
Under review as a conference paper at ICLR 2024

GATE: HOW TO KEEP OUT INTRUSIVE NEIGHBORS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Attention Networks (GATs) are designed to provide flexible neighborhood
aggregation that assigns weights to neighbors according to their importance. In
practice, however, GATs are often unable to switch off task-irrelevant neighbor-
hood aggregation, as we show experimentally and analytically. To address this
challenge, we propose GATE, a GAT extension that holds three major advantages:
i) It alleviates over-smoothing by addressing its root cause of unnecessary neigh-
borhood aggregation. ii) Similarly to perceptrons, it benefits from higher depth
as it can still utilize additional layers for (non-)linear feature transformations in
case of (nearly) switched-off neighborhood aggregation. iii) By down-weighting
connections to unrelated neighbors, it often outperforms GATs on real-world het-
erophilic datasets. To further validate our claims, we construct a synthetic test
bed to analyze a model’s ability to utilize the appropriate amount of neighborhood
aggregation, which could be of independent interest.

1 INTRODUCTION

Graph neural networks (GNNs) (Gori et al., 2005) are a standard class of models for machine learn-
ing on graph-structured data that utilize node feature and graph structure information jointly to
achieve strong empirical performance, particularly on node classification tasks. Input graphs to
GNNs stem from various domains of real-world systems such as social (Bian et al., 2020), commer-
cial (Zhang & Chen, 2020), academic (Hamaguchi et al., 2017), economic (Monken et al., 2021),
biochemical(Kearnes et al., 2016), physical (Shlomi et al., 2021), and transport (Wu et al., 2019)
networks that are diverse in their node feature and graph structure properties.

The message-passing mechanism of GNNs (Kipf & Welling, 2017; Xu et al., 2019) involves two
key steps: a transformation of the node features, and the aggregation of these transformed features
from a node’s neighborhood to update the node’s representation during training. While this has
proven to be largely successful in certain cases, it generally introduces some problems for learning
with GNNs, the most notorious of which is over-smoothing (Li et al., 2018). The enforced use of
structural information in addition to node features may be detrimental to learning the node classifi-
cation task, as shown by recent results where state-of-the-art GNNs perform the same as or worse
than multi-layer perceptrons (MLPs) (Gomes et al., 2022; Yan et al., 2022; Ma et al., 2022). This
raises a pertinent question for the GNN research community: How much neighborhood aggregation
is needed?. Naturally, the answer is: It depends; on the input graph, the task at hand, and possibly
any domain knowledge. In fact, it is what we would ideally want a model to learn.

A popular standard GNN architecture that, in principle, tries to resolve this problem is the Graph
Attention Network (GAT) (Veličković et al., 2018; Brody et al., 2022). By design, neighborhood
aggregation in GATs is characterized by learnable coefficients that are intended to assign larger
weights to more important neighboring nodes (including the node itself) in order to learn better
node representations. However, the role of these parameterized coefficients in the learning process
(or what they learn) is not fully understood. In the quest for this understanding, we conduct a simple
experiment. Given informative features and irrelevant information in a node’s neighborhood, GATs
should ideally resort to assigning near-zero importance to neighbor nodes, effectively switching off
neighborhood aggregation. However, we find that, counter-intuitively, GATs are unable to do this
in practice and continue to aggregate the uninformative features in the neighborhood which impairs
the performance of GAT, particularly with an increase in model depth.

1

Under review as a conference paper at ICLR 2024

We address the challenge faced by GAT to effectively determine how well a node is represented by
its own features in comparison to the features of nodes in its neighborhood, i.e., distinguish between
the relative importance of available node features and graph structure information for a given task.

Firstly, we provide an intuitive explanation for the problem based on a conservation law of GAT
gradient flow dynamics derived by Mustafa & Burkholz (2022). Building on this insight, we present
GATE, an extension of the GAT architecture that is able to switch neighborhood aggregation on and
off as necessary. This allows our proposed architecture to gain the following advantages over GAT:

1. It alleviates the notorious over-smoothing problem by addressing the root cause of unnec-
essarily repeated neighborhood aggregation.

2. It allows the model to benefit from more meaningful representations obtained solely by
deeper non-linear transformations, similarly to perceptrons, in layers where neighborhood
aggregation is (nearly) switched off.

3. It often outperforms GATs on real-world heterophilic datasets by down-weighting connec-
tions to unrelated neighbors.

4. It offers interpretable learned self-attention coefficients, at the node level, that are indicative
of the relative importance of feature and structure information in the locality of the node.

In order to validate these claims, we construct a synthetic test bed of two opposite types of learning
problems for node classification where label-relevant information is completely present only in a
node’s i) own features and ii) neighboring nodes’ features. GATE is able to adapt to both cases
as necessary. On real-world datasets, GATE performs competitively on homophilic datasets and is
substantially better than GAT on heterophilic datasets.

Our contributions are as follows:

• We identify and experimentally demonstrate a structural limitation of GAT, i.e., its inability
to switch off neighborhood aggregation.

• We propose GATE, an extension of GAT, that overcomes this limitation and, in doing so,
unlocks several benefits of the architecture.

• We update an existing conservation law relating the structure of gradients in GAT to GATE.
• We construct a synthetic test bed to validate our claims, which could be of independent

interest given the active research along similar lines.

2 RELATED WORK

To relieve GNNs from the drawbacks of unnecessarily repeated neighborhood aggregation in deeper
models, initial techniques were inspired by classical deep learning of MLPs such as normalization
(Cai et al., 2021; Zhao & Akoglu, 2020; Zhou et al., 2020; 2021) and regularization (Papp et al.,
2021; Rong et al., 2020; Yang et al., 202; Zou et al., 2019).

More recently, the need for deeper models and architectural changes to limit neighborhood aggrega-
tion as necessary has been recognized leading to approaches that use linear combinations of initial
features and current layer representation (Gasteiger et al., 2019), add skip connections and identity
mapping (Chen et al., 2020; Cong et al., 2021), combine representations of all previous layers at
the last layers (Xu et al., 2018), aggregate information from a node-wise defined range of k-hop
neighbors(Liu et al., 2020), and limit the number of aggregation iterations based on node influence
scores (Zhang et al., 2021). However, these architectures are not flexible enough to benefit from uti-
lizing additional network layers to simulate perceptron behavior, which, as we find, aids learning on
heterophilic tasks. Ma et al. (2023) provide an insightful discussion on ‘good’ and ‘bad’ heterophily.

An orthogonal line of research uses graph structural learning (Yang et al., 2019; Stretcu et al., 2019;
Franceschi et al., 2020) to amend the input graph structure such that neighborhood aggregation
is beneficial for the given task. Such approaches are difficult to scale, more susceptible to over-
smoothing, and potentially destroy any inherent information in the original graph structure. On the
contrary, a standard GNN architecture empowered to selectively perform neighborhood aggregation
avoids these pitfalls. Methods such as graph rewiring (Deac et al., 2022) to overcome other prob-
lems with GNNs such as over-squashing (Alon & Yahav, 2021) are complementary and may also

2

Under review as a conference paper at ICLR 2024

be combined with GATE. Additional supervision has also been proposed to improve the attention
mechanism in GATs (Wang et al., 2019; Kim & Oh, 2021).

While we focus our insights on GAT, architectures based on GAT such as ωGAT (Eliasof et al.,
2023) also suffer from the same problem (see Fig. 10 in Appendix C). This further confirms that the
universal problem with GAT has been correctly identified. In general, recent works direct effort to
understand the current limitations of graph attention (Lee et al., 2023; Fountoulakis et al., 2023).

3 ARCHITECTURE

Notation Consider a graph G = (V,E) with node set V and edge set E ⊆ V×V, where for a node
v ∈ V the neighborhood is N(v) = {u|(u, v) ∈ E} and input features are h0

v . A GNN layer updates
each node’s representation by aggregating over its neighbors’ representation and combining it with
its own features. The aggregation and combination steps can be performed together by introducing
self-loops in G such that, ∀v ∈ V, (v, v) ∈ E. We assume the presence of self-loops in G unless
specified otherwise. In GATs, this aggregation is weighted by parameterized attention coefficients
αuv , which indicate the importance of node u for v. A network is constructed by stacking L layers,
defined as follows, using a non-linear activation function ϕ that is homogeneous (i.e ϕ(x) = xϕ′(x))
and consequently, ϕ(ax) = aϕ(x) for positive scalars a) such as ReLU ϕ(x) = max{x, 0} or
LeakyReLU ϕ(x) = max{x, 0}+−αmax{−x, 0}.

GAT Given input representations hl−1
v for v ∈ V , a GAT 1 layer l ∈ [L] transforms those to:

hl
v = ϕ

 ∑
u∈N(v)

αl
uv · Wl

shl−1
u

 , where (1)

αl
uv =

exp
(
eluv

)∑
u′∈N(v) exp

(
elu′v

) , and (2)

eluv =
(
al
)⊤ · ϕ

(
Wl

shl−1
u + Wl

th
l−1
v

)
(3)

The feature transformation weights Ws and Wt for source and target nodes, respectively, may also
be shared such that Ws = Wt. We denote the weight-sharing variant of GAT by GATS .

GATE In addition, we propose GATE, a GAT variant that flexibly weights the importance of node
features and neighborhood features. A GATE layer is also defined by Eq. (1) and (2) but modifies
euv in Eq. (3) to Eq. (4). Given that quv = 1 if u = v and quv = 0 if u ̸= v,

eluv =
(
(1− quv) als + (quv) al

t

)⊤ · ϕ
(
Ulhl−1

u + Vlhl−1
v

)
(4)

We denote euv in Eq. (3) and (4) as elvv if u = v. For GATE, Wl
s in Eq. (1) is denoted as Wl.

A weight-sharing variant of GATE, GATES , is characterized by all feature transformation parame-
ters being shared in a layer (i.e. Wl = Ul = Vl).

We next present theoretical insights into the reasoning behind the inability of GATs to switch off
neighborhood aggregation, which is rooted in norm constraints imposed by the inherent conservation
law for GATs. The gradients of GATE fulfill an updated conservation law (Thoerem 4.3) that enables
switching off neighborhood aggregation in a parameter regime with well-trainable attention.

4 THEORETICAL INSIGHTS INTO NEIGHBORHOOD AGGREGATION

For simplicity, we limit our following discussion to GATs with weight sharing as they achieve a sim-
ilar performance as GATs without weight sharing. Yet, similar arguments could also be derived for
the latter case. The following conservation law was recently derived for GATs to explain trainabil-
ity issues of standard initialization schemes. Even with improved initializations, we argue that this

1Throughout, we refer to GATv2 (Brody et al., 2022) as GAT for brevity.

3

Under review as a conference paper at ICLR 2024

law limits the effective expressiveness of GATs and hinders them from switching off neighborhood
aggregation when necessary.
Theorem 4.1 (Thm. 2.2 by Mustafa & Burkholz (2022)). The feature weight and attention param-
eters Wl and al of a layer l in a GAT network and their gradients fulfill:

⟨Wl[i, :],∇Wl[i,:]L⟩ = ⟨Wl+1[:, i],∇Wl+1[:,i]L⟩+ ⟨al[i],∇al[i]L⟩. (5)

Intuitively, this equality limits the budget for the relative change of parameters and imposes indi-
rectly a norm constraint on the parameters. Under gradient flow that assumes infinitesimally small
learning rates, this law implies that the relationship

∥∥Wl[i, :]
∥∥2 −

∥∥al[i]∥∥2 −
∥∥Wl+1[: i]

∥∥2 = c
stays constant during training, where c is defined by the initial norms. Other gradient-based opti-
mizers fulfill this norm balance also approximately. Note that the norms

∥∥Wl[i, :]
∥∥ generally do not

assume arbitrary values but are determined by the required scale of the output. Deeper models are
especially less flexible in varying these norms as deviations could lead to exploding or diminishing
output and/or gradients. In consequence, the norms of the attention parameters are bounded also.
Furthermore, a parameter becomes harder to change during training when its magnitude increases.
This can be seen by transforming the law with respect to the relative change of a parameter defined
as ∆θ = ∇θL/θ for θ ̸= 0 or δθ = 0 for θ = 0 as follows.

nl∑
j=1

(Wl−1
ij)2∆Wl−1

ij =

nl∑
k=1

(Wl
ki)

2∆Wl
ki + (al−1

i)2∆al−1
i . (6)

The higher the magnitude of an attention parameter (ali)
2, the smaller will be the relative change

∆ali and vice versa, as explained by the next insight.
Insight 4.2 (Effective expressiveness of GATs). GATs are challenged to switch off neighborhood
aggregation during training, as this would require the model to enter a less trainable regime with
large attention parameters ∥a∥2 >> 1.

An intuitive derivation of this insight is presented in the appendix. The main argument rests on
the observation that the relative contribution of a link to its two neighborhoods αij/αii << 1 and
αji/αjj << 1 can only be small simultaneously for large norms ∥a∥2 >> 1 with multiple features
that contribute to αij . Yet, the norms ∥a∥2 are constrained by the parameter initialization and cannot
increase arbitrarily due to the derived conservation law.

To address this challenge, we modify the GAT architecture by GATE that learns separate attention
parameters for the node and the neighborhood contribution. As its conservation law indicates, it can
switch off neighborhood aggregation in the well-trainable parameter regime.

of feature and attention weights incoming to and outgoing from a neuron are preserved such that
Theorem 4.3 (Structure of GATE gradients). The gradients and parameters of GATE for layer
l ∈ [L− 1] are conserved according to the following laws:

⟨Wl[i, :],∇Wl[i,:]L⟩−⟨al+1
s [i],∇al+1

s [i]L⟩−⟨al+1
t [i],∇al+1

t [i]L⟩ = ⟨Wl+1[:, i],∇Wl+1[:,i]L⟩. (7)

and, if additional independent matrices Ul and Vl are trainable, it also holds

⟨als[i],∇al
s[i]

L⟩+ ⟨alt[i],∇al
t[i]

L⟩ = ⟨Ul[i, :],∇Ul[i,:]L⟩+ ⟨Vl[i, :],∇Vl[i,:]L⟩. (8)

The proof is provided in the appendix. We utilize this theorem for two purposes. Firstly, it induces
an initialization that enables at least the initial trainability of the network. Similarly to GAT (Mustafa
& Burkholz, 2022), we initialize all attention parameters with zeros and the weight matrices with
random orthogonal looks-linear structure in GATE. This also ensures that we have no initial induc-
tive bias or preference for specific neighbor or node features. As an ablation, we also verify that
the initialization of the attention parameters in GAT with zero can not, in fact, enable switching off
neighborhood aggregation in GAT (see Fig. 5 in Appendix C).

Secondly, the conservation law leads to the insight that a GATE network is more easily capable of
switching off neighborhood aggregation or node feature contributions in comparison with GAT.

4

Under review as a conference paper at ICLR 2024

Insight 4.4 (GATE is able to switch off neighborhood aggregation.). GATE can flexibly switch off
neighborhood aggregation or node features in the well-trainable regime of the attention parameters.

This insight follows immediately from the related conservation law for GATE that shows that alt
and als can interchange the available budget for relative change among each other. Furthermore, the
contribution of neighbors and the nodes are controlled separately so that the respective switch-off
can be achieved with relatively small attention parameter norms that correspond to the well-trainable
regime. To verify these insights in experiments, we next design synthetic data generators that can
test the ability of GNNs to take graph data into account in a task-appropriate manner.

5 EXPERIMENTS

We validate the ability of GATE to perform the appropriate amount of neighborhood aggregation,
as relevant for the given task and input graph, on both synthetic and real-world graphs. In order to
gauge the amount of neighborhood aggregation, we study the distribution of αvv values (over the
nodes) at various epochs during training and layers in the network. This serves as a fair proxy since
∀ v ∈ V, αvv = 1 −

∑
u∈N(v),u̸=v αuv . Thus, αvv = 1 implies no neighborhood aggregation (i.e.

only hv is used) whereas αvv = 0 implies only neighborhood aggregation (i.e. hv not is used). We
defer a discussion of the experimental setup to Appendix B.

5.1 SYNTHETIC TEST BED

We construct the synthetic test bed as a node classification task for two types of problems: self-
sufficient learning and neighbor-dependent learning. In the self-sufficient learning problem, com-
plete label-relevant information is present in a node’s own features. On the contrary, in the neighbor-
dependent learning problem, label-relevant information is present in the node features of the k-hop
neighbors. We discuss both cases in detail, beginning with the simpler self-sufficient case.

Learning self-sufficient node labels In order to model this task exactly, we generate an
Erdős–Rényi (ER) graph structure G with N = 1000 nodes and edge probability p = 0.01. Node
labels yv are assigned uniformly at random from C = [2, 8] classes. Input node features h0

v are
generated as one-hot encoded node labels in both cases, i.e., h0

v = 1yv . Nodes are divided randomly
into train/validation/test split with a 2 : 1 : 1 ratio.

We also use a real-world graph structure of the Cora dataset. Two cases using this graph structure
are tested: i) using the original node labels consisting of 7 classes, and ii) randomized labels also of
7 classes. Input node features are generated as one-hot encoding of node labels in both cases. The
standard train/validation/test splits of Cora are used.

As evident in Table 1, GAT is unable to perfectly learn this task whereas GATE easily achieves
100% train and test accuracy, and often in fewer training epochs. Interestingly, a single layer GAT is
able to almost, though not completely, switch off neighborhood aggregation (see Fig. 1) and achieve
(near) perfect accuracy in the simpler cases. This is in line with our theoretical analysis (see Insight
4.2), as the norms of a single-layer model are not constrained and thus the attention parameters have
more freedom to change. However, note that the accuracy of GAT worsens drastically along two
dimensions simultaneously: i) an increase in the depth of the model (due to increased unnecessary
aggregation), and ii) an increase in the complexity of the task (due to an increase in the number of
classes in an ER graph and consequently in node neighborhoods).

In line with the homophilic nature of Cora, GAT achieves reasonably good accuracy when the orig-
inal labels of the Cora graph structure are used as neighborhood aggregation is relatively less detri-
mental. Nevertheless, in the same case, GATE generalizes better than GAT with an increase in
model depth. This indicates that over-smoothing, a major cause of performance degradation with
model depth in GNNs, is also alleviated due to reduced neighborhood aggregations (see Fig. 1).

On the contrary, random labels pose a real challenge to GAT. Since the neighborhood features are
fully uninformative about a node’s label in the randomized case, aggregation over such a neigh-
borhood distorts the fully informative features of the node itself. This impedes the GAT network
from learning the task, as it is unable to effectively switch off aggregation (see Fig. 1), whereas
GATE is able to adapt to the required level of neighborhood aggregation (i.e. none, in this case). In

5

Under review as a conference paper at ICLR 2024

the interest of space, we exclude here results for GATES as similar performance and neighborhood
aggregation patterns are observed as in GATE (see Fig. (8 in Appendix C).

Having established that GATE excels GAT in avoiding task-irrelevant neighborhood aggregation, it
is also important to verify whether GATE can perform task-relevant neighborhood aggregation when
required, and as much as required. We answer this question next by studying the behavior of GATE,
in comparison to GAT, on a synthetically constructed neighbor-dependent learning problem.

Table 1: Self-sufficient learning: S,C and L denote graph structure, number of label classes, and
number of network layers, respectively. Original (Orig.) and Randomized (Rand.) labels are used
for the Cora structure. Most models achieve 100% train accuracy, and entries marked with * refer
to cases otherwise. GATES also achieves 100% train and test accuracy as GATE.

S C L
Test Acc.(%) @ Epoch of Min. Loss Max Test Acc.(%) @ Epoch

GATS GAT GATE GATS GAT GATE

C
or

a O
ri

g.
(7

) 1 99.1@215 97.7@166 99.0@127 100@300 100@548 100@196
2 93.4@218 94.5@158 99.6@35 94.4@187 94.6@156 100@40
5 85.9@92 85.5@72 98.4@36 88@10 88.5@16 99.7@51

R
an

d.
(7

) 1 99.4@263 99.8@268 100@104 100@341 100@282 100@103
2 61.7@2088* 52.8@341* 99.9@36 67.0@2221 57.0@125 100@38
5 35.1@609 32.1@1299 99.9@23 37.4@327 36.7@12 100@42

E
R

(p
=

0.
01

)

R
an

d.
(2

) 1 100@341 100@182 100@1313 100@340 100@181 100@1304
2 99.2@100 99.2@119 99.6@79 100@114 100@301 100@80
5 64.0@7778* 99.6@239 100@45 75.6@163 99.6@224 100@45

R
an

d.
(8

) 1 88.8@9578* 98.4@3290 99.2@1755 90.4@9583 99.2@6727 100@2570
2 90.4@2459* 94.8@2237 99.6@44 94.8@1973* 97.6@6450 100@45
5 23.6@8152 26.0@8121 100@28 36.0@255* 38.4@1011 100@27

Learning neighbor-dependent node labels In order to model this task, we generate an ER graph
structure with N = 1000 nodes and edge probability p = 0.01. Input node features h0

v ∈ Rd are
sampled from a multivariate normal distribution N (0d, Id). For simplicity, d = 2.

This input graph G is fed to a random GAT network Mk with k layers of width d. Note that this input
graph G has no self-loops on nodes (i.e. v /∈ N(v)).The parameters of Mk are initialized with the
standard Xavier (Glorot & Bengio, 2010) initialization. Thus, for each node v, the node embedding
output by Mk, hMk

v is effectively a function f of the k-hop neighboring nodes of node v represented
by a random GAT network. Let Nk(v) denote the set of k-hop neighbors of v and v /∈ Nk(v).

Finally, we run K-means clustering on the neighborhood aggregated representation of nodes hMk
v

to divide nodes into C clusters. For simplicity, we set C = 2. This clustering serves as the node
labels (i.e. yv = argc∈[C](v ∈ c) for our node classification task. Thus, the label yv of a node v

to be learned is highly dependent on the input features of the neighboring nodes h0
u ∈ Nk(v) rather

than the node’s own input features h0
v .

The generated input data and the real decision boundary for varying k are shown in Fig. 2. Corre-
sponding results in Table 2 and Fig. 3 exhibit that GATE can better detect the amount of necessary
neighborhood aggregation than GAT. However, this task is more challenging than the previous one,
and GATE too can not achieve perfect 100% test accuracy. This could be attributed to data points
close to the real decision boundary which is not well-defined and crisp (see Fig. 2).

5.2 REAL-WORLD DATA

We also analyze the behavior of GATE models on twelve real-world datasets (described in Table 4
in Appendix B) with varying homophily levels β as defined in (Pei et al., 2020). Higher values of β
indicate higher homophily, i.e. similar nodes (with the same label) tend to be connected together.

6

Under review as a conference paper at ICLR 2024

(a) GAT model using Cora structure with original labels

(b) GATE model using Cora structure with original labels

(c) GAT model using Cora structure with random labels

(d) GATE model using Cora structure with random labels

Figure 1: Distribution of αvv against training epoch for self-sufficient learning problem, where input
node features are a one-hot encoding of labels for 1, 2, and 5 layer models (left to right).

(a) k = 1 (b) k = 2 (c) k = 3

Figure 2: (a)-(c): Distribution of node labels of a synthetic dataset, with neighbor-dependent node la-
bels, based on nodes’ own random features (left) and neighbors’ features aggregated k times (right).

Table 3 reports the results for five datasets. Due to space limitation, we defer results on OGB (Hu
et al., 2021) and large heterophilic (Platonov et al., 2023) datasets to Table 6 in appendix C. In par-
ticular, for heterophilic and OGB datasets, GATE outperforms GAT substantially by down-weighing
connections to unrelated neighbors. We verify this by observing the neighborhood aggregation pat-
terns of GATE in Fig. 4 that shows neighborhood aggregation is switched off in some layers by
GATE. As expected, no layers switch off neighborhood aggregation in the GAT network (see Fig.
(7) in Appendix C).

Interpretable neighborhood aggregation The distributions of αvv in Fig. 4 across layers in a
GATE model could be interpreted in terms of the inherent importance of input features of nodes
relative to their neighborhood. For instance, in the case of Texas, GATE carries out little to no
neighborhood aggregation in the first layer over input node features. Instead, aggregation is mainly
done over node features transformed in earlier layers that effectuate non-linear feature learning as in
perceptrons. However, in the case of Actor, GATE prefers most of the neighborhood aggregation to
occur over the input node features, indicating that they are more informative for the task at hand.

Another interesting observation is that, when neighborhood aggregation takes place, the level of ag-
gregation across all nodes, as indicated by the shape of αvv distribution, varies over network layers.
This is expected as different nodes need different levels of aggregation depending on where they are

7

Under review as a conference paper at ICLR 2024

Figure 3: Distribution of αvv against training epoch for the neighbor-dependent learning problem
with k = 1. Rows: GAT (top) and GATE(bottom). Columns (left to right): 1, 2, and 3 layer models.
While GAT is unable to switch off neighborhood aggregation, GATE allows most aggregation in
mainly 1 layer of the 2 and 3 layer models. Similarly, we observe for k = 3, only 3 layers of the 4
and 5 layer models perform neighborhood aggregation (see Fig. 6 in Appendix C).

Table 2: Neighbor-dependent learning: k and L denote the number of aggregation steps of the ran-
dom GAT used for label generation and the number of layers of the evaluated network, respectively.
Entries marked with * identify models where 100% train accuracy is not achieved. Underlined en-
tries identify the model with the highest train accuracy at the epoch of max. test accuracy. This
provides an insight into how similar the function represented by the trained model is to the function
used to generate node labels. Higher training and test accuracy simultaneously indicate better learn-
ing. In this regard, the difference in train accuracy at max. test accuracy between GATE and GATS

or GAT is only 0.4, 1.0 and 0.6 for the settings (k=1,L=3), (k=2,L=4), and (k=3,L=3), respectively.

k L
Test Acc. @ Epoch of Max. Train Acc. Max Test Acc. @ Epoch

GATS GAT GATE GATS GAT GATE

1
1 92.0@2082* 91.2@6830* 93.2@3712* 93.2@1421 92.0@9564 93.6@3511
2 89.6@8524* 88.0@8935 91.2@942 91.6@5188 92.8@4198 95.6@111
3 86.4@9180* 88.8@997 92.8@618 91.2@6994 92.8@437 97.2@82

2
2 88.8@6736* 89.6@3907 88.8@467 93.2@151 93.2@95 92.0@105
3 82.0@7612 89.2@1950 91.6@370 91.6@1108 93.2@856 95.2@189
4 84.8@4898 82.4@739 87.2@639 88.0@1744 88.4@423 90.4@447

3
3 80.8@8670 80.4@737 85.2@391 86.4@1578 88.8@285 92.0@47
4 78.0@3012 80.4@767 89.6@480 86.8@1762 85.6@469 91.6@139
5 80.0@6611 74.4@1701 86.0@447 85.6@921 83.6@1098 91.2@243

situated in the graph topology. For example, peripheral nodes would require more aggregation than
central nodes to obtain a similar amount of information.

Therefore, as already observed with purposefully constructed synthetic data, GATE offers a more
interpretable model than GAT in a real-world setting too. The distribution of the learned αuv coeffi-
cients could reveal more meaningful information about the relative importance of node feature and
graph structure information in the context of a given learning task, at the node level. Enabling this at
the feature level could potentially further enhance the generalization and interpretability of GATE.

Effect of depth The ability of GATE to benefit from depth in terms of generalization is also
demonstrated in the case of the Citeseer dataset. However, in general, GATE retains the same per-
formance in the deeper models or suffers a smaller decrease in performance with an increase in

8

Under review as a conference paper at ICLR 2024

Figure 4: Distribution of αvv , against training epoch of 2-layer (left) and 5-layer (right) GATE
networks for heterophilic datasets Texas (top) and Actor (bottom), across layers could be interpreted
to indicate the inherent importance of raw node features relative to their neighborhoods.

depth, as compared to GAT. While the over-smoothing problem due to aggregation is peculiar to
GNNs (and has been alleviated by addressing its root cause of unnecessary neighborhood aggrega-
tion to some extent (see Fig. 4), MLPs may also suffer from performance degradation with higher
model depth. Standard techniques such as introducing skip connections in the network can also be
used in combination with GATE to address this broader problem.

In this work, we focus our exposition on the neighborhood aggregation perspective of GATs alone.
Therefore, we do not compare extensively with SOTA methods designed specifically for heterophilic
datasets. However, in the general context of the problem complexity, we note that a 2-layer network
of the baseline method for the heterophilic datasets, Geom-GCN (Pei et al., 2020), attains test accu-
racy (%) of 64.1, 67.6, and 31.6 for Wisconsin, Texas, and Actor datasets, respectively, which is in
line with that achieved by GATE.

Table 3: Test accuracy (%) of GAT and GATE models for network depth L on real-world datasets
with varying homophily levels β. Entries marked with * indicate models that achieve 100% training
accuracy and stable test accuracy. Otherwise, test accuracy at max. validation accuracy is reported.

Data β
L = 2 L = 5 L = 10 L = 20

GAT GATE GAT GATE GAT GATE GAT GATE

Texas .11 56.7* 67.6* 51.4 67.6* 56.7* 62.3* 59.4* 64.9
Wisc. .21 62.7* 70.5* 51.0 60.7* 45.1 58.8 47.1 60.7
Actor .24 27.1 31.6 25.4 29.2 25.3 27.9 24.5 29.4
Cite. .71 68.0 68.3 67.2 67.8 66.9 67.6 68.2 69.2
Cora .83 80.0 80.8 79.8 80.4 77.6 79.2 77.7 79.0

6 CONCLUSION

We experimentally illustrate a structural limitation of GAT that disables the architecture, in practice,
to switch off task-irrelevant neighborhood aggregation. This obstructs GAT from achieving its in-
tended potential. Based on insights from an existing conservation law of gradient flow dynamics in
GAT, we can explain the source of its problem. To verify that we have identified the correct issue,
we resolve it with a modification of GAT, which we call GATE, and derive the corresponding modi-
fied conservation law. GATE holds multiple advantages over GAT, as it can leverage the benefits of
depth as in MLPs, offer interpretable, learned self-attention coefficients, and adapt the model to the
necessary degree of neighborhood aggregation for a given task. Based on these properties, we argue
that GAT is a suitable candidate to answer highly debated questions related to the importance of a
given graph structure for standard tasks.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
In International Conference on Learning Representations, 2021.

T. Bian, X. Xiao, T. Xu, P. Zhao, W. Huang, Y. Rong, and J. Huang. Rumor detection on social media
with bi-directional graph convolutional networks. In AAAI Conference on Artificial Intelligence,
2020.

Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. Beyond low-frequency information in graph
convolutional networks. In AAAI Conference on Artificial Intelligence, 2021.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? In Interna-
tional Conference on Learning Representations, 2022.

Rebekka Burkholz and Alina Dubatovka. Initialization of ReLUs for dynamical isometry. In Ad-
vances in Neural Information Processing Systems, volume 32, 2019.

Tianle Cai, Shengjie Luo, Keyulu Xu, Di He, Tie-Yan Liu, and Liwei Wang. Graphnorm: A prin-
cipled approach to accelerating graph neural network training. In International Conference on
Machine Learning, 2021.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In International Conference on Machine Learning, 2020.

Weilin Cong, Morteza Ramezani, and Mehrdad Mahdavi. On provable benefits of depth in training
graph convolutional networks. In Advances in Neural Information Processing Systems, 2021.

Andreea Deac, Marc Lackenby, and Petar Veličković. Expander graph propagation. In Learning on
Graphs Conference, 2022.

Moshe Eliasof, Lars Ruthotto, and Eran Treister. Improving graph neural networks with learnable
propagation operators. In International Conference on Machine Learning, 2023.

Kimon Fountoulakis, Amit Levi, Shenghao Yang, Aseem Baranwal, and Aukosh Jagannath. Graph
attention retrospective. In Journal of Machine Learning Research, 2023.

Luca Franceschi, Mathias Niepert, Massimiliano Pontil, and Xiao He. Learning discrete structures
for graph neural networks. In International Conference on Machine Learning, 2020.

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In International Conference on Learning
Representations, 2019.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In International Conference on Artificial Intelligence and Statistics, volume 9, pp.
249–256, May 2010.

Diana Gomes, Frederik Ruelens, Kyriakos Efthymiadis, Ann Nowe, and Peter Vrancx. When are
graph neural networks better than structure agnostic methods? In Neural Information Processing
Systems Workshop ICBINB, 2022.

M. Gori, G. Monfardini, and F. Scarselli. A new model for learnig in graph domains. In IEEE
International Joint Conference on Neural Networks, 2005.

Takuo Hamaguchi, Hidekazu Oiwa, Masashi Shimbo, and Yuji Matsumoto. Knowledge transfer
for out-of-knowledge-base entities : A graph neural network approach. In International Joint
Conference on Artificial Intelligence, 2017.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Advances in Neural Information Processing Systems, 2018.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs, 2021.

10

Under review as a conference paper at ICLR 2024

S. Kearnes, K. McCloskey, M. Berndl, V. Pande, and P. Riley. Molecular graph convolutions: Mov-
ing beyond fingerprints. In Journal of Computer-Aided Molecular Design, 2016.

Dongkwan Kim and Alice Oh. How to find your friendly neighborhood: Graph attention design
with self-supervision. In International Conference on Learning Representations, 2021.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations, 2017.

Soo Yong Lee, Fanchen Bu, Jaemin Yoo, and Kijung Shin. Towards deep attention in graph neural
networks: Problems and remedies. In International Conference on Machine Learning, 2023.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for
semi-supervised learning. In AAAI Conference on Artificial Intelligence, 2018.

Meng Liu, Hongyang Gao, and Shuiwang Ji. Towards deeper graph neural networks. In SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2020.

Yao Ma, Xiaorui Liu, Neil Shah, and Jiliang Tang. Is homophily a necessity for graph neural
networks? In International Conference on Learning Representations, 2022.

Yao Ma, Xiaorui Liu, Neil Shah, and Jiliang Tang. Is homophily a necessity for graph neural
networks? In International Conference on Learning Representations, 2023.

Anderson Monken, Flora Haberkorn, Munisamy Gopinatha, Laura Freeman, and Feras A. Batarseh.
Graph neural networks for modeling causality in international trade. In AAAI Conference on
Artificial Intelligence, 2021.

Nimrah Mustafa and Rebekka Burkholz. Are GATS out of balance? In Advances in Neural Infor-
mation Processing Systems, 2022.

Pál András Papp, Karolis Martinkus, Lukas Faber, and Roger Wattenhofer. Dropgnn: Random
dropouts increase the expressiveness of graph neural networks. In Advances in Neural Information
Processing Systems, 2021.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. In International Conference on Learning Representations, 2020.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova.
A critical look at the evaluation of gnns under heterophily: are we really making progress? In
International Conference on Learning Representations, 2023.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. In International Conference on Learning Repre-
sentations, 2020.

Jonathan Shlomi, Peter Battaglia, and Jean-Roch Vlimant. Graph neural networks in particle
physics. 2021.

Otilia Stretcu, Krishnamurthy Viswanathan, Dana Movshovitz-Attias, Emmanouil Platanios, Sujith
Ravi, and Andrew Tomkins. Graph agreement models for semi-supervised learning. In Advances
in Neural Information Processing Systems, 2019.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Guangtao Wang, Rex Ying, Jing Huang, and Jure Leskovec. Improving graph attention networks
with large margin-based constraints. In Graph Representation Learning Workshop, Neural Infor-
mation Processing Systems, 2019.

Z. Wu, S. Pan, G. Long, J. Jiang, and C. Zhang. Graph wavenet for deep spatial-temporal graph
modeling. In International Joint Conference on Artificial Intelligence, 2019.

11

Under review as a conference paper at ICLR 2024

K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? In Interna-
tional Conference on Learning Representations, 2019.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In International
Conference on Machine Learning, 2018.

Yujun Yan, Milad Hashemi, Kevin Swersky, Yaoqing Yang, and Danai Koutra. Two sides of the
same coin: Heterophily and oversmoothing in graph convolutional neural networks. In IEEE
International Conference on Data Mining, 2022.

Han Yang, Kaili Ma, and James Cheng. Rethinking graph regularization for graph neural networks.
In Advances in Neural Information Processing Systems, 202.

Liang Yang, Zesheng Kang, Xiaochun Cao, Di Jin, Bo Yang, and Yuanfang Guo. Topology op-
timization based graph convolutional network. In International Joint Conference on Artificial
Intelligence, 2019.

M. Zhang and Y. Chen. Inductive matrix completion based on graph neural networks. In Interna-
tional Conference on Learning Representations, 2020.

Wentao Zhang, Mingyu Yang, Zeang Sheng, Yang Li, Wen Ouyang, Yangyu Tao, Zhi Yang, and
Bin Cui. Node dependent local smoothing for scalable graph learning. In Advances in Neural
Information Processing Systems, 2021.

Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. In International
Conference on Learning Representations, 2020.

Kaixiong Zhou, Xiao Huang, Yuening Li, Daochen Zha, Rui Chen, and Xia Hu. Towards deeper
graph neural networks with differentiable group normalization. In Advances in Neural Informa-
tion Processing Systems, 2020.

Kuangqi Zhou, Yanfei Dong, Kaixin Wang, Wee Sun Lee, Bryan Hooi, Huan Xu, and Jiashi Feng.
Understanding and resolving performance degradation in graph convolutional networks. In Con-
ference on Information and Knowledge Management, 2021.

Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu. Layer-dependent
importance sampling for training deep and large graph convolutional networks. In Advances in
Neural Information Processing Systems, 2019.

12

Under review as a conference paper at ICLR 2024

A THEORETICAL DERIVATIONS

A.1 DERIVATION OF INSIGHT 4.2

Statement (Restated Insight 4.2). GATs are challenged to switch off neighborhood aggregation dur-
ing training, as this would require the model to enter a less trainable regime with large attention
parameters ∥a∥2 >> 1.

We have to distinguish GATs with and without weight sharing in our analysis.

GATs with weight sharing:

To investigate the ability of a GAT to switch off neighborhood aggregation, let us focus on a link
(i, j) that should neither contribute to the feature transformation of i nor j.

This implies that we need to find attention parameters a (and potentially feature transformations W)
so that αij/αii << 1 with αij/αii = exp (eij − eii). This implies that we require eij − eii << 0
and thus aTϕ (W (hi + hj))− 2aTϕ (W (hi)) << 0.

Since we also require αij/αjj << 1, it follows from adding both inequalities that
aT [ϕ (W (hi + hj))− (ϕ (Whi) + ϕ (Whj))] << 0.

This inequality can only be fulfilled if there exists at least one feature f for which

∆fij ; = a[f] [ϕ (W[f, :] (hi + hj))− (ϕ (W[f, :]hi) + ϕ (W[f, :]hi))]

fulfills ∆fij << 0. Yet, note that if both ϕ (W[f, :]hi) and ϕ (W[f, :]hj) are positive or both are
negative, we just get ∆fij = 0 because of the definition of a LeakyReLU. Thus, there must exist at
least one feature f so that without loss of generality ϕ (W[f, :]hi) < 0 and ϕ (W[f, :]hj) > 0.

It follows that if a[f] > 0 that

0 > a[f]ϕ (W[f, :]hi) >> a[f] (ϕ (W[f, :] (hi + hj))− ϕ (W[f, :]hj))

> a[f] (ϕ (W[f, :] (hi + hj))− 2ϕ (W[f, :]hj))

also receives a negative contribution that makes αij/αjj smaller. Yet, what happens to αij/αii? By
distinguishing two cases, namely W[f, :] (hi + hj) > 0 or W[f, :] (hi + hj) < 0 and computing

a[f] [ϕ (W (hi + hj))− 2ϕ (W[f, :]hj)] > 0

we find the feature contribution to be positive.

If a[f] < 0, then

0 > a[f]ϕ (W[f, :]hj) >> a[f] (ϕ (W[f, :] (hi + hj))− ϕ (W[f, :]hi))

> a[f] (ϕ (W[f, :] (hi + hj))− 2ϕ (W[f, :]hi))

and αij/αjj is reduced. Similarly, we can derive that at the same time αij/αii is increased, however.

This implies that any feature that contributes to reducing ∆fij automatically increases one feature
while it increases another. We therefore need multiple features f to contribute to reducing either
αij/αii or αij/αjj to compensate for other increases.

This implies, in order to switch off neighborhood aggregation, we would need a high dimensional
space of features that cater to switching off specific links without strengthening others. Furthermore,
they would need large absolute values of a[f] and norms of W[f, :] or exploding feature vectors h
to achieve this.

Yet, all these norms are constrained by the derived conservation law and therefore prevent learning
a representation that switches off full neighborhoods.

GATs without weight sharing:

The flow of argumentation without weight sharing is very similar to the one above with weight
sharing. Yet, we have to distinguish more cases.

Similarly to before, we require αij/αjj << 1 and αji/αii << 1. It follows from adding both
related inequalities that

13

Under review as a conference paper at ICLR 2024

aT [ϕ (Wshi + Wthj) + ϕ (Wshj + Wthi)− ϕ ((Ws + Wt)hi)− ϕ ((Ws + Wt)hj)] << 0.

This implies that for at least one feature f , we require

a[f][ϕ
(
Ws[f, :]hi + Wt[f, :]hj

)
+ ϕ

(
Ws[f, :]hj + Wt[f, :]hi

)
− ϕ ((Ws[f, :] + Wt[f, :])hi)− ϕ ((Ws[f, :] + Wt[f, :])hj)] << 0.

(9)

Again, our goal is to show that this feature automatically decreases the contribution of one fea-
ture while it increases another. As argued above, switching off neighborhood aggregation would
therefore need a high dimensional space of features that cater to switching off specific links with-
out strengthening others. Furthermore, they would need large absolute values of a[f] and norms
of W[f, :] or exploding feature vectors h to achieve this. Our derived norm constraints, however,
prevent learning such a model representation.

Concretely, without loss of generality, we therefore have to show that if

a[f][ϕ
(
Ws[f, :]hi + Wt[f, :]hj

)
− ϕ

((
Ws[f, :] + Wt[f, :]

)
hj

)
< 0, (10)

at the same time, we receive

a[f][ϕ
(
Ws[f, :]hj + Wt[f, :]hi

)
− ϕ

((
Ws[f, :] + Wt[f, :]

)
hi

)
> 0, (11)

(or vice versa).

In principle, we have to show this for 16 different cases of pre-activation sign configurations for the
four terms in Eq. (9). Yet, since the argument is symmetric with respect to exchanging i and j, only
8 different cases remain. Two trivial cases are identical signs for all four terms. These are excluded,
as the left hand side (LHS) of Eq. (9) would become zero and thus not contribute to our goal to
switch off neighborhood aggregation. In the following, we will discuss the remaining six cases.
Please note that for the remainder of this derivation α > 0 denotes the slope of the leakyReLU and
not the attention weights αij .

Case (+ − ++): Let us assume that Ws[f, :]hi + Wt[f, :]hj > 0, Ws[f, :]hj + Wt[f, :]hi < 0,
(Ws[f, :] + Wt[f, :])hi > 0, and (Ws[f, :] + Wt[f, :])hj > 0.

From this assumption and the fact that ϕ is a leakyReLU it follows that the LHS of Eq. (9) becomes:
a[f][ϕ

(
Ws[f, :]hi + Wt[f, :]hj

)
+ϕ

(
Ws[f, :]hj + Wt[f, :]hi

)
−ϕ

((
Ws[f, :] + Wt[f, :]

)
hi

)
−

ϕ
((

Ws[f, :] + Wt[f, :]
)

hj

)
] = a[f](α − 1)[Ws[f, :]hj + Wt[f, :]hi]. Since α − 1 < 0 and

[Ws[f, :]hj + Wt[f, :]hi] < 0 according to our assumption, Eq. (9) demands a[f] < 0. To switch
off neighborhood aggregation, we would need to be able to make the LHS of Eq. (10) and Eq. (11)
Eq. (11) negative. Yet, a negative a[f] leads to a positive LHS of Eq. (11). Thus, the assumed sign
configuration cannot support switching off neighborhood aggregation.

Case (+ − −−): Let us assume that Ws[f, :]hi + Wt[f, :]hj > 0, Ws[f, :]hj + Wt[f, :]hi < 0,
(Ws[f, :] + Wt[f, :])hi < 0, and (Ws[f, :] + Wt[f, :])hj < 0.

The LHS of Eq. (9) becomes a[f](1 − α)[Ws[f, :]hi + Wt[f, :]hj], which demands a[f] < 0.
Accordingly, the LHS of Eq. (10) is clearly negative, while the LHS of Eq. (11) is a[f]αWs[f, :
](hj − hi) > 0. The last inequality follows from our assumptions that imply Ws[f, :]hj < Ws[f, :
]hi by combining the assumptions (Ws[f, :] + Wt[f, :])hj < 0 and Ws[f, :]hi + Wt[f, :]hj >
0. Again, this result implies that the considered sign configuration does not support switching off
neighborhood aggregation.

Case (+ + +−): Let us assume that Ws[f, :]hi + Wt[f, :]hj > 0, Ws[f, :]hj + Wt[f, :]hi > 0,
(Ws[f, :] + Wt[f, :])hi > 0, and (Ws[f, :] + Wt[f, :])hj < 0.

The LHS of Eq. (9) becomes a[f](1 − α)[Ws[f, :]hj + Wt[f, :]hj], which demands a[f] > 0.
Accordingly, the LHS of Eq. (10) becomes positive, which hampers switching-off neighborhood
aggregation as discussed.

Case (− − −+): Let us assume that Ws[f, :]hi + Wt[f, :]hj < 0, Ws[f, :]hj + Wt[f, :]hi < 0,
(Ws[f, :] + Wt[f, :])hi < 0, and (Ws[f, :] + Wt[f, :])hj > 0.

14

Under review as a conference paper at ICLR 2024

The LHS of Eq. (9) becomes a[f](α − 1)[Ws[f, :]hj + Wt[f, :]hj], which demands a[f] > 0.
Accordingly, the LHS of Eq. (10) becomes clearly negative. However, the LHS of Eq. (11) is
positive, as a[f]αWs[f, :](hj − hi) > 0.

The last inequality follows from our assumptions that imply Ws[f, :]hj > Ws[f, :]hi by combin-
ing the assumptions (Ws[f, :] + Wt[f, :])hj > 0 and Ws[f, :]hi + Wt[f, :]hj < 0. Again, this
analysis implies that the considered sign configuration does not support switching off neighborhood
aggregation.

Case (+ − +−): Let us assume that Ws[f, :]hi + Wt[f, :]hj > 0, Ws[f, :]hj + Wt[f, :]hi < 0,
(Ws[f, :] + Wt[f, :])hi > 0, and (Ws[f, :] + Wt[f, :])hj < 0.

According to our assumptions the LHS of Eq. (10) can only be negative if a[f] < 0. Yet, the LHS
of Eq. (11) can only be negative if a[f] > 0. Thus, this case clearly cannot contribute to switching
off neighborhood aggregation.

Case (+ − −+): Let us assume that Ws[f, :]hi + Wt[f, :]hj > 0, Ws[f, :]hj + Wt[f, :]hi < 0,
(Ws[f, :] + Wt[f, :])hi < 0, and (Ws[f, :] + Wt[f, :])hj > 0.

Eq. (9) becomes a[f](1−α)Ws[f, :] (hi − hj) < 0. At the same time, the LHS of Eq. (10) simplifies
to a[f]Ws[f, :](hi − hj) and the LHS of Eq. (11) is a[f]αWs[f, :](hj − hi) > 0.

Hence, a negative Eq. (9) leads to a positive Eq. (11). Accordingly, the last possible sign configura-
tion also does not support switching off neighborhood aggregation, which concludes our derivation.

A.2 PROOF OF THEOREM 4.3

Statement (Restated Theorem 4.3). The gradients and parameters of GATE for layer l ∈ [L− 1] are
conserved according to the following laws:

⟨W l[i, :],∇W l[i,:]L⟩ = ⟨W l+1[:, i],∇W l+1[:,i]L⟩+⟨al+1
s [i],∇al+1

s [i]L⟩+⟨al+1
t [i],∇al+1

t [i]L⟩. (12)

and, if additional independent matrices Ul and Vl are trainable, it also holds

⟨als[i],∇al
s[i]

L⟩+ ⟨alt[i],∇al
t[i]

L⟩ = ⟨U l[i, :],∇U l[i,:]L⟩+ ⟨V l[i, :],∇V l[i,:]L⟩. (13)

The proof is analogous to the derivation of Theorem 2.2 by (Mustafa & Burkholz, 2022) that is
restated in this work as Theorem 4.1. For ease, we replicate their notation and definitions here.
Statement (Rescale invariance: Def 5.1 by Mustafa & Burkholz (2022)). The loss L(θ) is rescale-
invariant with respect to disjoint subsets of the parameters θ1 and θ2 if for every λ > 0 we have
L(θ) = L((λθ1, λ−1θ2, θd)), where θ = (θ1, θ2, θd).
Statement (Gradient structure due to rescale invariance Lemma 5.2 in Mustafa & Burkholz (2022)).
The rescale invariance of L enforces the following geometric constraint on the gradients of the loss
with respect to its parameters:

⟨θ1,∇θ1L⟩ − ⟨θ2,∇θ2L⟩ = 0. (14)

We first consider the simpler case of GATES , i.e. W = U = V

Theorem A.1 (Structure of GATES gradients). The gradients and parameters of GATES for layer
l ∈ [L− 1] are conserved according to the following laws:

⟨W l[i, :],∇W l[i,:]L⟩ = ⟨W l+1[:, i],∇W l+1[:,i]L⟩+ ⟨als[i],∇al
s[i]

L⟩+ ⟨alt[i],∇al
t[i]

L⟩. (15)

Following a similar strategy to (Mustafa & Burkholz, 2022), we identify rescale invariances for
every neuron i at layer l that induce the stated gradient structure.

Given the following definition of disjoint subsets θ1 and θ2 of the parameter set θ, associated with
neuron i in layer l,

θ1 = {x|x ∈ W l[i, :]}
θ2 = {w|w ∈ W l+1[:, i]} ∪ {als[i]} ∪ {alt[i]}

15

Under review as a conference paper at ICLR 2024

We show that the loss of GATES remains invariant for any λ > 0.

The only components of the network that potentially change under rescaling are hl
u[i], h

l+1
v [j], and

αl
uv .

The scaled network parameters are denoted with a tilde as ãsl[i] = λ−1als[i], ãt
l[i] = λ−1alt[i], and

W̃ l[i, j] = λW l[i, j], and the corresponding networks components scaled as a result are denoted by
h̃l
u[i], h̃

l+1
v [k], and α̃l

uv .

We show that the parameters of upper layers remain unaffected, as h̃l+1
v [k] coincides with its original

non-scaled variant h̃l+1
v [k] = hl+1

v [k].

Also recall Eq. (4) for W = U = V as:

eluv = ((1− quv)a
l
s + (quv)a

l
t)

⊤ · ϕ(W lhl−1
u +W lhl−1

v)

where quv = 1 if u = v and quv = 0 if u ̸= v.

For simplicity, we rewrite this as:

eluv,u̸=v = (als)
⊤ · ϕ(W lhl−1

u +W lhl−1
v) (16)

eluv,u=v = (alt)
⊤ · ϕ(W lhl−1

u +W lhl−1
v) (17)

We show that

α̃l
uv =

exp(ẽluv)∑
u′∈N (v) exp(ẽluv)

= αl
uv , because (18)

ẽluv,u̸=v = eluv,u̸=v , and ẽluv,u=v = eluv,u=v (19)

which follows from the positive homogeneity of ϕ that allows

ẽluv,u=v = λ−1als[i]ϕ(

nl−1∑
j

λW l[i, j](hl−1
u [j] + hl−1

v [j])

+

nl∑
i′ ̸=i

als[i
′]ϕ(

nl−1∑
j

W l[i′, j](hl−1
u [j] + hl−1

v [j]) (20)

= λ−1λals[i]ϕ(

nl−1∑
j

W l[i, j](hl−1
u [j] + hl−1

v [j])

+

nl∑
i′ ̸=i

als[i
′]ϕ(

nl−1∑
j

W l[i′, j](hl−1
u [j] + hl−1

v [j]) (21)

= eluv,u̸=v. (22)

and similarly,

16

Under review as a conference paper at ICLR 2024

ẽluv,u=v = λ−1alt[i]ϕ(

nl−1∑
j

λW l[i, j](hl−1
u [j] + hl−1

v [j])

+

nl∑
i′ ̸=i

alt[i
′]ϕ(

nl−1∑
j

W l[i′, j](hl−1
u [j] + hl−1

v [j]) (23)

= λ−1λalt[i]ϕ(

nl−1∑
j

W l[i, j](hl−1
u [j] + hl−1

v [j])

+

nl∑
i′ ̸=i

alt[i
′]ϕ(

nl−1∑
j

W l[i′, j](hl−1
u [j] + hl−1

v [j]) (24)

= eluv,u=v. (25)

Since α̃l
uv = αl

uv , it follows that

h̃u
l
[i] = ϕ1

 ∑
z∈N (u)

αl
zu

nl−1∑
j

λW l[i, j]hl−1
z [j]

= λϕ1

 ∑
z∈N (u)

αl
zu

nl−1∑
j

W l[i, j]hl−1
z [j]

= λhl

u[i].

In the next layer, we therefore have

h̃l+1
v [k] = ϕ1

 ∑
u∈N (v)

αl+1
uv

nl∑
i

λ−1W l+1[k, i]h̃l
u[i]

= ϕ1

 ∑
u∈N (v)

αl+1
uv

nl∑
i

λ−1W l+1[k, i]λhl
u[i]

= ϕ1

 ∑
u∈N (v)

αl+1
uv

nl∑
i

W l+1[k, i]hl
u[i]

= hl+1

v [k].

Thus, the output node representations of the network remain unchanged, and the loss L is rescale-
invariant.

Next consider the case that W l, U l, and V l are independent matrices. Similarly to the previous
reasoning, we see that if we scale W̃ l[i, :] = W l[i, :]λ, then also scaling W̃ l+1[:, i] = W l+1[:, i]λ−1

and ãl+1
s [i] = al+1

s [i]λ−1 and ãl+1
t [i] = al+1

t [i]λ−1 will keep the GATE layer unaltered.

In this case, we obtain an additional rescaling relationship between als, alt and U l, V l. A rescaling
of the form ãs

l[i] = λ−1als[i], ãt
l[i] = λ−1alt[i] could be compensated by Ũ l[i, :] = U l[i, :]λ and

Ṽ l[i, :] = V l[i, :]λ. It follows immediately that ẽuv = euv .

A.3 DERIVATION OF INSIGHT 4.4

Following the analysis in A.1, in contrast to GAT, αij/αii << 1 can be easily realized in GATE
with as[f] < 0 and at[f] > 0 for all or only a subset of the features. Note that for the non-weight-
sharing case, U and V in GATE would simply correspond to Ws and Wt, respectively, in GATE and
the same line of reasoning holds. Large norms are usually not required to create a notable difference
in size between eii and eij .

17

Under review as a conference paper at ICLR 2024

B EXPERIMENTAL SETTINGS

We vary the depth of GAT and GATE networks in our experiments, but keep the hidden layer width
fixed to 64 in all cases. For GATS and GAT networks, we substitute ϕ in Eq. (3) with LeakyReLU as
defined in the standard architecture. For GATE, we substitute ϕ in Eq. (4) with ReLU in order to be
able to interpret the sign of as and at parameters as contributing positively or negatively to neigh-
borhood aggregation. For synthetic and real-world data, a maximum of 10000 and 5000 epochs are
run, respectively, using the Adam optimizer. In order to isolate the effect of the architecture and
study the parameter dynamics during training as best as possible, we do not use any additional ele-
ments such as weight decay and dropout regularization. We also do not perform any hyperparameter
optimization. However, the learning rate is adjusted for different real-world datasets to enable stable
training of models as specified in Table 5. Nevertheless, for a fair comparison, the same learning rate
is used for a given problem across all architectures. For all synthetic data, a learning rate of 0.005
is used. Real-world datasets use their standard train/test/validation splits. The feature transforma-
tion parameters, i.e., W,U, and V are initialized randomly as looks-linear orthogonal (Burkholz &
Dubatovka, 2019). The parameters a in GATS and GAT use Xavier initialization (Glorot & Bengio,
2010), as is the standard. In GATE, as and at are initialized to 0 in order to initially give equal
weights to the features of a node itself and its neighboring nodes.

Table 4: Details of the real-world datasets used in experiments.

Dataset # Nodes # Edges # Features # Classes # Train # Validate # Test

Cora 2708 10556 1433 7 140 500 1000

Citeseer 3327 9104 3703 6 120 500 1000

Actor 7600 26659 932 5 3648 2432 1520

Texas 183 279 1703 5 87 59 37

Wisconsin 251 450 1703 5 120 80 51

Table 5: Learning rate used in experiments on real-world datasets. L is the number of network
layers.

L Cora Citeseer Wisconsin Texas Actor

2 0.005 0.005 0.01 0.01 0.005

5 0.005 0.005 0.01 0.01 0.005

10 0.0005 0.0001 0.005 0.0005 0.005

20 0.0005 0.0001 0.005 0.0005 0.005

18

Under review as a conference paper at ICLR 2024

C ADDITIONAL RESULTS

C.1 LARGE REAL-WORLD DATASETS

We also evaluate GATE in comparison to GAT on OGB datasets, Arxiv, and Products Hu et al.
(2021), and larger heterophilic datasets proposed by Platonov et al. (2023). The results reported
in Table 6 show that GATE substantially improves the performance on the larger OGB dataset
Arxiv and theheterophilic dataset, tolokers, by allowing the network to leverage depth without over-
smoothing. The greatest gain in performance is observed for the roman-empire dataset. Except for
the amazon-ratings dataset (where the performance is comparable), GATE outperforms GAT on all
datasets by a large margin.

Table 6: Test accuracy reported for OGB datasets (arxiv, products), roman-empire, and amazon-
ratings. AUC-ROC reported for binary classification datasets minesweeper, tolokers, and question
datasets following (Platonov et al., 2023). *As reported by (Brody et al., 2022) for 3 layer GAT after
hyperparameter search for the number of layers L in {2, 3, 6}.

Dataset L GATE GAT

minesweeper 5 .676 .505

tolokers
5 .638 .638

10 .692 .616

questions 5 .643 .548

roman-empire 5 .759 .290

amazon-ratings 5 .454 .459

ogb-arxiv
3 .773 .719*
5 .784 -
8 .795 -

ogb-products
3 .861 .806*
5 .863 -

C.2 ABLATIONS

We conduct two ablations. Firstly, in Figure 5, we evaluate a GAT with initial values of attention
parameters set to 0, and show that this setting is not what enables neighborhood aggregation in
GATE. Secondly, in Table 7, we compare the weight-sharing and non-weight-sharing cases of GATE
on real-world datasets. GATE usually outperforms, particularly at deeper layers. Although GATE
is more parameterized than GAT, it usually requires fewer training epochs and generalizes better, in
addition to other advantages over GAT as discussed in the paper.

Figure 5: Distribution of αvv against training epoch for self-sufficient learning problem using the
Cora structure with random labels, where input node features are a one-hot encoding of node labels
for GAT with attention parameters a initialized to zero. Left to right: 1, 2 and 5 layer models
that achieve test accuracy of 100%, 52.7%, and 36.2%, respectively, which is similar to the results
obtained by standard Xavier initialization of attention parameters in GAT. This ablation shows that
setting the initial value of attention parameters as and at in GATE to zero is, in fact, not what enables
neighborhood aggregation but rather the separation of a into as and at as discussed in Insight 4.4.

19

Under review as a conference paper at ICLR 2024

Table 7: Test accuracy (%) of GATES models for network depth L on real data. For comparison, we
restate the results for GATE from Table 3. Entries marked with * indicate models that achieve 100%
training accuracy and stable test accuracy. Otherwise, test accuracy at max. validation accuracy
is reported. The same learning rates were used as in Table 5 except for the 20-layer network for
Wisconsin dataset, which used a learning rate of 0.0001 instead. Generally, except for Wisconsin,
where GATES outperforms GATE (and thus GAT as per Table 3), GATE usually outperforms at
deeper layers.

Data
L = 2 L = 5 L = 10 L = 20

GATES GATE GATES GATE GATES GATE GATES GATE

Wisc. 80.4 70.5* 70.5 60.7* 62.7 58.8 62.7 60.7
Texas 67.6* 67.6* 67.6* 67.6* 62.2* 62.3* 62.1* 64.9
Actor 32.2 31.6 27.5 29.2 27.4 27.9 24.6 29.4
Cora 81.0* 80.8 80.8 * 80.4 80.0* 79.2 77.2* 79
Cite. 67.6* 68.3 68.7* 67.8 67.6* 67.6 67.1* 69.2

C.3 FURTHER ANALYSIS OF α COEFFICIENTS

We present the analysis of α coefficients learned for some experiments in the main paper that were
deferred to the appendix due to space limitations.

Figure 6: Distribution of αvv against training epoch for the neighbor-dependent learning problem
with k = 3. Rows: GAT (top) and GATE (bottom) architecture. Columns (left to right): 3, 4, and
5 layer models. While GAT is unable to switch off neighborhood aggregation in any layer, only 3
layers of the 4 and 5 layer models perform neighborhood aggregation.

Figure 7: Distribution of αvv against training epoch of 2-layer (left) and 5-layer (right) GAT net-
works for heterophilic datasets Texas (top) and Actor (bottom) 2-layer modes. Despite having con-
nections to unrelated neighbors, GAT is unable to switch off neighborhood aggregation.

20

Under review as a conference paper at ICLR 2024

(a) original labels

(b) Random labels

Figure 8: Distribution of αvv against training epoch for the self-sufficient learning problem using
Cora graph structure with original (top) and random (bottom) node labels and input node features
as a one-hot encoding of labels. Left to right: 1, 2, and 5 layer GATES models that all 100% test
accuracy except in the case of 5 layer model using original labels. In this case, although a training
accuracy if 100% is achieved at 32 epochs with test accuracy 97.3%, a maximum test accuracy of
98.4% is reached at 7257 epochs. Training the model to run to 15000 epochs only increases it to
98.4%. An increased learning rate did not improve this case. However, we also run the GAT model
for 15000 epochs for this case, and it achieves 85.9% test accuracy at epoch 47 where the model
achieves 100% accuracy and only achieves a maximum test accuracy of 89.3% briefly at epoch 8.

(a) Texas

(b) Actor

Figure 9: Distributions of αvv (top) and αuv (bottom) against training epoch of 2-layer (left) and
5-layer (right) GATES networks for heterophilic datasets Texas (a) and Actor (b). The skewed
distribution of αuv shows that some level of contribution from neighbors in certain layers(which
may be task-relevant) is retained.

21

Under review as a conference paper at ICLR 2024

C.4 AGGREGATE RESULTS

For the neighbor-dependent task, we analyzed the detailed learning behavior of GAT and GATE
networks in Table 2 for one run of each experiment. Here, for the same experiments, we report the
average test accuracy at max. validation accuracy across 5 runs in Table 8.

Table 8: Mean test accuracy (%) ±95% confidence interval over 5 runs achieved for the neighbor-
dependent task constituting synthetic datasets. In all cases, a GATE variant outperforms the GAT
variants.

k L GATS GAT GATES GATE

1

1 93.60± 1.26 92.32± 1.27 96.40± 0.70 93.52± 1.27

2 93.52± 0.73 92.72± 2.69 97.92± 0.79 94.64± 2.10

3 88.16± 4.86 91.76± 3.35 92.08± 4.59 94.00± 1.54

2

2 90.40± 1.30 87.68± 1.58 93.84± 0.51 88.72± 2.50

3 82.16± 4.45 88.88± 2.12 85.76± 2.54 93.44± 3.27

4 84.00± 5.00 83.04± 4.75 89.20± 2.33 87.76± 2.36

3

3 84.32± 3.18 83.84± 2.69 87.52± 1.82 88.64± 2.00

4 71.36± 3.88 75.92± 7.63 89.20± 1.04 88.96± 0.51

5 80.16± 4.75 83.92± 2.16 86.08± 0.79 87.84± 1.59

C.5 COMPARISON WITH OTHER GNNS

Other GNN architectures could potentially switch off neighborhood aggregation, as we show here.
However, they are less flexible in assigning different importance to neighbors, suffer from over-
smoothing, or come at the cost of an increased parameter count by increasing the size of the hidden
dimensions (e.g. via a concatenation operation). We evaluate the performance of three such archi-
tectures that, in principle, employ different aggregation methods, which are likely to be capable of
switching off neighborhood aggregation, on synthetic datasets empirically and discuss their ability
or inability to switch off neighborhood aggregation qualitatively as follows.

ωGAT (Eliasof et al., 2023) introduces an additional feature-wise layer parameter ω that can, in
principle, switch off neighborhood aggregation by setting ω parameters to 0, in addition to the atten-
tion mechanism based on GAT. However, in practice, as we verify on our synthetic dataset in Figure
10, it is unable to effectively switch off neighborhood aggregation. Although it outperforms GAT, it
is still substantially worse than GATE, especially for the deeper model due to unnecessary neighbor-
hood aggregations. Another architecture based on graph attention, superGATKim & Oh (2021), falls
under the paradigm of structural learning as it uses a self-supervised attention mechanism essentially
for link prediction between nodes, and therefore its comparison with GATE is infeasible.

Figure 10: Distribution of αvv against training epoch for self-sufficient learning problem using the
Cora structure with random labels, where input node features are a one-hot encoding of node labels,
for the ωGAT architecture for the 1, 2 and 5 layer models that achieve test accuracy of 100%, 98.5%,
and 49.3%, respectively.

GraphSAGE (Hamilton et al., 2018) uses the concatenation operation to combine the node’s own
representation with the aggregated neighborhood representation. Therefore, it is usually (but not

22

Under review as a conference paper at ICLR 2024

always) able to switch off the neighborhood aggregation for the synthetic datasets designed for the
self-sufficient learning task (see Table 9). Mostly, GATE performs better on the neighbor-dependent
task, in particular for deeper models, where the performance of GraphSAGE drops likely due to
over-smoothing (see Table 10).

FAGCN (Bo et al., 2021) requires a slightly more detailed analysis. Authors of FAGCN state in
the paper that: ‘When αG

ij ≈ 0, the contributions of neighbors will be limited, so the raw features
will dominate the node representations.’ where αG

ij defined in the paper can be considered analo-
gous to αij in GAT, though they are defined differently. Thus, from an expressivity point of view,
FAGCN should be able to assign parameters such that all αG

ij = 0. However, we empirically ob-
serve on synthetic datasets designed for the self-sufficient learning task, values of αG

ij do not, in
fact, approach zero. Despite being unable to switch off neighborhood aggregation, FAGCN, in its
default implementation, achieves 100% test accuracy on the task. We discover this is so because
FAGCN introduces direct skip connections of non-linearly transformed raw node features to every
hidden layer. Given the simplicity of the one-hot encoded features in the datasets and the complete
dependence of the label on these features, FAGCN is able to represent the desired function. In order
to better judge its ability to switch off neighborhood aggregation by setting αG

ij = 0, we remove this
skip connection. From an expressivity point of view, FAGCN should still be able to achieve 100%
test accuracy by using only the (non-)linear transformations of raw features initially and performing
no neighborhood aggregation in the hidden layers. However, we find that FAGCN was unable to
emulate this behavior in practice. For a fair comparison of the differently designed attention mech-
anism in FAGCN with GATE, we introduce self-loops in the data so FAGCN may also receive a
node’s own features in every hidden layer. Even then, FAGCN fails to achieve perfect test accuracy
as shown in Table 9. Therefore, we suspect the attention mechanism in FAGCN may also be suscep-
tible to the trainability issues we have identified for the attention mechanism in GAT. Nevertheless,
the capacity of FAGCN to learn negative associations with neighboring nodes is complementary to
GATE and both could be combined. It would be interesting to derive conservation laws inherent
to other architectures such as FAGCN and GraphSAGE and study how they govern the behaviour
of parameters. Furthermore, by design, FAGCN does not perform any non-linear transformations
of aggregated neighborhood features which may be necessary in some tasks, such as our synthetic
dataset for the neighbor-dependent learning task. As Table 10 shows, GATE outperforms FAGCN
on such a task.

Lastly, we would like to emphasize that our aim is to provide insights into the attention mechanism
of GAT and understand its limitations. While it should be able to flexibly assign importance to
neighbors and the node itself without the need for concatenated representation or explicit skip con-
nections of the raw features to every layer, it is currently unable to do so in practice. In order to verify
our identification of trainability issues, we modify the GAT architecture to enable the trainability of
attention parameters which control the trade-off between node features and structural information.

23

Under review as a conference paper at ICLR 2024

Table 9: Self-sufficient learning: S,C and L denote graph structure, number of label classes, and
number of network layers, respectively. Original (Orig.) and Randomized (Rand.) labels are used
for the Cora structure. The FAGCN model is implemented without skip connections from the input
layer to every other layer and without any self-loops in input data, whereas FAGCN* denotes the
model also without skip connections but with self-loops introduced for all nodes in input data.

Structure C L
Max. Test Accuracy (%)

GAT GATE FAGCN FAGCN* SAGE

Cora

O,7
1 100 100 90.1 97.6 100

2 94.6 100 94.2 94.9 98.8

5 88.5 99.7 87.1 89.1 92.4

R,7
1 100 100 61.6 97.8 100

2 57.0 100 69.2 70.5 100

5 36.7 100 21.2 36.7 99.6

ER
(p = 0.01)

R,2
1 100 100 100 100 100

2 100 100 100 100 100

5 99.6 100 96.4 99.2 100

R,8
1 99.2 100 86.4 98.8 100

2 97.6 100 86.0 91.6 100

5 38.4 100 31.6 40.4 100

Table 10: Neighbor-dependent learning: k and L denote the number of hops aggregated in the
neighborhood to generate labels, and the number of layers of the evaluated network, respectively.

k L
Max Test Accuracy (%) @ Epoch

GAT GATE SAGE FAGCN

1

1 92@9564 93.6 @ 3511 93.2@2370 93.2@1618

2 92.8@4198 95.6 @ 111 95.6@723 94.1@1455

3 92.8@437 97.2 @ 82 96.8@100 81.2@573

2

2 93.2 @ 95 92.0@105 90.8@199 90.4@170

3 93.2@856 95.2 @ 189 94.4@113 88.8@283

4 88.4@423 90.4@447 92.4 @ 139 87.6@549

3

3 88.8@285 92.0 @ 47 87.6@45 89.2@528

4 85.6@469 91.6 @ 139 88@60 89.2@3191

5 83.6@1098 91.2 @ 243 86.0@35 88.8@205

24

	Introduction
	Related Work
	Architecture
	Theoretical insights into neighborhood aggregation
	Experiments
	Synthetic Test Bed
	Real-World Data

	Conclusion
	Theoretical Derivations
	Derivation of Insight 4.2
	Proof of Theorem 4.3
	Derivation of Insight 4.4

	Experimental settings
	Additional Results
	Large Real-World Datasets
	Ablations
	Further Analysis of Coefficients
	Aggregate Results
	Comparison with Other GNNs

