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Abstract

Parameter-efficient fine-tuning methods like
Low-Rank Adaptation (LoRA) have become
essential for deploying large language models,
yet their static parameter allocation remains
suboptimal for inputs of varying complexity.
We present Flexi-LoRA, a novel framework
that dynamically adjusts LoRA ranks based
on input complexity during both training and
inference. Through empirical analysis across
question answering and mathematical reason-
ing tasks, we demonstrate that maintaining con-
sistency between training and inference dynam-
ics is important for effective adaptation, par-
ticularly for sequential reasoning tasks. Our
findings reveal that input-dependent parameter
allocation achieves superior performance with
fewer parameters by optimally matching rank
configurations to question complexity. Further-
more, task-specific sensitivity to rank dynamics
varies, with mathematical reasoning tasks ex-
hibiting higher sensitivity than QA tasks. Suc-
cessful adaptation manifests not only in correct-
ness but also in reasoning quality and instruc-
tion adherence. Flexi-LoRA consistently out-
performs static LoORA while using fewer param-
eters, with performance gains more pronounced
on tasks requiring strict reasoning chains. Our
approach realizes key benefits of mixture-of-
experts frameworks through a more stream-
lined implementation, reducing parameter re-
dundancy while enhancing model capabilities.
We provide comprehensive empirical studies
across diverse tasks, establishing a foundation
for future work in input-adaptive and efficient
fine-tuning approaches. !

1 Introduction

As large language models grow in size, efficient
fine-tuning methods like LoRA (Hu et al., 2022)

"https://github.com/Anonymous/Flexi-LoRA (After
the paper is published, this link will be de-anonymized. For
related code, please see the supplementary materials.)

Difficult Question

Emily has 4 kids named Amy,
Jackson, Corey, and James. Amy is 5
years older than Jackson and 2 years
younger than Corey. If James is 10
and is 1 year younger than Corey,
how old is Jackson?

Paige raised 7 goldfish and 12
catfish in the pond but stray cats
loved eating them. Now she has 15
left. How many fishes disappeared?
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Figure 1: Flexi-LoRA’s input-adaptive rank allocation
versus static normal LoRA. Flexi-LoRA (left) dynam-
ically assigns rank 2 (dark trapezoid) for simple prob-
lems and rank 8 (light trapezoid) for complex ones,
successfully solving both. LoRA (right) uses fixed rank
8 (light trapezoid) regardless of complexity, failing on
difficult problems. This demonstrates the necessity of
input-adaptive parameter allocation for handling vary-
ing question complexity.
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have become essential for applications. However,
their static parameter allocation remains subop-
timal for questions of varying complexity, sug-
gesting the need for input-adaptive approaches in
parameter-efficient fine-tuning (Jiang et al., 2025).

Through empirical analysis, we observe two key
phenomena in LoRA-based fine-tuning. First,
there exists a notable performance gap when us-
ing static ranks during inference for models trained
with dynamic ranks at fine-grained level, particu-
larly in their ability to follow instructions precisely
(DyLoRA vs DyLoRA+, Table 2 and 3, Figure 4).
Second, while model performance generally satu-
rates with increasing ranks, the optimal rank varies
across different inputs: simple questions can be ef-
fectively handled with small ranks, while complex
problems benefit substantially from larger ranks
(Rank 4 vs 8, Table 2 and 3, Figure 3). These obser-
vations indicate that a one-size-fits-all approach to
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rank selection is suboptimal, motivating the need
for input-adaptive rank allocation.

Inspired by these observations, we propose Flexi-
LoRA, a finetuning framework that dynamically
adjusts LoRA ranks based on input complexity.
Our approach not only achieves superior perfor-
mance to high-rank LoRA while using fewer pa-
rameters, but also successfully solves some com-
plex problems that static LoRA fails to handle even
with equivalent rank, as shown in Figure 1.

Our contributions are threefold:

* Novel Framework: We introduce the first input-
adaptive LoRA framework that maintains dy-
namic ranks during both training and inference,
achieving higher performance with reduced pa-
rameter count compared to static LORA.

* Insights: We demonstrate that (1) maintaining
consistency between training and inference dy-
namics is important for LoORA adaptation, partic-
ularly for sequential reasoning tasks; (2) input-
dependent parameter allocation achieves superior
performance with fewer parameters by optimally
matching rank configurations to question com-
plexity; (3) task-specific sensitivity to rank dy-
namics varies, with mathematical reasoning tasks
exhibiting higher sensitivity than QA tasks; (4)
successful adaptation manifests not only in cor-
rectness but also in reasoning quality and instruc-
tion adherence; and (5) our approach realizes
benefits of mixture-of-experts through a more
streamlined implementation, reducing parameter
redundancy while enhancing model capabilities.

» Comprehensive Analysis: We provide compre-
hensive empirical studies across diverse tasks,
establishing a foundation for future work in input-
adaptive and efficient finetuning approaches.

2 Related Work

LoRA with dynamic ranks. Recent works have
explored dynamic rank adaptation in LoRA, with
differences shown in Table 1. AdaLoRA (Zhang
et al., 2023) performs importance-based parameter
pruning at training checkpoints to gradually reduce
ranks to a fixed target. DyLoRA (Valipour et al.,
2023) randomly samples ranks from a predefined
range for each training batch, with all samples in
the batch sharing the same rank. Both approaches,
while improving rank flexibility, are limited by ei-
ther steps-level pruning or random batch-level as-
signment, and neither supports dynamic rank selec-
tion at inference. On the other hand, Flexi-LoRA

Method Train Level Inference
LoRA Fixed All Fixed
Adal.oRA Selective Steps Fixed
DyLoRA Random Batch Fixed
DyLoRA+ (O) Random Batch Random
Flexi-LoRA (O) Router  Sample Router

Table 1: Comparison of rank adaptation strategies across
different LoRA variants. "Train" indicates how ranks
are determined during training, "Level" shows the level
of rank assignment, and "Inference" specifies the rank
selection mechanism at test time. Only Flexi-LoRA
maintains consistent router-based sample-level dynamic
rank allocation across both training and inference stages,
while existing methods use fixed ranks during inference
regardless of training dynamics. "O" is our method.

enables true sample-level rank selection by learning
to map input complexity to appropriate ranks, main-
taining this adaptive behavior during both training
and inference.

Input-Adaptive Methods. Due to space con-
straints in the main text, a review of input-adaptive
methods is provided in Appendix A.1.

3 Methods

Building upon previous work, we first introduce
DyLoRA+, an enhanced variant of DyLoRA that
maintains consistent rank dynamics by employing
random batch-level rank selection during both train-
ing and inference stages. While DyLoRA+ demon-
strates improved performance over the original Dy-
LoRA, its random rank allocation remains subopti-
mal as it fails to account for input-specific complex-
ity differences. We therefore propose Flexi-LoRA,
a framework that automatically adjusts the rank
based on input complexity. Our method consists
of two key components: a difficulty-aware router
that maps inputs to appropriate rank assignments
and a flexible-rank LoRA training framework that
maintains consistent dynamic rank allocation dur-
ing both training and inference, as shown in Figure
2.

Router focuses on learning an optimal map-
ping R(h) : R? — r; from input embeddings
to rank assignments. Given an input sequence
x with mask m, we first compute its token em-
beddings H € R™ < and obtain a pooled embed-
ding h = > ,(m;H;)/ >, m;, where m; masks
padding tokens. We categorize training samples
into difficulty classes based on task-specific met-
rics: F1 scores for MRQA datasets and accuracy
for mathematical reasoning tasks. The router is
then optimized using a noise-added cross-entropy
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Figure 2: Flexi-LoRA framework with input-adaptive
rank selection. Router analyzes input embeddings and
outputs rank assignments (green arrows) for transformer
layers. Red and blue trapezoids are LoRA’s A and B
matrices, with color darkness indicating rank magnitude
(darker = rank 2, lighter = rank 8). The router enables dy-
namic rank allocation based on input complexity while
maintaining efficient gradient flow through residual con-
nections.

objective: L(0) = — >, y; log(R(h; + €)), where
e ~ N(0, 02) is Gaussian noise and y; denotes the
ground-truth difficulty label. The training data is
balanced between easy and hard samples to ensure
uniform difficulty evaluation.

Input-adaptive LoRA freezes the base model
parameters and optimize only the LoRA matri-
ces. For input x, we first obtain its token em-
beddings H° and pooled embedding h following
the same procedure as router training. The router
then predicts rank » = R(h), which is applied
consistently across all transformer layers. Within
each batch, different samples can be assigned dif-
ferent ranks based on their predicted difficulty,
enabling dynamic resource allocation. For each
transformer layer [, we compute the LoRA up-
date as AW, = By, A;,, where A, € R™*¢
and By, € RY*" are dynamically reduced to the
first » rows/columns. The layer output is com-
puted as H' = W H!"! + o, (B, A H'™1),
where «, is a rank-specific scaling variable and
H'~1 is the output from the previous layer. The
model is trained to minimize the task-specific loss
Liask = — Y ;logp(y;|z;), where z; is the input
sequence and y; is the corresponding ground truth
outputs. This design enables efficient batch pro-
cessing while allowing for flexible input-dependent
rank adaptation.

4 Experimental Design

Datasets. We evaluate Flexi-LoRA on both QA
and mathematical reasoning tasks. For QA tasks,
we conduct training on datasets from the MRQA
(Fisch et al., 2019) training set, which unifies QA
samples from SQuAD (Rajpurkar et al., 2016),
TriviaQA (Joshi et al., 2017), NewsQA (Trischler
et al., 2017), SearchQA (Dunn et al., 2017), Hot-
potQA (Yang et al.,, 2018), and NaturalQues-
tions (Kwiatkowski et al., 2019). Evaluation is
performed on the MRQA test set consisting of
BioASQ (Partalas et al., 2013), DROP (Dua et al.,
2019), DuoRC (Saha et al., 2018), RACE (Lai et al.,
2017), RelationExtraction (Levy et al., 2017), and
TextbookQA (Kembhavi et al., 2017). For mathe-
matical reasoning, we train on the GSM8K (Cobbe
et al., 2021) subset of the MetaMathQA (Yu et al.,
2024) dataset and evaluate on a diverse set of math
benchmarks including GSM8K, SVAMP (Patel
et al., 2021), MultiArith (Roy and Roth, 2015), and
MAWPS (Koncel-Kedziorski et al., 2016). This
design allows us to evaluate both in-distribution
and out-of-distribution generalization capabilities
of our method.

Evaluation Metrices. We evaluate QA perfor-
mance using F1 and Exact Match (EM) scores. F1
computes the balanced average of precision and re-
call between prediction and ground truth, while EM
measures exact string match. For mathematical
reasoning tasks, we use accuracy for evaluation.

Gold Standard & Baselines. We compare
against two gold standards: full model fine-tuning
and standard LoRA with fixed rank. For baselines,
we include AdaLLoRA, which adapts ranks through
importance-based parameter pruning while main-
taining fixed inference ranks, and DyLoRA, which
randomly samples ranks from a predefined range
for each training batch but uses fixed ranks dur-
ing inference. Our Flexi-LoRA differs by enabling
input-adaptive rank selection during both training
and inference.

Models. We employ LLaMA-3.2-1B-Instruct
(Grattafiori et al., 2024) as the base model for our
main results and include LLaMA-3.2-3B-Instruct
to analyze model size in ablation studies.

5 Results

5.1 Overview

Figure 3 illustrates the performance-efficiency
trade-offs across different parameter-efficient fine-
tuning methods on QA and mathematical reasoning
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Figure 3: Performance-efficiency trade-off across different parameter-efficient fine-tuning methods. Our methods
(O) achieve superior performance with fewer trainable parameters compared to both baseline methods (B) as well as
gold standards (G). Results are shown for QA tasks and mathematical tasks using LLaMA-3.2-1B-Instruct and 3B.

Gold Standard Baselines Ours
Full LoRA AdaLoRA DyLoRA DyLoRA+ Flexi-LoRA
Rank - 4 8 4 8 4 8 1-8 1,8 2,8
# 1.2B 851K 1703K 851K 1703K 851K 1703K 966K 304K 504K
F1 Score
BioASQ 69.81 64.85 66.22 63.62 65.12 60.01 52.40 65.21 65.75 65.82
DROP 47.15 37.88 36.03 32.79 34.35 43.59 38.26 36.32 37.27 37.52
DuoRC 45.21 43.85 43.72 44.00 42.49 39.10 36.89 43.86 42.92 43.22
RACE 41.49 38.64 37.49 34.58 35.81 36.89 33.24 39.26 38.83 39.10
RE 84.11 74.97 76.41 74.51 75.73 81.02 78.70 75.47 76.47 76.83
TextbookQA 49.56 51.35 52.20 54.14 54.66 37.90 32.94 51.22 51.74 51.75
Average 56.22 51.92 52.01 50.61 51.36 49.75 45.40 51.89 52.16 52.37
Exact Match

BioASQ 49.13 42.02 42.61 40.29 40.35 34.24 27.52 41.88 41.42 41.48
DROP 35.46 25.81 23.08 20.15 21.49 30.07 24.01 23.61 24.55 25.01
DuoRC 35.57 32.37 31.51 32.37 30.77 27.71 24.58 3231 30.44 30.71
RACE 29.37 24.03 22.99 20.62 22.10 21.81 16.61 24.92 24.48 24.77
RE 72.01 57.73 60.27 57.25 58.44 69.13 66.31 59.15 59.90 60.44
TextbookQA 40.98 4191 42.38 44.97 45.10 27.01 21.29 4191 42.04 42.04
Average 43.75 37.31 37.14 35.94 36.38 34.99 30.05 37.30 37.14 3741

Table 2: Performance comparison on out-of-domain QA tasks from the MRQA benchmark using LLaMA-3.2-
1B-Instruct. F1 and Exact Match (EM) scores are reported, comparing our proposed methods (Flexi-LoRA and
DyLoRA+) against gold standards and baselines. Flexi-LoRA (2,8) achieves the best average performance on both
metrics while using fewer parameters than standard approaches. The "#" row indicates the number of trainable
parameters. Green (teal) and red (maroon) cell coloring is higher and lower scores respectively, with deeper colors

indicating larger performance differences.

tasks. Flexi-LoRA consistently achieves superior
performance while requiring fewer parameters than
competing approaches. Notably, DyLoRA results
are not visible from mathematical reasoning fig-
ures due to substantially decreased performance,
highlighting the importance of maintaining con-
sistency between training and inference dynamics.
AdalLoRA shows competitive results on specific
tasks but fails to achieve a consistent advantage
across different domains. From a Pareto optimality
perspective, Flexi-LoRA dominates all baselines
and gold standards by offering better performance
at lower parameter counts, positioning itself closest
to the full fine-tuning performance while maintain-
ing parameter efficiency below 0.1% of total model
parameters. The following sections analyze these
results in detail across different task categories and
provide ablation studies to analyze the contribu-

tions of individual components.

5.2 Question Answering

Table 2 presents the performance of different
parameter-efficient fine-tuning methods on six out-
of-domain QA datasets from the MRQA bench-
mark. We analyze these results from multiple
perspectives: (1) Overall Performance: Flexi-
LoRA (2,8) achieves the highest average F1 score
(52.37%) and EM score (37.41%), outperform-
ing both LoRA-8 with only 29.59% of LoRA-
8’s parameters. The performance gap between
Flexi-LoRA and full fine-tuning is considerably
smaller than that of other parameter-efficient meth-
ods, demonstrating its effectiveness in approach-
ing full fine-tuning. (2) Stability Across Met-
rics: Flexi-LoRA demonstrates consistency by
achieving the best average performance on both



Gold Standard Baselines Ours
Full LoRA AdaLoRA DyLoRA DyLoRA+ Flexi-LoRA
Rank - 4 8 4 8 4 8 1-8 2,8
LLaMA-3.2-1B-Instruct
# 1.2B 851K 1703K 851K 1703K 851K 1703K 953K 533K
GSMBK 57.31 42.15 41.31 45.71 42.22 19.78 21.00 41.77 42.30
SVAMP 57.29 52.87 51.18 53.37 50.52 20.08 19.57 56.03 52.02
MultiArith 93.88 82.77 85.00 78.88 84.44 43.88 42.77 85.55 92.22
MAWPS 80.00 69.85 75.21 65.63 74.36 22.25 17.46 75.21 79.71
Average 72.12 61.91 63.17 60.90 62.89 26.50 25.20 64.64 66.56
LLaMA-3.2-3B-Instruct
# 1.2B 2.29M 4.58M 2.29M 4.58M 2.29M 4.58M 2.60M 1.53M
GSMBK 75.20 65.95 69.37 71.49 72.32 60.04 60.87 70.43 69.90
SVAMP 78.30 66.29 74.47 75.91 77.80 67.48 64.87 74.71 77.09
MultiArith 100 97.77 99.44 90.55 95.55 75.00 8222 92.77 100
MAWPS 89.85 84.50 86.19 83.66 88.45 69.57 65.63 86.47 89.01
Average 85.84 78.63 82.37 80.40 83.53 68.02 68.40 81.10 84.00

Table 3: Performance comparison on mathematical tasks using LLaMA-3.2-1B-Instruct and LLaMA-3.2-3B-
Instruct models. Accuracy scores (%) are reported across four benchmark datasets (GSM8K as in-domain and
the others as out-of-domain), comparing our proposed methods against gold standards and baselines. Flexi-LoRA
achieves the best average performance on both model sizes while using fewer parameters than standard approaches.
The "#" row indicates the number of trainable parameters. Green (teal) and red (maroon) cell coloring is higher and
lower scores respectively, with deeper colors indicating larger performance differences.

F1 and EM metrics simultaneously, unlike other
methods that typically excel in one metric. This
dual-metric superiority indicates that Flexi-LoRA
produces outputs that are both semantically close
to ground truth (high F1) and syntactically pre-
cise (high EM). (3) Dataset-Specific Analysis:
Flexi-LoRA performs particularly well on domain-
specific and knowledge-based tasks, while showing
moderate improvements on information extraction
tasks. The adaptive rank allocation proves benefi-
cial for datasets requiring diverse reasoning capa-
bilities, suggesting Flexi-LoRA’s ability to assign
appropriate computational resources based on in-
put complexity. (4) Comparison with Other Dy-
namic Approaches: Flexi-LoRA consistently out-
performs DyLoRA+, despite both using dynamic
ranks during inference, demonstrating the impor-
tance of learned input-adaptive rank assignment
versus the random assignment in DyLoRA+. Dy-
LoRA shows high variance across datasets (from
81.02% F1 on RE to 32.94% F1 on TextbookQA),
highlighting instability issues when training and in-
ference dynamics are inconsistent. (5) Rank Con-
figuration Influence: The comparison between
Flexi-LoRA (1,8) and (2,8) configurations reveals
that a slight increase in the minimum rank (from 1
to 2) provides modest but consistent performance
improvements (from 52.16% to 52.37% F1), with
a reasonable parameter increase (from 304K to
504K). This suggests that while low ranks can
handle simpler questions, maintaining a slightly
higher minimum rank improves robustness across
diverse question types. (6) Cross-Domain Gen-
eralization: On out-of-domain test datasets, base-
line methods exhibit inconsistent performance, ex-

celling on specific domains while decreasing on
others. On the other hand, Flexi-LoRA maintains
strong performance across all test datasets, suggest-
ing its input-adaptive parameter allocation learns
more generalized knowledge than static approaches
that could overfit to training domain characteris-
tics. (7) Key Insights: These results demonstrate
that input-adaptive parameter allocation provides
dual benefits in QA tasks: improved performance
through parameter allocation and enhanced param-
eter efficiency through optimization of rank selec-
tion. The consistent improvement across diverse
datasets suggests that question complexity varies
substantially even within the same task category,
validating our input-adaptive approach.

5.3 Math Problems

Table 3 presents the performance of different fine-
tuning methods on mathematical reasoning tasks
across two model sizes. We analyze these results
for task-specific characteristics: (1) Overall Per-
formance: Flexi-LoRA achieves the highest av-
erage accuracy on both LLaMA-3.2-1B-Instruct
(66.56%) and LLaMA-3.2-3B-Instruct (84.00%),
outperforming LoRA-8 (63.17% and 82.37%)
while using only 31.29% and 33.40% of its pa-
rameters, respectively. The performance gap be-
tween Flexi-LoRA and full fine-tuning is narrower
than other parameter-efficient methods, particularly
on the larger model. (2) Model Size Influence:
Increasing model size from 1B to 3B improves
performance across all methods, with Flexi-LoRA
maintaining its advantage. Notably, the absolute
performance gap between Flexi-LoRA and full fine-
tuning decreases from 5.56% to 1.84%, suggest-



ing that input-adaptive approaches become even
more effective with larger models. (3) In-Domain
vs. Out-of-Domain: Flexi-LoRA shows strong
generalization from GSMS8K (in-domain) to out-of-
domain datasets. On the 1B model, Flexi-LoRA
achieves an average accuracy of 74.65% on out-of-
domain tasks (SVAMP, MultiArith, MAWPS), com-
pared to 42.30% on in-domain GSM8K, demon-
strating cross-domain robustness. This is consistent
across both model sizes. (4) Dataset Complexity:
Flexi-LoRA performs exceptionally well on both
elementary arithmetic (MultiArith) and complex
multi-step reasoning (GSMS8K), indicating its abil-
ity to effectively handle varying levels of mathe-
matical complexity. The exceptional performance
on MultiArith (92.22%) approaches full fine-tuning
(93.88%), showcasing the method’s ceiling capa-
bility on reasoning tasks. (5) DyLoRA Perfor-
mance Decrease: DyLoRA exhibits performance
decrease on mathematical tasks (average 26.50%
on 1B model). The 40.06% performance gap be-
tween DyLoRA and Flexi-LoRA on math tasks
highlights the influence of training-inference in-
consistency on sequential reasoning tasks. This
decrease is substantially more pronounced than in
QA tasks, suggesting that mathematical reasoning
is particularly sensitive to dynamic rank consis-
tency. (6) Key Insights: These results demonstrate
that maintaining consistent training-inference dy-
namics is important for mathematical reasoning
tasks. The substantial performance improvements
(Flexi-LoRA outperforms LoRA-8 by 3.39% on
1B) illustrate that input-adaptive parameter alloca-
tion provides greater benefits for problems with
higher complexity variance and stricter evaluation
criteria, compared to the modest gains observed on
QA tasks.

5.4 Cross-Task Analysis

Comparing Flexi-LoRA’s performance on QA and
mathematical reasoning tasks reveals important in-
sights about the relationship between task char-
acteristics and parameter-efficient fine-tuning ap-
proaches: (1) Task Nature Influence: Task charac-
teristics influence adaptation strategy efficacy. QA
primarily involves information extraction, whereas
mathematical reasoning demands coherent com-
putational chains where early errors go through
solutions. This sequential dependency in math
tasks necessitates consistency between training and
inference dynamics, unlike the more information
retrieval in QA. (2) Performance Gain Differ-

ence: Flexi-LoRA’s improvement over LoRA-8
is substantially larger on mathematical tasks than
on QA tasks. This difference suggests that input-
adaptive parameter allocation yields greater bene-
fits for sequential reasoning tasks where capacity
requirements vary between simple and complex
problems. (3) Error Analysis: QA and mathemat-
ical reasoning tasks demonstrate distinct error be-
haviors. QA permits partial correctness (evidenced
by F1 scores exceeding EM scores), whereas math
tasks produce binary outcomes. This evaluation
in mathematical reasoning highlights the benefits
of input-adaptive approaches that allocate capac-
ity proportionally to problem complexity. (4) In-
put Complexity Distribution: Flexi-LoRA’s supe-
rior performance on mathematical tasks indicates
more pronounced complexity variations compared
to QA. Math problems encompass a broader dif-
ficulty distribution, from elementary arithmetic to
multi-step reasoning, making them optimal candi-
dates for adaptive parameter allocation. (5) Cross-
Task Generalization: Flexi-LoRA’s consistent su-
perior performance across both QA and mathemat-
ical reasoning tasks, despite their distinct nature
and evaluation metrics, validates the robustness and
generality of our input-adaptive approach. This
multi-domain effectiveness indicates that the un-
derlying complexity-aware parameter allocation
mechanism learns fundamental aspects of language
model adaptation rather than utilizing task-specific
characteristics. These cross-task comparisons high-
light that the benefits of input-adaptive parameter
allocation are not uniform across tasks, but instead
depend on the task’s inherent complexity distribu-
tion and error passing dynamics. The more sequen-
tial the reasoning required by a task, the greater the
advantage offered by Flexi-LoRA’s dynamic rank
allocation.

5.5 Case Study

We present a qualitative analysis of model outputs
to understand the influence of different fine-tuning
approaches on mathematical reasoning tasks. Table
4 showcases two typical cases that show key differ-
ences between our proposed methods and existing
baselines. (1) Training-Inference Consistency
Influence: Table 4 reveals DyLoRA’s outputs mir-
ror the Original model, indicating finetuning fail-
ure due to training-inference inconsistency (ran-
dom rank sampling during training versus fixed
rank at inference). On the other hand, DyLoRA+
successfully fine-tunes by maintaining consistent



Question: Cynthia eats one serving of ice cream every night. She buys cartons of ice cream with 15 servings of ice cream per carton at a
cost of $4.00 per carton. After 60 days, how much will she spend on ice cream? Standard Answer: 16

Original:

To find the total cost of ice cream, multiply
the number of servings per carton by the
number of cartons Cynthia buys. 15 serv-
ings per carton * 60 cartons = 900 servings.
900 servings * $4.00 per serving = $3,600.
The answer is: $3,600.

DyLoRA (Baseline):

To find the total cost of ice cream, multiply
the number of servings per carton by the
number of cartons Cynthia buys. 15 serv-
ings per carton * 60 cartons = 900 servings.
900 servings * $4.00 per serving = $3600.
The answer is: $3600.

DyLoRA+ (Ours):

Cynthia eats one serving of ice cream every
night, so in 60 days, she will eat 60 servings
of ice cream.

Each carton of ice cream has 15 servings, so
she will buy 60/15 =4 cartons of ice cream.
Each carton costs $4.00, so she will spend
4 * $4.00 = $16.00 on ice cream.

it 16

The answer is: 16

Question: Meredith is a freelance blogger who writes about health topics and submits to clients each day as her permanent job. A blog
article takes an average of 4 hours to research and write about. Last week, she wrote 5 articles on Monday and 2/5 times more articles on
Tuesday than on Monday. On Wednesday, she wrote twice the number of articles she wrote on Tuesday. Calculate the total number of
hours she spent writing articles in the three days. Standard Answer: 104

Original:

Meredith wrote 5 articles on Monday, 5 +
2(5) = 15 articles on Tuesday, and 2(15) =
30 articles on Wednesday. The total number
of hours she spent writing articles is 4(5) +
4(15) + 4(30) = 20 + 60 + 120 = 200 hours.

LoRA (Gold Standard):

Meredith wrote 5 articles on Monday,
which took 4 hours to research and write,
so she spent 5 * 4 = 20 hours writing on
Monday.

On Tuesday, she wrote 2/5 times more arti-
cles than on Monday, so she wrote 5 + (2/5
*5)=5+2="7 articles.

On Wednesday, she wrote twice the number
of articles she wrote on Tuesday, so she
wrote 7 * 2 = 14 articles.

In total, Meredith spent 20 + 7 + 14 =41
hours writing articles in the three days.

Flexi-LoRA (Ours):

Meredith wrote 5 articles on Monday, and
2/5 times more articles on Tuesday, so she
wrote 5 + (2/5)*5 =5 + 2 = 7 articles on
Tuesday.

On Wednesday, she wrote twice the number
of articles she wrote on Tuesday, so she
wrote 2%7 = 14 articles on Wednesday.

In total, Meredith wrote 5 + 7 + 14 = 26
articles in the three days.

Each article takes an average of 4 hours to
research and write about, so she spent 26%4
= 104 hours writing articles in the three

#it#HE 41
The answer is: 41

days.
#i#HH 104
The answer is: 104

Table 4: Case study comparing reasoning performance across different LoRA variants on mathematical problems
for LLaMA-3.2-1B-Instruct. Examples demonstrate how training-inference LoRA dynamics consistency influences
problem solving: DyLoRA+ and Flexi-LoRA correctly solve problems that confound baseline methods, with errors
highlighted in red and correct steps in green. Flexi-LoRA’s input-adaptive parameter allocation enables more
accurate calculations and multi-step reasoning compared to static LoRA.

random rank selection across both stages. This
difference demonstrates that dynamic consistency
between training and inference is important for
effective parameter-efficient finetuning. (2) Fine-
tuning Quality Indicators: Beyond correctness,
fine-tuned models show qualitative improvements
in reasoning. DyLoRA+ and Flexi-LoRA produce
detailed step-by-step solutions and follow output
formatting ("The answer is:"), while Original and
DyLoRA generate abbreviated responses that ig-
nore instruction requirements. These differences,
detailed reasoning and instruction adherence, serve
as reliable indicators of successful finetuning. (3)
Error Analysis: The cases reveal three error types
in mathematical reasoning: (a) conceptual errors
(Case 1: treating $4/carton as $4/serving, leading
to $3,600 vs $16), (b) arithmetic misunderstanding
(Case 2: "2/5 times more" computed as "2 times
more"), and (c) process errors (correct intermedi-
ate steps but incomplete final calculations). These
errors go through multi-step reasoning, showing ini-

tial mistakes. (4) Reasoning Quality Comparison:
Successful methods maintain accuracy throughout
reasoning chains. Case 2 illustrates this: LoRA cor-
rectly understands proportional relationships but
fails in final answer, while Flexi-LoRA completes
all computational steps correctly. Early-stage er-
rors in baseline approaches go through the entire
solution.

5.6 Ablation Studies

Figure 4 presents a comprehensive analysis analyz-
ing key variables that contribute to Flexi-LoRA’s
effectiveness. We examine four aspects of our
approach: (1) Training-Inference Rank Consis-
tency is essential for performance, as evidenced by
DyLoRA’s decrease when using fixed ranks at infer-
ence despite dynamic training. This confirms our
hypothesis that maintaining consistent rank dynam-
ics is important, especially for sequential reasoning
tasks. (2) Input-Adaptive vs. Random Selection
comparison between Flexi-LoRA and DyLoRA+
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Figure 4: Ablation study comparing performance influence of rank selection strategies across model sizes. Charts
show performance on QA tasks and mathematical reasoning tasks for LLaMA-3.2-1B-Instruct and 3B models. The
methods are labeled as (B) for baseline methods and (O) for our proposed methods. All methods use dynamic ranks
during training but differ in inference approach: DyLoRA uses fixed ranks (4 or 8), DyLoRA+ employs random rank
selection, and Flexi-LoRA utilizes input-adaptive rank allocation. Results demonstrate that Flexi-LoRA maintains
its advantage regardless of model size and task type, confirming the benefits of input-adaptive rank allocation and
the consistency between training and inference rank dynamics.

demonstrates that learned complexity-aware allo-
cation consistently outperforms random selection,
validating the effectiveness of our router-based ap-
proach. (3) Model Size Influences show that while
scaling from 1B to 3B parameters improves overall
performance across all methods, Flexi-LoRA main-
tains its relative advantage, indicating that input-
adaptive allocation remains beneficial regardless
of model size. (4) Task-Dependent Sensitivity
analysis reveals that mathematical reasoning tasks
exhibit higher sensitivity to rank dynamics than QA
tasks, with up to 39.44% performance gap between
consistent and inconsistent methods on math com-
pared to 6.49% on QA, illustrating how tasks with
stricter evaluation criteria and error passing benefit
more from adaptive parameter allocation.

5.7 Efficiency Analysis

Our analysis demonstrates Flexi-LoRA’s superior
parameter efficiency across multiple aspects. Fig-
ure 3 and Tables 2 and 3 quantify this advantage:
Flexi-LoRA (2,8) achieves the highest QA perfor-
mance with only 504K trainable parameters, com-
pared to 1703K for LoRA-8, a 70.40% parameter
reduction while improving performance. Flexi-
LoRA (1,8) further reduces parameter count to
304K (17.85% of LoRA-8) while maintaining com-
petitive performance. This efficiency improvement
extends to mathematical reasoning tasks, where
Flexi-LoRA outperforms LoRA-8 on 1B models
(66.56% vs. 63.17% accuracy) using only 533K
parameters (31.29% of LoRA-8’s 1703K). Regard-
ing computational overhead, Flexi-LoRA’s router

consists of only two layers that process the pooled
input embedding once per sequence, introducing
negligible additional computation compared to the
base model computation. This minimal overhead is
substantially balanced by the parameter efficiency
gains, resulting in an overall more efficient finetun-
ing framework that demonstrates consistent advan-
tages across model sizes and tasks.

6 Conclusions

This paper introduces Flexi-LoRA, an input-
adaptive framework that dynamically adjusts LoORA
ranks based on question complexity. We demon-
strate that maintaining consistent rank dynamics
between training and inference is important for
finetuning models, particularly for sequential rea-
soning tasks. Flexi-LoRA outperforms static LoORA
while using fewer parameters (29.6% for QA and
31.3% for math reasoning), with performance gains
more pronounced on mathematical tasks requiring
reasoning chains. These results confirm that input-
dependent parameter allocation enables efficient
capacity allocation while reducing parameter re-
dundancy, achieving benefits similar to mixture-
of-experts frameworks through a more streamlined
method.

Future work could have several directions: (1)
layer-specific dynamic ranks to optimize parame-
ter utilization at finer level; (2) router frameworks
learning hierarchical aspects of input complexity;
(3) integration with other parameter-efficient tech-
niques such as sparse fine-tuning.



Limitations

Although Flexi-LoRA exhibits encouraging results,
several important considerations warrant attention.
As with other fine-tuning methodologies, users
should exercise caution regarding training data li-
censing and usage rights. Additionally, despite our
documented strong performance across benchmark
evaluations, developing deeper insights for varied
applications would greatly benefit from expanded
community participation and open-source collabo-
rative initiatives.

Ethics Statement

No ethical approval was required for this study. No
ethical concerns are present.

Availability Statement

The codes and models related to this paper
are uploaded to the open-source community at
https://github.com/Anonymous/Flexi-LoRA (Af-
ter the paper is published, this link will be de-
anonymized. For related code, please see the sup-
plementary materials.).
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A Appendix

A.1 Related Work for Input-adaptive
Methods

Input-adaptive methods. Recent work has ex-
plored various approaches to dynamically allocate
computational resources based on input complexity.
Wu et al. (2024) and Snell et al. (2025) investigate
compute-optimal scaling strategies that adapt test-
time computation allocation per prompt, showing
that different inference strategies yield optimal per-
formance depending on problem difficulty. Manvi
et al. (2024) propose using self-evaluations to adap-
tively determine necessary inference computation,
while Damani et al. (2025) explore difficulty es-
timation for optimal compute allocation. Zhang
et al. (2025) introduce OSCA, an algorithm that op-
timizes sample compute allocation across different
inference configurations. These approaches primar-
ily focus on inference-time adaptation rather than
model framework adaptation. Different from these
methods which modify inference strategies, our
work centers on input-adaptive framework mod-
ifications during both training and inference by
dynamically adjusting LoRA ranks based on in-
put complexity. This provides a more streamlined
approach to input-adaptive computation than meth-
ods requiring test-time search or complex verifier
frameworks.

A.2 Implementation Details

Implementation details, including inference param-
eters in Table 5, training hyperparameters in Table
6, and method-specific configurations in Tables 7,
are provided.

QA Math
do_sample False False
early_stopping True True
length_penalty 1.0 1.0
max_new_tokens 20 768
num_beams 1 1
pad_token_id pad_token_id  pad_token_id
temperature 1.0 1.0
top_p 1.0 1.0

Table 5: Inference parameters for QA and mathemati-
cal tasks.

Prompt for MRQA:

<|start_header_id|>user<|end_header_id|>\
n\nExtract the exact text span from the
given context that directly answers the
question, without modifying or combining
multiple parts of the text.\n\nContext:
{3\n\nQuestion: {}<|eot_id|><|
start_header_id|>assistant<|end_header_id
| >\n\nAnswer:
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Prompt for Math datasets:

<|start_header_id|>user<|end_header_id|>\
n\nSolve the question and your response
should end with \"The answer is: [answer
J\".\n\nQuestion: {}<|eot_id|><]|
start_header_id|>assistant<|end_header_id
|>\n\nAnswer:

A.3 Environment

datasets==2.18.0
deepspeed==0.15.3
huggingface_hub==0.24.2
numpy==1.23.5
python==3.11.5
torch==2.3.1+cul118
tqdm==4.66.4
transformers==4.46.0
wandb==0.14.2

This paper was refined with ChatGPT and
Claude.



QA Math

Train steps {1000} for LLaMA-3.2-1B-Instruct {200, 400, 600, 800, 1000} for LLaMA-3.2-1B-Instruct
{200, 800} for LLaMA-3.2-3B-Instruct
Optimizer AdamW AdamW
Max length 512 768
warmup_steps 100 100
learning_rate 2e-5 2e-5
per_device_train_batch_size 16 16
Ir_scheduler_type constant_with_warmup constant_with_warmup
gradient_accumulation_steps 2 2

Table 6: Training hyperparameters for QA and mathematical tasks. {} shows parameter search.

Method Details

LoRA r=4/8; lora_alpha=16; target_modules=["q_proj", "k_proj", "v_proj", "o_proj"]; lora_dropout=0

AdaLoRA r=16/8; target_r=_8/4; lora_alpha=16; target_modules=["q_proj", "k_proj", "v_proj", "o_proj"]; lora_dropout=0;
stage=1/2

DyLoRA rank_choices=[1, 2, 3, 4, 5, 6, 7, 8]; lora_alpha=16; target_modules=["q_proj", "k_proj", "v_proj", "o_proj"];
lora_dropout=0

Flexi-LoRA max_r=8; min_r=1; rank_mapping=0: 2, 1: 8; lora_alpha=16; target_modules=["q_proj", "k_proj", "v_proj",

"o_proj"]; lora_dropout=0

Table 7: Method configurations for various PEFT methods.
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