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Abstract

Large language models (LLMs) like ChatGPT and GPT-4 ex-
hibit impressive capabilities in a wide range of generative
tasks. However, their performance is often hindered by limita-
tions in accessing and leveraging long-term memories, lead-
ing to specific vulnerabilities and biases, especially in pro-
longed interactions. This paper introduces ChatLogic, an in-
novative framework that augments LLMs with logical rea-
soning. In ChatLogic, LLMs play a central role, acting as
the controller and engaging in every phase of the system’s
operation. We present a novel method for translating logi-
cal questions into symbols integrated with a reasoning en-
gine. This approach harnesses the contextual understanding
and mimicking skills of LLMs, employing symbolic memory
to enhance multi-step deductive reasoning capabilities. Our
findings reveal that the ChatLogic framework markedly im-
proves the multi-step reasoning capabilities of native LLMs.
The source code and data are available at https://github.com/
Strong- Al-Lab/ChatLogic.

Introduction

Recent advancements in large language models (LLMs)
such as ChatGPT-3.5, GPT-4 (OpenAl 2023), and Llama2
(Touvron et al. 2023) have significantly enhanced their ca-
pabilities in various industries, proving invaluable in solv-
ing complex real-world problems. These models are revolu-
tionizing sectors like customer service, healthcare, and edu-
cation through their nuanced contextual comprehension and
advanced conversational abilities. However, when it comes
to multi-step logic reasoning tasks, LLMs face notable chal-
lenges.

While these models excel in content generation, they
struggle with consistently producing coherent responses
in tasks that require multi-step reasoning. Their training
methodology, primarily based on the ‘next-token prediction’
approach, limits their ability to apply logical rules and deep
contextual understanding essential for such tasks. For ex-
ample, Figure 1 shows how to let LLMs find a reasonable
explanation path as the judgment result of the problem in
the known randomly disrupted proposition sequence. This
represents a critical area for improvement in current LLMs.
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Further complicating this issue is the inherent token lim-
itation of LLMs, which becomes apparent in continual di-
alogues (Thirunavukarasu et al. 2023). The token caps in
models like GPT-3.5 and GPT-4, while extendable through
engineering prompts or technologies like Recursive Model
Training (Bulatov, Kuratov, and Burtsev 2023), still pose
a significant constraint. This limitation is particularly pro-
nounced in multi-turn conversations, a common feature in
multi-step logic reasoning tasks.
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Figure 1: Demo illustrating how LLMs can effectively iden-
tify and follow correct and logical reasoning paths to solve
complex multi-step reasoning problems. In this instance, our
objective is to let LLMs recognize the presence of an es-
tablished path, ABCEF, thereby enabling them to accurately
deduce that the statement ‘A infers F’ is true.

To address these limitations, innovative approaches such
as external memory augmentation are being explored
(Zhong, Lei, and Chen 2022). This method involves inte-
grating LLMs with extensive databases, aiming to enhance
their reasoning capabilities (Borgeaud et al. 2022). However,
this integration brings its own set of challenges, such as the
potential embedding of biases from the retrieval models into
the LLMs (Khattab et al. 2022), which could affect their ac-
curacy and stability.

Our work introduces ChatLogic, a framework that aug-
ments LLMs with a logical reasoning engine to enhance
their inferential capabilities. In this framework, we have
innovatively implemented a ‘Mix-shot Chain of Thought’
technique. This approach significantly enhances the per-
formance of LLMs by combining various prompt en-



gineering methods. Mix-shot CoT efficiently guides the
model through logical reasoning steps, achieving improved
problem-solving with minimal resource consumption. Chat-
Logic is designed to be compatible with existing LLMs,
significantly increasing their accuracy, especially in high-
precision scenarios. The framework orchestrates the func-
tioning of an LLM, enabling it to efficiently generate re-
sponses across various tasks.

At the heart of ChatLogic is the transformation of natural
language into logical symbols, a process executed through
pyDatalog. The primary objective of ChatLogic is to rein-
force the stability of the reasoning process, ensuring that
LLMs can handle intricate reasoning tasks with enhanced
reliability and precision. The main characteristics of our
framework are summarized below:

* ChatLogic, by combining LLMs with pyDatalog, trans-
lates natural language queries into logic programs, en-
hancing inference accuracy. This improvement is notably
evident in multi-step reasoning tasks, as demonstrated on
datasets such as PARARULE-Plus!, CONCEPTRULES
V1, and CONCEPTRULES V2.

» ChatLogic mitigates information loss, making it effective
in addressing the long sequence limitation prevalent in
the adoption of LLMs for multi-step reasoning tasks.

e ChatLogic incorporates automated enhancements for
logic program execution, including a syntax correction
module. This module refines a logic program by learn-
ing from previous executions, significantly improving the
practical application and effectiveness of the generated
code.

Related Work
LLMs Reasoning:

LLMs are considered to have reasoning abilities similar to
human cognition (Huang and Chang 2022). Despite facing
challenges in multi-step logical tasks involving contempo-
rary information or complex logical sequences (Creswell,
Shanahan, and Higgins 2022), emerging approaches like
self-consistency (Wang et al. 2022) show promise in enhanc-
ing performance, particularly in areas such as arithmetic and
common sense reasoning. The effectiveness of causal rea-
soning pathways (Creswell and Shanahan 2022) is also cru-
cial, ensuring that the output of LLMs is not only accurate
but also transparent and verifiable. However, the most im-
pactful method is the Chain of Thought (CoT) (Wei et al.
2022), which reveals the intermediate reasoning steps used
by these models in problem-solving, allowing for continual
self-correction of logical thinking, thereby greatly enhanc-
ing the rationality of their reasoning capabilities.

LLMs Code Generation:

LLMs have demonstrated the ability to generate code in var-
ious programming languages to meet users’ specific needs
(Yang, Ishay, and Lee 2023). However, how to directly ap-
ply the generated code to actual environments remains an

"https://huggingface.co/datasets/qbao775/PARARULE-Plus

issue to be resolved. The LOGIC-LM method (Pan et al.
2023) combines LLMs with the principles of symbolic rea-
soning, clarifying the nuances of text-to-Prolog code con-
version by utilizing feedback from symbolic solvers dur-
ing self-improvement. In terms of optimization, the SELF-
DEBUGGING approach (Chen et al. 2023) leads the post-
code generation phase. It endows LLMs with the ability to
debug their output, reinforcing the theme of continual re-
finement in the generated code. Even for LLMs that may not
fully understand the demonstration samples due to a lack of
pyDatalog knowledge in their pre-training data, they can still
produce high-precision outputs simply through ‘imitation’.
Our ultimate goal is to generate code that perfectly meets
the requirements and can be directly deployed locally.

LLMs Prompt Engineering:

Prompt engineering in LLMs functions akin to psycholog-
ical suggestions, guiding the model towards specific pre-
dictions (Wang et al. 2020). Few-shot learning emphasizes
training models with the least labeled data for optimized
task performance. Notably, models like GPT-3 can handle
tasks with a few examples, comparable to fine-tuned models
(Brown et al. 2020). Enhanced by prompt engineering, their
reasoning capabilities are magnified. Zero-shot Prompting
(Reynolds and McDonell 2021) fully relies on the model’s
vast intrinsic knowledge and training corpus, taking on the
entire responsibility of problem-solving. Surprisingly, it of-
ten produces results that exceed expectations in many cases,
despite limited guidance. Additionally, Zero-shot CoT (Ko-
jima et al. 2022) is also considered to be the best reasoning
prompting at present. By using the specific prompt ‘Let’s
think step by step’ and the corresponding two-stage prompt
technique, significant improvements are achieved in multi-
ple reasoning-related zero-shot tasks, far surpassing previ-
ous zero-shot learning.

Although not every situation using Zero-shot CoT results
in optimal content output, in most cases targeting specific
downstream tasks, LLMs have shown potential in the current
field to effectively perform tasks using small sample tech-
niques and combining external enhancement symbols (Song
et al. 2022; Liu et al. 2023). In ChatLogic, we create inde-
pendent prompt templates for different links in the frame-
work and call them independently. By emphasizing LLMs’
inherent reasoning capabilities and combining them with ba-
sic symbolic rules, preliminary results suggest a promising
direction.

Task Definition

In our experience with advanced LLMs such as Llama2
and GPT-4, we’ve noticed their impressive ability to convert
text into formal structures like math equations (He-Yueya
et al. 2023) and programming languages (Vaithilingam,
Zhang, and Glassman 2022). However, these models some-
times struggle with complex, multi-step reasoning tasks. As
the reasoning depth increases, the challenge escalates, and
LLMs often miss key reasoning steps.

Acknowledging these characteristics, our primary goal
is to boost the capability of LLMs to effectively represent



problems in logic programming languages, particularly py-
Datalog, which is a Python library that integrates the logic
programming paradigm, particularly useful for declarative
reasoning and complex querying. It allows for sophisticated
rule-based logic and inference to be seamlessly incorpo-
rated into Python applications, enhancing their capabilities
for decision-making processes. To accomplish this goal, we
aim to address the following two subtasks.

Augmenting the Inferential Abilities of LLMs: Our pre-
liminary objective is to exploit the one-shot generalization
and zero-shot thinking capabilities of LLMs. To accomplish
this, we aim to familiarize the model with the intricacies of
the symbolic language, specifically using pyDatalog. We in-
troduce them to this language through meticulously crafted
examples that cater to all potential edge cases. The union
of structured pyDatalog syntax and these detailed examples
is paramount in guiding LLMs to comprehend and handle
multi-step reasoning.

Amplifying the Executability of Automated Code Gener-
ation Processes: An LLM’s translation from text to code
(Budinsky et al. 1996) often isn’t flawless on the first attempt
and may contain errors. We aim to design a specific module
in ChatLogic, to ensure comprehensive and accurate transla-
tion of natural language content to code. The produced code
should be readily executable locally, directly yielding the de-
sired results.

ChatLogic

This section provides a detailed overview of the ChatLogic
framework, with a particular emphasis on the finer details
of its constituent parts and our innovative strategy regarding
Mix-shot CoT.

Framework Overview

The ChatLogic framework comprises four primary phases:
input processing, Semantic Correction, Syntax Correction,
and local execution response, as meticulously illustrated in
Figure 2. The entire process from problem input to result
output is depicted in the image in the form of a demonstra-
tion. It is worth noting that the initial version of the logic
code generated by LLMs at the beginning, after continuous
revision through two or more iterations within two modules
(semantic and syntactic correction), as a direct code solu-
tion for multi-step reasoning Executability is significantly
improved, resulting in more precise results. Moreover, the
enhanced refinement of this code substantially bolsters its
executability, contributing to improved system performance
and accuracy.

Algorithm 1 delves deeper into the comprehensive algo-
rithmic process for querying response data in ChatLogic.
Apart from the locally executed part, all sub-tasks within
ChatLogic are controlled and driven by LLMs acting as
components. It consists of two loops, each corresponding to
the content of two correction phases. We observe that LLMs
excel at semantic corrections, and with a limited number of
modifications, correct text translations can be achieved. In
lines 5 and 6 of the code, we employed zero-shot CoT to

assist in determining the textual similarity of two proposi-
tions. Based on the judgment, we update the ‘DifferentFlag’
label, which influences the progression of the loop process
of ‘Semantic Correction’. However, syntax corrections are
not always reliable, they may get stuck in an infinite loop,
repeatedly performing meaningless tasks. To address this is-
sue, we consider introducing an upper loop limit. Although
this somewhat diminishes ChatLogic’s inferential capabil-
ities, it significantly enhances the framework’s robustness,
making it better suited for multi-step deductive reasoning
tasks.

Mix-shot CoT

Our innovative mix-shot CoT (Chain of Thought) approach
represents a groundbreaking hybrid methodology, blending
the strengths of zero-shot CoT and one-shot learning to cre-
ate a more versatile and effective learning paradigm for lan-
guage models. At its core, mix-shot CoT leverages the lan-
guage model’s innate ability for autonomous sub-task identi-
fication, a characteristic of zero-shot learning, and enriches
it with the precision of one-shot learning through strategi-
cally chosen demonstration examples. This dual approach
allows for dynamic adaptation to the complexity and specific
requirements of various tasks. For tasks demanding high ac-
curacy and nuanced understanding, like complex problem-
solving or advanced language interpretation, mix-shot CoT
guides the model using high-quality demonstration exam-
ples as templates, enhancing its precision and contextual
depth. In addition, in scenarios that require more extensive
analysis, such as text similarity comparison between gen-
erated propositions and original propositions in ChatLogic,
LLMs are given greater autonomy to leverage their analyt-
ical capabilities and generate innovative solutions, thereby
developing their ability to navigate massive amounts of in-
formation and generate unique insights.

Moreover, mix-shot CoT is designed to cultivate an adapt-
able learning process in language models, harmoniously
combining structured guidance with the freedom of explo-
ration. This flexibility is crucial in enabling the model to not
only accurately follow established patterns but also to inno-
vate and adapt to a diverse range of tasks.

In our comparative analysis, as depicted in Table 1, our
mix-shot CoT methodology showcases a considerable leap
in performance by striking an optimal balance between the
grounded precision of one-shot learning and the generative
flexibility of zero-shot CoT. Our approach reduces halluci-
nation significantly and boasts the highest task-specific ac-
curacy due to its judicious use of high-quality demonstra-
tion examples. While it does not entirely eliminate the need
for demonstrations like zero-shot CoT, nor does it match the
minimal hallucination levels of one-shot learning, the mix-
shot CoT’s enhanced adaptability and efficiency make it a
powerful tool in the realm of prompt engineering. By ac-
knowledging the limitations of requiring some demonstra-
tions and not being as inherently scalable as zero-shot CoT,
our mix-shot CoT nonetheless stands out for its pragmatic
effectiveness in real-world applications where precision and
adaptability are paramount.
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Figure 2: ChatLogic containing more details uses LLMs as controllers, calls appropriate demonstration examples from Prompt

Te

mplates, guides the two modules of semantic correction(SE) and syntax correction(SYN) to output correct code, and produces

execution results. This is an excerpt of a specific question in PARARULE-Plus and the code generation process. The yellow

po

rtion represents the achievements of SE, and the cyan portion represents SYN.

Al

gorithm 1: The Algorithm of ChatLogic

Input: U < Rules supplemented based on the close-world assumption

X
Y

< Proposition group (contains facts and rules)
< Question

Output: TRUE/FALSE (Answer to Y given U, X)

1: DifferentFlag = TRUE
> Semantic Correction
2. while DifferentFlag do
3: Code < PropositionTransformation(X, Y, U) > Generate logic program based on close-world assumption
4: RevProposition <— ReverseTransformation(Code, U) > Convert code back to natural language
5: DifferentInfo +— TextComparison((X, Y'), RevProposition)
6: DifferentFlag < JudgeInfo(DifferentInfo) > Determining semantic similarity status with zero-shot CoT in 2 steps
7: end while
> Syntax Correction
8: ExecutionError = NULL > Execution result record
9: while Code cannot be executed do
10: Code < Codelmprovement(Code, FzecutionError) > Improve code based on error info
11: if Running Time Overflow then
12: Terminate WHILE Loop
13: end if
14: end while
15: return CodeExecution(Code) > Get results by executing pyDatalog code locally
Evaluation logical symbols to enhance the multi-step reasoning capa-
In this section, we conduct experiments to evaluate the effec- bilities of LLMs.

tiveness of ChatLogic-augmented LLMs. Our experimental
results show that ChatLogic+LLMs significantly outper-
form baseline LLMs, highlighting the advantages of using



Table 1: Comparison among different methods for prompt engineering

Attributes

Prompt Engineering Methods

One-shot Learning (Brown et al. | Zero-shot CoT (Kojima et al. | Mix-shot CoT (Ours)
2020) 2022)

Hallucination | Least hallucination
Accuracy Poor performance

Expansibility

ferent tasks

High hallucination
Relatively high accuracy

Less hallucination

Highest accurate response to task

Different demos needed for dif- | No demo needed, only simple | Fewer demos, and improved per-
guidance required

formance than fewer shots

Datasets and Metrics

All reasoning questions in PARARULE-Plus adhere to the
closed world assumption, totaling approximately 400,000
samples. It features linguistic information in two contex-
tual scenarios: People and Animal. For this dataset, we con-
ducted our experiment by randomly selecting 50 instances
from each depth level in both the Animal and People cate-
gories, combining them to form a set of 100 test cases for
each depth level, ranging from Depth=2 to Depth=35.

In addition to PARARULE-Plus, we also incorporate
the CONCEPTRULES V1? and CONCEPTRULES V23
datasets in our study. These datasets contain samples that
require multi-step reasoning, with depths up to 3, making
them suitable for evaluating models’ capabilities in com-
plex reasoning tasks. They are available in both simplified
and full versions. For each version of the CONCEPTRULES
datasets, we initially consolidated all data from the train,
test, and dev sets into a single pool. From this unified dataset,
we then randomly sampled 100 instances for our tests.

In our experiments with ChatGPT, GPT-4, and Llama 2-
7B, we aimed to establish a baseline for reasoning capabili-
ties of LLMs as documented in the literature(Hu et al. 2023).
A significant part of our study was the implementation of
ChatLogic, a framework designed to potentially enhance
these models’ reasoning accuracy. This involved testing con-
figurations like ChatGPT vs. ChatLogic (ChatGPT) across
uniform scenarios using instances from the PARARULE-
Plus and CONCEPTRULES datasets. The crux of our hy-
pothesis is that if models augmented with ChatLogic demon-
strate improved reasoning performance across various diffi-
culty levels compared to their baseline, it would be a strong
indicator of ChatLogic’s effectiveness. Such results would
suggest that ChatLogic could be a valuable addition to the
field of artificial intelligence and natural language process-
ing, affirming its utility in advancing the reasoning capabil-
ities of LLMs.

LLMs Configuration

In the ChatLogic framework invocation, ensuring the con-
trollability of the text is paramount. For ChatGPT and GPT-
4, the model invocation versions are respectively “gpt-
3.5-turbo” and “gpt-4”, and both have the hyperparame-
ter temperature set to 0 so that we can have more con-
trol over what the LLM outputs. For Llama 2-7B, using an

2https://bit.ly/3uVemXG
*https://bit.ly/3PApIIB

NVIDIA GeForce RTX 3090 with 24GB of memory, we uti-
lized the transformer-based version meta-llama/Llama-2-
7b-chat-hf * provided by Huggingface.

Intermediate Process

Figure 3 provides an illustrative comparison between two
approaches for handling the PARARULE-Plus dataset. On
the left, we can observe the inference process generated di-
rectly by ChatGPT. While it appears initially logical, upon
closer examination, it becomes apparent that this inference
process contains numerous logical inconsistencies.

In contrast, on the right side of the figure, we showcase
the enhanced performance of ChatGPT when coupled with
the ChatLogic framework. This presentation includes only
a selected excerpt of the final generated code. When exe-
cuted locally, this integration produces remarkably precise
inference results, addressing the logical inconsistencies en-
countered in the unassisted ChatGPT inference process.

It is worth noting that after experiments, we found that
before calling the text data in the PARARULE-Plus data
set, LLMs can not complete the missing information for the
relevant text content based on the closed-world assumption
(Fei and Liu 2016), resulting in a significant decrease in rea-
soning efficiency. In order to avoid this situation, we built
a script to extract the subject and attribute affiliations in the
text through Named Entity Recognition (NER) and complete
the missing information in the proposition in the format of
artificially synthesized natural language. Then use the Chat-
Logic framework to enhance text reasoning on LLMs. For
example, in the ‘Rules’ in Figure 3, through observation we
find that no sentence can deduce that someone has the at-
tribute of ‘big’, so this attribute must appear in the defini-
tion of character attributes. If we do not see tasks with ‘big’
attributes in ‘Facts’, then we default that they do not have
‘big’ attributes, which requires us to manually add them to
‘Facts’. This part also belongs to the specific content repre-
sented by U in Algorithm 1 and Figure 2. The same approach
was not utilized for the two distinct versions (simplified &
full) of each of the CONCEPTRULES datasets (V1 & V2),
as these versions did not require the supplementation of ad-
ditional information.

Result

The experimental findings, as illustrated in Tables 2 and 3,
unequivocally showcase the ChatLogic framework’s signif-

*https://huggingface.co/meta-1lama/Llama-2-7b-chat-hf



Propositions:

Facts:

Anne is huge. Anne is strong. Fiona is thin.

Fiona is little. Alan is clever. Dave is rough. Dave is bad.
Rules:

If someone is not big then they are rough.

If someone is not sad then they are kind.

If someone is clever then they are quiet.

If someone is quiet and not poor then they are smart.
If someone is rough and not big then they are dull.
If someone is dull then they are small.

Question:

Anne is tiny?

ChatGPT:

To determine whether "Anne is tiny" is correct, let's examine
the given propositions step-by-step and follow the chain of
reasoning.

From: Anne is huge.

Based on Proposition 8: "If someone is not big then they are
rough. “Since Anne is huge, she is big.” Hence, she is not
rough.

We need to determine if Anne can be categorized as small
and tiny.

(WRONG! " Huge " is not the same as "big ". We should not
infer downward based on " Anne is big ", but based on the
closed-world assumption: The proposition: “Anne is big” is
not clearly defined, we should think that Anne is not big.)
Therefore, we don't have enough evidence to say that "Anne
is tiny" based on the given propositions.

Answer: 0 (The statement ""Anne is tiny" is wrong based
on the provided propositions.)

ChatLogic:

pyDatalog.create_terms('X,huge,strong,little,
rough,clever,sad, kind,quiet,tiny,big ")

+huge("Anne")
+strong('Anne’)
+little('Fiona’)

rough(X) <= ~big(X)
kind(X) <= ~sad(X)
quiet(X) <= clever(X)

result = tiny('Anne’)

if result: Pesqlt:.l
print(1) Anne is tiny.
else:
print(@)

Figure 3: Comparison based on the PARARULE-Plus dataset shows that while ChatGPT, even with CoT reasoning, often leads
to incorrect inferences, the ChatLogic framework (also driven by ChatGPT) in most cases accurately generates pyDatalog code,

highlighting its more reliable reasoning proficiency.

icant enhancement of LLMs’ performance, surpassing the
Baseline with considerably higher accuracy in most scenar-
ios. While native models demonstrate competency in an-
swering straightforward questions, they exhibit limitations
in complex multi-step reasoning tasks, leading to reduced
accuracy in more challenging questions. In stark contrast,
the amalgamation of ChatLogic with LLMs consistently
manifests superior accuracy across various levels of ques-
tion difficulty. This highlights the critical role of augmenting
LLMs with logical symbolic operations in multi-step rea-
soning. By adopting this methodology, we ensure the reten-
tion of comprehensive information in natural language, ef-
fectively preventing omissions and the accumulation of er-
rors that could compromise reasoning outcomes. Moreover,
this approach enhances the transparency of the reasoning
process, thereby elevating the credibility and traceability of
the results.

In our analysis of the PARARULE-Plus dataset, the
ChatLogic framework consistently outperforms the baseline
model (‘Base’) and ‘Zero-shot CoT’ in most scenarios. No-
tably, GPT-4, in conjunction with ChatLogic, exhibits ex-
ceptional performance on questions of higher complexity
(Depth=4 and Depth=5), underscoring ChatLogic’s robust
capability in handling intricate problems. Regarding Llama
2-7B, despite its weaker baseline performance, it shows sig-

nificant improvement at all depth levels when assisted by
ChatLogic. This indicates the framework’s versatility in en-
hancing multi-step reasoning abilities across different mod-
els.

When observing the CONCEPTRULES V1 and V2
datasets, a notable shift in GPT-4’s performance becomes
evident. With Zero-shot CoT, GPT-4 either parallels or
slightly surpasses ChatLogic in many cases, particularly in
the full version of the CONCEPTRULES V2 dataset. The
performance difference between GPT-4 and ChatLogic on
these datasets is more nuanced compared to their perfor-
mance on the PARARULE-Plus dataset. The inherent ro-
bustness of the GPT-4 model, likely due to its larger pa-
rameter count, already demonstrates formidable capabilities.
This finding underscores the future need for more sophisti-
cated datasets to challenge the upper-performance limits of
advanced LLMs. Additionally, it’s observed that ChatLogic
primarily enhances models with a smaller parameter count,
by providing appropriate guidance, thereby boosting their
performance on the task. This reaffirms the significant value
and relevance of our work, especially in optimizing mod-
els that are not inherently equipped with extensive computa-
tional resources.



Table 2: Accuracy comparison on the PARARULE-Plus dataset (1 for perfect accuracy), including ‘Base’ and ‘Zero-shot CoT’
for reference. Our ‘ChatLogic’ framework generally outperforms others, showcasing its superior effectiveness with LLMs. For

each depth level, the results demonstrated the best performance for every model are highlighted in bold.

Model Method Depth=2 Depth=3 Depth=4 Depth=5 Total
Base 04 0.34 0.32 0.3 0.344
GPT-3.5 Zero-shot CoT  0.42 0.42 0.41 0.3 0.3875
ChatLogic 0.49 0.56 0.65 0.41 0.5275
Base 0.65 0.75 0.42 04 0.555
GPT-4 Zero-shot CoT  0.72 0.72 0.62 0.7 0.69
ChatLogic 0.72 0.8 0.7 0.7 0.73
Base 0.11 0.06 0.01 0.01 0.0475
Llama 2-7B  Zero-shot CoT  0.15 0.13 0.08 0.06 0.105
ChatLogic 0.2 0.13 0.22 0.18 0.1825
Table 3: Accuracy comparison on CONCEPTRULES V1 Ablation Study

and V2 datasets (1 indicates perfect accuracy), across both
simplified and full versions. Notably, GPT-4 with ‘Zero-shot
CoT’ closely matches or occasionally surpasses our ‘Chat-
Logic’ framework in performance. Results showing the best
performance for each version of the datasets are highlighted
in bold.

CONCEPTRULES VI ~ CONCEPTRULES V2
Model Method L . N
simplified  full simplified  full
Base 0.57 0.55 0.5 0.51
GPT-3.5 Zero-shot CoT .63 0.51 0.7 0.67
ChatLogic 0.69 0.67 0.79 0.74
Base 0.95 0.94 0.89 0.86

GPT-4 Zero-shot CoT (.96 0.97 0.95 0.94
ChatLogic 0.96 0.96 0.94 0.94

Base 0.32 0.29 0.31 0.24
Zero-shot CoT 0.42 0.41 0.33 0.3
ChatLogic 0.48 0.49 0.37 0.36

Llama 2-7B

Table 4: Test results of code executability across three
datasets. Two modules respectively improve the executabil-
ity of code, Semantic Correction (SE) and Semantic Correc-
tion + Syntax Correction (SE+SYN).

Model Base SE SE+SYN

GPT-3.5 0.63 0.68 0.7
GPT-4 092 0.96 0.96
Llama2-7B 0.31 0.60 0.62

GPT-3.5 0.6 0.73 0.8
GPT-4 092 0.93 0.95
Llama2-7B  0.33 0.52 0.53

GPT-3.5 026 05 0.62
GPT-4 0.54 0.64 0.7
Llama2-7B 0.1  0.16 0.16

Dataset

CONCEPTRULES V1

CONCEPTRULES V2

PARARULE-Plus

We have introduced two modules aimed at improving
code execution from semantic and syntax perspectives. To
demonstrate their role in aiding LLMs’ multi-step reason-
ing, we will separately assess how each module affects the
code’s executability. We anticipate a gradual increase in suc-
cessful executions, which would validate the effectiveness of
our approach.

For the PARARULE-Plus dataset, we increased our data
sampling to 100 random samples from the entire dataset,
ensuring that the selection was completely shuffled, with
no specific order applied to parameters such as ‘Depth (2-
5) and ‘Pattern (Animal & People)’. For the CONCEP-
TRULES V1 and V2 datasets, we thoroughly shuffled all
data from both the ‘simplified’ and ‘full’ versions of each
dataset and randomly selected 100 samples from each. To
assess the executability rate of the generated code, we de-
ployed it locally, evaluating solely based on the absence of
error messages and the correctness of the output content.

The results are presented in Table 4. In our compari-
son, we examined the enhancements in code execution rate
achieved by LLMs with the gradual integration of differ-
ent modules. Relative to the baseline, both modules demon-
strated incremental improvements in execution rates. No-
tably, despite Llama 2 not utilizing as much code text for
pre-training compared to GPT-3.5 and GPT-4, the Syntax
Correction module still proved to be valuable. While it
didn’t lead to a significant increase in execution rate, its
contribution to refining code quality is noteworthy. Fur-
thermore, it’s important to highlight that GPT-4, due to
its extremely advanced capabilities in some subtasks, has
seemingly reached a ‘performance ceiling’ on the current
datasets. This suggests that the datasets’ limitations may
somewhat constrain its potential.

Limitation and Future Work

Through experimental evaluations on multiple mainstream
LLMs, we observed that ChatLogic+LLMs outperformed
native LLMs in terms of performance. The impressive



performance demonstrates our work’s effectiveness. How-
ever, some issues have also been exposed. PARARULE-
Plus is based on the closed-world assumption in question-
answering data. Additionally, datasets like CONCEP-
TRULES V1 and V2, also being artificially constructed, lack
natural linguistic expression, which may not fully represent
real-world complexities. When confronted with more com-
plex sentences in the context of an open-world assumption,
importing, integrating, and inferring external knowledge in-
formation that is expressed differently still poses challenges.
Despite the valuable results from our experiments in enhanc-
ing code reliability, it’s essential to acknowledge that the
optimization module’s applicability is currently limited to
specific datasets. Future developments should focus on cre-
ating adaptable optimization components (Marvie 2005) to
address a wider array of scenarios and data sources.
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