the generalized Stackelberg
equilibrium computed by the NashMAML algorithm effectively boosts the performance of meta-
learning algorithms in scalable settings.

Table 2: Mini-ImageNet 5-way K-shot results. FOMAML, MAML, and CAVIA results are taken
from the original works (Nichol & Schulman, 2018; Zintgraf et al., 2019).

5-way 1-shot 5-way 5-shot

MAML 48.70 ± 1.84 % 63.11 ± 0.92 %
NashMAML (Constraint) 51.70 ± 0.99 % 65.34 ± 0.65 %

NashMAML (Penalty) 48.81 ± 0.97% 62.95± 0.58%

FOMAML 48.07 ± 1.75 % 63.15 ± 0.91 %
FONashMAML (Constraint) 46.70 ± 0.99 % 64.12 ± 0.23 %

FONashMAML (Penalty) 46.81 ± 1.01 % 63.05 ± 0.43 %

CAVIA (32) 47.24 ± 0.65 % 59.05 ± 0.54 %
NashCAVIA (Constraint) 46.63 ± 0.91 % 59.48 ± 0.81 %

NashCAVIA (Penalty) 47.05 ± 0.93 % 60.27 ± 0.73 %

6 CONCLUSION

In this paper, we propose a novel algorithm called NashMAML, an extension of MAML. The Nash-
MAML algorithm introduces a new methodology for aligning the objective functions at the lower
level to accommodate various objectives that meta-learning problems may have, such as worst-case
and zero-shot performance. By assigning appropriate joint strategy sets and utility functions to the
lower level based on the given upper level objectives, NashMAML ensures that the upper and lower
levels share the same objectives, enabling effective learning for arbitrary objectives. In practice, we
present a formulation of NashMAML focused on enhancing the stability of training and validate it
through experiments in both sinusoidal regression and image classification tasks. In future research,
we plan to broaden the scope beyond zero-shot performance and explore a range of objectives, in-
cluding worst-case performance.
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A GAME THEORETIC INTERPRETATION OF EXTENSION OF MAML

A.1 IMAML

The implicit MAML (iMAML) (Rajeswaran et al., 2019) algorithm enforces the task-specific pa-
rameters to be close to the meta-parameters through the following bi-level problem (1-1 Stackelberg
game):

θ∗ = arg min
θ∈Rd

F (θ) :=
1

N

N∑
i=1

L
(
ϕ∗
i (θ) ;Dval

i

)
(19)

ϕ∗
i (θ) = arg min

ϕi∈Rd
L
(
ϕi;Dtr

i

)
+

λ

2
∥ϕi − θ∥2,∀i ∈ [N ] (20)

iMAML algorithm enforces the proximity of the task-specific parameters to the meta-parameters
through a penalty term λ

2 ∥ϕi − θ∥2. Given meta-parameters θ, the iMAML algorithm computes
the optimal task-specific parameters ϕ∗

i (θ) of the equation (20). Then, the meta-parameters’ gra-

dient dF (θ)
dθ is computed as

N∑
i=1

∂L(ϕi;Dval
i )

∂ϕi
× dϕ∗

i (θ)
dθ , while the iMAML algorithm computes dϕ∗

i (θ)
dθ

implicitly. The meta-parameters and task-specific parameters computed through the iMAML algo-
rithm are the optimal solutions (Stackelberg equilibrium) of the bi-level programming in equations
(19)-(20). The iMAML addresses the proximity of the task-specific parameter vector to the meta-
parameter vector in problem formulation, resulting in improved performance compared to MAML
and FOMAML (Rajeswaran et al., 2019).

A.2 CAVIA

The CAVIA (Zintgraf et al. (2019)) algorithm divides the model parameters into two partitions,
meta-parameter θ ∈ Rd and context parameter ϕ ∈ Rc. In training, CAVIA learns θ at the upper
level and ϕ at the lower level. Unlike MAML, CAVIA separates the model parameters learned at the
upper and lower levels. When modeling this as a bi-level problem, it can be described as follows:

θ∗ = arg min
θ∈Rd

F (θ) :=
1

N

N∑
i=1

L
(
θ, ϕ∗

i (θ) ;Dval
i

)
(21)

ϕ∗
i (θ) = arg min

ϕi∈Rc
L
(
θ, ϕi;Dtr

i

)
,∀i ∈ [N ] (22)

The CAVIA algorithm only uses additional context parameter ϕ to adapt to individual tasks at the
lower level. Instead, the original model parameter θ, which is shared across the tasks, is trained at the
upper level. The meta-parameters and task-specific parameters computed through the CAVIA algo-
rithm are the optimal solutions (Stackelberg equilibrium) of the bi-level programming in equations
(21)-(22)

B EXPERIMENT DETAILS

For implementing baselines, we try to follow existing implementations from authors. For FOMAML
and MAML, we use a PyTorch implementation available on github1. For CAVIA, we use a PyTorch
implementation available on github2. We slightly modified the MAML and CAVIA codebase to
implement our models. For all models, we perform experiments with Intel(R) Xeon(R) Gold 5317
CPU @ 3.00GHz and a single NVIDIA GeForce RTX 3090 GPU.

B.1 SINUSOIDAL REGRESSION

We follow typical training and evaluation procedure of sinusoid regression task. We set both inner
learning rate and meta learning rate to 1e-3 for all models. We use 2-layer multi-layer perceptron
(MLP) with 40 hidden units and ReLU activation. For all experiments, we train meta parameter
50,000 epochs with batch size of 25.

1https://github.com/dragen1860/MAML-Pytorch
2https://github.com/lmzintgraf/cavia
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B.2 IMAGE CLASSIFICATION

For MiniImagenet few-shot image classification tasks, we follow the training and evaluation proce-
dure of MAML. We use a meta batch size of 4 and 2 tasks for both models for 1-shot and 5-shot
training, respectively. We use SGD optimizer with learning rate 1e-2 as an inner optimizer and
Adam optimizer with learning rate 1e-3 as a meta optimizer. We train models with 60,000 itera-
tions. For evaluation, we sample 1,000 N -way K-shot classification task instances from test dataset
and compute the mean accuracy. For the CAVIA, we used the same network model described in the
original paper with 32 filters and 100 context parameters.

While we follow the original hyperparameter setting, we have an additional hyperparameter, ra-
dius r, and regularizing coefficient λ. We do hyperparameter tuning by searching optimal r in
{1.0, 2.0, 5.0, 10.0} and λ in {0.1, 1.0, 5.0, 10.0}, and report the best performance.

B.3 PROJECTION OF TASK-SPECIFIC PARAMETERS ON BALL-SHAPED STRATEGY SET

Theorem 6 Let the strategy set of task i for the joint task-specific parameter ϕ = (ϕ1, · · · , ϕN ) ∈
RN×d is given by Ωi(θ, ϕ−i) = {ϕi ∈ Rd | ∥ϕi − θ∥22 +

∑
j ̸=i

∥ϕj − θ∥22 ≤ r2} for the

fixed meta-parameter θ. That is, the joint strategy set is Ω (θ) =
N∏
i=1

Ωi (θ, ϕ−i (θ)) ={
ϕ ∈ RN×d

∣∣∣∣ N∑
i=1

∥ϕi − θ∥22 ≤ r2
}

. Suppose (ϕ1, · · · , ϕN ) /∈ Ω (θ), then the projected joint task-

specific parameter
(
ϕNash
1 , · · · , ϕNash

N

)
∈ RN×d of (ϕ1, · · · , ϕN ) onto Ω (θ) can be computed ex-

actly as follow:

ϕNash
i =

r × ϕi + (d− r)× θ

d
for i = 1, · · · , N (23)

where d =

(
N∑
i=1

∥ϕi − θ∥22
) 1

2

.

Proof. Note that the joint strategy set Ω (θ) limits the square sum of distances from meta-parameter

θ to each task-specific parameter ϕi. Specifically, d2 =
N∑
i=1

∥ϕi − θ∥22 is a square sum of distance

between to points ϕi ∈ Rd and θ ∈ Rd for i = 1, · · · , N . However, it also a square of the distance
between the two points A = (θ, · · · , θ) and B = (ϕ1, · · · , ϕN ) in RN×d. Since A is a fixed for the
given θ, the joint constraint in RN×d represents N × d− ball where the center is A and the radius
is r.

According to the property of a ball, projecting a point B outside the ball onto the surface of the ball
Ω (θ) can be done by finding the intersection point of the line segment connecting the point B and
the center of the ball A with the surface of the ball. Given that the distance between points A and
B is d, and the radius of the ball is r, the projection point can be obtained by applying the formula
for finding the internal division point of two points, which is shown as equation (23).

Since only multiplication, division, or root operation is used, this projection operation is differen-
tiable, which means that it is possible to backpropagate the gradient.

C THEOREM PROOFS

C.1 GAME THEORETICAL ANALYSIS OF THE NASHMAML ALGORITHM

In Algorithm 1, the converged joint task-specific parameter ϕ computed through projected reflected
gradient descent (PRGD) method is an estimated joint task-specific parameter of the optimal joint
task-specific parameter ϕ∗ (θ). The estimated gradient of meta loss function ĥθ

(
θk,ϕ

)
, which is

computed through back-propagation, is an approximation of d
dθF

(
θk,ϕ

)
.

The PRGD method, for the inner loop of NashMAML, effectively computes the variational equilib-
rium of the lower-level problem. However, the lower-level problem of this algorithm addressed in
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Algorithm 1 NashMAML

Require: p (T ): distribution over tasks
Require: α, β: step size hyperparameters

randomly initialize meta-parameters θ0
while

∥∥θk+1 − θk
∥∥ ≤ δ̄ do

initialize the set of task-specific parameters ϕi ← θk for i = 1, · · · , N
sample batch of tasks Ti ∼ p (T )
while ∥ϕ∗ − ϕ∥ ≤ δ do

for all Ti do
ϕi ← ϕi − α ∂

∂ϕi
fi
(
ϕi, ϕ−i, θ

k
)

end for
if (ϕ1, · · · , ϕN ) /∈ Ω (θ) then

(ϕ1, · · · , ϕN )← projΩ(θ) (ϕ1, · · · , ϕN )
end if

end while
Update θk+1 ← θk − βĥθ

(
θk,ϕ

)
end while

this paper is modeled as an N -player generalized normal-form game, and the optimal solution is a
generalized Nash equilibrium. Here, we discuss the relation between the generalized Nash equilib-
rium and variational equilibrium. First, we make the following assumption in order to discuss the
relationship between variational equilibrium and generalized Nash equilibrium.

Assumption 1 Suppose the following holds:

• Task i’s strategy set of Ωi for all tasks, and the joint strategy set
∏N

i=1 Ωi are closed and
convex.

• Task i’s loss function ∂fi
∂ϕi

is L-smooth for all task i, i.e.∥∥∥∥ ∂

∂ϕi
fi
(
ϕ1
i , ϕ−i, θ

)
− ∂

∂ϕi
fi
(
ϕ2
i , ϕ−i, θ

)∥∥∥∥ ≤ L
∥∥ϕ1

i − ϕ2
i

∥∥ ,∀ϕ1
i , ϕ

2
i (24)

• Task i’s loss function fi (ϕi, ϕ−i, θ) is strongly convex for all task i. It means that
fi (ϕi, ϕ−i, θ) is convex, and the partial gradient of loss function ∂

∂ϕi
fi (ϕi, ϕ−i, θ) is µ-

strongly monotone for all task i with condition number κ = L/µ. µ-strongly monotonicity
of the gradient of the task i’s loss function is represented as〈

∂

∂ϕi
fi
(
ϕ1
i , ϕ−i, θ

)
− ∂

∂ϕi
fi
(
ϕ2
i , ϕ−i, θ

)
, ϕ1

i − ϕ2
i

〉
≥ µ

∥∥ϕ1
i − ϕ2

i

∥∥2 ,∀ϕ1
i , ϕ

2
i (25)

Now, we discuss the existence and the uniqueness of the variational equilibrium for the lower-
level problem for the inner loop of the NashMAML algorithm, which is also a generalized Nash
equilibrium, and prove that the PRGD method always converges to a generalized Nash equilibrium
under the Assumption 1.

Lemma 1 Let G (θ) =
〈
[N ] , (fi (ϕi, ϕ−i, θ))i∈[N ] , (Ωi (θ, ϕ−i))i∈[N ]

〉
be a lower-level problem

of the 1−N generalized Stackelberg game Γ =
〈
{1} , [N ] , F, (fi)i∈[N ] ,Rd, (Ωi)i∈[N ]

〉
modeling

the one-step meta-parameter’s gradient update of the NashMAML algorithm, when meta-parameter
is θ. Then, there is the unique variational equilibrium of G (θ), and it is also a generalized Nash
equilibrium of G (θ).

Proof. By Assumption 1, G (θ) has the unique variational equilibrium by Theorem 2.3.3 of
(Facchinei & Pang, 2003), and it is also a generalized Nash equilibrium by Theorem 5 of (Facchinei
& Kanzow, 2010).
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Lemma 2 Let G (θ) =
〈
[N ] , (fi (ϕi, ϕ−i, θ))i∈[N ] , (Ωi (θ, ϕ−i))i∈[N ]

〉
be a lower-level problem

of the 1−N generalized Stackelberg game Γ =
〈
{1} , [N ] , F, (fi)i∈[N ] ,Rd, (Ωi)i∈[N ]

〉
modeling

the one-step meta-parameter’s gradient update of the NashMAML algorithm, when meta-parameter
is θ. Then, the PRGD method always converges to a generalized Nash equilibrium of G (θ) under
Assumption 1.

Proof. By Theorem 3.3 of (Malitsky, 2015), the PRGD method always converges to the unique
variational equilibrium of G (θ). By Lemma 1, the variational equilibrium computed by the PRGD
method is also a generalized Nash equilibrium of G (θ).

We prove the NashMAML algorithm always converges to the generalized N -subStackelberg equilib-
rium (θ∗,ϕ∗ (θ∗)) of the stochastic Stackelberg game described in equations (8) and (9) in Theorem
4. Note that the FONashMAML algorithm converges to a generalized N -subNash equilibrium since
a meta-parameter θ is updated with partial gradients like other task-specific parameters.

C.2 PROOF OF THEOREMS

We compute the implicit gradient for the generalized Stackelberg equilibrium of the 1 − N gener-
alized Stackelberg game Γ =

〈
{1} , [N ] , F, (fi)i∈[N ] ,Rd, (Ωi)i∈[N ]

〉
by transforming it into the

1− 1− 1 Stackelberg game Γ̂ =
〈
f1, f2, f3,Ω1,Ω2,Ω3

〉
(Jo et al., 2023).

Lemma 3 Let Γ =
〈
{1} , [N ] , F, (fi)i∈[N ] ,Rd, (Ωi)i∈[N ]

〉
be a 1 − N generalized Stackelberg

game modeling the one-step gradient update of meta-parameter for the NashMAML algorithm.
Then, the implicit gradient dϕ∗(θ)

dθ is computed as follows. Assume that every follower has an un-
constrained strategy set, that is, Ωi = Rd. Then, the implicit gradient is

dϕ∗ (θ)

dθ
= −P (ϕ∗ (θ) , θ)

−1
Q (ϕ∗ (θ) , θ) (26)

where

P (ϕ∗ (θ) , θ) =

[
∂

∂ϕ

[
∂Li (ϕ

∗
i (θ) ;Dtr

i )

∂ϕi

]T
i∈[N ]

+
∂2g (ϕ∗ (θ) , θ)

∂ϕ2

]

Q (ϕ∗ (θ) , θ) =
∂

∂θ

[
∂g (ϕ∗ (θ) , θ)

∂ϕ

]T
(27)

Proof. Let Γ̂ =
〈
f1, f2, f3,Ω1,Ω2,Ω3

〉
be a 1 − 1 − 1 Stackelberg game where f1 = F

is a first leader’s utility function and its decision variable θ in strategy set Ω1 = Rd, f2 =∑
i∈[N ]

(
∂fi
∂ϕi

)(
ϕi − ϕ̂i

)
is a second leader’s utility function and its decision variable ϕ in strategy

set Ω2 =
∏

i∈F Ωi (ϕ−i, θ), and f3 = −
∑

i∈[N ]

(
∂fi
∂ϕi

)(
ϕi − ϕ̂i

)
is a follower’s utility function and

its decision variable ϕ̂ in strategy set Ω3 =
∏

i∈F Ωi

(
ϕ̂−i, θ

)
. Then, the Stackelberg equilibrium(

θ∗,ϕ∗ (θ) , ϕ̂∗ (θ∗,ϕ∗ (θ))
)

of 1− 1− 1 Stackelberg game Γ̂ that satisfies equations (28) - (30) is
also a generalized Stackelberg equilibrium (θ∗,ϕ∗ (θ)) of the 1−N generalized Stackelberg game
Γ (Jo et al., 2023).

θ∗ = arg min
θ∈Rd

f1 (θ,ϕ∗ (θ)) (28)

ϕ∗ (θ) = arg min
ϕ∈Ω2(θ)

f2
(
ϕ, ϕ̂∗ (ϕ, θ) , θ

)
(29)

ϕ̂∗ (ϕ, θ) = arg min
ϕ̂∈Ω3(θ)

f3
(
ϕ̂,ϕ, θ

)
(30)
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Now we compute the implicit gradient when every follower of Γ has an unconstrained strategy set,
i.e., Ωi = Rd. The derivative of f3 with respect to ϕ̂ is a zero vector regardless of ϕ̂ if the following
holds.

d

dϕ̂
f3
(
ϕ̂∗ (ϕ, θ) ,ϕ, θ

)
=

[
∂Li (ϕi;Dtr

i )

∂ϕi
+

∂g (ϕ, θ)

∂ϕi

]T
i∈[N ]

= 0Nd×1 (31)

Thus, the optimal ϕ∗ (θ) should satisfy equation (31). The derivative of equation (31) with respect
to θ is 0Nd×d.

d

dθ

df3

dϕ̂
=

d

dθ

[
∂Li (ϕ

∗
i (θ) ;Dtr

i )

∂ϕi
+

∂g (ϕ∗ (θ) , θ)

∂ϕi

]T
i∈[N ]

=
∂

∂ϕ

[
∂Li (ϕ

∗
i (θ) ;Dtr

i )

∂ϕi

]T
i∈[N ]

dϕ∗ (θ)

dθ

+
∂

∂θ

[
∂g (ϕ∗ (θ) , θ)

∂ϕ

]T
+

∂2g (ϕ∗ (θ) , θ)

∂ϕ2

dϕ∗ (θ)

dθ

= 0Nd×d (32)

Therefore, the implicit gradient is as follows.

dϕ∗ (θ)

dθ
=−

[
∂

∂ϕ

[
∂Li (ϕ

∗
i (θ) ;Dtr

i )

∂ϕi

]T
i∈[N ]

+
∂2g (ϕ∗ (θ) , θ)

∂ϕ2

]−1

× ∂

∂θ

[
∂g (ϕ∗ (θ) , θ)

∂ϕ

]T
(33)

The rest of our study focuses on proving the convergence of Algorithm 1 where Ωi = Rd for all
task i. Even if there are constraints on the strategy set, convergence is guaranteed using the implicit
gradient computed by Lemma 3 in a similar manner. To prove the convergence of Algorithm 1 we
first define the approximated gradient of the meta loss function F using Lemma 3.

d̂

dθ
F
(
θ, ϕ̂

)
=

∂

∂θ
F
(
θ, ϕ̂

)
+

dϕ̂

dθ
× ∂

∂ϕ
F
(
θ, ϕ̂

)
(34)

where ϕ̂ is joint estimated task-specific parameter and

dϕ̂

dθ
= −P

(
ϕ̂, θ

)−1

Q
(
ϕ̂, θ

)
P
(
ϕ̂, θ

)
=

 ∂

∂ϕ

∂Li

(
ϕ̂i;Dtr

i

)
∂ϕi

T

i∈[N ]

+
∂2g

(
ϕ̂, θ

)
∂ϕ2


Q
(
ϕ̂, θ

)
=

∂

∂θ

∂g
(
ϕ̂, θ

)
∂ϕ

T

(35)

Next, we define a δ-accurate estimation of the optimal joint task-specific parameter ϕ∗ and an ϵ-
accurate estimation of the approximated gradient of the meta loss function d̂F

dθ .

Definition 1 Let the joint task-specific parameter ϕ̂ be a solution estimated by the computing al-
gorithm (e.g. PRGD method). Then, ϕ̂ is a δ-accurate estimation of the optimal joint task-specific
parameter ϕ∗ if it satisfies the following: ∥∥∥ϕ̂− ϕ∗

∥∥∥ ≤ δ (36)
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Definition 2 Let d̂F
dθ be an approximated gradient of the meta loss function. Then, ĥθ is an ϵ-

accurate estimation of the meta loss function if it satisfies the following:∥∥∥∥∥ d̂

dθ
F
(
θ, ϕ̂

)
− ĥθ

(
θ, ϕ̂

)∥∥∥∥∥ ≤ ϵ (37)

Note that ϕ̂ (θ) is a δ-accurate estimation of the variational equilibrium since the PRGD method
computes the solution of the variational inequality (Malitsky, 2015). We show that ϕ̂ (θ) computed
by the PRGD method is also a δ-accurate estimation of the generalized Nash equilibrium by Lemma
2. Now we prove the convergence of the lower-level problem of the 1−N generalized Stackelberg
game Γ =

〈
{1} , [N ] , F, (fi)i∈[N ] ,Rd, (Ωi)i∈[N ]

〉
which model the one-step gradient update of

meta-parameter for the NashMAML algorithm.

Theorem 1 Let D be the diameter of search space of the joint task-specific parameter ϕ =
(ϕi)i∈[N ] in the inner optimization problem (i.e. ∥ϕ − ϕ∗ (θ) ∥ ≤ D). Suppose that the projected
reflected gradient descent (PRGD) method (Malitsky, 2015) is used to compute the δ-accurate esti-
mation of the optimal joint task-specific parameter ϕ̂ =

(
ϕ̂i

)
i∈[N ]

of the generalized Nash equilib-

rium, which is the convergent point of the inner loop of the NashMAML algorithm. Under Assump-
tion 1, the NashMAML algorithm computes ϕ̂ with O (κ log (D/δ)) number of iterations, and only
O (Mem (∇Li)κ log (D/δ)) memory is required throughout.

Proof. By Theorem 3.3 of (Malitsky, 2015), the PRGD method converges to the δ-accurate estima-
tion of the optimal joint task-specific parameter in n steps, described as follows:∥∥∥ϕ̂− ϕ∗ (θ)

∥∥∥2 ≤ γnD2 (38)

where γ =
1−2aµ+

√
1+4a2µ2

2 . Under Assumption 1, the number of iteration n to compute δ-accurate
estimation of the optimal joint task-specific parameter ϕ̂ is− 2

log γ log (D/δ). Since a is proportional

to 1/L, and − 2
log γ is proportional to 1

aµ , the number of gradient computations to compute ϕ̂ is
bounded as κ log (D/δ). While the process of updating task-specific parameters and computing
the implicit gradient of the NashMAML algorithm can be carried out independently for each task-
specific parameter, the memory usage is the same as that of the other MAML algorithms (Rajeswaran
et al., 2019).

Now we introduce assumptions regarding the utility functions of the leader and followers of the
1−N generalized Stackelberg game Γ =

〈
{1} , [N ] , F, (fi)i∈[N ] ,Rd, (Ωi)i∈[N ]

〉
.

Assumption 2 We denote the optimal loss function of task i as L∗
i (θ) = Li (θ,ϕ

∗ (θ)). Suppose
the following holds:

• For any θ, ∂
∂θF is Lipschitz continuous with respect to ϕ with constant L1 > 0, i.e.∥∥∥∥ ∂

∂θ
F (θ,ϕ1)−

∂

∂θ
F (θ,ϕ2)

∥∥∥∥ ≤ L1 ∥ϕ1 − ϕ2∥ ,∀ϕ1,ϕ2 (39)

• For any ϕ, ∂
∂θF is Lipschitz continuous with respect to θ with constant L̄1 > 0, i.e.∥∥∥∥ ∂

∂θ
F (θ1,ϕ)−

∂

∂θ
F (θ2,ϕ)

∥∥∥∥ ≤ L̄1 ∥θ1 − θ2∥ ,∀θ1, θ2 (40)

• For any θ, ∂
∂ϕF is Lipschitz continuous with respect to ϕ with constant L2 > 0, i.e.∥∥∥∥ ∂

∂ϕ
F (θ,ϕ1)−

∂

∂ϕ
F (θ,ϕ2)

∥∥∥∥ ≤ L2 ∥ϕ1 − ϕ2∥ ,∀ϕ1,ϕ2 (41)
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• For any ϕ, ∂
∂ϕF is Lipschitz continuous with respect to θ with constant L̄2 > 0, i.e.∥∥∥∥ ∂

∂ϕ
F (θ1,ϕ)−

∂

∂ϕ
F (θ2,ϕ)

∥∥∥∥ ≤ L̄2 ∥θ1 − θ2∥ ,∀θ1, θ2 (42)

• For any θ, and any ϕ, we have
∥∥∥∂F

∂ϕ

∥∥∥ ≤ C1 for some constant C1 > 0.

• For any θ, and any ϕ, we have
∥∥∂F

∂θ

∥∥ ≤ C̄1 for some constant C̄1 > 0.

• For any θ, ∂
∂ϕ

[
∂Li(ϕ̂i;Dtr

i )
∂ϕi

]T
i∈[N ]

is Lipschitz continuous with respect to ϕ with constant

L3 > 0, i.e. ∥∥∥∥∥∥ ∂

∂ϕ

[
∂Li

(
ϕ1
i ;Dtr

i

)
∂ϕi

]T
i∈[N ]

− ∂

∂ϕ

[
∂Li

(
ϕ1
2;Dtr

i

)
∂ϕi

]T
i∈[N ]

∥∥∥∥∥∥
≤ L3

∥∥ϕ1 − ϕ2
∥∥ ,∀ϕ1,ϕ2 (43)

• For any θ, ∂2g
∂θ∂ϕ is Lipschitz continuous with respect to ϕ with constant L4 > 0, i.e.∥∥∥∥ ∂2

∂θ∂ϕ
g (θ,ϕ1)−

∂2

∂θ∂ϕ
g (θ,ϕ2)

∥∥∥∥ ≤ L4 ∥ϕ1 − ϕ2∥ ,∀ϕ1,ϕ2 (44)

• For any θ, ∂2g
∂ϕ2 is Lipschitz continuous with respect to ϕ with constant L5 > 0, i.e.∥∥∥∥ ∂2

∂ϕ2 g (θ,ϕ1)−
∂2

∂ϕ2 g (θ,ϕ2)

∥∥∥∥ ≤ L5 ∥ϕ1 − ϕ2∥ ,∀ϕ1,ϕ2 (45)

• The optimal loss function of task i, L∗
i (θ) is L6-smooth for all task i, i.e.

Li (θ1,ϕ
∗ (θ1)) ≤ Li (θ2,ϕ

∗ (θ2)) +

〈
θ1 − θ2,

d

dθ
Li (θ2,ϕ

∗ (θ2))

〉
+

L6

2
∥θ1 − θ2∥2 ,∀θ1, θ2 (46)

• For any θ, Li is strongly convex with respect to ϕi with parameter µ1 > 0, i.e.

µ1I ⪯
∂2Li

∂ϕ2
i

(47)

• For any θ, g is strongly convex with respect to ϕ with parameter µ2 > 0, i.e.

µ2I ⪯
∂2g

∂ϕ2
(48)

• For any θ, and any ϕ, we have
∥∥∥ ∂2g
∂θ∂ϕ

∥∥∥ ≤ C2 for some constant C2 > 0.

The second main result of our paper is that the error between the estimated gradient ĥθ computed
through back-propagation and dF

dθ is bounded by a weighted sum of the error in estimating ϕ and
the error in estimating gradient through back-propagation.

Lemma 4 Let θ be a given meta-parameter, ϕ∗ be an optimal task-specific parameter, and ϕ̂ be an
estimated task-specific parameter. Under Assumption 2, the following statements hold.

• For the same sampling tasks, ϕ∗ (θ) is Lipschitz continuous with respect to θ with constant
C2

µ1+µ2
> 0, i.e.

∥ϕ∗ (θ1)− ϕ∗ (θ2)∥ ≤
C2

µ1 + µ2
∥θ1 − θ2∥ ,∀θ1, θ2 (49)
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• The difference between the approximated gradient d̂F
dθ and dF

dθ is bounded by the error in
estimating ϕ∗. That is,∥∥∥∥∥ d

dθ
F (θ,ϕ∗ (θ))− d̂

dθ
F
(
θ, ϕ̂ (θ)

)∥∥∥∥∥ ≤ C
∥∥∥ϕ∗ (θ)− ϕ̂ (θ)

∥∥∥ (50)

where C = L1 +
C1L4+C2L2

µ1+µ2
+ C1C2(L3+L5)

(µ1+µ2)
2 .

• The gradient of the optimal F with respect to θ is Lipschitz continuous in θ with constant
LF > 0, i.e. ∥∥∥∥ d

dθ
F (θ1,ϕ

∗ (θ1))−
d

dθ
F (θ2,ϕ

∗ (θ2))

∥∥∥∥ ≤ LF ∥θ1 − θ2∥ (51)

where LF = L̄1 +
C2

µ1+µ2

(
L̄2 + C

)
.

Proof. First, we prove the implicit gradient is bounded. The implicit gradient dϕ∗(θ)
dθ is computed as

follows by Lemma 3.

dϕ∗ (θ)

dθ
= −P (ϕ∗ (θ) , θ)

−1
Q (ϕ∗ (θ) , θ) (52)

Under Assumption 2, P−1 and Q is bounded as follows.∥∥∥P (ϕ∗ (θ) , θ)
−1
∥∥∥ ≤ 1

µ1 + µ2

∥Q (ϕ∗ (θ) , θ)∥ ≤ C2 (53)

Thus, the implicit gradient is bounded as C2

µ1+µ2
.∥∥∥∥dϕ∗ (θ)

dθ

∥∥∥∥ =
∥∥∥−P (ϕ∗ (θ) , θ)

−1
Q (ϕ∗ (θ) , θ)

∥∥∥
≤
∥∥∥P (ϕ∗ (θ) , θ)

−1
∥∥∥× ∥Q (ϕ∗ (θ) , θ)∥

≤ C2

µ1 + µ2
(54)

Now we can prove ϕ∗ (θ) is Lipschitz continuous. The following holds for all θ1, θ2.

∥ϕ∗ (θ1)− ϕ∗ (θ2)∥ ≤
∥∥∥∥dϕ∗ (θ)

dθ

∥∥∥∥ ∥θ1 − θ2∥

≤ C2

µ1 + µ2
∥θ1 − θ2∥ (55)

Next, we prove the difference between the approximated gradient d̂F
dθ and dF

dθ is bounded.∥∥∥∥∥ d

dθ
F (θ,ϕ∗ (θ))− d̂

dθ
F
(
θ, ϕ̂ (θ)

)∥∥∥∥∥ = ∥M1 +M2∥

= ∥M1 +M3 +M4∥

=

∥∥∥∥M1 +M3 + (M5 +M6)
∂

∂ϕ
F (θ,ϕ∗ (θ))

∥∥∥∥ (56)
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where

M1 =
∂

∂θ
F (θ,ϕ∗ (θ))− ∂

∂θ
F
(
θ, ϕ̂ (θ)

)
M2 =

dϕ∗ (θ)

dθ

∂

∂ϕ
F (θ,ϕ∗ (θ))− dϕ̂ (θ)

dθ

∂

∂ϕ
F
(
θ, ϕ̂ (θ)

)
M3 =

dϕ̂ (θ)

dθ

(
∂

∂ϕ
F (θ,ϕ∗ (θ))− ∂

∂ϕ
F
(
θ, ϕ̂ (θ)

))
M4 =

(
dϕ∗ (θ)

dθ
− dϕ̂ (θ)

dθ

)
∂

∂ϕ
F (θ,ϕ∗ (θ))

M5 =

(
P
(
ϕ̂ (θ) , θ

)−1

−P (ϕ∗ (θ) , θ)
−1

)
Q (ϕ∗ (θ) , θ)

M6 =P
(
ϕ̂ (θ) , θ

)−1 (
Q
(
ϕ̂ (θ) , θ

)
−Q (ϕ∗ (θ) , θ)

)
(57)

Under Assumption 2, each term of equation (56) satisfies the following inequalities. Because ∂
∂θF

is Lipschitz continuous,

∥M1∥ ≤ L1

∥∥∥ϕ∗ (θ)− ϕ̂ (θ)
∥∥∥ (58)

Because ∂
∂ϕF is Lipschitz continuous,

∥M3∥ ≤

∥∥∥∥∥dϕ̂ (θ)

dθ

∥∥∥∥∥
∥∥∥∥ ∂

∂ϕ
F (θ,ϕ∗ (θ))− ∂

∂ϕ
F
(
θ, ϕ̂ (θ)

)∥∥∥∥
≤
∥∥∥∥−P(ϕ̂ (θ) , θ

)−1

Q
(
ϕ̂ (θ) , θ

)∥∥∥∥× L2

∥∥∥ϕ∗ (θ)− ϕ̂ (θ)
∥∥∥

≤ C2L2

µ1 + µ2

∥∥∥ϕ∗ (θ)− ϕ̂ (θ)
∥∥∥ (59)

Because P is Lipschitz continuous,

∥M5∥ ≤
∥∥∥∥P(ϕ̂ (θ) , θ

)−1

−P (ϕ∗ (θ) , θ)
−1

∥∥∥∥∥∥∥∥ ∂2g

∂θ∂ϕ

∥∥∥∥
=

∥∥∥∥P (ϕ∗ (θ) , θ)
−1
(
P (ϕ∗ (θ) , θ)−P

(
ϕ̂ (θ) , θ

))
P
(
ϕ̂ (θ) , θ

)−1
∥∥∥∥∥∥∥∥ ∂2g

∂θ∂ϕ

∥∥∥∥
≤
∥∥∥P (ϕ∗ (θ) , θ)

−1
∥∥∥∥∥∥P (ϕ∗ (θ) , θ)−P

(
ϕ̂ (θ) , θ

)∥∥∥∥∥∥∥P(ϕ̂ (θ) , θ
)−1

∥∥∥∥∥∥∥∥ ∂2g

∂θ∂ϕ

∥∥∥∥
≤ C2

(µ1 + µ2)
2

∥∥∥∥∥∥∥
∂

∂ϕ

[
∂Li (ϕ

∗
i (θ) ;Dtr

i )

∂ϕi

]T
i∈[N ]

− ∂

∂ϕ

∂Li

(
ϕ̂i (θ) ;Dtr

i

)
∂ϕi

T

i∈[N ]

∥∥∥∥∥∥∥
+

C2

(µ1 + µ2)
2

∥∥∥∥∥∥∂
2g (ϕ∗ (θ) , θ)

∂ϕ2
−

∂2g
(
ϕ̂ (θ) , θ

)
∂ϕ2

∥∥∥∥∥∥
≤ C2 (L3 + L5)

(µ1 + µ2)
2

∥∥∥ϕ∗ (θ)− ϕ̂ (θ)
∥∥∥ (60)

19



Under review as a conference paper at ICLR 2024

Because ∂2g
∂θ∂ϕ is Lipschitz continuous,∥∥∥∥(M5 +M6)

∂

∂ϕ
F (θ,ϕ∗ (θ))

∥∥∥∥ ≤ (∥M5∥+ ∥M6∥)
∥∥∥∥ ∂

∂ϕ
F (θ,ϕ∗ (θ))

∥∥∥∥
≤ C1C2 (L3 + L5)

(µ1 + µ2)
2

∥∥∥ϕ∗ (θ)− ϕ̂ (θ)
∥∥∥

+
L4C1

µ1 + µ2

∥∥∥ϕ∗ (θ)− ϕ̂ (θ)
∥∥∥ (61)

Thus, the equation (56) is expanded as follows.∥∥∥∥∥ d

dθ
F (θ,ϕ∗ (θ))− d̂

dθ
F
(
θ, ϕ̂ (θ)

)∥∥∥∥∥ ≤
∥∥∥∥M1 +M3 + (M5 +M6)

∂

∂ϕ
F (θ,ϕ∗ (θ))

∥∥∥∥
≤ ∥M1∥+ ∥M3∥+

∥∥∥∥(M5 +M6)
∂

∂ϕ
F (θ,ϕ∗ (θ))

∥∥∥∥
≤ C

∥∥∥ϕ∗ (θ)− ϕ̂ (θ)
∥∥∥ (62)

where

C = L1 +
C1L4 + C2L2

µ1 + µ2
+

C1C2 (L3 + L5)

(µ1 + µ2)
2 (63)

Finally, we prove the gradient of the optimal F with respect to θ is Lipschitz continuous in θ.∥∥∥∥ d

dθ
F (θ1,ϕ

∗ (θ1))−
d

dθ
F (θ2,ϕ

∗ (θ2))

∥∥∥∥ ≤
∥∥∥∥∥ d

dθ
F (θ1,ϕ

∗ (θ1))−
d̂

dθ
F (θ1,ϕ

∗ (θ2))

∥∥∥∥∥
+

∥∥∥∥∥ d̂

dθ
F (θ1,ϕ

∗ (θ2))−
d

dθ
F (θ2,ϕ

∗ (θ2))

∥∥∥∥∥ (64)

The first term of equation (64) is expanded as follows using equations (49), (50).∥∥∥∥∥ d

dθ
F (θ1,ϕ

∗ (θ1))−
d̂

dθ
F (θ1,ϕ

∗ (θ2))

∥∥∥∥∥ ≤ C ∥ϕ∗ (θ1)− ϕ∗ (θ2)∥

≤ CC2

µ1 + µ2
∥θ1 − θ2∥ (65)

Under Assumption 2, the second term of equation (64) is expanded as∥∥∥∥∥ d̂

dθ
F (θ1,ϕ

∗ (θ2))−
d

dθ
F (θ2,ϕ

∗ (θ2))

∥∥∥∥∥ ≤
∥∥∥∥ ∂

∂θ
F (θ1,ϕ

∗ (θ2))−
∂

∂θ
F (θ2,ϕ

∗ (θ2))

∥∥∥∥
+

∥∥∥∥dϕ∗ (θ2)

dθ

∥∥∥∥ ∥∥∥∥ ∂

∂ϕ
F (θ1,ϕ

∗ (θ2))−
∂

∂ϕ
F (θ2,ϕ

∗ (θ2))

∥∥∥∥
≤ L̄1 ∥θ1 − θ2∥+

C2

µ1 + µ2
L̄2 ∥θ1 − θ2∥ (66)

Now we prove the optimal F ∗ is Lipschitz continuous with respect to θ with constant LF by equa-
tions (65) and (66).∥∥∥∥ d

dθ
F (θ1,ϕ

∗ (θ1))−
d

dθ
F (θ2,ϕ

∗ (θ2))

∥∥∥∥ ≤ LF ∥θ1 − θ2∥ (67)

where LF = L̄1 +
C2

µ1+µ2

(
L̄2 + C

)
.

Theorem 2 Let θ be a given meta-parameter, ϕ∗ be an optimal task-specific parameter, ϕ̂ be a
δ-accurate estimated task-specific parameter, and ĥθ be an ϵ-accurate estimated gradient of F with
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respect to θ computed through back-propagation. Under Assumption 2, the difference between the
ϵ-accurate estimated gradient ĥθ and the gradient of the optimal meta loss function F with respect
to θ, dF

dθ , is bounded by the weighted sum of the error in estimating ϕ∗ and the error in estimating
the gradient through back-propagation. That is,∥∥∥∥ d

dθ
F (θ,ϕ∗ (θ))− ĥθ

(
θ, ϕ̂

)∥∥∥∥ ≤ C
∥∥∥ϕ∗ (θ)− ϕ̂

∥∥∥+ ∥∥∥∥∥ d̂

dθ
F
(
θ, ϕ̂

)
− ĥθ

(
θ, ϕ̂

)∥∥∥∥∥
≤ Cδ + ϵ (68)

where C = L1 +
C1L4+C2L2

µ1+µ2
+ C1C2(L3+L5)

(µ1+µ2)
2 .

Proof. Because the triangle inequality ∥a+ b∥ ≤ ∥a∥+ ∥b∥ holds,∥∥∥∥ d

dθ
F (θ,ϕ∗ (θ))− ĥθ

(
θ, ϕ̂

)∥∥∥∥ =

∥∥∥∥∥ d

dθ
F (θ,ϕ∗ (θ))− d̂

dθ
F
(
θ, ϕ̂

)
+

d̂

dθ
F
(
θ, ϕ̂

)
− ĥθ

(
θ, ϕ̂

)∥∥∥∥∥
≤

∥∥∥∥∥ d

dθ
F (θ,ϕ∗ (θ))− d̂

dθ
F
(
θ, ϕ̂

)∥∥∥∥∥+
∥∥∥∥∥ d̂

dθ
F
(
θ, ϕ̂

)
− ĥθ

(
θ, ϕ̂

)∥∥∥∥∥
≤

∥∥∥∥∥ d

dθ
F (θ,ϕ∗ (θ))− d̂

dθ
F
(
θ, ϕ̂

)∥∥∥∥∥+ ϵ (69)

By Lemma 4, equation (69) is expanded as follows.∥∥∥∥ d

dθ
F (θ,ϕ∗ (θ))− ĥθ

(
θ, ϕ̂

)∥∥∥∥ ≤
∥∥∥∥∥ d

dθ
F (θ,ϕ∗ (θ))− d̂

dθ
F
(
θ, ϕ̂

)∥∥∥∥∥+ ϵ

≤ C
∥∥∥ϕ∗ (θ)− ϕ̂

∥∥∥+ ϵ

≤ Cδ + ϵ (70)

where C = L1 +
C1L4+C2L2

µ1+µ2
+ C1C2(L3+L5)

(µ1+µ2)
2 .

For the rest of our paper, we discuss the expected utility function with respect to task sampling in
order to prove the convergence of the NashMAML algorithm, and its convergent point is an optimal
solution of the stochastic optimization problem described in equations (8) and (9). First, we describe
the assumptions and lemmas required to prove the convergence. We denote ETi∼p(T ) [·] as E [·] in
the remaining part.

Assumption 3 Let θk be a meta-parameter, ϕ∗ (θk) be an optimal joint task-specific parameter,
and ϕ̂

(
θk
)

be an estimated joint task-specific parameter of the k-th updated meta-parameter. For
any k ≥ 0, there exists a non-increasing sequence {bk}k≥0, {σk}k≥0, and {σ̄k}k≥0 which converge
to 0 that satisfies the following.

• Let ϕ̂ be an estimated joint task-specific parameter. Then, the expectation of an estimated
gradient ĥθ

(
θ, ϕ̂ (θ)

)
is as follows.

E
[
ĥθ

(
θk, ϕ̂

(
θk
))]

= E

[
d̂

dθ
F
(
θk, ϕ̂

(
θk
))]

+Bk, ∥Bk∥ ≤ bk (71)

• The norm-variance of an estimated gradient ĥθ

(
θ, ϕ̂ (θ)

)
is bounded, i.e.

E
[∥∥∥ĥθ

(
θk, ϕ̂

(
θk
))
− E

[
ĥθ

(
θk, ϕ̂

(
θk
))]∥∥∥2] ≤ σ2

k (72)

• The norm-variance of an optimal gradient d
dθF

(
θk,ϕ∗ (θk)) is bounded, i.e.

E

[∥∥∥∥ d

dθ
F
(
θk,ϕ∗ (θk))− E

[
d

dθ
F
(
θk,ϕ∗ (θk))]∥∥∥∥2

]
≤ σ̄2

k (73)
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Lemma 5 The expectation of the square norm of an estimated gradient ĥθ

(
θ, ϕ̂ (θ)

)
is bounded,

i.e.

E
[∥∥∥ĥθ

(
θk, ϕ̂

(
θk
))∥∥∥2] ≤ 4C2E

[∥∥∥ϕ̂ (θk)− ϕ∗ (θk)∥∥∥]2
+ σ2

k + 2b2k + 4

(
C̄1 +

C1C2

µ1 + µ2

)2

(74)

where C = L1 +
C1L4+C2L2

µ1+µ2
+ C1C2(L3+L5)

(µ1+µ2)
2 .

Proof. We denote ĥθ

(
θ, ϕ̂ (θ)

)
as ĥθ (θ). Then, the expectation of the square norm of the estimated

gradient ĥθ (θ) is as follows.

E
[∥∥∥ĥθ (θ)

∥∥∥2] = E
[∥∥∥ĥθ (θ)

∥∥∥2]+ 2
∥∥∥E [ĥθ (θ)

]∥∥∥2 − 2
〈
E
[
ĥθ (θ)

]
,E
[
ĥθ (θ)

]〉
= E

[∥∥∥ĥθ (θ)
∥∥∥2]+ 2

∥∥∥E [ĥθ (θ)
]∥∥∥2 − 2E

〈
ĥθ (θ) ,E

[
ĥθ (θ)

]〉
= E

[∥∥∥ĥθ (θ)− E
[
ĥθ (θ)

]∥∥∥2]+ ∥∥∥E [ĥθ (θ)
]∥∥∥2 (75)

Substituting θ with θk of equation (75). Because ∥a+ b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2, equation (75) is
expanded as follows under Assumption 3.

E
[∥∥∥ĥθ

(
θk
)∥∥∥2] = E

[∥∥∥ĥθ

(
θk
)
− E

[
ĥθ

(
θk
)]∥∥∥2]+ ∥∥∥E [ĥθ

(
θk
)]∥∥∥2

≤ σ2
k +

∥∥∥∥∥E
[
d̂

dθ
F
(
θk, ϕ̂

(
θk
))]

+Bk

∥∥∥∥∥
2

≤ σ2
k + 2b2k + 2

∥∥∥∥∥E
[
d̂

dθ
F
(
θk, ϕ̂

(
θk
))]∥∥∥∥∥

2

≤ σ2
k + 2b2k + 4

∥∥∥∥E [ d

dθ
F
(
θk,ϕ∗ (θk))]∥∥∥∥2

+ 4

∥∥∥∥∥E
[
d̂

dθ
F
(
θk, ϕ̂

(
θk
))]
− E

[
d

dθ
F
(
θk,ϕ∗ (θk))]∥∥∥∥∥

2

(76)

Because the norm is convex, ∥E [·]∥2 ≤ E [∥·∥]2 by Jensen’s inequality.

E
[∥∥∥ĥθ

(
θk
)∥∥∥2] ≤ σ2

k + 2b2k + 4

∥∥∥∥E [ d

dθ
F
(
θk,ϕ∗ (θk))]∥∥∥∥2

+ 4

∥∥∥∥∥E
[
d̂

dθ
F
(
θk, ϕ̂

(
θk
))
− d

dθ
F
(
θk,ϕ∗ (θk))]∥∥∥∥∥

2

≤ σ2
k + 2b2k + 4E

[∥∥∥∥ d

dθ
F
(
θk,ϕ∗ (θk))∥∥∥∥]2

+ 4E

[∥∥∥∥∥ d̂

dθ
F
(
θk, ϕ̂

(
θk
))
− d

dθ
F
(
θk,ϕ∗ (θk))∥∥∥∥∥

]2
(77)
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Because dF
dθ (θ,ϕ∗ (θ)) = ∂

∂θF (θ,ϕ∗ (θ)) + dϕ∗(θ)
dθ × ∂

∂ϕF (θ,ϕ∗ (θ)), the third term and fourth
term of equation (77) are expanded as follows by Lemma 4 and Assumption 2.

E
[∥∥∥∥ d

dθ
F
(
θk,ϕ∗ (θk))∥∥∥∥] ≤ E

[∥∥∥∥ ∂

∂θ
F
(
θk,ϕ∗ (θk))∥∥∥∥]

+ E

[∥∥∥∥∥dϕ∗ (θk)
dθ

∥∥∥∥∥
∥∥∥∥ ∂

∂ϕ
F
(
θk,ϕ∗ (θk))∥∥∥∥

]

≤ C̄1 +
C1C2

µ1 + µ2
(78)

E

[∥∥∥∥∥ d̂

dθ
F
(
θk, ϕ̂

(
θk
))
− d

dθ
F
(
θk,ϕ∗ (θk))∥∥∥∥∥

]
≤ CE

[∥∥∥ϕ̂ (θk)− ϕ∗ (θk)∥∥∥] (79)

where C = L1 +
C1L4+C2L2

µ1+µ2
+ C1C2(L3+L5)

(µ1+µ2)
2 . Combining equations (77), (78) and (79), we derive

the bound of the expectation of the estimated gradient.

E
[∥∥∥ĥθ

(
θk
)∥∥∥2] ≤ σ2

k + 2b2k + 4E
[∥∥∥∥ d

dθ
F
(
θk,ϕ∗ (θk))∥∥∥∥]2

+ 4E

[∥∥∥∥∥ d̂

dθ
F
(
θk, ϕ̂

(
θk
))
− d

dθ
F
(
θk,ϕ∗ (θk))∥∥∥∥∥

]2

≤ σ2
k + 2b2k + 4

(
C̄1 +

C1C2

µ1 + µ2

)2

+ 4C2E
[∥∥∥ϕ̂ (θk)− ϕ∗ (θk)∥∥∥]2 (80)

Lemma 6 Let L (θ) be an expected optimal meta loss function, that is, L (θ) = E [F (θ,ϕ∗ (θ))].
Then, L satisfies the following equation.

L
(
θk+1

)
−L

(
θk
)
≤
(
L6

2
− 1

2β

)
E
[∥∥θk+1 − θk

∥∥2]
+ 4βC2E

[∥∥∥ϕ∗ (θk)− ϕ̂
(
θk
)∥∥∥]2 + 4βσ̄2

k + 2βb2k + βσ2
k (81)

where C = L1 +
C1L4+C2L2

µ1+µ2
+ C1C2(L3+L5)

(µ1+µ2)
2 .

Proof. Under Assumption 2, the task i’s optimal loss function L∗
i (θ) = Li (θ,ϕ

∗ (θ)) is L6-smooth.

L∗
i

(
θk+1

)
≤ L∗

i

(
θk
)
+

〈
θk+1 − θk,

d

dθ
L∗
i

(
θk
)〉

+
L6

2

∥∥θk+1 − θk
∥∥2 (82)

Summing up equation (82) for all tasks i ∈ [N ] and divide it by N , we obtain

F ∗ (θk+1
)
≤ F ∗ (θk)+〈θk+1 − θk,

d

dθ
F ∗ (θk)〉+

L6

2

∥∥θk+1 − θk
∥∥2 (83)

where F ∗ (θ) = F (θ,ϕ∗ (θ)) is the optimal meta loss function. Then, the difference of the optimal
meta loss function F ∗ (θk+1

)
− F ∗ (θk) is as follows.

F ∗ (θk+1
)
− F ∗ (θk) ≤ 〈θk+1 − θk,

d

dθ
F ∗ (θk)〉+

L6

2

∥∥θk+1 − θk
∥∥2

=

〈
θk+1 − θk,

d

dθ
F ∗ (θk)− E

[
d̂

dθ
F
(
θk, ϕ̂

(
θk
))]
−Bk

〉

+

〈
θk+1 − θk,E

[
d̂

dθ
F
(
θk, ϕ̂

(
θk
))]

+Bk

〉
+

L6

2

∥∥θk+1 − θk
∥∥2 (84)
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Because the meta-parameter of the NashMAML algorithm is updated as θk+1 = θk −
βĥθ

(
θk, ϕ̂

(
θk
))

, that is the difference is θk+1 − θk = −βĥθ

(
θk, ϕ̂

(
θk
))

. Multiplying both

sides by θk+1 − θk and simplifying, we get

〈
θk+1 − θk, ĥθ

(
θk, ϕ̂

(
θk
))〉

= − 1

β

∥∥θk+1 − θk
∥∥2 (85)

By combining equations (84) and (85),

F ∗ (θk+1
)
− F ∗ (θk) ≤ 〈θk+1 − θk,

d

dθ
F ∗ (θk)− E

[
d̂

dθ
F
(
θk, ϕ̂

(
θk
))]
−Bk

〉

+

〈
θk+1 − θk,E

[
d̂

dθ
F
(
θk, ϕ̂

(
θk
))]

+Bk − ĥθ

(
θk, ϕ̂

(
θk
))〉

− 1

β

∥∥θk+1 − θk
∥∥2 + L6

2

∥∥θk+1 − θk
∥∥2 (86)

Because ⟨a, b⟩ ≤ 1
2c ∥a∥

2
+ c

2 ∥b∥
2 for some constant c, the following equation holds under the

definition of ĥθ

(
θk, ϕ̂

(
θk
))

.

F ∗ (θk+1
)
− F ∗ (θk) ≤ 1

2c1

∥∥∥∥∥ d

dθ
F ∗ (θk)− E

[
d̂

dθ
F
(
θk, ϕ̂

(
θk
))]
−Bk

∥∥∥∥∥
2

+
1

2c2

∥∥∥E [ĥθ

(
θk, ϕ̂

(
θk
))]
− ĥθ

(
θk, ϕ̂

(
θk
))∥∥∥2

+

(
c1 + c2 + L6

2
− 1

β

)∥∥θk+1 − θk
∥∥2 (87)

Under Assumption 3, the expectation of equation (87) is as follows.

L
(
θk+1

)
−L

(
θk
)
= E

[
F
(
θk+1,ϕ∗ (θk+1

))]
− E

[
F
(
θk,ϕ∗ (θk))]

= E
[
F ∗ (θk+1

)
− F ∗ (θk)]

≤ 1

2c1
E

∥∥∥∥∥ d

dθ
F ∗ (θk)− E

[
d̂

dθ
F
(
θk, ϕ̂

(
θk
))]
−Bk

∥∥∥∥∥
2


+
σ2
k

2c2
+

(
c1 + c2 + L6

2
− 1

β

)
E
[∥∥θk+1 − θk

∥∥2]
≤ 2

c1
E

[∥∥∥∥ d

dθ
F ∗ (θk)− E

[
d

dθ
F ∗ (θk)]∥∥∥∥2

]

+
2

c1
E

∥∥∥∥∥E
[
d

dθ
F ∗ (θk)]− E

[
d̂

dθ
F
(
θk, ϕ̂

(
θk
))]∥∥∥∥∥

2


+
b2k
c1

+
σ2
k

2c2
+

(
c1 + c2 + L6

2
− 1

β

)
E
[∥∥θk+1 − θk

∥∥2] (88)
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Let d̂
dθF

(
θk
)
= d̂

dθF
(
θk, ϕ̂

(
θk
))

. By Lemma 4 and Jensen’s inequality, the first term and second
term of equation (88) is as follows under Assumption 3.

E

[∥∥∥∥ d

dθ
F ∗ (θk)− E

[
d

dθ
F ∗ (θk)]∥∥∥∥2

]
≤ σ̄2

k (89)

E

∥∥∥∥∥E
[
d

dθ
F ∗ (θk)]− E

[
d̂

dθ
F
(
θk
)]∥∥∥∥∥

2
 = E

∥∥∥∥∥E
[
d

dθ
F ∗ (θk)− d̂

dθ
F
(
θk
)]∥∥∥∥∥

2


≤ E

E[∥∥∥∥∥ d

dθ
F ∗ (θk)− d̂

dθ
F
(
θk
)∥∥∥∥∥
]2

= E

[∥∥∥∥∥ d

dθ
F ∗ (θk)− d̂

dθ
F
(
θk
)∥∥∥∥∥
]2

≤ C2E
[∥∥∥ϕ∗ (θk)− ϕ̂

(
θk
)∥∥∥]2 (90)

Combining equations (88), (89), and (90), the difference of optimal meta loss function is expanded
as follows.

L
(
θk+1

)
−L

(
θk
)
≤ 2

c1
E

[∥∥∥∥ d

dθ
F ∗ (θk)− E

[
d

dθ
F ∗ (θk)]∥∥∥∥2

]

+
2

c1
E

∥∥∥∥∥E
[
d

dθ
F ∗ (θk)]− E

[
d̂

dθ
F
(
θk, ϕ̂

(
θk
))]∥∥∥∥∥

2


+
b2k
c1

+
σ2
k

2c2
+

(
c1 + c2 + L6

2
− 1

β

)
E
[∥∥θk+1 − θk

∥∥2]
≤
(
c1 + c2 + L6

2
− 1

β

)
E
[∥∥θk+1 − θk

∥∥2]
+

2C2

c1
E
[∥∥∥ϕ∗ (θk)− ϕ̂

(
θk
)∥∥∥]2 + 2σ̄2

k + b2k
c1

+
σ2
k

2c2
(91)

where C = L1 + C1L4+C2L2

µ1+µ2
+ C1C2(L3+L5)

(µ1+µ2)
2 . Let c1 = c2 = 1

2β . Then, the expectation of the
difference of meta loss function is simplified.

L
(
θk+1

)
−L

(
θk
)
≤
(
c1 + c2 + L6

2
− 1

β

)
E
[∥∥θk+1 − θk

∥∥2]
+

2C2

c1
E
[∥∥∥ϕ∗ (θk)− ϕ̂

(
θk
)∥∥∥]2 + 2σ̄2

k + b2k
c1

+
σ2
k

2c2

≤
(
L6

2
− 1

2β

)
E
[∥∥θk+1 − θk

∥∥2]
+ 4βC2E

[∥∥∥ϕ∗ (θk)− ϕ̂
(
θk
)∥∥∥]2 + 4βσ̄2

k + 2βb2k + βσ2
k (92)

Using the lemmas we proved earlier, we present that the NashMAML algorithm always converges.
Moreover, we prove that the convergent point of the NashMAML algorithm is the Stackelberg equi-
librium of the stochastic optimization problem that NashMAML algorithm originally try to solve.
First, let’s discuss the convergence of the NashMAML algorithm.

Theorem 3 Let (θ∗,ϕ∗ (θ∗)) be a convergent point of the NashMAML algorithm, and L (θ) be an
expected optimal meta loss function, that is, L (θ) = ETi∼p(T ) [F (θ,ϕ∗ (θ))]. We denote δ as
the convergence criterion of the inner loop and δ̄ as the convergence criterion of the outer loop.
That is, the inner loop is converged when

∥∥∥ϕ∗ − ϕ̂
∥∥∥ ≤ δ and the outer loop is converged when∥∥θk+1 − θk

∥∥ ≤ δ̄. Under Assumptions 1, 2, and 3, the following statements hold.

25



Under review as a conference paper at ICLR 2024

• The expected difference of the meta-parameter θ is bounded as follows.

ETi∼p(T )

[∥∥θk+1 − θk
∥∥2] ≤ 4β2C2E

[∥∥∥ϕ̂ (θk)− ϕ∗ (θk)∥∥∥]2
+ β2σ2

k + 2β2b2k + 4β2

(
C̄1 +

C1C2

µ1 + µ2

)2

≤ 4β2C2δ2 + β2σ2
k + 2β2b2k + 4β2

(
C̄1 +

C1C2

µ1 + µ2

)2

(93)

• The expected difference of the optimal meta loss function F ∗ (θ) is bounded as follows.

L
(
θk+1

)
−L

(
θk
)
≤ 4β2C2

(
L6

2
+

1

2β

)
E
[∥∥∥ϕ̂ (θk)− ϕ∗ (θk)∥∥∥]2

+

(
L6

2
− 1

2β

)(
β2σ2

k + 2β2b2k + 4β2

(
C̄1 +

C1C2

µ1 + µ2

)2
)

+ 4βσ̄2
k + 2βb2k + βσ2

k

≤
(
L6

2
− 1

2β

)(
β2σ2

k + 2β2b2k + 4β2

(
C̄1 +

C1C2

µ1 + µ2

)2
)

+ 4βσ̄2
k + 2βb2k + βσ2

k + 4β2C2δ2
(
L6

2
+

1

2β

)
(94)

• We denote the convergence speed of each non-increasing sequence {bk}k≥0, {σk}k≥0, and
{σ̄k}k≥0, which is defined in Assumption 3, as O (kb), O (kσ), and O (kσ̄), respectively.
After we choose the step size

β ≤ δ̄√
4C2δ2 + 4

(
C̄1 +

C1C2

µ1+µ2

)2 (95)

, the iteration complexity of the NashMAML algorithm’s outer loop is
O
(
max

{
k2b , k

2
σ, k

2
σ̄

})
and the expected error of the optimal meta loss function of

the convergent point is

L (θ∗)−L
(
θk
)
≤ L6

2
δ̄2 +

C2δ2 −
(
C̄1 +

C1C2

µ1+µ2

)2
√

C2δ2 +
(
C̄1 +

C1C2

µ1+µ2

)2 δ̄ (96)

where C = L1 +
C1L4+C2L2

µ1+µ2
+ C1C2(L3+L5)

(µ1+µ2)
2 .

Proof. The gradient update procedure of the meta-parameter for the NashMAML algorithm is
θk+1 = θk − βĥθ

(
θk, ϕ̂

(
θk
))

. Thus, the expectation of the meta-parameter is as follows by
Lemma 5. ∥∥θk+1 − θk

∥∥ = β
∥∥∥ĥθ

(
θk, ϕ̂

(
θk
))∥∥∥ (97)

E
[∥∥θk+1 − θk

∥∥2] = β2E
[∥∥∥ĥθ

(
θk, ϕ̂

(
θk
))∥∥∥2]

≤ 4β2C2E
[∥∥∥ϕ̂ (θk)− ϕ∗ (θk)∥∥∥]2

+ β2σ2
k + 2β2b2k + 4β2

(
C̄1 +

C1C2

µ1 + µ2

)2

(98)
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where C = L1 +
C1L4+C2L2

µ1+µ2
+ C1C2(L3+L5)

(µ1+µ2)
2 .

By Theorem 1, δ-accurate estimation of the optimal joint task-specific parameter is computed with
O (κ log (D/δ)) number of iterations under Assumption 1.

∥∥∥ϕ̂ (θk)− ϕ∗ (θk)∥∥∥ ≤ δ, ∀k (99)

Now we derive the expected difference of the optimal meta-parameter and its loss function by equa-
tions (98) and (81).

E
[∥∥θk+1 − θk

∥∥2] ≤ 4β2C2E
[∥∥∥ϕ̂ (θk)− ϕ∗ (θk)∥∥∥]2

+ β2σ2
k + 2β2b2k + 4β2

(
C̄1 +

C1C2

µ1 + µ2

)2

≤ 4β2C2δ2 + β2σ2
k + 2β2b2k + 4β2

(
C̄1 +

C1C2

µ1 + µ2

)2

(100)

L
(
θk+1

)
−L

(
θk
)
≤
(
L6

2
− 1

2β

)
E
[∥∥θk+1 − θk

∥∥2]
+ 4βC2E

[∥∥∥ϕ∗ (θk)− ϕ̂
(
θk
)∥∥∥]2 + 4βσ̄2

k + 2βb2k + βσ2
k

≤ 4β2C2

(
L6

2
+

1

2β

)
E
[∥∥∥ϕ̂ (θk)− ϕ∗ (θk)∥∥∥]2

+

(
L6

2
− 1

2β

)(
β2σ2

k + 2β2b2k + 4β2

(
C̄1 +

C1C2

µ1 + µ2

)2
)

+ 4βσ̄2
k + 2βb2k + βσ2

k

≤
(
L6

2
− 1

2β

)(
β2σ2

k + 2β2b2k + 4β2

(
C̄1 +

C1C2

µ1 + µ2

)2
)

+ 4βσ̄2
k + 2βb2k + βσ2

k + 4β2C2δ2
(
L6

2
+

1

2β

)
(101)

The convergence of the NashMAML algorithm is guaranteed while the meta-parameter satisfies the
convergence criterion of the outer loop. Thus, the following equation holds by equation (100)

4β2C2δ2 + β2σ2
k + 2β2b2k + 4β2

(
C̄1 +

C1C2

µ1 + µ2

)2

≤ δ̄2

β2

(
4C2δ2 + σ2

k + 2b2k + 4

(
C̄1 +

C1C2

µ1 + µ2

)2
)
≤ δ̄2 (102)

Because the convergence speed of σ2
k + 2b2k is O

(
max

{
k2b , k

2
σ

})
, step size β should be less than

β ≤ δ̄√
4C2δ2 + 4

(
C̄1 +

C1C2

µ1+µ2

)2 (103)
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and the difference of expected optimal meta loss L
(
θk+1

)
−L

(
θk
)

holds by equation (101)

L
(
θk+1

)
−L

(
θk
)
≤
(
L6

2
− 1

2β

)(
β2σ2

k + 2β2b2k + 4β2

(
C̄1 +

C1C2

µ1 + µ2

)2
)

+ 4βσ̄2
k + 2βb2k + βσ2

k + 4β2C2δ2
(
L6

2
+

1

2β

)
≤ 4β2

(
L6

2
− 1

2β

)(
C̄1 +

C1C2

µ1 + µ2

)2

+ 4β2C2δ2
(
L6

2
+

1

2β

)
≤ L6δ̄

2

2
− δ̄2

2β
+ 4βC2δ2

≤ L6

2
δ̄2 +

C2δ2 −
(
C̄1 +

C1C2

µ1+µ2

)2
√

C2δ2 +
(
C̄1 +

C1C2

µ1+µ2

)2 δ̄ (104)

at the convergent point (θ∗,ϕ∗ (θ∗)) with convergent speed O
(
max

{
k2b , k

2
σ, k

2
σ̄

})
. That is, the

error of the expected meta loss at the convergent point is less than

L6

2
δ̄2 +

C2δ2 −
(
C̄1 +

C1C2

µ1+µ2

)2
√
C2δ2 +

(
C̄1 +

C1C2

µ1+µ2

)2 δ̄ (105)

Next, we discuss the convergent point of the NashMAML algorithm is the subStackelberg equi-
librium of the target stochastic optimization problem of the NashMAML algorithm described in
equations (8) and (9).

Lemma 7 The optimal expected meta loss function L (θ) is always equal to the task i’s expected
loss function E [Li (θ)].

Proof. Because the sampling task is done through replacement sampling, the following holds.

L (θ) = ETi∼p(T ) [F (θ,ϕ∗ (θ))]

=
1

N

N∑
i=1

ETi∼p(T ) [Li (θ,ϕ
∗ (θ))]

= ETi∼p(T ) [Li (θ,ϕ
∗ (θ))] (106)

Theorem 4 Let (θ∗,ϕ∗ (θ∗)) be an optimal solution of the following stochastic optimization prob-
lem which is the target problem of the NashMAML algorithm.

θ∗ = arg min
θ∈Rd

ETi∼p(T ) [Li (θ, ϕ
∗
i (θ))] (107)

ϕ∗
i (θ) = arg min

ϕi∈Ωi(ϕ∗
−i(θ),θ)

fi
(
ϕi, ϕ

∗
−i (θ) , θ

)
(108)

We denote the expected meta loss function of the stochastic optimization problem
ETi∼p(T ) [Li (θ,ϕ

∗ (θ))] as E [L∗
i (θ)]. Let δ and δ̄ are the convergence criterion of the in-

ner loop and the outer loop, respectively. Then, under Assumptions 1, 2, and 3, the NashMAML
algorithm with step size β ≤ δ̄√

4C2δ2+4
(
C̄1+

C1C2
µ1+µ2

)2
compute the optimal solution of the stochas-

tic optimization problem described in equations (107) and (108) with the convergence speed
O
(
max

{
k2b , k

2
σ, k

2
σ̄

})
and error

E [L∗
i (θ

∗)]− E
[
L∗
i

(
θk
)]
≤ L6

2
δ̄2 +

C2δ2 −
(
C̄1 +

C1C2

µ1+µ2

)2
√

C2δ2 +
(
C̄1 +

C1C2

µ1+µ2

)2 δ̄ (109)
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where C = L1+
C1L4+C2L2

µ1+µ2
+ C1C2(L3+L5)

(µ1+µ2)
2 . That is, the convergent point of the NashMAML algo-

rithm is also the generalized subStackelberg equilibrium of the stochastic generalized Stackelberg
game described in equations (107) and (108).

Proof. By Theorem 3 and Lemma 7, the difference of the expected meta loss function of the stochas-
tic problem at the convergent point of the NashMAML algorithm is converged with convergent speed
O
(
max

{
k2b , k

2
σ, k

2
σ̄

})
.

E
[
L∗
i

(
θk+1

)]
− E

[
L∗
i

(
θk
)]

= L
(
θk+1

)
−L

(
θk
)

≤ L6

2
δ̄2 +

C2δ2 −
(
C̄1 +

C1C2

µ1+µ2

)2
√
C2δ2 +

(
C̄1 +

C1C2

µ1+µ2

)2 δ̄ (110)

where C = L1 +
C1L4+C2L2

µ1+µ2
+ C1C2(L3+L5)

(µ1+µ2)
2 . That is, the error of the expected meta loss function

E [L∗
i (θ)] at the convergent point of the NashMAML algorithm is less than

L6

2
δ̄2 +

C2δ2 −
(
C̄1 +

C1C2

µ1+µ2

)2
√
C2δ2 +

(
C̄1 +

C1C2

µ1+µ2

)2 δ̄ (111)

Because the difference of the expected meta loss function E [L∗
i (θ)] is converged in equation (110),

the convergent point of the NashMAML algorithm is also the optimal solution of the stochastic
optimization problem described in equations (107) and (108). That is,

E [L∗
i (θ

∗)]− E
[
L∗
i

(
θk
)]
≤ L6

2
δ̄2 +

C2δ2 −
(
C̄1 +

C1C2

µ1+µ2

)2
√

C2δ2 +
(
C̄1 +

C1C2

µ1+µ2

)2 δ̄ (112)

So far, we show that the NashMAML algorithm converges, and its convergent point is the general-
ized subStackelberg equilibrium of the stochastic generalized Stackelberg game that NashMAML
originally targets. Now, we prove that the NashMAML algorithm always converges to the same
point regardless of the initial meta-parameter or initial task-specific parameter, and irrespective of
the order in which task-specific parameters are updated in the inner loop. We present the assump-
tions needed or the proof first.

Assumption 4 Suppose the following statements hold:

• The task i’s optimal loss function Li (θ,ϕ
∗ (θ)) is strongly convex on θ.

• Let G (θ) be the N -player normal-form game modeling an inner loop of the NashMAML
algorithm. The task i’s strategy set Ωi is independent of the other task-specific parameters
ϕ−i or G (θ) has the unique generalized Nash equilibrium for all θ.

Theorem 5 Under Assumption 1, 2, and 3, the NashMAML algorithm converges to the same optimal
solution of the stochastic optimization problem described in equations (107) and (108) regardless
of the order of the task-specific parameters’ gradient update in the inner loop. Moreover, the Nash-
MAML algorithm converges to the optimal solution of the stochastic optimization problem described
in equations (107) and (108) regardless of the initial meta-parameter and initial task-specific pa-
rameters under Assumption 4.

Proof. Let G (θ) be the N -player normal-form game modeling an inner loop of the NashMAML
algorithm. Because there is the unique convergent point of G (θ) by Lemma 2, the NashMAML
algorithm converges to the same convergent point regardless of the order of the task-specific param-
eters’ gradient update.

If Ωi is independent of the other task-specific parameters ϕ−i, G (θ) is a normal-form game. That is,
G (θ) has the unique Nash equilibrium under Assumption 1. Thus, there is the unique (generalized)

29



Under review as a conference paper at ICLR 2024

Nash equilibrium ϕ∗ (θ) of equation (108) under Assumption 4. Because the optimal task-specific
loss function is convex on θ, ETi∼p(T ) [Li (θ,ϕ

∗ (θ))] is convex on θ. Therefore, there is the unique
optimal solution (θ∗,ϕ∗ (θ∗)) of the stochastic optimization problem described in equations (107)
and (108). That is, the NashMAML algorithm converges to the optimal solution of the stochastic
optimization problem regardless of the initial meta-parameter and initial task-specific parameters.
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