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Abstract

This paper studies the properties of solutions to multi-task shallow ReLU neural
network learning problems, wherein the network is trained to fit a dataset with
minimal sum of squared weights. Remarkably, the solutions learned for each
individual task resemble those obtained by solving a kernel method, revealing a
novel connection between neural networks and kernel methods. It is known that
single-task neural network training problems are equivalent to minimum norm
interpolation problem in a non-Hilbertian Banach space, and that the solutions of
such problems are generally non-unique. In contrast, we prove that the solutions
to univariate-input, multi-task neural network interpolation problems are almost
always unique, and coincide with the solution to a minimum-norm interpolation
problem in a first-order Sobolev (reproducing kernel) Hilbert Space. We also
demonstrate a similar phenomenon in the multivariate-input case; specifically, we
show that neural network training problems with a large number of diverse tasks
are approximately equivalent to an ℓ2 (Hilbert space) minimization problem over a
fixed kernel determined by the optimal neurons.

1 Introduction

This paper investigates the nature of functions learned by training neural networks on multiple “tasks”
(i.e., multiple sets of labels on the same set of data points) and contrasts these solutions with those
obtained by training separate networks for each individual task. We show that the solutions of
multi-task neural network learning problems can differ dramatically from the solutions to single-task
problems, even if the tasks are unrelated to one another. Unlike standard intuitions Caruana (1997)
and existing theory Ben-David and Schuller (2003); Maurer et al. (2016) regarding the effects and
benefits of multi-task learning, our results do not rely on similarity between tasks.

We focus on shallow, vector-valued (multi-output) neural networks with Rectified Linear Unit (ReLU)
activation functions, which are functions fθ : Rd → RT of the form

fθ(x) =

K∑
k=1

vk

(
w⊤

k x+ bk
)
+

+ Ax+ c (1)
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where (·)+ = max{0, ·} is the ReLU activation function and wk ∈ Rd, vk ∈ RT , and bk ∈ R
are the input and output weights and bias of the kth neuron. K is the number of neurons and T
denotes the number of tasks (outputs) of the neural network. The affine term Ax+ c is the residual
connection (or skip connection), where A ∈ RT×d and c ∈ RT . The set of all parameters is denoted
by θ :=

(
{vk,wk, bk}Kk=1,A, c

)
.

Neural networks are trained to fit data using gradient descent methods and often include a form of
regularization called weight decay, which penalizes the ℓ2 norm of the network weights. We consider
weight decay applied only to the input and output weights of the neurons—no regularization is applied
to the biases or residual connection. This is a common setting studied frequently in past work Savarese
et al. (2019); Ongie et al. (2019); Parhi and Nowak (2021). Intuitively, only the input and output
weights—not the biases or residual connection—affect the “regularity” of the neural network function
as measured by its second (distributional) derivative, which is why it makes sense to regularize only
these parameters. Given a set of training data points (x1,y1), . . . , (xN ,yN ) ∈ Rd × RT and a fixed
width1 K ≥ N2, we consider the weight decay interpolation problem:

min
θ

K∑
k=1

∥vk∥22 + ∥wk∥22 , subject to fθ(xi) = yi, i = 1, . . . , N . (2)

By homogeneity of the ReLU activation function (meaning that (αx)+ = α(x)+ for any α ≥ 0),
the input and output weights of any ReLU neural network can be rescaled as wk 7→ wk/∥wk∥2 and
vk 7→ vk∥wk∥2 without changing the function that the network represents. Using this fact, several
previous works Grandvalet (1998); Grandvalet and Canu (1998); Neyshabur et al. (2015); Parhi and
Nowak (2023); Shenouda et al. (2024) note that problem (2) is equivalent to

min
θ

K∑
k=1

∥vk∥2, subject to {∥wk∥2 = 1}Kk=1, fθ(xi) = yi, i = 1, . . . , N (3)

in that the minimal objective values of both training problems are the same, and any network fθ which
solves (2) also solves (3), while any fθ which solves (3) also solves (2) after rescaling of the input
and output weights. The regularizer

∑K
k=1 ∥vk∥2 is reminiscent of the multi-task lasso Obozinski

et al. (2006). It has recently been shown to promote neuron sharing in the network, meaning that
only a few neurons contribute to all tasks Shenouda et al. (2024).

The optimizations in (2) and (3) are non-convex and in general, they may have multiple global
minimizers. As an example, consider the single-task, univariate dataset in Figure 1. For this dataset,
(3) has infinitely many global solutions Savarese et al. (2019); Ergen and Pilanci (2021); Debarre
et al. (2022); Hanin (2022). Two of the global minimizers are shown in Figure 1. In some scenarios,
the solution on the right may be preferable to the one on the left, since the interpolation function stays
closer to the training data points. Moreover, recent theoretical work shows that this solution could
have other favorable generalization and robustness properties Joshi et al. (2024). Current training
methods, however, might produce any one of the infinite number of solutions, depending on the
random initialization of neural network weights as well as other possible sources of randomness in
the training process. It is impossible to control this using existing training algorithms, which might
explain many problems associated with current neural networks such as their sensitivity to adversarial
attacks. In contrast, as we show in this paper, if we train a neural network to interpolate the data in
Figure 1 along with additional interpolation tasks with different labels, then the solution is almost
always unique and given by the (potentially preferable) interpolation depicted on the right. This
demonstrates that multi-task learning can have a profound effect on the nature of neural network
solutions.

The main contributions of our paper are:

Uniqueness of Multi-task Solutions. In the univariate setting (d = 1) we prove that the solution to
multi-task training with different tasks is almost always a unique function, and we give a precise
condition for the exceptional cases where solutions are non-unique.
Multi-task Training ≡ Kernel Method (almost always). In the case that the solution to the uni-
variate weight decay problem is unique, it is given by the connect-the-dots interpolant of the training

1By an argument similar to the proof of Theorem 5 of Shenouda et al. (2024), the optimal objective value of
(3) (hence of (2)) for a given dataset is the same for any K ≥ N2.
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Figure 1: Two solutions to ReLU neural network interpolation (blue) of training data (red). The
functions on the left and right both interpolate the data and both are global minimizers of (2) and (3),
and minimize the second-order total variation of the interpolation function Parhi and Nowak (2021).
In fact, all convex combinations of the two solutions above are also global solutions to both training
problems.

data points: i.e., the optimal solution is a linear spline which performs straight-line interpolation
between consecutive data points in all tasks. On the support of the data, this solution agrees with
the solution to minimum-norm interpolation in a Sobolev reproducing kernel Hilbert space (RKHS)
which contains all functions with first derivatives in L2 De Boor and Lynch (1966). In contrast, solu-
tions to the single-task training problem are non-unique in general and are given by minimum-norm
interpolating functions in the non-Hilbertian Banach space BV2 Parhi and Nowak (2021), which
contains all functions with second distributional derivatives2 in L1. This shows that the solution
to each individual task in a multi-task solution is equivalent to that of a kernel method, whereas
single-task solutions generally are not.

Insights on Multivariate Multi-Task Problems. We provide empirical evidence and mathematical
analysis which indicate that similar conclusions hold in multivariate settings. Specifically, with
a large number of diverse tasks, the solutions for each individual task in multi-task learning are
approximately minimum-norm solutions in a particular RKHS space determined by the optimal
neurons. In contrast, learning each task in isolation results in solutions that are minimum-norm with
respect to a non-Hilbertian Banach norm over the optimal neurons.

2 Related Works

Characterizations of ReLU neural network solutions: Hanin (2021); Stewart et al. (2023)
characterized the neural network solutions to (2) in the univariate input/output setting. Boursier and
Flammarion (2023) showed that in the univariate input/output case, when weight decay is modified to
include the biases of each neuron the solution is unique. Moreover, under certain assumptions it is
often the sparsest interpolator (in terms of the number of neurons). Our work differs from these as we
study the multi-task setting, showing that the solutions are almost always unique and that they are
the connect-the-dots solution, which is generally not the sparsest and corresponds to minimum norm
interpolation over a particular RKHS space. While characterizing solutions to (2) in the multivariate
setting is more challenging, there exist some results for very particular datasets Ergen and Pilanci
(2021); Ardeshir et al. (2023); Zeno et al. (2024).

Function spaces associated with neural networks: For single-output ReLU neural networks,
Savarese et al. (2019); Ongie et al. (2019) related weight decay regularization on the parameters
of the model to regularizing a particular semi-norm on the neural network function. Ongie et al.
(2019) showed that this semi-norm is not an RKHS semi-norm, highlighting a fundamental difference
between neural networks and kernel methods. Parhi and Nowak (2021, 2022); Bartolucci et al. (2023);
Unser (2021) studied the function spaces associated with this semi-norm, and developed representer
theorems showing that optimal solutions to the minimum-norm data fitting problem over these spaces
are realized by finite-width ReLU networks. Consequently, finite-width ReLU networks trained
with weight decay are optimal solutions to the regularized data-fitting problem posed over these

2Technically, BV2 contains all functions with second distributional derivatives in M, the space of Radon
measures with finite total variation. M can be viewed as a “generalization” of L1 (see Ch. 7.3, p.223 in Folland
(1999)).
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spaces. Function spaces and representer theorems for multi-output and deep neural networks were
later developed in Korolev (2022); Parhi and Nowak (2022); Shenouda et al. (2024).

Multi-Task Learning: The advantages of multi-task learning has been extensively studied in the
machine learning literature Obozinski et al. (2006, 2010); Argyriou et al. (2006, 2008). Theoretical
properties of multi-task neural networks in particular, have also been studied in Lindsey and Lippl
(2023); Collins et al. (2024); Shenouda et al. (2024). The underlying intuition in these past works
has been that learning multiple related tasks simultaneously can help select or learn the most useful
features for all tasks. Our work differs from this traditional paradigm as we consider multi-task neural
networks trained on very general tasks which may be diverse and unrelated.

3 Univariate Multi-Task Neural Network Solutions

For any function f that can be represented by a neural network (1) with width K, we define its
representational cost to be

R(f) := inf
θ

K∑
k=1

∥vk∥2 s.t. ∥wk∥2 = 1 ∀k, f = fθ (4)

where θ =
(
{vk,wk, bk}Kk=1,A, c

)
. Taking an inf over all neural networks that realize f is necessary

as there are multiple neural networks which can represent the same function. Solutions to (3)
minimize this representational cost subject to the data interpolation constraint. This section gives a
precise characterization of the solutions to the multi-task neural network interpolation problem in the
univariate setting (d = 1).

For the training data points (x1,y1), . . . , (xN ,yN ) ∈ R×RT , let yit denote the tth coordinate of the
label vector yi. For each t = 1, . . . , T , let Dt denote the univariate dataset (x1, y1t), . . . , (xN , yNt) ∈
R× R, and let

sit =
yi+1,t − yit
xi+1 − xi

(5)

denote the slope of the straight line between (xi, yit) and (xi+1, yi+1,t). The connect-the-dots
interpolant of the dataset Dt is the function fDt

which connects the consecutive points in dataset
Dt with straight lines (see Figure 2). Its slopes on (−∞, x2] and [xN−1,∞) are s1t and sN−1t,
respectively.

In the following section, we state a simple necessary and sufficient condition under which the
connect-the-dots interpolant fD = (fD1

, . . . , fDT
) is the unique optimal interpolant of the datasets

D1, . . . ,DT . We also demonstrate that the set of multi-task datasets which satisfy the necessary
condition for non-uniqueness, viewed as a subset of RN × RT×N , has Lebesgue measure zero.
This result raises an interesting new connection between data fitting with ReLU neural networks
and traditional kernel-based learning methods, because connect-the-dots interpolation is also the
minimum-norm solution to a data-interpolation problem in the first-order Sobolev space H1([x1, xN ]),
itself an RKHS whose norm penalizes the L2 norm of the derivative of the function. In particular,
fDt

agrees on [x1, xN ] with the function f(x) =
∑N

j=1 αjk(x, xj) whose coefficients αj solve the
kernel optimization problem

min
α1,...,αN∈R

N∑
i=1

N∑
j=1

αiαj k(xi, xj) s.t.
N∑
j=1

αj k(xi, xj) = yit, i = 1, . . . , N,

with the kernel k(x, x′) = 1 − (x − x′)+ + (x − x1)+ + (x1 − x′)+ De Boor and Lynch (1966).
Therefore, our result shows that the individual outputs of solutions to (3) for T > 1 tasks almost
always coincide on [x1, xN ] with this kernel solution; for example, this occurs with probability one if
the task labels are sampled from an absolutely continuous distribution. In contrast, optimal solutions
to the (3) in the case T = 1 are generally non-unique and may not coincide with the connect-the-dots
kernel solution Hanin (2022). We note that for T = 1, our result is consistent with the characterization
of univariate solutions to (3) in Hanin (2022).

Previous works Shenouda et al. (2024) and Lindsey and Lippl (2023) showed that multi-task training
encourages neuron sharing, where all task are encouraged to utilize the same set of neurons or
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Figure 2: The connect-the-dots interpolant fD = (fD1
, fD2

, fD3
) of three datasets D1,D2,D3.

representations. Our result shows that univariate multi-task training is an extreme example of this
phenomenon, since fD can be represented using only N − 1 neurons, all of which contribute to all of
the network outputs. Therefore, in the scenario we study here, neuron sharing almost always occurs
even if the tasks are unrelated.

3.1 Connect-the-dots Interpolation is Almost Always the Unique Solution to (3)

Our main result is stated in the following theorem:

Theorem 3.1. The connect-the-dots function fD is always a solution to (3). Moreover, the solution to
problem (3) is non-unique if and only if the following condition is satisfied: for some i = 2, . . . , N−2,
the two vectors

si − si−1 =
yi+1 − yi

xi+1 − xi
− yi − yi−1

xi − xi−1
(6)

and

si+1 − si =
yi+2 − yi+1

xi+2 − xi+1
− yi+1 − yi

xi+1 − xi
(7)

are both nonzero and aligned3 If this condition not satisfied, then fD is the unique solution to (3).
Furthermore, as long as T > 1 and N > 1, the set of all possible data points x1, . . . , xN ∈ R and
y1, . . . ,yN ∈ RT which admit non-unique solutions has Lebesgue measure zero (as a subset of
RN × RT×N ).

Remark 1. The proof of Theorem 3.1, which relies mainly on Lemma 3.2 as we describe below, also
characterizes solutions of the regularized loss problem

min
θ

N∑
i=1

L(fθ(xi),yi) + λ

K∑
k=1

∥vk∥2 subject to |wk| = 1, k = 1, . . . ,K (8)

for input dimension d = 1, any λ > 0, and any loss function L which is lower semicontinuous
in its second argument. Specifically, any solution f of (8) is linear between consecutive data
points [xi, xi+1] unless the vectors ŝi − ŝi−1 and ŝi+1 − ŝi are both nonzero and aligned, where
ŝi :=

ŷi+1−ŷi

xi+1−xi
and ŷi := fθ(xi).

The full proof of Theorem 3.1 appears in Appendix 6.1. We outline the main ideas here. Our proof
relies on the fact that ReLU neural networks are continuous piecewise linear (CPWL) functions,
where the change in slope of the function at the kth knot is equivalent to the magnitude of the kth

output weight vector. This fact allows us to prove the theorem using reasoning about the knots and
slope changes of CPWL functions. The main ingredient of the proof is the following lemma:

Lemma 3.2. Let f : R → RT be a function whose tth output ft is a CPWL function which interpolates
Dt. Suppose that at some x̃ ∈ R between consecutive data points, one or more of the outputs ft
has a knot. Let x̃1 and x̃2 be the x-coordinates of the closest knots before and after x̃, respectively.

3Two vectors u1 and u2 are aligned if u⊤
1 u2 = ∥u1∥∥u2∥.
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Denote the slopes of ft around this interval in terms of at, bt, ct, and δt as in Figure 3, and let
a, b, c, δ ∈ RT be the vectors containing the respective values for each task.

Then removing the knot at x̃ and instead connecting x̃1 and x̃2 by a straight line does not increase
R(f). Furthermore, if a− b and b− c are not aligned, then doing so will strictly decrease R(f).

Figure 3: The function output ft around the knot at x̃, where τ = x̃−x̃1

x̃2−x̃1
. Each line segment in the

figure is labeled with its slope. For any particular output t, it may be the case that ft does not have
a knot at x̃ (in which case δt = 0); does not have a knot at x̃1 (in which case at = bt + δt); and/or
does not have a knot at x̃2 (in which case bt − τ

1−τ δt = ct).

Proof of Lemma 3.2. The representation cost (4) is separable across neurons. The contribution of
these neurons to R(f) is:

∥δ + b− a∥2 +
1

1− τ
∥δ∥2 + ∥c− b+ τδ/(1− τ)∥2

≥ ∥b− a∥2 − ∥δ∥2 +
1

1− τ
∥δ∥2 + ∥c− b∥2 −

τ

1− τ
∥δ∥2 (9)

= ∥b− a∥2 + ∥c− b∥2

where the inequality follows from the triangle inequality. This shows that taking δt = 0 for all outputs,
which corresponds to connecting x̃1 and x̃2 with a straight line in all outputs, will never increase the
representational cost of f . The triangle inequality used in (9) holds with equality for some δ ̸= 0 if
and only if a− b, b− c, and δ are aligned with ∥δ∥2 ≤ min{∥a− b∥2, 1−τ

τ ∥b− c∥2}.

Lemma 3.2 states that removing neurons which are located away from the data points and replacing
them with a straight line will never increase the representational cost of the network, and it will
strictly decrease the representational cost unless a− b and b− c are aligned. This result implies that
the connect-the-dots interpolant fD is always a solution to (3), since we may take any solution f of
(3) and remove all knots from it (resulting in the function fD) without increasing its representational
cost. If si − si−1 and si+1 − si are aligned for some i = 2, . . . , N − 2, we can view any interpolant
on the interval [xi, xi+1] as an instance of Figure 3 with a = si−1, b = si, and c = si+1. By Lemma
3.2, any neural network with a knot at some point x̃ ∈ (xi, xi+1) can have the same representational
cost as the connect-the-dots solution on this interval, only if a− b and b− c are aligned.

We can also prove by contradiction that optimal solutions are unique on [xi, xi+1] as long as si−si−1

and si+1 − si are not aligned. Suppose that there is some other optimal interpolant f which is not
the connect-the-dots solution fD on an interval [xi, xi+1] for which si − si−1 and si+1 − si are not
aligned. Then apply the lemma repeatedly to remove all knots from f which are not located at the
data points, except for a single remaining knot at some x̃ between consecutive data points. If this
knot occurs after x2 (the second data point) or before xN−1 (second to last data point), the lemma
implies automatically (again taking a = si−1, b = si, and si+1) that removing this knot would
strictly decrease the representational cost of the function, contradicting optimality of f . To conclude
the proof, it remains only to show that any optimal interpolant of the dataset must agree with the
connect-the-dots interpolant fD before x2 and after xN−1; the details of this argument appear in
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Appendix 6.1. To summarize, the connect-the-dots interpolation is the unique solution to (3) except
in the special case where si − si−1 and si+1 − si are aligned for one or more i = 2, . . . , N − 2. As
our theorem and corollary quantify, real-world regression datasets (which are typically real-valued
and often assumed to incorporate some random noise from an absolutely continuous distribution, e.g.
Gaussian) are extremely unlikely to satisfy this special alignment condition; hence, our claim that
connect-the-dots interpolation is almost always the unique solution to (3). We provide numerical
experiments in Appendix 7.1 to illustrate the variety of solutions obtained from single-task versus
multi-task learning when training with gradient descent. The single-task problem can produce a
variety of solutions, in contrast the multi-task learning problem almost always produces a unique
solution.

4 Multivariate Multi-Task Neural Network Training

In Section 3, we proved that the univariate functions learned by neural networks trained on multiple
tasks can be profoundly different from the functions learned by networks trained for each task
separately. In this section, we demonstrate similar behavior in multivariate settings. Just like in
the univariate case, it is known that multivariate single-task training problems are equivalent to
optimization over a non-Hilbertian Banach spaces and that the solutions may be non-unique Parhi and
Nowak (2021) . Indeed, in Figure 4 we show that multivariate training problems can be non-unique
in terms of their spatial orientation. The following mathematical analysis and empirical evidence
shows that, similar to our results in the univariate setting, multivariate multi-task learning can produce
solutions that are strikingly different compared to the corresponding single-task training solutions.
Moreover, as with univariate multi-task solutions, multivariate multi-task solutions can be related to
functions belonging to an RKHS.

Here we analyze neural networks of the form

fθ(x) =

K∑
k=1

vk

(
w⊤

k x+ bk
)
+

(10)

where wk ∈ Sd−1, bk ∈ R, vk ∈ RT , and θ := {vk,wk, bk}Kk=1. Since the analysis in this section
is not dependent on the residual connection, we omit it for ease of exposition. We consider the
multivariate-input, T -task neural network training problem

min
θ

N∑
i=1

L (yi, fθ(xi)) + λ

K∑
k=1

∥vk∥2 (11)

for some dataset (x1,y1), . . . , (xN ,yN ) ∈ Rd × RT , where L is any convex loss function which is
lower semicontinuous in its second argument and separable across the T tasks.

To characterize the nature of the functions learned through multi-task training, consider the optimiza-
tion from the perspective of a single task. The optimal output weights for task s are the solution
to

J(v1s, . . . , vKs) :=

N∑
i=1

L
(
yis,

K∑
k=1

vksΦik

)
+ λ

K∑
k=1

∥∥∥∥[ vksv∗
k\s

]∥∥∥∥
2

(12)

where v∗
k\s denotes the vector v∗

k with its sth element v∗ks excluded and Φ ∈ RN×K is a matrix
whose i, kth entry is Φik =

(
x⊤
i w

∗
k + b∗k

)
+

. J is the objective function of (11) with all parameters
except for v1s, . . . , vKs held fixed at their optimal values. Note that the optimal values v∗1s, . . . , v

∗
Ks

for (11) also minimize J ; otherwise they would not be optimal for (11).

We are interested in analyzing the behavior of solutions to (12) as the number of tasks T grows.
Intuitively, if T is large, then the magnitude of the output weight v∗ks for an individual neuron k and

task s would be relatively small compared to ∥v∗
k\s∥2 :=

√∑
t ̸=s(v

∗
ks)

2. Then by a Taylor series

approximation, the kth term of the regularizer in (11) would be approximately equal to√
(vks)2 + ∥v∗

k\s∥22 ≈ ∥v∗
k\s∥2 +

(vks)
2

2∥v∗
k\s∥2

. (13)

7



Notice that the approximation is a quadratic function of v∗ks, which suggests that the regularization
term of (11) resembles a weighted ℓ2 regularizer when vks is close to its optimal value v∗ks.

The reasoning above can be made precise by assuming that that the vectors y:1, . . . ,y:T , where
y:t = [y1t, . . . , yNt] is the vector of labels corresponding to task t, are statistically independent
conditioned on the data points x1, . . . ,xN . Intuitively, independence of the task labels means that
among many has little effect on the output weights associated with other tasks. This is observed
experimentally, as shown in Figure 4. As an example of a random process generating conditionally
independent task labels, consider the following: let µ be a probability measure over a family of
conditional probability distributions P . Suppose that p1, . . . , pT are independently and identically
distributed according to µ and y:t|x1, . . . ,xN ∼ pt, where y:t := [y1t, . . . , yNt] is the vector of
labels corresponding to tasks t = 1, . . . , T . Then y:1, . . . ,y:T are independent, conditioned on the
data points x1, . . . ,xN .

When y:1, . . . ,y:T are conditionally independent given x1, . . . ,xN , the optimal output weights
for each task in (11) are identically distributed (however, due to the neuron sharing enforced by
the
∑K

k=1 ∥v2∥2 regularization term, they are not independent). Two key facts follow from this
observation. As the number of tasks T grows:

1. The magnitude of v∗ks is dominated by ∥v∗
k\s∥2, which implies that the remainder in the quadratic

Taylor series approximation tends to zero.

2. ∥v∗
k\s∥2 concentrates around the norm of the full vector of output weights ∥v∗

k∥2, which means
that the Taylor approximation tends to the same quadratic function for all tasks.

A more detailed analysis is given in the companion paper Nakhleh et al. (2024); here we informally
state a theorem summarizing the main conclusion.

Theorem 4.1. Nakhleh et al. (2024) Suppose that y:1, . . . ,y:T are conditionally independent given
x1, . . . ,xN . For an individual task s, consider the objective

H(v1s, . . . , vKs) :=

N∑
i=1

L
(
yis,

∑
k

vksΦik

)
+ λ

∑
k

(
∥v∗

k\s∥2 +
v2ks

2∥v∗
k\s∥2

)
(14)

Then as T grows, the global minimizer v′1s, . . . , v
′
Ks of H satisfies

J(v′1s, . . . , v
′
Ks)− J(v∗1s, . . . , v

∗
Ks) → 0 . (15)

with probability approaching one.

The theorem shows that the solution to the weighted ℓ2 minimization problem

min
v1s,...,vKs

N∑
i=1

L
(
yis,

∑
k∈S

vksΦik

)
+

λ

2

∑
k∈S

γksv
2
ks (16)

where γks := 1/∥v∗
k/s∥2 is approximately optimal for the original objective (12), with stronger

approximation as T increases. In contrast, in the single-task setting (T = 1), the optimization

min
v1,...,vK

N∑
i=1

L
(
yi,

K∑
k=1

vkΨik

)
+ λ

K∑
k=1

|vk|. (17)

yields output weights which are exactly optimal for (11). Note that the matrices Φ in 16 and Ψ
in 17 are not the same, since they are determined by the optimal input weights and biases for (11),
which are themselves data- and task-dependent. Nonetheless, comparing (16) and (17) highlights the
different nature of solutions learned for (11) in the single-task versus multi-task case. The multi-task
learning problem with independent tasks favors linear combinations of the optimal neurons which
have a minimal weighted ℓ2 regularization penalty. In contrast, the single-task learning problem
favors linear combinations of optimal neurons which have a minimal ℓ1 penalty. Therefore, multi-task
learning with a large number of diverse tasks promotes a fundamentally different linear combination
of the optimal features learned in the hidden layer.
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To gain further insight, note that because ∥v∗
k\s∥2 concentrates around the norm of the full vector of

output weights ∥v∗
k∥2 as T grows

γks ≈ γk :=
1

∥v∗
k∥2

. (18)

This reveals a novel connection between the problem of minimizing (12) and a norm-regularized data
fitting problem in an RKHS. Specifically, consider the finite-dimensional linear space

H :=

{
fv =

K∑
k=1

vkϕk : v ∈ RK

}
(19)

where ϕk(x) =
(
x⊤w∗

k + b∗k
)
+

, equipped with the inner product

⟨fv, fu⟩H = vTQu (20)

where Q = diag
(
γ1

2 , . . . , γK

2

)
. As a finite-dimensional inner product space, H is necessarily a

Hilbert space; furthermore, finite-dimensionality of H implies that all linear functionals (including
the point evaluation functional) on H are continuous. Therefore, H is an RKHS, with reproducing
kernel

κ(x,x′) = ϕ(x′)Q−1 ϕ(x), (21)

where ϕ(x) is a vector containing the outputs of all K neurons (i.e., ϕ1(x), . . . , ϕK(x)). Note that
κ indeed satisfies the reproducing property: that is for any f(·) = v⊤ϕ(·) ∈ H, we have

f(x) = ⟨κ(·,x), f(·)⟩H =
〈
ϕ(x)⊤Q−1ϕ(·),v⊤ϕ(·)

〉
H (22)

This shows that (16) is well approximated by solving

argmin
f∈H

N∑
i=1

L(yis, f(xi)) + λ∥f∥2H. (23)

We provide empirical evidence for the claims presented in this section in Figure 4 on a simple
multi-variate dataset. First, we demonstrate the variety of solutions that interpolate this dataset in
a single task setting. In contrast, we show that the solutions obtained via multi-task learning with
additional random tasks are very similar and often much smoother than those obtained by single-task
learning supporting our claim that these solutions are well approximated by a kernel method. We also
verify that solutions to (23) is a good approximation for solutions which minimize (12).

5 Conclusion and Discussion

We have shown that univariate, multi-task shallow ReLU neural networks which are trained to
interpolate a dataset with minimal sum of squared weights almost always represent a unique function.
This function performs straight-line interpolation between consecutive data points for each task. This
solution is also the solution to a min-norm data-fitting problem in an RKHS. We provide mathematical
analysis and numerical evidence suggesting that a similar conclusion may hold in the mulvariate-input
case, as long as the tasks are sufficiently large in number and “diverse.” These results indicate that
multi-task training of neural networks can produce solutions that are strikingly different from those
obtained by single-task training, and highlights a novel connection between these multi-task solutions
and kernel methods.

Here we study shallow ReLU networks due to their relative simplicity and amenability to mathematical
analysis. Future work could aim to extend these results to other activation functions and deep network
architectures. We also focus here on characterizing global solutions to the optimizations in (2) and
(3). Whether or not networks trained with gradient descent-based algorithms will converge to global
solutions remains an open question: our low-dimensional numerical experiments in Sections 3 and 4
indicate that they do, but a more rigorous analysis of the training dynamics would be an interesting
separate line of research. Finally, while our analysis and experiments in Section 4 indicate that
multivariate, multitask neural network solutions behave similarly to ℓ2 regression over a fixed kernel,
we have not precisely characterized what that kernel is in the multi-input case as we have in the
single-input case: developing such a characterization is of interest for future work.

9



−3

−2

−1

0

1

2

3

4
−3

−2

−1

0

1

2

3

4

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

(a) Solution to (11) with T = 1
(single-task training)
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(b) Solution to (11) with T = 1
(single-task training)
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(c) Solution to (11) with T = 1
(single-task training)
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(d) Solution to (11) with T = 101
(multi-task training)
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(e) Solution to (23)
(RKHS approximation)

Figure 4: ReLU network interpolation in two-dimensions. The solutions shown were obtained with
regularization parameter λ ≈ 0. Top Row – Solutions to single-task training: Figures 4a, 4b and 4c
show solutions to ReLU neural network interpolation (blue surface) of training data (red). The eight
data points are located at the vertices of two squares, both centered at the origin. The outer square
has side-length two and values of 0 at the vertices. The inner square has side-length one and values
of 1 at the vertices. All three functions interpolate the data and are global minimizers of (2) and (3)
when solving for just this task (i.e., T = 1). Due to the simplicity of this dataset the optimality of
the solutions in the first row were confirmed by solving the equivalent convex optimization to (2)
developed in Ergen and Pilanci (2021). Bottom Row – Solutions to multi-task training: Figure 4d
shows the solution to the first output of a multi-task neural network with T = 101 tasks. The first
output is the original task depicted in the first row while the labels for other 100 tasks are randomly
generated i.i.d from a Bernoulli distribution with equal probability for one and zero. Here we show
one representative example; more examples are depicted in Appendix 7 showing that this phenomenon
holds across many runs. Figure 4e shows the solution to fitting the training data by solving (23) over
a fixed set of features learned by the multi-task neural network with T = 100 random tasks. We
observe that unlike the highly variable solutions of single-task optimization problem, the solutions
obtained by solving the multi-task optimizations are nearly identical, as one would have for kernel
methods. Moreover, the solution obtained by solving (23) is also similar to the solution of the full
multi-task training problem with all T = 101 tasks.
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6 Appendix

6.1 Proof of Theorem 3.1

Proof. We break the proof into the following sections.

Unregularized residual connection. First, we will briefly discuss the utility of the unregularized
residual connection in our mathematical analysis. Consider a single input/output function f that
is realizable by a ReLU neural network fθ : R → R of the form (1) with unit norm input weights.
Suppose that fθ contains two neurons

η1(x) = v1(w1x+ b1)+, η2(x) = v2(w2x+ b2)+

which “activate” at the same location, that is, b1/w1 = b2/w2. If sgn(w1) = sgn(w2), the neurons
η1 and η2 activate in the same direction (i.e. both “turn on” or “turn off” at the point b1/w1 = b2/w2)
and thus they can be combined into a single neuron η. The resulting network will represent the same
function as fθ with a representational cost that is no greater than that of fθ . Now suppose instead that
the neurons activate at the same location, i.e. b1/w1 = b2/w2, but that (without loss of generality)
w1 = 1 and w2 = −1. In this case, the sum of these two neurons η1 and η2 can we rewritten as

v1(w1x+ b1)+ + v2(w2x+ b2)+ = v1(x+ b1)+ + v2(−x− b1)+
= (v1 + v2)(x+ b1)+ − (v1 + v2)(x+ b1) (24)

which follows from the fact that for any x we have x = (x)+ − (−x)+. Since the (v1 + v2)(x+ b1)
term can be incorporated into the unregularized residual connection, the resulting network again
represents the same function with representational cost less than or equal to that of the original
network.

The above reasoning shows that, when discussing optimal neural networks which solve (3), we may
limit ourselves to considering neural networks for which no two neurons activate at the same location.
Any such network fθ with K neurons represents T univariate continuous piecewise linear (CPWL)
functions f1, . . . , fT with a combined total of K knots, where each knot k is located at x-coordinate
bk/wk, and the change in slope of the function ft at that point is given by wkvkt (recall that wk = ±1).
Conversely, any set of T CPWL R → R functions with a combined total of K knots at locations
x1, . . . , xK ∈ R, where the slope changes of the tth function are denoted µ1t, . . . , µKt (some of
which may be zero), is represented by a R → RT network of width K whose parameters satisfy
bk/wk = xk and µkt = wkvkt (hence |µkt| = |vkt|) for each k = 1, . . . ,K and each t = 1, . . . , T .
This identification allows us to prove the theorem statement entirely using reasoning about CPWL
functions: in the remainder of the proof, we use the terms “knot” and “neuron” interchangeably, and
we use |vkt| to denote both the absolute slope change of output ft at knot k and, equivalently, the tth

entry of the output weight vector vk.

Connect-the-dots interpolation is always a solution to (3). Using Lemma 3.2, we proceed to
prove Theorem 3.1. Let S∗

θ denote the set of parameters of optimal neural networks which solve (3)
for the given data points, and let

S∗ := {f : R → RT | f(x) = fθ(x) ∀x ∈ R, θ ∈ S∗
θ} (25)

be the set of functions represented by neural network with optimal parameters in S∗
θ . First, note

that the connect-the-dots interpolant fD is in the solution set S∗. To see this, fix any f ∈ S∗, and
apply Lemma 3.2 repeatedly to remove all “extraneous” knots (i.e., knots located away from the
data points x1, . . . , xN ) from f . By Lemma 3.2, the resulting function—which is simply fD—has
representational cost no greater than the original f , and since f had optimal representational cost, so
does fD.

Conditions for non-unique solutions. We first prove the conditions for which (3) admits an infinite
number of solutions. For some i = 2, . . . , N − 2, consider the two vectors

si − si−1 =
yi+1 − yi

xi+1 − xi
− yi − yi−1

xi − xi−1
(26)

and

si+1 − si =
yi+2 − yi+1

xi+2 − xi+1
− yi+1 − yi

xi+1 − xi
. (27)
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(a) A function g with a knot at x̃ ∈ (x1, x2). (b) The function fD .

Figure 5: Left: a function g which has a knot in one or more of its outputs at a point x̃ ∈ (x1, x2).
Right: the connect-the-dots interpolant fD. The representational cost of g is strictly greater than that
of fD.

and assume they are aligned. Then we may view the function fD around the interval [xi, xi+1] as an
instance of Lemma 3.2 with a = si−1, b = si, and c = si+1. Fix some point x̃ ∈ (xi, xi+1) and
denote

τ =
x̃− xi

xi+1 − xi
.

Let δ be any vector which is aligned with a− b and 1−τ
τ (b− c) and has smaller norm than both, and

let f : R → RT be the function whose output slopes on (xi, x̃) are given by δ and whose slopes on
(x̃, xi+1) are given by b− τ

1−τ δ. Then by Lemma 3.2, R(f) = R(fD) and thus f ∈ S∗. Since there
are infinitely many δ’s which satisfy the condition above to choose the solution to (3) is non-unique
in this case with infinitely many optimal solutions.

Necessary and sufficient condition under which fD is the unique solution. For the other direction
of the proof, suppose that for any i = 1, . . . , N − 1, the vectors si − si−1 and si+1 − si are not
aligned, and assume by contradiction that there is some f ∈ S∗ which is not of the form fD. This f
must not have any knots on (−∞, x1] or [xN ,∞), since removing such a knot would strictly decrease
R(f) without affecting the ability of f to interpolate the data, contradicting optimality of f . So it
must be the case that f has an extraneous knot at some x̃ which lies between consecutive data points
xi and xi+1. Let g denote the function obtained by removing all extraneous knots from f except the
one located at x̃. By Lemma 3.2, R(g) ≤ R(f).

Now, suppose the extraneous knot is between [xi, xi+1] for i = 2, . . . , N − 2. Since g has no
extraneous knots away from x̃, it must be the case that g agrees with fD on [xi−1, xi] and [xi+1, xi+2].
We may view the behavior of g around the interval [xi, xi+1] as an instance of Lemma 3.2 with
a = si−1, b = si, and c = si+1. By assumption, a− b and b− c are not aligned, so by Lemma 3.2,
removing the knot at x̃ would strictly reduce R(g). This contradicts optimality of g, hence of f .

Finally, consider the case where the extraneous knot is on the interval [xi, xi+1] where i = 1 (the
case i = N − 1 follows by an analogous argument). Let a denote the vector of incoming slopes of g
at x1. Define

b =
y2 − y1

x2 − x1
c =

y3 − y2

x3 − x2
.

Since g has no extraneous knots except for x̃, the slopes of g coming out of x2 are c. By optimality
of g, it must be the case that a − b and b − c are aligned (otherwise we could invoke Lemma 3.2
and strictly reduce the representational cost of f by removing the knot at x̃, a contradiction), which
implies that sgn(at − bt) = sgn(bt − ct) for each t = 1, . . . , T . For any outputs t which have a knot

14



at x̃, this quantity is nonzero, in which case |ct − bt| < |ct − at| (see Figure 5a). Let 1, . . . , t0 be
the indices of the outputs which have a knot at x̃, and let t0 + 1, . . . , T be the indices of the outputs
which do not have a knot at x̃. We may again invoke Lemma 3.2 to remove the knots from g, resulting
in a new function g̃ (satisfying R(g) ≥ R(g̃)) which has slopes a coming into x1, b between x1 and
x2, and c coming out of x2. The contribution of these knots to R(g̃) is then given by:∥∥∥∥∥∥∥

 b1 − a1
...

bt0 − at0


∥∥∥∥∥∥∥
2

+

∥∥∥∥∥∥∥
 c1 − b1

...
ct0 − bt0


∥∥∥∥∥∥∥
2

≥

∥∥∥∥∥∥∥
 b1 − a1 + c1 − b1

...
bt0 − at0 + ct0 − bt0


∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥
 c1 − a1

...
ct0 − at0


∥∥∥∥∥∥∥
2

>

∥∥∥∥∥∥∥
 c1 − b1

...
ct0 − bt0


∥∥∥∥∥∥∥
2

but the last quantity is exactly the contribution of these knots to R(fD) (see Figure 5b). This
contradicts optimality of g̃, hence of g and of f . The remainder of the proof is dedicating to showing
that such datasets which admit non-unique solutions are rare when the data is randomly sampled
from a continuous distribution.

Datasets which admit non-unique solutions have Lebesgue measure zero. If N = 2 or N = 3,
then fD is the only solution to (3), so we focus on the case where N ≥ 4. Suppose that for some
i ∈ {2, . . . , N − 2}, the data points xi−1, xi, xi+1, xi+2 ∈ R and labels yi−1,yi,yi+1,yi+2 ∈ RT

satisfy the requirement that

yi+1 − yi

xi+1 − xi
− yi − yi−1

xi − xi−1
= w

(
yi+2 − yi+1

xi+2 − xi+1
− yi+1 − yi

xi+1 − xi

)
(28)

for some w > 0, where both vectors are nonzero. After some computation, this is equivalent to the
requirement that

(xi+1 − xi)yi−1 − w(xi+2 − xi+1)yi +
(
(1− w)xi − xi+1 + wxi+2

)
yi+1 − w(xi+1 − xi)yi+2 = 0

(29)

or equivalently

[yi−1,yi,yi+1,yi+2]︸ ︷︷ ︸
Yi∈RT×4

(xi+1 − xi

0
xi − xi+1

0


︸ ︷︷ ︸

a1∈R4

−w

 0
xi+2 − xi+1

−xi+2

xi+1 − xi


︸ ︷︷ ︸

a2∈R4

)
= 0 (30)

for some w > 0. In order for this requirement to be satisfied, it must be the case that Y a1 = wY a2

for some w > 0, or equivalently, that the matrix U = Y [a1,a2] ∈ RT×2 has rank one. Since
the rank of any matrix and its Gram matrix are equivalent, this is equivalent to requiring that
UU⊤ ∈ RT×T has rank one, or equivalently (because T > 1), that det(UU⊤) = 0. Now
observe that, based on the definition of the determinant and of the matrix U , the function det(UU⊤)
is a real-valued polynomial function of the variables Yi = [yi−1,yi,yi+1,yi+2] ∈ RT×4 and
xi−1, xi, xi+1, xi+2 ∈ R4. Therefore, as the zero set of a polynomial function (i.e. an algebraic
variety), the set of all Yi = [yi−1,yi,yi+1,yi+2] ∈ RT×4 and xi−1, xi, xi+1, xi+2 ∈ R4 for which
det(UU⊤) = 0 has Lebesgue measure zero. This is true for any i = 1, . . . , N , so taking the union
over i = 1, . . . , N , we have that the set of all possible data points x1, . . . , xN ∈ R and label vectors
y1, . . . ,yN ∈ RT which admit non-unique solutions has Lebesgue measure zero (as a subset of
RN × RT×N ).
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7 Additional Experimental Results and Details

7.1 Numerical Illustration of Theorem 3.1

We provide numerical examples to illustrate the difference in solutions obtained from single task
versus multi-task training and validate our theorem. The first row in Figure 6 shows three randomly
initialized univariate neural networks trained to interpolate the five red points with minimum repre-
sentational cost. While all three of the learned functions have the same representational cost (i.e.,
all minimize the second-order total variation subject to the interpolation constraint), they each learn
different interpolants. This demonstrates that gradient descent does not induce a bias towards a
particular solution. The second row shows the function learned for the first output of a multi-task
neural network. This network was trained on two tasks. The first task consists of interpolating the
five red points while the second consists of interpolating five randomly generated labels sampled
from a standard Gaussian distribution. When trained to minimum representation cost we see that the
connect-the-dots solution is the only solution learned regardless of initialization, verifying Theorem
3.1. This solution simultaneously minimizes the second-order total variation and the norm in the
RKHS associated with the kernel k(x, x′) = 1− (x− x′)+ + (x− x1)+ + (x1 − x′)+ De Boor and
Lynch (1966), subject to the interpolation constraints.
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Figure 6: Top Row: Three randomly initialized neural networks trained to interpolate the five
red points with minimum path-norm. Bottom Row: Three randomly initialized two-output neural
networks trained to interpolate a multi-task dataset with minimum path-norm. The labels for the first
task are the five red points shown while the labels for the second were randomly randomly sampled
from a standard Gaussian distribution.

7.2 Additional Experiments from Section 4

All of our experiments were carried out in PyTorch and used the Adam optimizer. We trained
the models with mean squared error loss and included the representational cost

∑K
k=1 ∥vk∥2 as a

regularizer with λ = 1e − 5 for the univariate experiments and λ = 1e − 3 for the multi-variate
experiments. All models were trained to convergence. The networks were initialized with 20 neurons
for the univariate experiments and 800 neurons for the multi-variate experiments. For solving (23)
we utilized CVXPy Diamond and Boyd (2016).

Figure 7 below provides additional experimental results to accompany the discussion in Section 4.
The results demonstrate that our observations from Section 4 are true setting across multiple random
initializations of the network.

7.3 High Dimensional Multivariate Experiments

In this section we provide additional experiments in a higher dimensional setting to demonstrate
how multi-task solutions can differ drastically from single-task. For these experiments we consider
a student-teacher model. In particular, we generated 25 random ReLU neurons with unit norm
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Figure 7: We present three more trials of the same experiment from Section 4. The top row
corresponds to the solution of the fist output of a multi-task neural network with T = 101 tasks. The
first task is the original (i.e. interpolating the red points), the other 100 are randomly sampled i.i.d
from a Bernoulli distribution with equal probability for one and zero. The second row corresponds to
the solutions obtained by solving (23). We see again that for the T = 101 multi-task neural network
the learned function is consistent across multiple random initializations. Moreover, those solutions
are also similar to the ones obtained by solving (23). These results suggest that with many diverse
tasks the contributions of any one task on the optimal neurons are not significant.

input weights wt ∈ R5 for t = 1, . . . , 25. These served as “teacher" neurons. We then generated a
multi-task dataset {xi,yi}20i=1 where each xi ∈ R5 and sampled i.i.d from a standard multi-variate
Gaussian distribution. The labels yi ∈ R25 were then generated according to the teacher ReLU
neurons, that is,

yit = (wT
t xi)+.

Therefore, each task is generated by a single-index model. We then trained 25 student single-output
ReLU neural networks on each tasks as well as a 25-output multi-task ReLU neural network on all
the tasks. Both were trained to minimize MSE loss and were regularized a weight decay parameter of
λ = 1e− 4. All networks nearly interpolated the data with MSE value less than 1e− 4. Figure 10
plots the learned single task networks evaluated along a a unit norm vector w ∈ R5. From the plots it
is clear that the single task networks recover the ground truth function (i.e. a single ReLU neuron) as
it looks like a ReLU ridge function in every direction. Moreover, we observed a an average sparsity
of five active neurons across all the trained single-output networks.

In the Figure 9 we also plot the output of the tth function from the leanred multi-task network
evaluated at the same w. In this case, the functions look very different from a single-index model
and do not recover the ground truth data-generating function for the respective task. Figure 8 shows
the sparsity pattern of the weights for each neuron with roughly 150 neurons contributing to all the
outputs.
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Figure 8: Sparsity pattern for output weight matrix of the multi-task student network. The kth column
in the matrix corresponds to the output weight of the kth neuron. We observe that each neuron either
contributes to all the tasks or none.
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Figure 9: Multi-task solutions along the same direction w. Here ft denotes the tth output of the
multi-task network. We observe that unlike Figure 10 the functions do not look like ReLU ridge
functions and have variation in multiple directions.
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Figure 10: The 25 single-task networks evaluated along the same direction w as in Figure 9. Here ft
denotes the tth single-task network trained on task t according to the data generating function above.
Here as we expect the single-task nets are ReLU ridge functions. We note that these observations
hold across different choices of the one-dimensional subspace w.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our claims are supported by the theory/analysis and numerical experiments in
Sections 3 and 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations and future research directions which could address
these limitations in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The assumptions of all theorems and analysis are stated, and detailed proofs
are provided either in the main body of the paper or in the appendix (in which case the
relevant appendix section is clearly referenced within the paper).
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The relevant details needed to reproduce our (simple) numerical experiments
are provided in Appendix 7.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: Our experiments use only synthetically-generated data, and the procedure by
which the data is generated is described in each case, so there is no real-world data to share.
The numerical experiments are also very simple to run and we judge that providing code
for them is not necessary: using the details provided in Appendix 7, they should be easy to
manually reproduce.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All relevant training details to reproduce the experiments are included in either
the figures where the results are presented or in Appendix 7.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Our experiments are included to visually illustrate the types of functions
learned by multi-task neural networks with weight decay regularization, and as such, we do
not report on error or other metrics since this is not what these experiments are intended to
highlight.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: Our experiments are computationally very simple to execute on any computer
architecture and do not require GPUs, so we judge that these details are not important to
include.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our paper involves no human subjects, no real-world data (hence no privacy
concerns), and no other negative societal consequences that we are aware of.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [NA]

Justification: Our investigation here is primarily theoretical and, while we hope our work
will contribute toward developing a stronger mathematical theory of deep learning (which
may contribute toward the safety and robustness guarantees of machine learning at large),
we are not aware of any direct application of our results here in a way that would have a
substantial societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The computational packages used (PyTorch and CVXPy Diamond and Boyd
(2016)) are both open-source, and are explicitly mentioned and credited.

24



Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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