
3rd Symposium on Advances in Approximate Bayesian Inference, 2020 1–14

Marginalised Spectral Mixture Kernels with Nested Sampling

Fergus Simpson fergus@secondmind.ai
Secondmind, Cambridge, UK

Vidhi Lalchand vd308@cam.ac.uk
University of Cambridge, Cambridge, UK

Carl Rasmussen
Secondmind, Cambridge, UK
University of Cambridge, Cambridge, UK

Abstract
Gaussian Process (GPs) models are a rich distribution over functions with inductive biases controlled
by a kernel function. Learning occurs through optimisation of the kernel hyperparameters using the
marginal likelihood as the objective (ML-II). This work analyses the benefits of marginalising kernel
hyperparameters using nested sampling (NS), a technique well-suited to sample from complex,
multi-modal distributions. We benchmark against Hamiltonian Monte Carlo (HMC) on time-series
regression tasks and find that a principled approach to quantifying hyperparameter uncertainty
substantially improves the quality of prediction intervals.

1. Introduction

Gaussian processes (GPs) represent a powerful non-parametric and probabilistic framework for
performing regression and classification. GPs are typically trained using ML-II, a procedure which
denotes the maximisation of the GP marginal likelihood. ML-II yields point estimates of hyperpa-
rameters for the user chosen covariance / kernel function. The posterior predictive distribution is
then evaluated at the ML-II point estimates. The form of the kernel function influences the geometry
of the marginal likelihood surface. For instance, periodic kernels give rise to multiple local minima
as functions with different periodicities can be compatible with the data. Expressive kernels which
are derived by adding/multiplying together primitive kernels to encode different types of inductive
biases typically have many hyperparameters, exacerbating the local minima problem. Concretely,
the classical approach to training suffers from two issues we try and analyse in this work: 1) Point
estimate hyperparameters give overconfident predictions by not accounting for hyperparameter uncer-
tainty; 2) Non-convexity of the marginal likelihood surface can lead to poor estimates located at local
minima. Further, the presence of multiple modes affects the interpretability of kernel hyperparameters.

The spectral mixture (SM) kernel proposed in Wilson and Adams (2013) is an expressive class of
kernels derived from the spectral density reparameterisation of the kernel using Bochner’s Therorem
Bochner (1959). The SM kernel has prior support over all stationary kernels which means it can
recover sophisticated structure provided sufficient spectral components are used. Several previous
works Kom Samo and Roberts (2015); Remes et al. (2017, 2018) have attempted to further enhance
the flexibility of spectral mixture kernels, such as the introduction of a time-dependent spectrum.
However, we postulate that the key limitation in the SM kernel’s performance lies not its stationarity
or expressivity, but in the optimisation procedure. We show that the form of the SM kernel gives rise
to multiple symmetric modes in the marginal likelihood making optimisation extremely unstable and
prone to overfitting. Our two main contributions are:

• Highlight the failure modes of ML-II training in the context of spectral mixture kernels. We
provide insights into the effectiveness of ML-II training in weak and strong data regimes.
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• Propose the relevance of Nested Sampling (NS) as a way to effectively sample from the
hyperparameter posterior (see also Faria et al., 2016; Aksulu et al., 2020), particularly in the
presence of multiple modes.

2. Background

2.1. Marginalised Gaussian Processes

Given some input-output pairs (X,y) = {xi, yi}Ni=1 where yi are noisy realizations of latent function
values fi with Gaussian noise, yi = fi + εi, εi ∈ N (0, σ2

n), we seek to infer some as-yet unseen values
y∗. Let kθ(xi, xj) denote a positive definite kernel function parameterized with hyperparameters θ.
Following the prescription of Lalchand and Rasmussen (2020), the marginalised GP framework is
given by

Hyperprior: θ ∼ p(θ); GP Prior: f |X,θ ∼ N (0,Kθ); Likelihood: y|f ∼ N (f , σ2
nI) (1)

where Kθ denotes the N ×N covariance matrix, (Kθ)i,j = kθ(xi,xj). The predictive distribution for
unknown test inputs X? integrates over the joint posterior1,

p(f?|y) =
∫∫

p(f?|f ,θ)p(f |θ,y)p(θ|y)dfdθ ' 1

M

M∑
j=1

p(f?|y,θj) (2)

where f has been integrated out analytically and θ is dealt with numerically, yielding the final
mixture of Gaussians form of the posterior predictive in marginalised framework. Throughout this
work we shall adopt a Gaussian likelihood, hence the only intractable integrand we need to consider
is the hyperparameter posterior p(θ|y) ∝ p(y|θ)p(θ).

2.2. Spectral Mixture Kernels

Definition 1 (SM kernel) A spectral mixture kernel is a positive definite stationary kernel given
by,

k(τ ) =

Q∑
q=1

wq cos(2πτ
Tµq)

D∏
d=1

exp(−2π2τ2dσ
2
q
(d)

) (3)

where τd, µ
(d)
q , σ

(d)
q are the dth components of the D dimensional vectors τ ,µq and σq respectively.

The vector of kernel hyperparameters θ = {wq,µq,σq}Qq=1 is typically unknown, we account for this
uncertainty by treating them as random variables with priors and sampling from their intractable
posterior.

The SM kernel is derived by leveraging Bochner’s Therorem (Bochner, 1959) which provides an
explicit relationship between the spectral density S(ν) and the kernel function k as the integral∫
S(ν)e2πiν

T τdν. If the S(ν) is modelled as a weighted mixture of Q Gaussian pairs,

S(ν) =

Q∑
q=1

wq
2

[G(ν, µq, σq) +G(ν,−µq, σq)] . (4)

and plugged into integral mentioned above, yields the SM kernel in eq. 3.2Here the weight wq specifies
the variance contributed by the qth component while G(ν, µ, σ) denotes a Gaussian function with

1. where we implicitly condition over inputs X,X? for compactness.
2. The supplementary of Wilson and Adams (2013) has a full proof.
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mean µq and standard deviation σq. To avoid confusion with other standard deviations, and convey
its physical significance, we shall refer to σq as the bandwidth.

Figure 1: Visualising the negative log marginal likelihood surface
as a function of mean frequencies in a 2 component
spectral mixture kernel GP. The training data was
generated from latent functions evaluated on the input
domain [-1,1] and σn refers to the intrinsic data noise
level. The two identical peaks correspond to different
re-orderings of the 2 component mean frequency vector
with a true value of [2,5].We can see that even with
a 10 fold data increase, the flat ridge on the surface
implies that gradient based optimisation might end up
trapped in a bad local optima. Further, with small
data sets the peaks are not pronounced enough and
there is significant probability mass in regions of the
hyperparameter space away from the true values.

Fig. 1 shows a two-dimensional
slice of the 7-dimensional3 marginal
likelihood surface for a 2-component
SM kernel, given two datasets of
different size. One of the strik-
ing features of these surfaces lies
in their symmetry due to the ker-
nel’s invariance to the ordering of
its components. The marginal
likelihood of a SM kernel with
Q spectral components possesses
Q! identical regions of parameter
space. A naive attempt to ex-
plore the full posterior distribution
of a spectral mixture kernel would
try to quantify probability mass
across these degenerate regions, a
much more computationally inten-
sive task than is necessary. One so-
lution is to only sample from one
region, and ignore its symmetric
counterparts. To achieve this, we
can adopt an approach known as
forced identifiability Buscicchio et al.
(2019) to ensure that the compo-
nents are defined in sequential or-
der with respect to their frequency
µ.

2.3. Nested Sampling

The nested sampling algorithm was developed by Skilling (2004) (see also Skilling et al. (2006)) as a
means of estimating the model evidence Z =

∫
ψ(θ)dπ(θ), where ψ denotes the likelihood 4, and π(θ)

the prior. This may be recast as a one-dimensional integral over the unit interval, Z =
∫ 1

0
ψ(X)dX,

irrespective of the dimensionality of θ. Here X is the quantile function associated with the likelihood:
it describes the volume of the prior lying below the likelihood value ψ. The extreme values of the
integrand, ψ(X=0) and ψ(X=1), therefore correspond to the minimum and maximum likelihood
values found under the support of the prior π(θ). Sampling proceeds in accordance with Algorithm 1
(appendix 1). While the sequence of samples provides an estimate of Z, an invaluable quantity in the
context of Bayesian model selection, they also represent importance weighted samples of the posterior.

We employ the PolyChord algorithm (Handley et al., 2015; Handley et al., 2015), which performs
slice sampling (Neal, 2003) at each iteration. Unless otherwise stated, we use 100 live points, which
are bounded in a set of ellipsoids (Feroz et al., 2009). These bounding surfaces allow the macroscopic
structure of the likelihood contours to be traced, enabling a much more efficient sampling process.

3. A two component SM kernel has two weights, bandwidths and frequencies in additional to the noise level for a 1d
dataset.

4. for hyperparameter inference, the marginal likelihood p(y|θ) plays the role of the likelihood, so ψ(θ) = eL(θ)
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This approach has proven particularly adept at navigating multi-modal likelihood surfaces (Allison
and Dunkley, 2014). These attractive properties have motivated numerous scientific applications,
including the detection of gravitational waves (Veitch et al., 2015), the categorisation of cosmic rays
(Cholis et al., 2015), and the imaging of a supermassive black hole (Akiyama et al., 2019). The
algorithm described in 1 is implemented as part of the dynesty package (Speagle, 2020). We use the
‘rslice’ sampling option, along with the default number of five slices, and adopt the default criterion
for convergence. This is defined as the point at which the estimated posterior mass contained within
the set of live points falls below 1% of the total.

3. Experiments

3.1. Ground Truth Recovery

Figure 2: A comparison of hyperparameter estimation, where the ground truth is indicated by the magenta star. The grey
shading indicates the prior. Far left: Recovering the mean frequency parameters of the two spectral components.
Recovering the two bandwidth parameters of the two spectral components. The true hyperparameters are
[µ1, µ2] = [3.14, 12.56] and [σ1, σ2] = [1.27, 0.32]. For frequencies and bandwidths we note the symmetry i.e.
the estimates can converge on [µ1, µ2] or [µ2, µ1], and that the nested sampling algorithm successfully identifies
both modes whereas HMC can only sample from one. Left: Test means and 95% intervals, the green cross is the
test point whose mixture density is enumerated on the right. Far right: An illustration of how the predictive
density is comprised of a mixture of Gaussians, yielding broader intervals and a correspondingly better NLPD.

In the two left hand panels of Fig.2 we summarise the performance of ML-II, HMC and nested
sampling inference in their ability to recover the true setting of the hyperparameters for a synthetic
dataset with 100 datapoints, a noise amplitude of σn = 0.1 and a signal-to-noise ratio of ≈ 3.2 on
a fixed domain [-1,1]. The magenta star ? denotes the true value and the red cross × denotes the
ML-II estimate. The HMC and NS sampling schemes are both better at recovering the ground truth
hyperparameters than the point estimates. Further, the nested sampling scheme is able to obtain
samples from both modes inherent in the marginal likelihood.

3.2. Time series benchmarks

We evaluate the predictive performance of marginalised GPs with the SM kernel against thirteen
time series, as used in Lloyd et al. (2014)5. The time series are of variable length, with up to 1, 000
data points in each. Our fiducial kernel has seven components (Q = 7), yielding a 22-dimensional hy-
perparameter space to explore. For reference, we also include results from the Neural Kernel Network
(Sun et al., 2018) where a flexible kernel is learnt incrementally through a weighted composition of
primitive base kernels. This is trained with the Adam optimiser for 100,000 iterations and a learning
rate of 10−3. In Table 3.1 we report the negative log of predictive density (NLPD) across test data.
The evaluation was conducted with a 60/40 train/test split. The quoted uncertainties are estimated
by repeating each set of experiment three times with a different random seed. We find that the
spectral mixture kernel exhibits significant performance gains when using a sampling-based inference
method compared to the conventional ML-II approach. HMC and NS offer similar performance
levels, though NS carries an advantage of faster evaluation times and an estimate of the model

5. The raw data is available at
https://github.com/jamesrobertlloyd/gpss-research/tree/master/data/tsdlr-renamed
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Kernel Spectral Spectral Spectral NKN

Inference ML-II HMC NS ML-II

airline 7.25 5.83 5.22 5.6
births 5.17 5.23 4.96 5.42
call centre 11 7.32 7.29 7.76
gas production 15.2 12.4 11 12.4
internet 11.3 11.4 13.2 12.6
mauna 1.5 3.32 1.8 3.4
radio 2.19 2.12 2.07 4.12
solar 1.4 0.82 0.58 2.38
sulphuric 5.13 5.15 5.11 6.32
temperature 2.8 2.49 2.52 4.2
unemployment 12.8 11.2 10.6 8.5
wages 159 8.71 6.59 4.28
wheat 8.47 6.44 6.58 6.24

Mean 18.7 6.34 5.96 6.40
±1.2 ±0.03 ±0.03

Table 1: NLPD values for various GP methods across a range of time series tasks.

Figure 3: Left: Training time for each of the time series benchmarks. Right: Average training time (across data sets).
It is interesting to note that nested sampling is only marginally more compute intensive than performing
conventional ML-II inference with the neural kernel network.

evidence. More detailed results for various configurations of the nested sampler can be found in Table 3.

Fig. 3 depicts training times in wall clock seconds for our time-series experiments, all of which were
run on a single Nvidia GTX1070 GPU. For HMC this corresponds to a single chain with 500 warm-up
iterations and 500 samples. Nested sampling was performed with 100 live points, and the sampling
continued until the convergence criterion was met. Across these benchmarks, HMC was found to be
slower by approximately a factor of two compared to nested sampling. Both methods could enjoy
significant gains in speed with schemes such as those proposed in Loper et al. (2020).

3.2.1. Why do wider predictive intervals give better NLPD?

The right hand panel of Fig. 2 is a zoomed in plot of the ‘RADIO’ predictions. It helps convey
exactly why the NLPDs corresponding to the marginalised GP schemes are better. The plot shows
test predictions and respective 95% intervals. The blue band corresponds to prediction intervals
under the marginalised HMC scheme; the 95% quantiles are estimated empirically by sampling from
the Gaussian mixture distribution at each test input X∗. The far right panel shows the mixture
density for a single test point, the predictive mixture form places higher probability mass on the true
test point than the narrower ML-II intervals.

3.3. 2d Pattern Extrapolation

To provide a demonstration of how the inference methods are readily adapted to higher dimensional
kernels, we revisit the challenge presented in Sun et al [26]. The two-dimensional ground truth
function is given by y = (cos 2x1 × cos 2x2)

√
|x1x2|. We train with just 50 points (as opposed to
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100 in the original reference), which are chosen at random across [−6,+6] in the xy−domain. The
test points are defined on a 20× 20 grid. In Figure 4 we visualise the mean values of the posterior
predictive distribution from three different inference methods: ML-II, HMC and nested sampling
(NS). Visually, the reconstruction under the marginalised GP schemes (HMC / NS) appears to be
superior to ML-II. Further, the 95% confidence intervals (not visualised) differ markedly, as is evident
from the NLPD values. These are given by 216, 2.56, and 2.62 for ML-II, HMC and NS respectively
(lower is better). For reference we also trained the neural kernel network (Sun et al [26]), which
achieved an NLPD of 3.8. This experiment marks a significant increase in the dimensionality of our
parameters space, since in two dimensions each spectral component has five degrees of freedom. Yet
the marginalised Gaussian processes comfortably outperform competing methods. ML-II was trained
with Adam (learning rate=0.05) with 10 restarts and 2,000 iterations.

Figure 4: Left: Learning a two-dimensional pattern with a 10 component spectral mixture kernel. The black
dots denote the locations of the 50 training points. Top Left: Posterior predictive mean under ML-II.
Bottom Left: Posterior predictive mean under HMC and nested sampling (NS). Right: An illustration
of the systematic underestimation of predictive uncertainty when adopting point estimates of kernel
hyperparameters. Here we show 95% test confidence intervals derived from the spectral mixture kernel.
Black lines denote training data and the black dots denote test data. ‘BIRTHS’ data set - the ML-II
intervals capture 84% of the test data where HMC and NS capture 93% and 99% of the test points
respectively. ‘RADIO’ data set (also showing test mean prediction) - the three methods show similar
performance however, the average predictive density under test data is higher under the sampling methods.

4. Discussion

While a pathological marginal likelihood geometry can pose problems for both gradient based
optimisation and sampling; sampling schemes are able to quantify them better if the practical
difficulties of deploying them (like chains stuck in bad optima) are overcome. The nested sampling
scheme, which does not require gradient information, provides remarkably good approximations
to gold-standard HMC samples at a fraction of the cost of running HMC. Further, it is crucial to
ask if marginalisation increases expressivity and representational power by accounting for a more
diverse range of models than point estimates? A marginalised GP with a standard SM kernel
not only improved upon its conventional counterpart, but also surpassed the performance of the
Neural Kernel Network model (Sun et al., 2018) in the time series tasks, despite possessing far fewer
hyperparameters. This indicates there is merit in the question.
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Appendix A. Further Experimental Results

A.1. Synthetic data

As a first demonstration of how the different methods perform, we draw four samples from a two-
component SM kernel with known weights, frequencies and bandwidths. For each latent function
sample we construct noisy training data across three noise levels [0.01, 0.1, 0.5] and three training
sizes [10, 30, 100], on a fixed input domain [−1, 1]. In this way we seek to quantify the quality of
predictions and prediction uncertainty under weakly identified regimes characterised by very few
data points in a fixed domain to strongly identified regimes characterized by a dense distribution of
data in a fixed domain. Further, the intrinsic noise level σ2

n of the data can also impact inference in
weakly and strongly identified data regimes. In order to analyse the impact of σ2

n and training size we
calculate the average performance across each of three different noise levels for each training set size.
We train under each of the candidate inference methods (ML-II, HMC, Nested) for each of the 9× 4
data sets created and report prediction performance in terms of the average negative log predictive
density (NLPD) for test data in Figure 5. ML-II uses five random restarts with a initialisation
protocol tied to the training data. Following protocols from Wilson and Adams (2013), the SM
weights (wi) were initialised to the standard deviation of the targets y scaled by the number of
components (Q = 2). The SM bandwidths (σi) were initialised to points randomly drawn from a
truncated Gaussian |N (0,max d(x, x′)2)| where max d(x, x′) is the maximum distance between two
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Figure 5: The impact of marginalising hyperparameters on the predictive performance (NLPD) of a spectral mixture
kernel. The error bars at each noise level correspond to the mean NLPD and standard error of the
mean across a diversity of latent functions. Nested sampling significantly outperforms ML-II in all nine
experiments. The subplots contain the performance summaries under the different configurations. Left:
Sparse distribution of training data (n_train = 10). Middle: Moderate sized distribution of training
data (n_train = 30). Right: Dense distribution of training data (n_train = 100) - all on a fixed domain
[-1,+1].

training points and mean frequencies (µi) were drawn from Unif(0, νN ) to bound against degenerate
frequencies. HMC used LogNormal(0, 2) priors for all the hyperparameters. The ML-II experiments
used gpytorch while the HMC experiments used the NUTS sampler in pymc3.

In Figure 5 we notice that ML-II struggles with small training data sets and catastrophically
underestimates the noise level. The two sampling methods, HMC and NS, perform comparably well,
though it is notable that a single NS run correctly identifies both modes in the likelihood surface,
while a single HMC chain can only discover one.
Fig.6 shows the test mean squared error across the three inference schemes. The sampling schemes
largely dominate the ML-II method when the hyperparameters are well identified (n_train = 100).
The data generating configurations are the same as the ones described in the main paper.

Figure 6: Mean-squared error for synthetic data sets under different noise levels and training set sizes.

A.2. Ground Truth Recovery

In this subsection we summarise the performance of ML-II, HMC and Nested sampling inference
in recovering the true setting of the hyperparameters under two different noise settings, for a fixed
training size n_train = 100 on a fixed domain [-1,1]. The top row of panels in Fig.7 indicate a low
noise setting σn = 0.01 and the bottom row indicates a higher noise setting of σn = 0.1. The magenta
star ? denotes the true value and the red cross × denotes the ML-II estimate. The sampling schemes
HMC and Nested are both better at recovering the target than the point estimate. While ML-II
estimates the noise-level to a high precision when the noise is low (top-row, σn = 0.01), it does not
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fare so well when noise level is raised by an order of magnitude (bottom row, σn = 0.1). In this case,
the estimate of the intrinsic noise level is off by several orders of magnitude. The sampling schemes
prove to be far more robust in recovering the frequencies, bandwidths and noise level, especially
when operating in the low signal-to-noise regime.

Figure 7: A comparison of hyperparameter estimation, where the ground truth is indicated by the
magenta star. The grey shading indicates the prior. Left: Recovering the mean frequency
parameters of the two spectral components. Middle: Recovering the two bandwidth
parameters of the two spectral components. Right: Recovering the data noise level (σn).
The true hyperparameters are [µ1, µ2] = [3.14, 12.56] and [σ1, σ2] = [1.27, 0.32]. For
frequencies and bandwidths we note the symmetry i.e. the estimates can converge on
[µ1, µ2] or [µ2, µ1], and that the nested sampling algorithm successfully identifies both.

A.3. Time Series

In table 2 we present further results from the benchmark time series experiments. Instead of making
full use of the data, we consider only the first 100 points as training data, followed by testing with
the subsequent 30 points. As with the results from the full training set, significant performance gains
are found when marginalising the hyperparameters of the spectral mixture kernels. However in this
case, the nested sampling algorithm doesn’t offer a performance advantage over HMC. We speculate
this may be due to the simpler likelihood surface associated with the smaller set of training data.
Fewer modes in the surface would facilitate exploration via HMC.
Table 3 shows how the configuration of the nested sampler impacts its performance. The fiducial
configuration is shown in the first column, and the uncertainty in the derived mean NLPD is obtained
by repeating this experiment for several different random seeds. The three subsequent columns
correspond to changes in the number of live points, combining multiple runs, and using a linear
prior to describe the frequency parameter µ. The only change which makes a statistically significant
alteration to the performance is found to be the choice of the prior.
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Table 2: NLPD values for various GP methods across a range of truncated time series tasks, where only the
first 100 points are used for training.

Kernel Spectral Spectral Spectral NKN

Inference ML-II HMC Nested Sampling ML-II

airline 4.90 5.07 5.36 4.90
births 5.34 4.66 4.67 5.29
call centre 8.64 5.70 6.54 8.62
gas production 6.15 6.23 5.97 6.15
internet 12.5 11.2 11.3 12.5
mauna 2.14 1.06 0.96 2.87
radio 10.0 2.02 1.95 2.27
solar 0.03 -0.19 -0.17 0.22
sulphuric 4.36 5.43 5.42 4.57
temperature 3.39 2.80 2.65 2.99
unemployment 8.60 6.13 6.31 8.56
wages 1.67 1.74 2.19 3.44
wheat 5.86 4.59 4.97 12.6

Mean 5.66 4.34 4.47 5.77
±0.3 ±0.08 ±0.06

Table 3: NLPD values for various configurations of the nested sampling algorithm.
Fiducial Dense Multi-run Prior

Live points 100 500 100 100
Runs 1 1 5 1
Prior Log Log Log Uniform

airline 5.36 4.66 5.36 8.88
births 4.67 4.68 4.65 4.73
Call centre 6.54 6.17 6.45 6.46
Gas production 5.97 6.38 5.92 8.10
internet 11.3 11.3 11.3 11.4
mauna 0.96 1.15 1.09 3.73
radio 1.95 2.03 1.84 2.19
solar -0.17 -0.20 -0.19 -0.28
sulphuric 5.42 5.58 5.15 6.07
temperature 2.65 2.64 2.63 2.94
unemployment 6.31 6.21 6.31 6.26
wages 2.19 2.24 2.20 1.97
wheat 4.97 5.20 5.39 5.42

Mean 4.47 4.46 4.47 5.22
±0.03 ±0.02 ±0.03 ±0.05

Appendix B. Candidate Inference Methods

B.1. ML-II

A Gaussian noise setting facilitates an analytically tractable marginal likelihood,

p(y|θ) =
∫
p(y|f)p(f |θ)df =

∫
N (0,Kθ)N (f , σ2

nI)df = N (0,Kθ + σ2
nI) (5)
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using the definitions from (1). ML-II estimates are obtained by maximizing L(θ) = log p(y|θ) over
the kernel hyperparameters, θ? = argmaxθ L(θ).

B.2. Hamiltonian Monte Carlo (HMC)

Hamiltonian Monte Carlo (Duane et al., 1987) is a fundamental tool for inference in intractable
Bayesian models. HMC relies on using gradient information to suppress random walk behaviour
inherent to samplers like Metropolis-Hastings and its variants. The sampler operates in an augmented
space (θ,p) of position variables and momentum variables where the position variables are the
variable of interest. The momentum variables are sampled from an independent N (0, 1) and can
safely be marginalised out from the joint samples to obtain just the samples of interest. New proposals
are generated by simulating Hamiltonian dynamics in the joint 2D phase space (θi,pi)→ (θi+1,pi+1)
(whereD is the dimensionality of θ) for preset number of steps called the path length (L). Hamiltonian
dynamics are simulated using the leap-frog symplectic integrator which relies on a step size (ε).
Further, each iteration requires the gradients of the log marginal likelihood w.r.t the hyperparameters.
In the case of a GP, this means each iteration of the leap-frog integrator requires the inversion of
Kθ, L times to simulate one proposal. Refer to Neal et al. (2011) for a detailed tutorial. In the
experiments we use a self-tuning variant of HMC called the No-U-Turn Sampler (NUTS) (Hoffman
and Gelman, 2014) where the path length is adapted for every iteration. NUTS is frequently shown
to work as well as a hand-tuned HMC; hence in this way we avoid the compute overhead in tuning
for good values of the step-size (ε) and path length (L). We use the version of NUTS available in the
python package pymc3.

B.3. Nested Sampling Algorithm

Appendix C. Hyperpriors

In this section we outline a suitable set of priors for the three fundamental parameters of a single
spectral component. As defined in (4), these are the mean frequency µ, bandwidth σ, and weight w.
For most of these hyperparameters, we find it is sufficient to impose a weakly informative prior of
the form {σ,w, σ2

n} ∼ LogNormal(0, 2). However the spectral component’s characteristic frequency µ
deserves closer attention.

Two properties of the data strongly influence our perspective on which frequencies we can expect
to observe: the fundamental frequency and the highest observable frequency. The fundamental
frequency νF is the lowest frequency observable within the data, and is given by the inverse of the
interval spanned by the observed x locations. Meanwhile the maximum frequency νN represents
the highest observable frequency. For gridded data, this is naturally determined by the Nyquist
frequency, which is half the sampling frequency.

It is crucial to bear in mind that the spectral density we wish to model is that of the underlying
process, and not the spectral density of the data. These two quantities are often very different, due
to the limited scope of the observations. For example, the change in stock prices over the period of a
single day cannot exhibit frequencies above 10−6Hz. Yet the process will have received contributions
from long term fluctuations, such as those due to macroeconomic factors, whose periods can span
many years. If we make no assumption regarding the relationship between the process we wish to
model and the finite range over which it is observed, then a priori, some as-yet undiscovered frequency
within the process ought to be considered equally likely to lie above or below the fundamental
frequency. Furthermore, given the large initial uncertainty in frequency µ, it is appropriate to adopt
a prior which spans many orders of magnitude.

12



Marginalised Spectral Mixture Kernels

Algorithm 1: Nested Sampling for hyperparameter inference
Initialisation: Draw nL ‘live’ points {θ}nL

i=1 from the prior θi ∼ π(θ), set model evidence
Z = 0.
while stopping criterion is unmet do

• Compute ψi = min(ψ(θ1), . . . ψ(θN )), the lowest marginal likelihood from the current set of
live points.

• Sample a new live point θ′ subject to ψ(θ′) > ψi

• Remove the point θi corresponding to the lowest marginal likelihood ψi, moving it to a set of
‘saved’ points
• Assign estimated prior mass at this step X̂i = e−

i
N

• Assign a weight for the saved point, Vi = X̂i−1 − X̂i

• Accumulate evidence, Z = Z + ψiVi

• Evaluate stopping criterion, if triggered then break;

end
Add final nL points to the ‘saved’ list of K samples:

• Weight of each of these final points is assigned to pi = X̂K/nL∀i = K, . . . , nL +K // final
slab of enclosed prior mass

• Final evidence is given by, Z =
∑nL+K
i=1 ψiVi

• Importance weights for each sample are given by, pi = ψiVi/Z

return set of samples {θi}nL+K
i=1 , along with importance weights {pi}nL+K

i=1 and evidence
estimate Z.
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Towards very low frequencies, µ� νF , a sinusoid contributes very little variance to the observations
- an annual modulation makes a tiny contribution to a minute’s worth of data. As we consider
frequencies much lower than the fundamental frequency, it therefore becomes less likely that we
will detect their contributions. We model this suppressed probability of observation with a broad
Gaussian in log frequency for the regime µ < νF . Meanwhile, at frequencies above the Nyquist
frequency, µ > νF , we encounter a degenerate behaviour: these sinusoids are indistinguishable from
their counterparts at lower frequencies: they are said to be aliases of each other. As a result of this
aliasing behaviour, the likelihood surface is littered with degenerate modes with identical likelihood
values. From a computational perspective, it is advantageous to restrict our frequency parameter to
a much narrower range than is permitted by our prior, while maintaining the same probability mass.
As illustrated in the supplementary, mapping these higher frequencies down to their corresponding
alias at µ < νN yields a uniform prior on µ.

µ/νF ∼

{
Lognormal(0, 7), for µ < νF ,

Uniform(1, νN/νF ), for νF < µ < νN .
(6)

C.1. Spectral Priors

Figure 8 shows the parameter space for the frequency and bandwidth of a single spectral component.
The likelihood surfaces adjacent to any of the dashed lines are mirror images of each other. It
is therefore preferable to avoid exploring multiple copies of these regions when performing nested
sampling, as it will attempt to locate the duplicate modes, dispersing the live points.

To give a clearer picture of how the parameters of the spectral mixture kernel are inferred via nested
sampling, we take as a example the radio experiment. The posterior distribution in this case can
be seen in Figure 9. The corresponding joint posterior distribution of the 22 hyperparameters are
displayed in Fig.10. We make use of the dynesty package in order to perform nested sampling. The
full set of configuration parameters used can be found in Table 4.

Table 4: A summary of the configuration settings used to perform nested sampling. Most of these
adhere to the default set-up in dynesty, with the most significant changes being in the
sampling method, and a reduction in the number of live points.

Fiducial Default

method rslice auto
live points 100 500
Bound multi multi
slices 5 5
dlogz 0.01 0.01
max iter None None
max call None None
min eff 3 10
vol dec 0.5 0.5

14



Marginalised Spectral Mixture Kernels

Figure 8: Schematic of the observability of a spectral component as a function of frequency and
variance. The fundamental frequency is denoted by the solid vertical line, while dashed
vertical lines indicate multiples of the Nyquist frequency. The hatched region denotes the
regime where the variance is deemed too low to be observed.
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Figure 9: 68 and 95 per cent confidence intervals for the radio dataset, derived from nested sampling
of a seven-component spectral mixture kernel.
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Figure 10: Joint posterior distributions for the 22 hyperparameters associated with Figure 9.
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