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Abstract

Parameter-efficient fine-tuning methods like001
Low-Rank Adaptation (LoRA) have become002
essential for deploying large language models,003
yet their static parameter allocation remains004
suboptimal for inputs of varying complexity.005
We present Flexi-LoRA, a novel framework006
that dynamically adjusts LoRA ranks based007
on input complexity during both training and008
inference. Through empirical analysis across009
question answering and mathematical reason-010
ing tasks, we demonstrate that maintaining con-011
sistency between training and inference dynam-012
ics is important for effective adaptation, par-013
ticularly for sequential reasoning tasks. Our014
findings reveal that input-dependent parameter015
allocation achieves superior performance with016
fewer parameters by optimally matching rank017
configurations to question complexity. Further-018
more, task-specific sensitivity to rank dynamics019
varies, with mathematical reasoning tasks ex-020
hibiting higher sensitivity than QA tasks. Suc-021
cessful adaptation manifests not only in correct-022
ness but also in reasoning quality and instruc-023
tion adherence. Flexi-LoRA consistently out-024
performs static LoRA while using fewer param-025
eters, with performance gains more pronounced026
on tasks requiring strict reasoning chains. Our027
approach realizes key benefits of mixture-of-028
experts frameworks through a more stream-029
lined implementation, reducing parameter re-030
dundancy while enhancing model capabilities.031
We provide comprehensive empirical studies032
across diverse tasks, establishing a foundation033
for future work in input-adaptive and efficient034
fine-tuning approaches. 1035

1 Introduction036

As large language models grow in size, efficient037

fine-tuning methods like LoRA (Hu et al., 2022)038

1https://github.com/Anonymous/Flexi-LoRA (After
the paper is published, this link will be de-anonymized. For
related code, please see the supplementary materials.)

Figure 1: Flexi-LoRA’s input-adaptive rank allocation
versus static normal LoRA. Flexi-LoRA (left) dynam-
ically assigns rank 2 (dark trapezoid) for simple prob-
lems and rank 8 (light trapezoid) for complex ones,
successfully solving both. LoRA (right) uses fixed rank
8 (light trapezoid) regardless of complexity, failing on
difficult problems. This demonstrates the necessity of
input-adaptive parameter allocation for handling vary-
ing question complexity.

have become essential for applications. However, 039

their static parameter allocation remains subop- 040

timal for questions of varying complexity, sug- 041

gesting the need for input-adaptive approaches in 042

parameter-efficient fine-tuning (Jiang et al., 2025). 043

Through empirical analysis, we observe two key 044

phenomena in LoRA-based fine-tuning. First, 045

there exists a notable performance gap when us- 046

ing static ranks during inference for models trained 047

with dynamic ranks at fine-grained level, particu- 048

larly in their ability to follow instructions precisely 049

(DyLoRA vs DyLoRA+, Table 2 and 3, Figure 4). 050

Second, while model performance generally satu- 051

rates with increasing ranks, the optimal rank varies 052

across different inputs: simple questions can be ef- 053

fectively handled with small ranks, while complex 054

problems benefit substantially from larger ranks 055

(Rank 4 vs 8, Table 2 and 3, Figure 3). These obser- 056

vations indicate that a one-size-fits-all approach to 057

1

https://github.com/Anonymous/Flexi-LoRA


rank selection is suboptimal, motivating the need058

for input-adaptive rank allocation.059

Inspired by these observations, we propose Flexi-060

LoRA, a finetuning framework that dynamically061

adjusts LoRA ranks based on input complexity.062

Our approach not only achieves superior perfor-063

mance to high-rank LoRA while using fewer pa-064

rameters, but also successfully solves some com-065

plex problems that static LoRA fails to handle even066

with equivalent rank, as shown in Figure 1.067

Our contributions are threefold:068

• Novel Framework: We introduce the first input-069

adaptive LoRA framework that maintains dy-070

namic ranks during both training and inference,071

achieving higher performance with reduced pa-072

rameter count compared to static LoRA.073

• Insights: We demonstrate that (1) maintaining074

consistency between training and inference dy-075

namics is important for LoRA adaptation, partic-076

ularly for sequential reasoning tasks; (2) input-077

dependent parameter allocation achieves superior078

performance with fewer parameters by optimally079

matching rank configurations to question com-080

plexity; (3) task-specific sensitivity to rank dy-081

namics varies, with mathematical reasoning tasks082

exhibiting higher sensitivity than QA tasks; (4)083

successful adaptation manifests not only in cor-084

rectness but also in reasoning quality and instruc-085

tion adherence; and (5) our approach realizes086

benefits of mixture-of-experts through a more087

streamlined implementation, reducing parameter088

redundancy while enhancing model capabilities.089

• Comprehensive Analysis: We provide compre-090

hensive empirical studies across diverse tasks,091

establishing a foundation for future work in input-092

adaptive and efficient finetuning approaches.093

2 Related Work094

LoRA with dynamic ranks. Recent works have095

explored dynamic rank adaptation in LoRA, with096

differences shown in Table 1. AdaLoRA (Zhang097

et al., 2023) performs importance-based parameter098

pruning at training checkpoints to gradually reduce099

ranks to a fixed target. DyLoRA (Valipour et al.,100

2023) randomly samples ranks from a predefined101

range for each training batch, with all samples in102

the batch sharing the same rank. Both approaches,103

while improving rank flexibility, are limited by ei-104

ther steps-level pruning or random batch-level as-105

signment, and neither supports dynamic rank selec-106

tion at inference. On the other hand, Flexi-LoRA107

Method Train Level Inference
LoRA Fixed All Fixed

AdaLoRA Selective Steps Fixed
DyLoRA Random Batch Fixed

DyLoRA+ (O) Random Batch Random
Flexi-LoRA (O) Router Sample Router

Table 1: Comparison of rank adaptation strategies across
different LoRA variants. "Train" indicates how ranks
are determined during training, "Level" shows the level
of rank assignment, and "Inference" specifies the rank
selection mechanism at test time. Only Flexi-LoRA
maintains consistent router-based sample-level dynamic
rank allocation across both training and inference stages,
while existing methods use fixed ranks during inference
regardless of training dynamics. "O" is our method.

enables true sample-level rank selection by learning 108

to map input complexity to appropriate ranks, main- 109

taining this adaptive behavior during both training 110

and inference. 111

Input-Adaptive Methods. Due to space con- 112

straints in the main text, a review of input-adaptive 113

methods is provided in Appendix A.1. 114

3 Methods 115

Building upon previous work, we first introduce 116

DyLoRA+, an enhanced variant of DyLoRA that 117

maintains consistent rank dynamics by employing 118

random batch-level rank selection during both train- 119

ing and inference stages. While DyLoRA+ demon- 120

strates improved performance over the original Dy- 121

LoRA, its random rank allocation remains subopti- 122

mal as it fails to account for input-specific complex- 123

ity differences. We therefore propose Flexi-LoRA, 124

a framework that automatically adjusts the rank 125

based on input complexity. Our method consists 126

of two key components: a difficulty-aware router 127

that maps inputs to appropriate rank assignments 128

and a flexible-rank LoRA training framework that 129

maintains consistent dynamic rank allocation dur- 130

ing both training and inference, as shown in Figure 131

2. 132

Router focuses on learning an optimal map- 133

ping R(h) : Rd → ri from input embeddings 134

to rank assignments. Given an input sequence 135

x with mask m, we first compute its token em- 136

beddings H ∈ Rn×d and obtain a pooled embed- 137

ding h =
∑

i(miHi)/
∑

imi, where mi masks 138

padding tokens. We categorize training samples 139

into difficulty classes based on task-specific met- 140

rics: F1 scores for MRQA datasets and accuracy 141

for mathematical reasoning tasks. The router is 142

then optimized using a noise-added cross-entropy 143
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Figure 2: Flexi-LoRA framework with input-adaptive
rank selection. Router analyzes input embeddings and
outputs rank assignments (green arrows) for transformer
layers. Red and blue trapezoids are LoRA’s A and B
matrices, with color darkness indicating rank magnitude
(darker = rank 2, lighter = rank 8). The router enables dy-
namic rank allocation based on input complexity while
maintaining efficient gradient flow through residual con-
nections.

objective: L(θ) = −
∑

i yi log(R(hi + ϵ)), where144

ϵ ∼ N (0, σ2) is Gaussian noise and yi denotes the145

ground-truth difficulty label. The training data is146

balanced between easy and hard samples to ensure147

uniform difficulty evaluation.148

Input-adaptive LoRA freezes the base model149

parameters and optimize only the LoRA matri-150

ces. For input x, we first obtain its token em-151

beddings H0 and pooled embedding h following152

the same procedure as router training. The router153

then predicts rank r = R(h), which is applied154

consistently across all transformer layers. Within155

each batch, different samples can be assigned dif-156

ferent ranks based on their predicted difficulty,157

enabling dynamic resource allocation. For each158

transformer layer l, we compute the LoRA up-159

date as ∆Wl = Bl,rAl,r, where Al,r ∈ Rr×d160

and Bl,r ∈ Rd×r are dynamically reduced to the161

first r rows/columns. The layer output is com-162

puted as H l = WlH
l−1 + αr(Bl,rAl,rH

l−1),163

where αr is a rank-specific scaling variable and164

H l−1 is the output from the previous layer. The165

model is trained to minimize the task-specific loss166

Ltask = −
∑

i log p(yi|xi), where xi is the input167

sequence and yi is the corresponding ground truth168

outputs. This design enables efficient batch pro-169

cessing while allowing for flexible input-dependent170

rank adaptation.171

4 Experimental Design 172

Datasets. We evaluate Flexi-LoRA on both QA 173

and mathematical reasoning tasks. For QA tasks, 174

we conduct training on datasets from the MRQA 175

(Fisch et al., 2019) training set, which unifies QA 176

samples from SQuAD (Rajpurkar et al., 2016), 177

TriviaQA (Joshi et al., 2017), NewsQA (Trischler 178

et al., 2017), SearchQA (Dunn et al., 2017), Hot- 179

potQA (Yang et al., 2018), and NaturalQues- 180

tions (Kwiatkowski et al., 2019). Evaluation is 181

performed on the MRQA test set consisting of 182

BioASQ (Partalas et al., 2013), DROP (Dua et al., 183

2019), DuoRC (Saha et al., 2018), RACE (Lai et al., 184

2017), RelationExtraction (Levy et al., 2017), and 185

TextbookQA (Kembhavi et al., 2017). For mathe- 186

matical reasoning, we train on the GSM8K (Cobbe 187

et al., 2021) subset of the MetaMathQA (Yu et al., 188

2024) dataset and evaluate on a diverse set of math 189

benchmarks including GSM8K, SVAMP (Patel 190

et al., 2021), MultiArith (Roy and Roth, 2015), and 191

MAWPS (Koncel-Kedziorski et al., 2016). This 192

design allows us to evaluate both in-distribution 193

and out-of-distribution generalization capabilities 194

of our method. 195

Evaluation Metrices. We evaluate QA perfor- 196

mance using F1 and Exact Match (EM) scores. F1 197

computes the balanced average of precision and re- 198

call between prediction and ground truth, while EM 199

measures exact string match. For mathematical 200

reasoning tasks, we use accuracy for evaluation. 201

Gold Standard & Baselines. We compare 202

against two gold standards: full model fine-tuning 203

and standard LoRA with fixed rank. For baselines, 204

we include AdaLoRA, which adapts ranks through 205

importance-based parameter pruning while main- 206

taining fixed inference ranks, and DyLoRA, which 207

randomly samples ranks from a predefined range 208

for each training batch but uses fixed ranks dur- 209

ing inference. Our Flexi-LoRA differs by enabling 210

input-adaptive rank selection during both training 211

and inference. 212

Models. We employ LLaMA-3.2-1B-Instruct 213

(Grattafiori et al., 2024) as the base model for our 214

main results and include LLaMA-3.2-3B-Instruct 215

to analyze model size in ablation studies. 216

5 Results 217

5.1 Overview 218

Figure 3 illustrates the performance-efficiency 219

trade-offs across different parameter-efficient fine- 220

tuning methods on QA and mathematical reasoning 221
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Figure 3: Performance-efficiency trade-off across different parameter-efficient fine-tuning methods. Our methods
(O) achieve superior performance with fewer trainable parameters compared to both baseline methods (B) as well as
gold standards (G). Results are shown for QA tasks and mathematical tasks using LLaMA-3.2-1B-Instruct and 3B.

Gold Standard Baselines Ours
Full LoRA AdaLoRA DyLoRA DyLoRA+ Flexi-LoRA

Rank - 4 8 4 8 4 8 1-8 1, 8 2, 8
# 1.2B 851K 1703K 851K 1703K 851K 1703K 966K 304K 504K

F1 Score
BioASQ 69.81 64.85 66.22 63.62 65.12 60.01 52.40 65.21 65.75 65.82
DROP 47.15 37.88 36.03 32.79 34.35 43.59 38.26 36.32 37.27 37.52
DuoRC 45.21 43.85 43.72 44.00 42.49 39.10 36.89 43.86 42.92 43.22
RACE 41.49 38.64 37.49 34.58 35.81 36.89 33.24 39.26 38.83 39.10

RE 84.11 74.97 76.41 74.51 75.73 81.02 78.70 75.47 76.47 76.83
TextbookQA 49.56 51.35 52.20 54.14 54.66 37.90 32.94 51.22 51.74 51.75

Average 56.22 51.92 52.01 50.61 51.36 49.75 45.40 51.89 52.16 52.37
Exact Match

BioASQ 49.13 42.02 42.61 40.29 40.35 34.24 27.52 41.88 41.42 41.48
DROP 35.46 25.81 23.08 20.15 21.49 30.07 24.01 23.61 24.55 25.01
DuoRC 35.57 32.37 31.51 32.37 30.77 27.71 24.58 32.31 30.44 30.71
RACE 29.37 24.03 22.99 20.62 22.10 21.81 16.61 24.92 24.48 24.77

RE 72.01 57.73 60.27 57.25 58.44 69.13 66.31 59.15 59.90 60.44
TextbookQA 40.98 41.91 42.38 44.97 45.10 27.01 21.29 41.91 42.04 42.04

Average 43.75 37.31 37.14 35.94 36.38 34.99 30.05 37.30 37.14 37.41

Table 2: Performance comparison on out-of-domain QA tasks from the MRQA benchmark using LLaMA-3.2-
1B-Instruct. F1 and Exact Match (EM) scores are reported, comparing our proposed methods (Flexi-LoRA and
DyLoRA+) against gold standards and baselines. Flexi-LoRA (2,8) achieves the best average performance on both
metrics while using fewer parameters than standard approaches. The "#" row indicates the number of trainable
parameters. Green (teal) and red (maroon) cell coloring is higher and lower scores respectively, with deeper colors
indicating larger performance differences.

tasks. Flexi-LoRA consistently achieves superior222

performance while requiring fewer parameters than223

competing approaches. Notably, DyLoRA results224

are not visible from mathematical reasoning fig-225

ures due to substantially decreased performance,226

highlighting the importance of maintaining con-227

sistency between training and inference dynamics.228

AdaLoRA shows competitive results on specific229

tasks but fails to achieve a consistent advantage230

across different domains. From a Pareto optimality231

perspective, Flexi-LoRA dominates all baselines232

and gold standards by offering better performance233

at lower parameter counts, positioning itself closest234

to the full fine-tuning performance while maintain-235

ing parameter efficiency below 0.1% of total model236

parameters. The following sections analyze these237

results in detail across different task categories and238

provide ablation studies to analyze the contribu-239

tions of individual components. 240

5.2 Question Answering 241

Table 2 presents the performance of different 242

parameter-efficient fine-tuning methods on six out- 243

of-domain QA datasets from the MRQA bench- 244

mark. We analyze these results from multiple 245

perspectives: (1) Overall Performance: Flexi- 246

LoRA (2,8) achieves the highest average F1 score 247

(52.37%) and EM score (37.41%), outperform- 248

ing both LoRA-8 with only 29.59% of LoRA- 249

8’s parameters. The performance gap between 250

Flexi-LoRA and full fine-tuning is considerably 251

smaller than that of other parameter-efficient meth- 252

ods, demonstrating its effectiveness in approach- 253

ing full fine-tuning. (2) Stability Across Met- 254

rics: Flexi-LoRA demonstrates consistency by 255

achieving the best average performance on both 256
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Gold Standard Baselines Ours
Full LoRA AdaLoRA DyLoRA DyLoRA+ Flexi-LoRA

Rank - 4 8 4 8 4 8 1-8 2, 8
LLaMA-3.2-1B-Instruct

# 1.2B 851K 1703K 851K 1703K 851K 1703K 953K 533K
GSM8K 57.31 42.15 41.31 45.71 42.22 19.78 21.00 41.77 42.30
SVAMP 57.29 52.87 51.18 53.37 50.52 20.08 19.57 56.03 52.02

MultiArith 93.88 82.77 85.00 78.88 84.44 43.88 42.77 85.55 92.22
MAWPS 80.00 69.85 75.21 65.63 74.36 22.25 17.46 75.21 79.71
Average 72.12 61.91 63.17 60.90 62.89 26.50 25.20 64.64 66.56

LLaMA-3.2-3B-Instruct
# 1.2B 2.29M 4.58M 2.29M 4.58M 2.29M 4.58M 2.60M 1.53M

GSM8K 75.20 65.95 69.37 71.49 72.32 60.04 60.87 70.43 69.90
SVAMP 78.30 66.29 74.47 75.91 77.80 67.48 64.87 74.71 77.09

MultiArith 100 97.77 99.44 90.55 95.55 75.00 82.22 92.77 100
MAWPS 89.85 84.50 86.19 83.66 88.45 69.57 65.63 86.47 89.01
Average 85.84 78.63 82.37 80.40 83.53 68.02 68.40 81.10 84.00

Table 3: Performance comparison on mathematical tasks using LLaMA-3.2-1B-Instruct and LLaMA-3.2-3B-
Instruct models. Accuracy scores (%) are reported across four benchmark datasets (GSM8K as in-domain and
the others as out-of-domain), comparing our proposed methods against gold standards and baselines. Flexi-LoRA
achieves the best average performance on both model sizes while using fewer parameters than standard approaches.
The "#" row indicates the number of trainable parameters. Green (teal) and red (maroon) cell coloring is higher and
lower scores respectively, with deeper colors indicating larger performance differences.

F1 and EM metrics simultaneously, unlike other257

methods that typically excel in one metric. This258

dual-metric superiority indicates that Flexi-LoRA259

produces outputs that are both semantically close260

to ground truth (high F1) and syntactically pre-261

cise (high EM). (3) Dataset-Specific Analysis:262

Flexi-LoRA performs particularly well on domain-263

specific and knowledge-based tasks, while showing264

moderate improvements on information extraction265

tasks. The adaptive rank allocation proves benefi-266

cial for datasets requiring diverse reasoning capa-267

bilities, suggesting Flexi-LoRA’s ability to assign268

appropriate computational resources based on in-269

put complexity. (4) Comparison with Other Dy-270

namic Approaches: Flexi-LoRA consistently out-271

performs DyLoRA+, despite both using dynamic272

ranks during inference, demonstrating the impor-273

tance of learned input-adaptive rank assignment274

versus the random assignment in DyLoRA+. Dy-275

LoRA shows high variance across datasets (from276

81.02% F1 on RE to 32.94% F1 on TextbookQA),277

highlighting instability issues when training and in-278

ference dynamics are inconsistent. (5) Rank Con-279

figuration Influence: The comparison between280

Flexi-LoRA (1,8) and (2,8) configurations reveals281

that a slight increase in the minimum rank (from 1282

to 2) provides modest but consistent performance283

improvements (from 52.16% to 52.37% F1), with284

a reasonable parameter increase (from 304K to285

504K). This suggests that while low ranks can286

handle simpler questions, maintaining a slightly287

higher minimum rank improves robustness across288

diverse question types. (6) Cross-Domain Gen-289

eralization: On out-of-domain test datasets, base-290

line methods exhibit inconsistent performance, ex-291

celling on specific domains while decreasing on 292

others. On the other hand, Flexi-LoRA maintains 293

strong performance across all test datasets, suggest- 294

ing its input-adaptive parameter allocation learns 295

more generalized knowledge than static approaches 296

that could overfit to training domain characteris- 297

tics. (7) Key Insights: These results demonstrate 298

that input-adaptive parameter allocation provides 299

dual benefits in QA tasks: improved performance 300

through parameter allocation and enhanced param- 301

eter efficiency through optimization of rank selec- 302

tion. The consistent improvement across diverse 303

datasets suggests that question complexity varies 304

substantially even within the same task category, 305

validating our input-adaptive approach. 306

5.3 Math Problems 307

Table 3 presents the performance of different fine- 308

tuning methods on mathematical reasoning tasks 309

across two model sizes. We analyze these results 310

for task-specific characteristics: (1) Overall Per- 311

formance: Flexi-LoRA achieves the highest av- 312

erage accuracy on both LLaMA-3.2-1B-Instruct 313

(66.56%) and LLaMA-3.2-3B-Instruct (84.00%), 314

outperforming LoRA-8 (63.17% and 82.37%) 315

while using only 31.29% and 33.40% of its pa- 316

rameters, respectively. The performance gap be- 317

tween Flexi-LoRA and full fine-tuning is narrower 318

than other parameter-efficient methods, particularly 319

on the larger model. (2) Model Size Influence: 320

Increasing model size from 1B to 3B improves 321

performance across all methods, with Flexi-LoRA 322

maintaining its advantage. Notably, the absolute 323

performance gap between Flexi-LoRA and full fine- 324

tuning decreases from 5.56% to 1.84%, suggest- 325
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ing that input-adaptive approaches become even326

more effective with larger models. (3) In-Domain327

vs. Out-of-Domain: Flexi-LoRA shows strong328

generalization from GSM8K (in-domain) to out-of-329

domain datasets. On the 1B model, Flexi-LoRA330

achieves an average accuracy of 74.65% on out-of-331

domain tasks (SVAMP, MultiArith, MAWPS), com-332

pared to 42.30% on in-domain GSM8K, demon-333

strating cross-domain robustness. This is consistent334

across both model sizes. (4) Dataset Complexity:335

Flexi-LoRA performs exceptionally well on both336

elementary arithmetic (MultiArith) and complex337

multi-step reasoning (GSM8K), indicating its abil-338

ity to effectively handle varying levels of mathe-339

matical complexity. The exceptional performance340

on MultiArith (92.22%) approaches full fine-tuning341

(93.88%), showcasing the method’s ceiling capa-342

bility on reasoning tasks. (5) DyLoRA Perfor-343

mance Decrease: DyLoRA exhibits performance344

decrease on mathematical tasks (average 26.50%345

on 1B model). The 40.06% performance gap be-346

tween DyLoRA and Flexi-LoRA on math tasks347

highlights the influence of training-inference in-348

consistency on sequential reasoning tasks. This349

decrease is substantially more pronounced than in350

QA tasks, suggesting that mathematical reasoning351

is particularly sensitive to dynamic rank consis-352

tency. (6) Key Insights: These results demonstrate353

that maintaining consistent training-inference dy-354

namics is important for mathematical reasoning355

tasks. The substantial performance improvements356

(Flexi-LoRA outperforms LoRA-8 by 3.39% on357

1B) illustrate that input-adaptive parameter alloca-358

tion provides greater benefits for problems with359

higher complexity variance and stricter evaluation360

criteria, compared to the modest gains observed on361

QA tasks.362

5.4 Cross-Task Analysis363

Comparing Flexi-LoRA’s performance on QA and364

mathematical reasoning tasks reveals important in-365

sights about the relationship between task char-366

acteristics and parameter-efficient fine-tuning ap-367

proaches: (1) Task Nature Influence: Task charac-368

teristics influence adaptation strategy efficacy. QA369

primarily involves information extraction, whereas370

mathematical reasoning demands coherent com-371

putational chains where early errors go through372

solutions. This sequential dependency in math373

tasks necessitates consistency between training and374

inference dynamics, unlike the more information375

retrieval in QA. (2) Performance Gain Differ-376

ence: Flexi-LoRA’s improvement over LoRA-8 377

is substantially larger on mathematical tasks than 378

on QA tasks. This difference suggests that input- 379

adaptive parameter allocation yields greater bene- 380

fits for sequential reasoning tasks where capacity 381

requirements vary between simple and complex 382

problems. (3) Error Analysis: QA and mathemat- 383

ical reasoning tasks demonstrate distinct error be- 384

haviors. QA permits partial correctness (evidenced 385

by F1 scores exceeding EM scores), whereas math 386

tasks produce binary outcomes. This evaluation 387

in mathematical reasoning highlights the benefits 388

of input-adaptive approaches that allocate capac- 389

ity proportionally to problem complexity. (4) In- 390

put Complexity Distribution: Flexi-LoRA’s supe- 391

rior performance on mathematical tasks indicates 392

more pronounced complexity variations compared 393

to QA. Math problems encompass a broader dif- 394

ficulty distribution, from elementary arithmetic to 395

multi-step reasoning, making them optimal candi- 396

dates for adaptive parameter allocation. (5) Cross- 397

Task Generalization: Flexi-LoRA’s consistent su- 398

perior performance across both QA and mathemat- 399

ical reasoning tasks, despite their distinct nature 400

and evaluation metrics, validates the robustness and 401

generality of our input-adaptive approach. This 402

multi-domain effectiveness indicates that the un- 403

derlying complexity-aware parameter allocation 404

mechanism learns fundamental aspects of language 405

model adaptation rather than utilizing task-specific 406

characteristics. These cross-task comparisons high- 407

light that the benefits of input-adaptive parameter 408

allocation are not uniform across tasks, but instead 409

depend on the task’s inherent complexity distribu- 410

tion and error passing dynamics. The more sequen- 411

tial the reasoning required by a task, the greater the 412

advantage offered by Flexi-LoRA’s dynamic rank 413

allocation. 414

5.5 Case Study 415

We present a qualitative analysis of model outputs 416

to understand the influence of different fine-tuning 417

approaches on mathematical reasoning tasks. Table 418

4 showcases two typical cases that show key differ- 419

ences between our proposed methods and existing 420

baselines. (1) Training-Inference Consistency 421

Influence: Table 4 reveals DyLoRA’s outputs mir- 422

ror the Original model, indicating finetuning fail- 423

ure due to training-inference inconsistency (ran- 424

dom rank sampling during training versus fixed 425

rank at inference). On the other hand, DyLoRA+ 426

successfully fine-tunes by maintaining consistent 427
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Question: Cynthia eats one serving of ice cream every night. She buys cartons of ice cream with 15 servings of ice cream per carton at a
cost of $4.00 per carton. After 60 days, how much will she spend on ice cream? Standard Answer: 16
Original:
To find the total cost of ice cream, multiply
the number of servings per carton by the
number of cartons Cynthia buys. 15 serv-
ings per carton * 60 cartons = 900 servings.
900 servings * $4.00 per serving = $3,600.
The answer is: $3,600.

DyLoRA (Baseline):
To find the total cost of ice cream, multiply
the number of servings per carton by the
number of cartons Cynthia buys. 15 serv-
ings per carton * 60 cartons = 900 servings.
900 servings * $4.00 per serving = $3600.
The answer is: $3600.

DyLoRA+ (Ours):
Cynthia eats one serving of ice cream every
night, so in 60 days, she will eat 60 servings
of ice cream.
Each carton of ice cream has 15 servings, so
she will buy 60/15 = 4 cartons of ice cream.
Each carton costs $4.00, so she will spend
4 * $4.00 = $16.00 on ice cream.
#### 16
The answer is: 16

Question: Meredith is a freelance blogger who writes about health topics and submits to clients each day as her permanent job. A blog
article takes an average of 4 hours to research and write about. Last week, she wrote 5 articles on Monday and 2/5 times more articles on
Tuesday than on Monday. On Wednesday, she wrote twice the number of articles she wrote on Tuesday. Calculate the total number of
hours she spent writing articles in the three days. Standard Answer: 104
Original:
Meredith wrote 5 articles on Monday, 5 +
2(5) = 15 articles on Tuesday, and 2(15) =
30 articles on Wednesday. The total number
of hours she spent writing articles is 4(5) +
4(15) + 4(30) = 20 + 60 + 120 = 200 hours.

LoRA (Gold Standard):
Meredith wrote 5 articles on Monday,
which took 4 hours to research and write,
so she spent 5 * 4 = 20 hours writing on
Monday.
On Tuesday, she wrote 2/5 times more arti-
cles than on Monday, so she wrote 5 + (2/5
* 5) = 5 + 2 = 7 articles.
On Wednesday, she wrote twice the number
of articles she wrote on Tuesday, so she
wrote 7 * 2 = 14 articles.
In total, Meredith spent 20 + 7 + 14 = 41
hours writing articles in the three days.
#### 41
The answer is: 41

Flexi-LoRA (Ours):
Meredith wrote 5 articles on Monday, and
2/5 times more articles on Tuesday, so she
wrote 5 + (2/5)*5 = 5 + 2 = 7 articles on
Tuesday.
On Wednesday, she wrote twice the number
of articles she wrote on Tuesday, so she
wrote 2*7 = 14 articles on Wednesday.
In total, Meredith wrote 5 + 7 + 14 = 26
articles in the three days.
Each article takes an average of 4 hours to
research and write about, so she spent 26*4
= 104 hours writing articles in the three
days.
#### 104
The answer is: 104

Table 4: Case study comparing reasoning performance across different LoRA variants on mathematical problems
for LLaMA-3.2-1B-Instruct. Examples demonstrate how training-inference LoRA dynamics consistency influences
problem solving: DyLoRA+ and Flexi-LoRA correctly solve problems that confound baseline methods, with errors
highlighted in red and correct steps in green. Flexi-LoRA’s input-adaptive parameter allocation enables more
accurate calculations and multi-step reasoning compared to static LoRA.

random rank selection across both stages. This428

difference demonstrates that dynamic consistency429

between training and inference is important for430

effective parameter-efficient finetuning. (2) Fine-431

tuning Quality Indicators: Beyond correctness,432

fine-tuned models show qualitative improvements433

in reasoning. DyLoRA+ and Flexi-LoRA produce434

detailed step-by-step solutions and follow output435

formatting ("The answer is:"), while Original and436

DyLoRA generate abbreviated responses that ig-437

nore instruction requirements. These differences,438

detailed reasoning and instruction adherence, serve439

as reliable indicators of successful finetuning. (3)440

Error Analysis: The cases reveal three error types441

in mathematical reasoning: (a) conceptual errors442

(Case 1: treating $4/carton as $4/serving, leading443

to $3,600 vs $16), (b) arithmetic misunderstanding444

(Case 2: "2/5 times more" computed as "2 times445

more"), and (c) process errors (correct intermedi-446

ate steps but incomplete final calculations). These447

errors go through multi-step reasoning, showing ini-448

tial mistakes. (4) Reasoning Quality Comparison: 449

Successful methods maintain accuracy throughout 450

reasoning chains. Case 2 illustrates this: LoRA cor- 451

rectly understands proportional relationships but 452

fails in final answer, while Flexi-LoRA completes 453

all computational steps correctly. Early-stage er- 454

rors in baseline approaches go through the entire 455

solution. 456

5.6 Ablation Studies 457

Figure 4 presents a comprehensive analysis analyz- 458

ing key variables that contribute to Flexi-LoRA’s 459

effectiveness. We examine four aspects of our 460

approach: (1) Training-Inference Rank Consis- 461

tency is essential for performance, as evidenced by 462

DyLoRA’s decrease when using fixed ranks at infer- 463

ence despite dynamic training. This confirms our 464

hypothesis that maintaining consistent rank dynam- 465

ics is important, especially for sequential reasoning 466

tasks. (2) Input-Adaptive vs. Random Selection 467

comparison between Flexi-LoRA and DyLoRA+ 468
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Figure 4: Ablation study comparing performance influence of rank selection strategies across model sizes. Charts
show performance on QA tasks and mathematical reasoning tasks for LLaMA-3.2-1B-Instruct and 3B models. The
methods are labeled as (B) for baseline methods and (O) for our proposed methods. All methods use dynamic ranks
during training but differ in inference approach: DyLoRA uses fixed ranks (4 or 8), DyLoRA+ employs random rank
selection, and Flexi-LoRA utilizes input-adaptive rank allocation. Results demonstrate that Flexi-LoRA maintains
its advantage regardless of model size and task type, confirming the benefits of input-adaptive rank allocation and
the consistency between training and inference rank dynamics.

demonstrates that learned complexity-aware allo-469

cation consistently outperforms random selection,470

validating the effectiveness of our router-based ap-471

proach. (3) Model Size Influences show that while472

scaling from 1B to 3B parameters improves overall473

performance across all methods, Flexi-LoRA main-474

tains its relative advantage, indicating that input-475

adaptive allocation remains beneficial regardless476

of model size. (4) Task-Dependent Sensitivity477

analysis reveals that mathematical reasoning tasks478

exhibit higher sensitivity to rank dynamics than QA479

tasks, with up to 39.44% performance gap between480

consistent and inconsistent methods on math com-481

pared to 6.49% on QA, illustrating how tasks with482

stricter evaluation criteria and error passing benefit483

more from adaptive parameter allocation.484

5.7 Efficiency Analysis485

Our analysis demonstrates Flexi-LoRA’s superior486

parameter efficiency across multiple aspects. Fig-487

ure 3 and Tables 2 and 3 quantify this advantage:488

Flexi-LoRA (2,8) achieves the highest QA perfor-489

mance with only 504K trainable parameters, com-490

pared to 1703K for LoRA-8, a 70.40% parameter491

reduction while improving performance. Flexi-492

LoRA (1,8) further reduces parameter count to493

304K (17.85% of LoRA-8) while maintaining com-494

petitive performance. This efficiency improvement495

extends to mathematical reasoning tasks, where496

Flexi-LoRA outperforms LoRA-8 on 1B models497

(66.56% vs. 63.17% accuracy) using only 533K498

parameters (31.29% of LoRA-8’s 1703K). Regard-499

ing computational overhead, Flexi-LoRA’s router500

consists of only two layers that process the pooled 501

input embedding once per sequence, introducing 502

negligible additional computation compared to the 503

base model computation. This minimal overhead is 504

substantially balanced by the parameter efficiency 505

gains, resulting in an overall more efficient finetun- 506

ing framework that demonstrates consistent advan- 507

tages across model sizes and tasks. 508

6 Conclusions 509

This paper introduces Flexi-LoRA, an input- 510

adaptive framework that dynamically adjusts LoRA 511

ranks based on question complexity. We demon- 512

strate that maintaining consistent rank dynamics 513

between training and inference is important for 514

finetuning models, particularly for sequential rea- 515

soning tasks. Flexi-LoRA outperforms static LoRA 516

while using fewer parameters (29.6% for QA and 517

31.3% for math reasoning), with performance gains 518

more pronounced on mathematical tasks requiring 519

reasoning chains. These results confirm that input- 520

dependent parameter allocation enables efficient 521

capacity allocation while reducing parameter re- 522

dundancy, achieving benefits similar to mixture- 523

of-experts frameworks through a more streamlined 524

method. 525

Future work could have several directions: (1) 526

layer-specific dynamic ranks to optimize parame- 527

ter utilization at finer level; (2) router frameworks 528

learning hierarchical aspects of input complexity; 529

(3) integration with other parameter-efficient tech- 530

niques such as sparse fine-tuning. 531
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Limitations532

Although Flexi-LoRA exhibits encouraging results,533

several important considerations warrant attention.534

As with other fine-tuning methodologies, users535

should exercise caution regarding training data li-536

censing and usage rights. Additionally, despite our537

documented strong performance across benchmark538

evaluations, developing deeper insights for varied539

applications would greatly benefit from expanded540

community participation and open-source collabo-541

rative initiatives.542

Ethics Statement543

No ethical approval was required for this study. No544

ethical concerns are present.545

Availability Statement546

The codes and models related to this paper547

are uploaded to the open-source community at548

https://github.com/Anonymous/Flexi-LoRA (Af-549

ter the paper is published, this link will be de-550

anonymized. For related code, please see the sup-551

plementary materials.).552

References553

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,554
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias555
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro556
Nakano, Christopher Hesse, and John Schulman.557
2021. Training verifiers to solve math word prob-558
lems. Preprint, arXiv:2110.14168.559

Mehul Damani, Idan Shenfeld, Andi Peng, Andreea560
Bobu, and Jacob Andreas. 2025. Learning how hard561
to think: Input-adaptive allocation of LM computa-562
tion. In The Thirteenth International Conference on563
Learning Representations.564

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel565
Stanovsky, Sameer Singh, and Matt Gardner. 2019.566
DROP: A reading comprehension benchmark requir-567
ing discrete reasoning over paragraphs. In Proceed-568
ings of the 2019 Conference of the North American569
Chapter of the Association for Computational Lin-570
guistics: Human Language Technologies, Volume 1571
(Long and Short Papers), pages 2368–2378, Min-572
neapolis, Minnesota. Association for Computational573
Linguistics.574

Matthew Dunn, Levent Sagun, Mike Higgins, V. Ugur575
Guney, Volkan Cirik, and Kyunghyun Cho.576
2017. Searchqa: A new q&a dataset augmented577
with context from a search engine. Preprint,578
arXiv:1704.05179.579

Adam Fisch, Alon Talmor, Robin Jia, Minjoon Seo, Eun- 580
sol Choi, and Danqi Chen. 2019. MRQA 2019 shared 581
task: Evaluating generalization in reading compre- 582
hension. In Proceedings of 2nd Machine Reading 583
for Reading Comprehension (MRQA) Workshop at 584
EMNLP. 585

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, 586
Abhinav Pandey, Abhishek Kadian, ..., and Zhiyu 587
Ma. 2024. The llama 3 herd of models. Preprint, 588
arXiv:2407.21783. 589

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen- 590
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu 591
Chen. 2022. LoRA: Low-rank adaptation of large 592
language models. In International Conference on 593
Learning Representations. 594

Shuyang Jiang, Yusheng Liao, Ya Zhang, Yanfeng 595
Wang, and Yu Wang. 2025. Fine-tuning with re- 596
served majority for noise reduction. In The Thir- 597
teenth International Conference on Learning Repre- 598
sentations. 599

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke 600
Zettlemoyer. 2017. TriviaQA: A large scale distantly 601
supervised challenge dataset for reading comprehen- 602
sion. In Proceedings of the 55th Annual Meeting of 603
the Association for Computational Linguistics (Vol- 604
ume 1: Long Papers), pages 1601–1611, Vancouver, 605
Canada. Association for Computational Linguistics. 606

Aniruddha Kembhavi, Minjoon Seo, Dustin Schwenk, 607
Jonghyun Choi, Ali Farhadi, and Hannaneh Ha- 608
jishirzi. 2017. Are you smarter than a sixth grader? 609
textbook question answering for multimodal machine 610
comprehension. In 2017 IEEE Conference on Com- 611
puter Vision and Pattern Recognition (CVPR), pages 612
5376–5384. 613

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate 614
Kushman, and Hannaneh Hajishirzi. 2016. MAWPS: 615
A math word problem repository. In Proceedings of 616
the 2016 Conference of the North American Chapter 617
of the Association for Computational Linguistics: Hu- 618
man Language Technologies, pages 1152–1157, San 619
Diego, California. Association for Computational 620
Linguistics. 621

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red- 622
field, Michael Collins, Ankur Parikh, Chris Alberti, 623
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken- 624
ton Lee, Kristina Toutanova, Llion Jones, Matthew 625
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob 626
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu- 627
ral questions: A benchmark for question answering 628
research. Transactions of the Association for Compu- 629
tational Linguistics, 7:452–466. 630

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, 631
and Eduard Hovy. 2017. RACE: Large-scale ReAd- 632
ing comprehension dataset from examinations. In 633
Proceedings of the 2017 Conference on Empirical 634
Methods in Natural Language Processing, pages 785– 635
794, Copenhagen, Denmark. Association for Compu- 636
tational Linguistics. 637

9

https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://openreview.net/forum?id=6qUUgw9bAZ
https://openreview.net/forum?id=6qUUgw9bAZ
https://openreview.net/forum?id=6qUUgw9bAZ
https://openreview.net/forum?id=6qUUgw9bAZ
https://openreview.net/forum?id=6qUUgw9bAZ
https://doi.org/10.18653/v1/N19-1246
https://doi.org/10.18653/v1/N19-1246
https://doi.org/10.18653/v1/N19-1246
https://arxiv.org/abs/1704.05179
https://arxiv.org/abs/1704.05179
https://arxiv.org/abs/1704.05179
https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=ZV7CLf0RHK
https://openreview.net/forum?id=ZV7CLf0RHK
https://openreview.net/forum?id=ZV7CLf0RHK
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.1109/CVPR.2017.571
https://doi.org/10.1109/CVPR.2017.571
https://doi.org/10.1109/CVPR.2017.571
https://doi.org/10.1109/CVPR.2017.571
https://doi.org/10.1109/CVPR.2017.571
https://doi.org/10.18653/v1/N16-1136
https://doi.org/10.18653/v1/N16-1136
https://doi.org/10.18653/v1/N16-1136
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.18653/v1/D17-1082
https://doi.org/10.18653/v1/D17-1082
https://doi.org/10.18653/v1/D17-1082


Omer Levy, Minjoon Seo, Eunsol Choi, and Luke638
Zettlemoyer. 2017. Zero-shot relation extraction via639
reading comprehension. In Proceedings of the 21st640
Conference on Computational Natural Language641
Learning (CoNLL 2017), pages 333–342, Vancouver,642
Canada. Association for Computational Linguistics.643

Rohin Manvi, Anikait Singh, and Stefano Ermon. 2024.644
Adaptive inference-time compute: Llms can predict645
if they can do better, even mid-generation. Preprint,646
arXiv:2410.02725.647

Ioannis Partalas, Eric Gaussier, Axel-Cyrille Ngonga648
Ngomo, et al. 2013. Results of the first bioasq work-649
shop. In BioASQ@ CLEF, pages 1–8.650

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.651
2021. Are NLP models really able to solve simple652
math word problems? In Proceedings of the 2021653
Conference of the North American Chapter of the654
Association for Computational Linguistics: Human655
Language Technologies, pages 2080–2094, Online.656
Association for Computational Linguistics.657

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and658
Percy Liang. 2016. SQuAD: 100,000+ questions for659
machine comprehension of text. In Proceedings of660
the 2016 Conference on Empirical Methods in Natu-661
ral Language Processing, pages 2383–2392, Austin,662
Texas. Association for Computational Linguistics.663

Subhro Roy and Dan Roth. 2015. Solving general arith-664
metic word problems. In Proceedings of the 2015665
Conference on Empirical Methods in Natural Lan-666
guage Processing, pages 1743–1752, Lisbon, Portu-667
gal. Association for Computational Linguistics.668

Amrita Saha, Rahul Aralikatte, Mitesh M. Khapra, and669
Karthik Sankaranarayanan. 2018. DuoRC: Towards670
complex language understanding with paraphrased671
reading comprehension. In Proceedings of the 56th672
Annual Meeting of the Association for Computational673
Linguistics (Volume 1: Long Papers), pages 1683–674
1693, Melbourne, Australia. Association for Compu-675
tational Linguistics.676

Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Avi-677
ral Kumar. 2025. Scaling LLM test-time compute678
optimally can be more effective than scaling param-679
eters for reasoning. In The Thirteenth International680
Conference on Learning Representations.681

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Har-682
ris, Alessandro Sordoni, Philip Bachman, and Kaheer683
Suleman. 2017. NewsQA: A machine comprehen-684
sion dataset. In Proceedings of the 2nd Workshop685
on Representation Learning for NLP, pages 191–200,686
Vancouver, Canada. Association for Computational687
Linguistics.688

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan689
Kobyzev, and Ali Ghodsi. 2023. DyLoRA:690
Parameter-efficient tuning of pre-trained models us-691
ing dynamic search-free low-rank adaptation. In Pro-692
ceedings of the 17th Conference of the European693

Chapter of the Association for Computational Lin- 694
guistics, pages 3274–3287, Dubrovnik, Croatia. As- 695
sociation for Computational Linguistics. 696

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, 697
and Yiming Yang. 2024. Scaling inference com- 698
putation: Compute-optimal inference for problem- 699
solving with language models. In The 4th Workshop 700
on Mathematical Reasoning and AI at NeurIPS’24. 701

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, 702
William Cohen, Ruslan Salakhutdinov, and Christo- 703
pher D. Manning. 2018. HotpotQA: A dataset for 704
diverse, explainable multi-hop question answering. 705
In Proceedings of the 2018 Conference on Empiri- 706
cal Methods in Natural Language Processing, pages 707
2369–2380, Brussels, Belgium. Association for Com- 708
putational Linguistics. 709

Longhui Yu, Weisen Jiang, Han Shi, Jincheng YU, 710
Zhengying Liu, Yu Zhang, James Kwok, Zhenguo Li, 711
Adrian Weller, and Weiyang Liu. 2024. Metamath: 712
Bootstrap your own mathematical questions for large 713
language models. In The Twelfth International Con- 714
ference on Learning Representations. 715

Kexun Zhang, Shang Zhou, Danqing Wang, 716
William Yang Wang, and Lei Li. 2025. Scal- 717
ing LLM inference efficiently with optimized sample 718
compute allocation. In Proceedings of the 2025 719
Conference of the Nations of the Americas Chapter 720
of the Association for Computational Linguistics: 721
Human Language Technologies (Volume 1: Long 722
Papers), pages 7959–7973, Albuquerque, New 723
Mexico. Association for Computational Linguistics. 724

Qingru Zhang, Minshuo Chen, Alexander Bukharin, 725
Pengcheng He, Yu Cheng, Weizhu Chen, and 726
Tuo Zhao. 2023. Adaptive budget allocation for 727
parameter-efficient fine-tuning. In The Eleventh In- 728
ternational Conference on Learning Representations. 729

10

https://doi.org/10.18653/v1/K17-1034
https://doi.org/10.18653/v1/K17-1034
https://doi.org/10.18653/v1/K17-1034
https://arxiv.org/abs/2410.02725
https://arxiv.org/abs/2410.02725
https://arxiv.org/abs/2410.02725
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D15-1202
https://doi.org/10.18653/v1/D15-1202
https://doi.org/10.18653/v1/D15-1202
https://doi.org/10.18653/v1/P18-1156
https://doi.org/10.18653/v1/P18-1156
https://doi.org/10.18653/v1/P18-1156
https://doi.org/10.18653/v1/P18-1156
https://doi.org/10.18653/v1/P18-1156
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=4FWAwZtd2n
https://doi.org/10.18653/v1/W17-2623
https://doi.org/10.18653/v1/W17-2623
https://doi.org/10.18653/v1/W17-2623
https://doi.org/10.18653/v1/2023.eacl-main.239
https://doi.org/10.18653/v1/2023.eacl-main.239
https://doi.org/10.18653/v1/2023.eacl-main.239
https://doi.org/10.18653/v1/2023.eacl-main.239
https://doi.org/10.18653/v1/2023.eacl-main.239
https://openreview.net/forum?id=j7DZWSc8qu
https://openreview.net/forum?id=j7DZWSc8qu
https://openreview.net/forum?id=j7DZWSc8qu
https://openreview.net/forum?id=j7DZWSc8qu
https://openreview.net/forum?id=j7DZWSc8qu
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://openreview.net/forum?id=N8N0hgNDRt
https://openreview.net/forum?id=N8N0hgNDRt
https://openreview.net/forum?id=N8N0hgNDRt
https://openreview.net/forum?id=N8N0hgNDRt
https://openreview.net/forum?id=N8N0hgNDRt
https://aclanthology.org/2025.naacl-long.404/
https://aclanthology.org/2025.naacl-long.404/
https://aclanthology.org/2025.naacl-long.404/
https://aclanthology.org/2025.naacl-long.404/
https://aclanthology.org/2025.naacl-long.404/
https://openreview.net/forum?id=lq62uWRJjiY
https://openreview.net/forum?id=lq62uWRJjiY
https://openreview.net/forum?id=lq62uWRJjiY


A Appendix730

A.1 Related Work for Input-adaptive731

Methods732

Input-adaptive methods. Recent work has ex-733

plored various approaches to dynamically allocate734

computational resources based on input complexity.735

Wu et al. (2024) and Snell et al. (2025) investigate736

compute-optimal scaling strategies that adapt test-737

time computation allocation per prompt, showing738

that different inference strategies yield optimal per-739

formance depending on problem difficulty. Manvi740

et al. (2024) propose using self-evaluations to adap-741

tively determine necessary inference computation,742

while Damani et al. (2025) explore difficulty es-743

timation for optimal compute allocation. Zhang744

et al. (2025) introduce OSCA, an algorithm that op-745

timizes sample compute allocation across different746

inference configurations. These approaches primar-747

ily focus on inference-time adaptation rather than748

model framework adaptation. Different from these749

methods which modify inference strategies, our750

work centers on input-adaptive framework mod-751

ifications during both training and inference by752

dynamically adjusting LoRA ranks based on in-753

put complexity. This provides a more streamlined754

approach to input-adaptive computation than meth-755

ods requiring test-time search or complex verifier756

frameworks.757

A.2 Implementation Details758

Implementation details, including inference param-759

eters in Table 5, training hyperparameters in Table760

6, and method-specific configurations in Tables 7,761

are provided.762

QA Math
do_sample False False

early_stopping True True
length_penalty 1.0 1.0

max_new_tokens 20 768
num_beams 1 1

pad_token_id pad_token_id pad_token_id
temperature 1.0 1.0

top_p 1.0 1.0

Table 5: Inference parameters for QA and mathemati-
cal tasks.

Prompt for MRQA:763

<|start_header_id|>user <| end_header_id |>\764
n\nExtract the exact text span from the765
given context that directly answers the766
question , without modifying or combining767
multiple parts of the text.\n\nContext:768
{}\n\nQuestion: {}<| eot_id|><|769
start_header_id|>assistant <| end_header_id770
|>\n\nAnswer:771

Prompt for Math datasets: 772

<|start_header_id|>user <| end_header_id |>\ 773
n\nSolve the question and your response 774
should end with \"The answer is: [answer 775
]\".\n\nQuestion: {}<| eot_id|><| 776
start_header_id|>assistant <| end_header_id 777
|>\n\nAnswer: 778

A.3 Environment 779

datasets==2.18.0 780

deepspeed==0.15.3 781

huggingface_hub==0.24.2 782

numpy==1.23.5 783

python==3.11.5 784

torch==2.3.1+cu118 785

tqdm==4.66.4 786

transformers==4.46.0 787

wandb==0.14.2 788

This paper was refined with ChatGPT and 789

Claude. 790
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QA Math
Train steps {1000} for LLaMA-3.2-1B-Instruct {200, 400, 600, 800, 1000} for LLaMA-3.2-1B-Instruct

{200, 800} for LLaMA-3.2-3B-Instruct
Optimizer AdamW AdamW

Max length 512 768
warmup_steps 100 100
learning_rate 2e-5 2e-5

per_device_train_batch_size 16 16
lr_scheduler_type constant_with_warmup constant_with_warmup

gradient_accumulation_steps 2 2

Table 6: Training hyperparameters for QA and mathematical tasks. {} shows parameter search.

Method Details
LoRA r=4/8; lora_alpha=16; target_modules=["q_proj", "k_proj", "v_proj", "o_proj"]; lora_dropout=0
AdaLoRA r=16/8; target_r=8/4; lora_alpha=16; target_modules=["q_proj", "k_proj", "v_proj", "o_proj"]; lora_dropout=0;

stage=1/2
DyLoRA rank_choices=[1, 2, 3, 4, 5, 6, 7, 8]; lora_alpha=16; target_modules=["q_proj", "k_proj", "v_proj", "o_proj"];

lora_dropout=0
Flexi-LoRA max_r=8; min_r=1; rank_mapping=0: 2, 1: 8; lora_alpha=16; target_modules=["q_proj", "k_proj", "v_proj",

"o_proj"]; lora_dropout=0

Table 7: Method configurations for various PEFT methods.
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