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ABSTRACT

Estimating the causal effect of time-varying treatments on survival outcomes in
large observational studies is computationally demanding, particularly when out-
comes are rare. The iterative conditional expectation (ICE) estimator within the
g-formula framework is effective but becomes computationally burdensome when
bootstrapping is used for variance estimation. Additionally, the rarity of outcomes
at each time point can create extreme class imbalance, leading to instability and
convergence issues in logistic regression and related models. To address these
challenges, we propose a novel case-control enhanced g-formula that integrates
case-control sampling with ICE estimation. By strategically selecting informative
subsets of data and applying appropriate reweighting, the method mitigates class
imbalance, improves estimation stability, and substantially reduces computational
cost, all while preserving consistency and asymptotic efficiency. We evaluate the
method through simulations and validate it using a large-scale EHR cohort study
on social and behavioral determinants of health (SBDH) and suicide risk, demon-
strating its effectiveness for modeling rare outcomes in longitudinal data.

1 INTRODUCTION

Many observational studies in causal inference aim to estimate the causal effect of a time-varying
treatment on a survival outcome. Examples include evaluating the impact of a long-term medication
regimen on the survival of patients with chronic diseases (Hernán & Robins, 2006), assessing the
effect of smoking cessation over time on lung cancer incidence (Kenfield et al., 2008), and studying
the influence of lifestyle interventions on cardiovascular event-free survival (Knowler et al., 2002).

Under the standard causal assumptions of consistency, positivity, and exchangeability given mea-
sured confounders, the counterfactual probabilities of the time-to-event outcomes can be identified
using the g-formula (Robins, 1986). Two widely-used forms of the g-formula are: (1) an expectation
weighted by the joint distribution of covariates, treatments, and outcomes, and (2) an iterative con-
ditional expectation over time. A straightforward approach to constructing estimators based on the
g-formula is to first estimate each component and then plug these estimates into the g-formula. The
estimator based on the first form of the g-formula is known as the Non-Iterative Conditional Expec-
tation (NICE) estimator, which typically requires modeling the joint distribution of the confounders,
treatments, and outcomes over time. The estimator based on the second representation is the Itera-
tive Conditional Expectation (ICE) estimator, which relies on a sequence of conditional expectation
models at each time point but avoids specifying the full joint distribution of confounders.

A major challenge in applying both the NICE and ICE estimators in large observational studies
is the substantial computational burden, particularly when the outcome of interest is rare (King
& Zeng, 2001). For example, in our analysis of a large-scale cohort study examining the effect
of social determinants of health (SDOH) on suicide with around 130k individuals, fitting logistic
regression models at each time step is computationally intensive. This difficulty arises primarily
from the rarity of suicide and the large sample size, both of which contribute to slow convergence
when estimating models for binary outcomes. In addition, because closed-form expressions for
standard errors are difficult to derive in this setting, bootstrap methods are commonly used, further
increasing the computational burden through repeated resampling and model fitting. This issue
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is particularly acute for g-formula methods, where models must be fit repeatedly across multiple
time points, compounding the overall cost. These considerations highlight the critical importance
of developing computationally efficient methods. To address this challenge, we introduce a case-
control design, an established and efficient approach to studying rare outcomes due to its reduced
sample size requirements and cost-effectiveness (Breslow, 1996; van der Laan, 2008). Although
the outcome is rare relative to controls at each time point, the large overall sample size ensures
that a sufficient number of cases are observed for reliable estimation. In this setting, case-control
sampling offers a promising solution. Traditionally, case-control studies involve sampling a fixed
number of cases (individuals with the outcome) and a matched set of controls (individuals without
the outcome), enabling efficient estimation of parameters such as odds ratios while substantially
reducing computational cost. Building on this idea, we propose a novel integration of the case-
control design with the g-formula to handle time-varying treatments and survival outcomes. By
leveraging the sampling efficiency of the case-control approach, our method significantly reduces
computation time while maintaining estimator consistency. We demonstrate the effectiveness of the
proposed method through extensive simulation studies and a real data application involving suicide
as a rare outcome.

2 RELATED WORK

A range of methodological frameworks have been developed to estimate causal effects in longi-
tudinal settings where treatments, covariates, and outcomes evolve over time. These include the
g-formula, marginal structural models (MSMs), and structural nested models (SNMs), which are
designed to address challenges such as time-varying confounding and to evaluate causal effects
under history-dependent treatment strategies (Hernán & Robins, 2020; Wen et al., 2021; Robins
et al., 2000; Vansteelandt & Joffe, 2014). All three approaches aim to correct for time-dependent
confounding that arises when past exposures influence subsequent covariates, but they differ in
how they achieve this goal. MSMs rely on inverse-probability weighting to construct a pseudo-
population in which treatment assignment is independent of past confounders. These models are
relatively straightforward to implement using standard regression tools and yield marginal causal
effects. However, their performance can be compromised by highly variable or extreme weights,
especially in settings with limited overlap, leading to unstable or biased estimates. SNMs estimate
causal effects via g-estimation of blip functions, which quantify the change in the counterfactual
outcome induced by deviating from a reference treatment path at each time point, conditional on the
observed history. With correctly specified treatment and outcome models, g-estimation attains the
semiparametric efficiency bound and yields history-specific causal contrasts. In practice, however,
SNMs rely on computationally demanding, sometimes unstable iterative equations, are highly sen-
sitive to misspecification of either model, and yield blip parameters that have limited direct clinical
interpretability.

The parametric g-formula models each component of the data-generating process and can be imple-
mented through two algebraically equivalent forms which will be discussed in Section 3. Although
it requires correct specification of all sub-models, the g-formula avoids the weight instability inher-
ent to MSMs and the iterative g-estimation burden of SNMs, accommodates both continuous and
time-to-event outcomes, and provides clear population-level contrasts for complex static or dynamic
treatment strategies. Because of this finite-sample stability, modelling flexibility, and transparent
counterfactual interpretation, we use the g-formula to examine how evolving social determinants of
health influence suicide-related outcomes over time.

In addition to these well-established frameworks, subsampling has emerged as an important strategy
for addressing the computational challenges inherent in large-scale data. Rather than analyzing the
entire cohort, one can draw informative subsets of the data to reduce computational burden while still
obtaining valid inference. In the rare-event settings, it has been shown that retaining all cases while
subsampling a sufficiently large number of controls, with appropriate reweighting yields estimators
that are consistent and, under certain asymptotic regimes, have the same asymptotic distribution as
the full-sample maximum likelihood estimator (Wang, 2020). This reflects that when outcomes are
highly imbalanced, most of the information comes from the rare cases, so additional controls con-
tribute little beyond a certain point. Consequently, subsampling provides a principled way to extend
g-formula–based methods and related estimators to massive datasets where full-sample estimation
is computationally prohibitive.
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3 METHODOLOGY

Study Design We consider a longitudinal study with discrete time points j = 0, . . . , T , where
individuals are followed over time. At each time j, covariates Lj and treatment Aj are observed,
followed by the censoring indicator Cj+1 and event indicator Yj+1. Censoring (Cj+1 = 1) indicates
that the individual is no longer observed from time j + 1 onward. This may occur in practice due
to loss to follow-up, withdrawal, or administrative censoring at the end of the study period. The
survival outcome is represented such that if an individual dies at time k, then Yk = 1 and Yj = 0
for all j < k. The data are temporally ordered as (Lj , Aj , Cj+1, Yj+1), with Y0 = C0 = 0 and
L̄−1 = Ā−1 = ∅ by convention. As an illustration, an individual who dies at time 2 would have the
observed data sequence (L−1 = ∅, A−1 = ∅, C0 = 0, Y0 = 0, L0 = l0, A0 = a0, C1 = 0, Y1 =
0, L1 = l1, A1 = a1, C2 = 0, Y2 = 1).

We use Y g
t to denote the potential outcome at time t had an individual followed a deterministic

treatment strategy g. A deterministic strategy g specifies the treatment Aj to be assigned at each time
j based on the observed history up to that point, (L̄j , Āj−1). Our goal is to identify and estimate
E(Y g

t ), the mortality risk by time t if all individuals in the population were to follow strategy g.

G-formula Identification of E(Y g
t ) using the g-formula (Robins, 1986) relies on three key as-

sumptions:
1. Consistency: If an individual’s observed treatment history matches the strategy g up to time j,
i.e., Āj = Āg

j , then their observed covariates and outcomes also equal the counterfactuals: L̄j = L̄g
j

and Ȳj+1 = Ȳ g
j+1.

2. Exchangeability: At each time j, future counterfactual outcomes are independent of treatment
and censoring decisions, conditional on past covariate and treatment history and being uncensored
and event-free:

(Y g
j+1, . . . , Y

g
J ) ⊥ (Aj , Cj+1) | L̄j = l̄j , Āj−1 = āgj−1, Cj = Yj = 0.

3. Positivity: If a covariate and treatment history occurs with positive probability under the observed
data, then the probability of receiving the treatment assigned by strategy g and remaining uncensored
at the next time must also be positive:

fL̄j ,Āj−1,Cj ,Yj
(l̄j , ā

g
j−1, 0, 0) > 0 ⇒ fAj ,Cj+1|L̄j ,Āj−1,Cj ,Yj

(agj , 0 | l̄j , āgj−1, 0, 0) > 0.

Under these assumptions, the counterfactual risk E(Y g
T ) can be identified via the g-formula:

E(Y g
T ) =

∑
l̄T−1

T∑
t=1

P (Yt = 1 | Yt−1 = Ct = 0, L̄t−1 = l̄t−1, Āt−1 = āgt−1) (1)

t−1∏
s=0

P (Ys = 0 | Ys−1 = Cs = 0, L̄s−1 = l̄s−1, Ās−1 = āgs−1)f(ls | Ys = Cs = 0, L̄s−1 = l̄s−1, Ās−1 = āgs−1).

Equation (1) is known as the non-iterative conditional expectations (NICE) representation. Alterna-
tively, using iterated conditional expectations (ICE), E(Y g

T ) can be identified as:

E(Y g
T ) = EfL0

(
EfY1

[
Y1 + · · ·EfYT−1

{
YT−1(1− YT−2) + EfLT−1

[
EfYT

{YT (1− YT−1) |

ȲT−1, CT = 0, L̄T−1, ĀT−1 = Āg
T−1} | ȲT−1, CT−1 = 0, L̄T−2, ĀT−2 = Āg

T−2

]
|

ȲT−2, CT−1 = 0, L̄T−2, ĀT−2 = Āg
T−2

}
... | C1 = 0, A0 = Ag

0, L0

])
.

(2)

In this paper, we focus on the ICE formula (2). However, our methods are also applicable to the
NICE estimator, as demonstrated in our simulation studies. Based on (2), an algorithm for estimating
E(Y g

T ) is presented in Algorithm A1 in Appendix A2. If the parametric models in lines 1 and 6 in
Algorithm A1 are correctly specified, this estimator will be consistent.

An Illustrative Example In Algorithm A1, we estimate a model at each time point using all
available samples. In large cohorts with rare outcomes, the excess of controls makes computation
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intensive, especially with multiple time points and bootstrapping. To improve efficiency, we propose
to apply Algorithm A1 to a case-control sample that retains all cases while subsampling controls at
each time point, reducing computational burden without sacrificing estimation reliability.

For ease of illustration, we consider two time points, t = 0, 1, in the absence of censoring. Suppose
the total number of individuals is N , among whom C experience the event. Let ct denote the number
of cases who die at time t, so that C = c0+ c1. At each time t, we include all cases who die at t and
randomly sample Jct controls with replacement from individuals alive at t, where J is the sampling
ratio. Thus, the total case-control sample size is (J+1)(c0+ c1). If an individual is sampled at both
time points, they are treated as separate observations.

Suppose we aim to estimate the expectation of a covariate X . The most straightforward estimator
from the full sample would be Ê(X) = N−1

∑N
i=1 Xi. Now we would like to draw a subsample

and use the subsample to obtain a valid estimate. The original sample is divided into three non-
overlapping groups: G0 = {i : Y0 = 1} (those who die at t = 0); G1 = {i : Y1 = 1, Y0 = 0} (those
who die at t = 1); and G2 = {i : Y1 = 0} (those alive at t = 1). Table 1 gives a description of the
subsample. Here, the column “weight” gives the weight associated with each category, the column
“group” lists the groups included in the category, and the column “count” indicates the number of
times a person in this category is counted. Using time 0 control as an example, the probability that a
person alive at time 0 is selected into the subsample is (Jc0)/(N − c0). Therefore, the count is the
product of the weight and this selection probability.

Table 1: Case-control sample breakdown with two time points and no censoring

size weight group count

time 0 case c0 w0 G0 w0 · 1
time 0 control Jc0 m0 G1, G2 m0 · Jc0

N−c0
time 1 case c1 w1 G1 w1 · 1
time 1 control Jc1 m1 G2 m1 · Jc1

N−c0−c1

An individual in G0 is always included and thus contributes w0 · 1. An individual in G1 may appear
as a time 0 control with probability Jc0/(N − c0) and as a time 1 case with probability 1, so its
expected contribution is w1 · 1 +m0 · Jc0/(N − c0). An individual in G2 may appear as a time 0
control with probability Jc0/(N − c0) and as a time 1 control with probability Jc1/(N − c0 − c1),
giving an expected contribution of m1 ·Jc1/(N − c0− c1)+m0 ·Jc0/(N − c0). In the full sample,
each individual is counted exactly once. To ensure that the case-control subsample is representative
of the full sample, we require that the expected contribution per individual is equal across groups.
This balancing condition leads to

w0 = w1 +m0
Jc0

N − c0
= m1

Jc1
N − c0 − c1

+m0
Jc0

N − c0
,

which reduces to

w1 = m1
Jc1

N − c0 − c1
, w0 − w1 = m0

Jc0
N − c0

.

Since there are 2 equations with 4 parameters (w0, w1,m0,m1), we have 2 degrees of freedom.
If we let w0 = 1/N , then all the weights add up to 1: c0w0 + c1w1 + Jc1m1 + Jc0m0 = 1.
There is one degree of freedom remaining: if we further let w1 = 1/N , then m0 = 0,m1 =
(N − c0− c1)/(JNc1). It is also possible to set w1 to other values and obtain corresponding values
of m0 and m1. Additional examples of weight combinations are provided in the Appendix A3.

When we estimate a model, such as fitting a logistic regression, we are actually solving model
parameters from estimating equations. In many cases, the estimating equation is from the maximum
likelihood estimation process by setting the gradient to zero. Now we verify that the above weighting
approach also applies to estimating equations. We denote O∗ as the whole population, and O =
(O0c, O0m, O1c, O1m) as the case-control sample. Suppose we have E∗

0{S0(O
∗)} = 0, where E∗

0
means the expectation is taken with respect to the true distribution of the whole population, and S0 is
the original estimating equation. We let S(O) = c1w1S0(O1c)+Jc1m1S0(O1m)+c0w0S0(O0c)+

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Jc0m0S0(O0m), be the weighted estimating equation for the case-control sample. Then it actually
holds that

E{S(O)} = w0NE∗
0{S0(O

∗)} = 0, (3)

where the expectation E is taken with respect to the sampling distribution induced by the case-
control sampling design. The proof of (3) is relegated to the Appendix A4. Therefore, with appro-
priate weights, E∗

0{S0(O
∗)} = 0 if and only if E{S(O)} = 0, implying that the model parameters

can be estimated by solving Ê{S(O)} = 0 using the case-control sample.

General Results with Censoring Now we extend our setting to include k time points, t =
0, 1, ..., k − 1, as well as censoring. The number of censored individuals at time t is denoted by
st. We also allow the sampling ratios Jt, Kt to vary across time points. At each time point t,
we sample Ktct from people who are censored at time t except for the last time point, and sam-
ple Jtct controls from people who are alive at time t. Then the case-control sample has a size
of

∑k−1
t=0 ct +

∑k−1
t=0 Jtct +

∑k−2
t=0 Ktct. We do not sample censored individuals at the last time

point because their Yk−1 is unobserved, preventing their use in fitting logistic or other classification
models in the first step of Algorithm A1. However, at earlier time points, censored individuals can
contribute to estimating their counterfactual risk, so they may be included.

The population is partitioned into 2k + 1 groups: G0, G1, . . . , G2k−1, G2k, where G2i is the group
of people who are censored at time i for i = 0, . . . , k − 1, G2i+1 is the group of people who die at
time i for i = 0, . . . , k − 1, and G2k is the group of people who are alive at time k − 1. Table A1
in Appendix A1 gives a description of the subsample with k time points, with the “count” column
constructed in the same manner as in Table 1. We use wt to denote the weights for cases, mt for
sampled controls, and ℓt for sampled censored individuals at time t.

Requiring that each individual in groups G0 through G2k be counted the same number of times
(detailed in Appendix A1) leads to the following conditions:

wt = ℓt
Ktct
st

, t = 0, . . . , k − 1,

wk−1 = mk−1
Jk−1ck−1

N −
∑k−1

j=0 cj −
∑k−1

j=0 sj
,

wt − wt+1 = mt
Jtct

N −
∑t

j=0 cj −
∑t

j=0 sj
, t = 0, . . . , k − 2.

(4)

Since there are 2k equations with 3k parameters (w0, . . . , wk−1,m0, . . . ,mk−1, ℓ0, . . . , ℓk−1), we
have k degrees of freedom. If we let w0 = 1/N , then all the weights add up to 1:

k−1∑
t=0

ctwt +

k−1∑
t=0

Jtctmt +

k−1∑
t=0

Ktctℓt = w0N = 1.

Letting Ktct = st for t = 0, . . . , k − 1, we have ℓt = wt. This implies that, at each time point
t, if all censored individuals are included, they should be assigned the same weights as the cases at
time t. We adopt this design in our paper. Under this setup, we have k equations for 2k unknowns,
resulting in infinitely many possible solutions. In this paper, we consider one specific set of weights:
ℓ0 = w0 = c0

N−s0
, m0 = 1

J
N−c0−s0
N−s0

, ℓt = wt = mt = 0, for t = 1, . . . , k−1. It is straightforward
to verify that this set of weights satisfies (4). This choice corresponds to a simple weighting scheme
that includes only individuals from time t = 0. Note that in Algorithm A1, which applies to the
complete data, the current time point k + 1 can be treated as t = 0 when fitting the models in line
6. Additionally, because a case at a later time point may be sampled as a control at an earlier time
point, an individual may receive different weights across time. The corresponding ICE estimator
based on the constructed case-control sample is presented in Algorithm 1.

Theorem 1. The estimator from Algorithm 1 is consistent for E(Y g
T ) under the same assumptions

that ensure the consistency of the ICE estimator in Algorithm A1.

The proof of Theorem 1 is in Appendix A5.
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Algorithm 1 Case-Control Sampling and Estimation Procedure with Censoring

1: Generate a case-control sample:
2: for each time point t do
3: Keep all ct cases at time t (i.e., those who die at time t).
4: if t < k − 1 then
5: Randomly draw Jtct controls from those alive at time t with replacement.
6: Assign weight wt to each case at time t.
7: Assign weight wt to each censored individuals at time t.
8: Assign weight mt to controls sampled at time t.
9: else if t = k − 1 then

10: Randomly draw Jk−1ck−1 controls from those alive (excluding censored individuals) at
time k − 1 with replacement.

11: Assign weight wk−1 to each case at time k − 1.
12: Assign weight mk−1 to controls sampled at time k − 1.
13: end if
14: end for
15: Fit a weighted regression of YT on L̄T−1 and ĀT−1 among individuals with YT−1 = CT = 0

using the associated weights, and estimate parameter θT,T−1.
16: Obtain predicted values ĥg

T,T−1 from

E(YT | YT−1 = CT = 0, L̄T−1, ĀT−1 = Āg
T−1; θ̂T,T−1)

by fixing ĀT−1 = Āg
T−1 among individuals with YT−1 = CT−1 = 0. Set q = 2.

17: while q ≤ T do
18: Let k = T − q.
19: Define

Q̂g
T,k+1 =

{
ĥg
T,k+1 if Yk+1 = 0,

1 if Yk+1 = 1.

20: Fit a weighted regression of Q̂g
T,k+1 on L̄k and Āk among individuals with Yk = Ck+1 = 0

using the associated weights, and estimate parameter θT,k.
21: Obtain predicted values ĥg

T,k from

E(Q̂g
T,k+1 | Yk = Ck+1 = 0, L̄k, Āk = Āg

k; θ̂T,k)

by fixing Āk = Āg
k among individuals with Yk = Ck = 0.

22: Set q = q + 1.
23: end while
24: Compute the weighted average of ĥg

T,0 using the generated weights to estimate E(Y g
T ).

4 NUMERICAL EXAMPLES

4.1 SIMULATED LONGITUDINAL DATA

We conducted simulation studies to compare the computational cost and estimation efficiency of
the proposed case-control estimator with its complete-data counterpart. The sampling ratios were
set at 1 : 5, 1 : 10, and 1 : 20. Each dataset contained N = 30, 000 individuals followed over
six time points. Baseline covariates Lb included four categorical variables, and at each time t, the
data consisted of ten binary time-varying covariates Lt ∈ R10, a binary treatment indicator At, a
binary censoring indicator Ct, and a death indicator Yt. The observed data for each individual were
(Lb, L0, A0, C1, Y1, . . . , L5, A5, C6, Y6). A first-order (lag-1) dependence structure was assumed
for covariates, censoring, and outcomes, and all variables were generated at the individual level
using logistic regression models, following the design of Wen et al. (2021).

The details of data generation are as follows. Baseline covariates Lb was generated from multino-
mial distributions with the probability vectors (1, 2), (1, 1, 1, 1, 1, 1), (5, 2, 1, 1, 4), and (2, 3, 1, 4),

6
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respectively; L0 ∼ Ber(0.5), and A0 ∼ Ber
(
expit(L⊤

0 η)
)
. Moreover, for t ≥ 1,

Ct ∼ Ber
(
expit(−6 +At−1 + γ⊤Lt−1)

)
, Yt ∼ Ber

(
expit(−6 + 2At−1 + β⊤Lt−1)

)
,

Lt ∼ Ber
(
expit(ηAt−1 +MLt−1)

)
, At ∼ Ber

(
expit(At−1 + α⊤Lt)

)
,

where the entries of the coefficient vectors α, β, γ, η, and the matrix M were independently gen-
erated from a standard normal distribution and then fixed throughout the simulations. This setting
yields a prevalence rate of about 1%; results for additional scenarios with higher prevalence rates
are provided in Appendix A6. We were interested in estimating the counterfactual risks under two
deterministic treatment strategies: always treated and never treated, i.e., Ā5 = (1, 1, 1, 1, 1, 1) and
Ā5 = (0, 0, 0, 0, 0, 0).

We simulated 100 independent datasets under the same parameter configuration. For each dataset,
we performed patient-level bootstrap resampling with B = 100 replicates and applied both Com-
plete and Case-control versions of the NICE and ICE estimators with logistic regression. We also
explored more computationally intensive machine learning approaches with superlearner, an ensem-
ble framework that combines multiple candidate algorithms to optimize predictive performance. For
each estimator, we computed the bootstrap mean and standard deviation of the estimated target quan-
tity. For the ICE method with logistic regression, we followed the R package gfoRmula (McGrath
et al., 2020) and implemented our case-control version. Superlearner models were implemented
using the R package SuperLearner (Polley et al., 2019) with base learners supporting weighted
samples and probabilistic outcomes, including logistic regression and XGBoost.

Computation Time Computation times for logistic regression and superlearner were summarized
in Table 2 and Table A2. Each entry is the average of 10,000 analyses, that is, 100 bootstrap re-
samples applied to each of 100 independently simulated data sets. For the case-control version we
report both (i) the total runtime, which includes construction of the case-control sample plus model
fitting, and (ii) the model-fitting time alone, allowing the additional cost of the sampling step to be
isolated. Each bootstrap resample and model fitting was conducted on a Linux HPC using a single
node, equipped with either an Intel Skylake or AMD Epyc processor (Epyc64 or Epyc128 architec-
ture). Each task was allocated 8 CPU cores and 4 GB of memory. The analyses were performed
using R version 4.4.1, loaded via the module environment.

Table 2: Summary of the computation time (in secs) with logistic regression

NICE (Ā = 0) ICE (Ā = 0̄) NICE (Ā = 1̄) ICE (Ā = 1̄)

Complete 11.79 (2.27) 4.56 (0.95) 11.83 (2.32) 4.26 (0.84)

(model-fitting time)
Case-control (J = 20) 6.61 (1.90) 1.78 (0.57) 6.64 (2.00) 1.72 (0.73)
Case-control (J = 10) 5.83 (1.74) 1.17 (0.60) 5.83 (2.17) 1.14 (0.73)
Case-control (J = 5) 5.89 (1.34) 0.83 (0.49) 5.90 (1.54) 0.80 (0.54)

(total runtime)
Case-control (J = 20) 8.09 (2.66) 2.60 (1.20) 8.11 (2.76) 2.55 (1.46)
Case-control (J = 10) 6.91 (2.34) 1.94 (1.22) 6.94 (2.99) 1.94 (1.47)
Case-control (J = 5) 6.77 (1.75) 1.54 (1.01) 6.79 (1.95) 1.50 (1.01)

Here the computation time (Table 2 and Table A2) referred to the average runtime for a single
subsample run. However, because we used the bootstrap to estimate standard errors, the total com-
putation time for one Monte Carlo run scaled linearly with the number of bootstrap replications. As
expected, the overall computation time increased considerably when using superlearner compared to
the logistic regression results, due to the added complexity of ensemble learning. Our case-control
approach achieved a dramatic reduction in computation time relative to the complete-data implemen-
tation. These results highlighted the practical efficiency and scalability of our method, particularly in
scenarios involving complex models or large-scale datasets where full-sample estimation becomes
computationally demanding.

Risk Estimates Table 3 presents the estimates of the ICE and NICE estimators along with their
bootstrap standard errors. The results indicate that increasing J from 5 to 20 reduces the standard

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Summary of the average of the ICE and NICE estimates based on bootstrap mean (multi-
plied by 100), with average of bootstrap SE in parentheses

ICE NICE
Case-control Complete Case-control Complete

Time (J = 5) (J = 10) (J = 20) (J = 5) (J = 10) (J = 20)

Ā = 1̄
1 2.15 (0.19) 2.11 (0.17) 2.09 (0.15) 2.08 (0.14) 2.22 (0.10) 2.21 (0.09) 2.21 (0.08) 2.15 (0.08)
2 3.97 (0.21) 3.94 (0.19) 3.93 (0.18) 3.91 (0.17) 3.69 (0.13) 3.68 (0.12) 3.67 (0.12) 3.57 (0.11)
3 5.44 (0.22) 5.40 (0.21) 5.38 (0.20) 5.36 (0.19) 4.96 (0.16) 4.95 (0.15) 4.94 (0.15) 4.80 (0.14)
4 6.55 (0.24) 6.49 (0.22) 6.46 (0.21) 6.43 (0.20) 6.17 (0.20) 6.16 (0.19) 6.15 (0.18) 5.97 (0.17)
5 7.69 (0.26) 7.62 (0.24) 7.59 (0.23) 7.55 (0.22) 7.39 (0.23) 7.38 (0.22) 7.37 (0.22) 7.15 (0.20)
6 8.82 (0.27) 8.74 (0.25) 8.70 (0.24) 8.66 (0.23) 8.61 (0.27) 8.59 (0.26) 8.58 (0.25) 8.33 (0.23)

Ā = 0̄
1 0.29 (0.05) 0.29 (0.05) 0.30 (0.05) 0.30 (0.04) 0.31 (0.03) 0.31 (0.03) 0.31 (0.03) 0.30 (0.03)
2 0.58 (0.08) 0.59 (0.08) 0.59 (0.07) 0.59 (0.07) 0.56 (0.05) 0.56 (0.05) 0.56 (0.05) 0.55 (0.05)
3 0.87 (0.11) 0.87 (0.10) 0.87 (0.10) 0.87 (0.10) 0.80 (0.07) 0.80 (0.07) 0.80 (0.07) 0.78 (0.07)
4 1.13 (0.14) 1.13 (0.13) 1.13 (0.12) 1.13 (0.12) 1.02 (0.09) 1.02 (0.09) 1.02 (0.09) 0.99 (0.09)
5 1.47 (0.17) 1.46 (0.16) 1.46 (0.15) 1.45 (0.14) 1.24 (0.11) 1.24 (0.11) 1.24 (0.11) 1.20 (0.10)
6 1.82 (0.19) 1.80 (0.18) 1.79 (0.17) 1.78 (0.16) 1.45 (0.13) 1.45 (0.13) 1.45 (0.13) 1.41 (0.12)

errors, bringing them closer to those from the complete-data scenario. The boxplots for the boot-
strap mean across the 100 simulated datasets were given in Figure 1. For both the ICE and NICE
estimators, the case-control versions yield results comparable to their complete-data counterparts.
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Figure 1: Risk estimates for always or never exposed to treatment.

4.2 REAL-WORLD LONGITUDINAL DATA

We applied the proposed case-control ICE estimators to a real-world cohort of 127,399 U.S. veterans
who were discharged from short-term psychiatric hospital admissions at Veterans Health Adminis-
tration (VHA) hospitals between January 1, 2016, and December 31, 2017. We followed up these
patients until the end of December 31, 2018 or the event of interest, whichever comes first. Here we
choose death by suicide (440 Veterans [0.35%]) as the event of interest and presence of any social or
behavioral determinants of health (SBDH) (Bompelli et al., 2021) as treatment A. Time-fixed base-
line covariates (Lb) include race, gender, age groups1 and marital status (Table A6 in Appendix)
while time-varying covariates (Lt) include 17 clinical comorbidities and 7 mental health disorders.
The analysis was conducted over five consecutive 6-month intervals. Following the work by Mitra
et al. (2023), we extracted SBDH information from both structured data (International Classifica-
tion of Diseases [ICD] codes, stop codes) and unstructured data (clinical notes, using a fine-tuned
transformer-based (Vaswani et al., 2017) deep-learning model). More about SBDH, clinical comor-
bidites and mental health disorders are available in Appendix A7.

1Although age changes over time, this is deterministic and hence we consider this as a time-fixed covariate.
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Given the low incidence rate of suicide in our cohort (718 cases out of 125, 928 patients across 5
time points, as detailed in Table A5 in Appendix), we adopted an adaptive sampling ratio across
different time points. For each case at time point from 1 to 5, 30, 30, 50, 80, and 80 control patients
were sampled, respectively. Table 4 reports computation times, showing that the case-control ICE
estimator runs in roughly one-quarter of the time needed for the complete-data version. Table 5
shows the estimated risks. The point estimates are similar for both methods, but the case-control
approach has a larger standard error at the last time point.

Table 4: Application: Computation time of ICE method with complete or case-control data (in secs)

Ā = 0̄ Ā = 1̄

Complete 24.66 (11.98) 21.25 (13.35)
Case-control (total runtime) 5.73 (1.77) 5.70 (1.83)
Case-control (model-fitting time) 3.64 (1.63) 3.58 (1.77)

Table 5: Application: Risk estimates from 100 bootstrap samples (standard deviations in parenthe-
ses); all values multiplied by 100

Ā = 0̄ Ā = 1̄

Time Complete Case-control Complete Case-control

1 0.12 (0.02) 0.12 (0.02) 0.07 (0.01) 0.07 (0.01)
2 0.19 (0.02) 0.20 (0.03) 0.14 (0.01) 0.15 (0.02)
3 0.24 (0.03) 0.25 (0.03) 0.23 (0.02) 0.24 (0.02)
4 0.27 (0.03) 0.28 (0.03) 0.31 (0.02) 0.33 (0.02)
5 0.29 (0.03) 0.31 (0.05) 0.36 (0.02) 0.40 (0.06)

5 DISCUSSION

In this paper, we introduced a case-control sampling framework to improve the computational ef-
ficiency of estimating counterfactual risks under time-varying treatment regimes. Our numerical
experiments demonstrate that the proposed approach substantially reduces computation time rela-
tive to complete-data implementations, while maintaining comparable estimation accuracy. In prac-
tice, bootstrap resampling is widely used to estimate standard errors, often with B = 1000 or more
replications. Even a modest per-run speedup can translate into hours of savings across all replica-
tions. This advantage becomes even more significant in online or routinely updated analyses, where
models must be refitted repeatedly as new data arrive. Our framework therefore provides a scalable
alternative without sacrificing consistency. The method is also highly flexible: the construction of
weights is not unique, and different weighting schemes can be tailored to specific analytic goals.
For instance, one may choose whether to include censored individuals, or whether to sample cases
and controls from future time points. This flexibility raises a natural question for future research:
which weighting strategies yield the most efficient estimators in terms of variance when the number
of sampled controls is comparable to the number of cases? Prior work on optimal sampling strate-
gies in logistic regression models (e.g., Fithian & Hastie, 2014; Wang et al., 2021) provides useful
theoretical guidance.

In practice, the iterative fitting procedure can cause risk-estimate bias to accumulate over time, par-
ticularly in later periods. The main culprit is the difficulty of fitting logistic (or similar) models when
outcomes are rare, which leads to estimation instability. A pragmatic fix is to use penalized meth-
ods, for example, Firth’s logistic regression, at each step to mitigate the bias. More flexible machine
learning models could also be integrated into the ICE framework to boost predictive accuracy and
robustness in high-dimensional or otherwise complex settings. Beyond ICE, the proposed weight-
ing scheme can also be naturally incorporated into doubly robust estimators, such as longitudinal
TMLE (van der Laan & Gruber, 2012) or AIPTW, by applying the weights to the influence-function
contributions. Exploring these extensions represents an important direction for future research.
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APPENDIX

You may include other additional sections here.

A1 CASE-CONTROL SAMPLE BREAKDOWN WITH k TIME POINTS AND
CENSORING

Table A1: Case-control sample breakdown with k time points and censoring

size weight group count

time 0 censored K0c0 ℓ0 G0 ℓ0 · K0c0
s0

time 0 case c0 w0 G1 w0 · 1
time 0 control J0c0 m0 G2, . . . , G2k m0 · J0c0

N−c0−s0

time 1 censored K1c1 ℓ1 G2 ℓ1 · K1c1
s1

time 1 case c1 w1 G3 w1 · 1
time 1 control J1c1 m1 G4, . . . , G2k m1 · J1c1

N−c0−s0−c1−s1
...

...
...

...
...

time k − 1 censored Kk−1ck−1 ℓk−1 G2k−2 ℓk−1 · Kk−1ck−1

sk−1

time k − 1 case ck−1 wk−1 G2k−1 wk−1 · 1
time k − 1 control Jk−1ck−1 mk−1 G2k mk−1 · Jk−1ck−1

N−
∑k−1

j=0 cj−
∑k−1

j=0 sj

For the case-control sample to be representative of the full sample, we require that each individual
in groups G0 to G2k be counted the same number of times. Therefore, we may set
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ℓ0
K0c0
s0

= w0 = m0
J0c0

N − c0 − s0
+ ℓ1

K1c1
s1

= m0
J0c0

N − c0 − s0
+ w1 = m0

J0c0
N − c0 − s0

+m1
J1c1

N − c0 − s0 − c1 − s1
+ ℓ2

K2c2
s2

...

=

k−2∑
i=0

mi
Jici

N −
∑i

j=0 cj −
∑i

j=0 sj
+ ℓk−1

Kk−1ck−1

sk−1

=

k−2∑
i=0

mi
Jici

N −
∑i

j=0 cj −
∑i

j=0 sj
+ wk−1 =

k−1∑
i=0

mi
Jici

N −
∑i

j=0 cj −
∑i

j=0 sj
,

which reduces to (4) in the main context.

A2 ALGORITHM OF ICE ESTIMATOR

The algorithm for deriving the unweighted ICE estimator is described in detail below.

Algorithm A1 ICE Estimator for Estimating E(Y g
T )

1: Regress YT on L̄T−1 and ĀT−1 among individuals with YT−1 = CT = 0, and estimate param-
eter θT,T−1.

2: Obtain predicted values ĥg
T,T−1 from E(YT | YT−1 = CT = 0, L̄T−1, ĀT−1 = Āg

T−1; θ̂T,T−1)

by fixing ĀT−1 = Āg
T−1 for all individuals with YT−1 = CT−1 = 0. Set q = 2.

3: while q ≤ T do
4: Let k = T − q.
5: Define

Q̂g
T,k+1 =

{
ĥg
T,k+1 if Yk+1 = 0,

1 if Yk+1 = 1.

6: Regress Q̂g
T,k+1 on L̄k and Āk among individuals with Yk = Ck+1 = 0, and estimate

parameter θT,k.
7: Obtain predicted values ĥg

T,k from E(Q̂g
T,k+1 | Yk = Ck+1 = 0, L̄k, Āk = Āg

k; θ̂T,k) by
fixing Āk = Āg

k among individuals with Yk = Ck = 0.
8: Set q = q + 1.
9: end while

10: Average ĥg
T,0 over all individuals to estimate E(Y g

T ).

A3 ADDITIONAL WEIGHT COMBINATIONS

Below we give 4 sets of possible weights for the illustrative example with 2 time points without
censoring:

(1) Let w0 = w1 = 1, we have

S(O) = c0w0S(O0c) + c1w0S(O1c) + (N − c0 − c1)w0S(O1m),

and m0 = 0,m1 = N−c0−c1
Jc1

.

(2) Let w1 = m1 = 0, we have

S(O) = c0w0S(O0c) + (N − c0)w0S(O0m),

and w0 = 1, m0 = N−c0
Jc0

.

(3) Let m0 = m1 = 1/J , we have

S(O) = c1w1S(O1c) + c1S(O1m) + c0w0S(O0c) + c0S(O0m),

12
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where w1 = c1
N−c0−c1

, w0 = c1
N−c0−c1

+ c0
N−c0

.

(4) Let m0 = N−c0
JN , m1 = N−c0−c1

J(N−c0)
, then w0 = c0

N + c1
N−c0

, w1 = c1
N−c0

,

S(O) = c1w1S(O1c) + Jc1m1S(O1m) + c0w0S(O0c) + Jc0m0S(O0m).

A4 PROOF OF EQUATION (3)

Proof. Let

S(O) = c1w1S(O1c) + Jc1m1S(O1m) + c0w0S(O0c) + Jc0m0S(O0m)

= c1w1S(O1c) + (N − c0 − c1)w1S(O1m) + c0w0S(O0c) + (w0 − w1)(N − c0)S(O0m),

then

E{S(O)}

= c1w1

∫
S0(O

∗)f(O∗ | die at t = 1)dO∗ + Jc1m1

∫
S0(O

∗)f(O∗ | alive at t = 1)dO∗

+ c0w0

∫
S0(O

∗)f(O∗ | die at t = 0)dO∗ + Jc0m0

∫
S0(O

∗)f(O∗ | alive at t = 0)dO∗

=
c1w1

Pr(die at t = 1)

∫
S0(O

∗)f(O∗, die at t = 1)dO∗ +
Jc1m1

Pr(alive at t = 1)

∫
S0(O

∗)f(O∗, alive at t = 1)dO∗

+
c0w0

Pr(die at t = 0)

∫
S0(O

∗)f(O∗, die at t = 0)dO∗ +
Jc0m0

Pr(alive at t = 0)

∫
S0(O

∗)f(O∗, alive at t = 0)dO∗

= c1w1
N

c1

∫
S0(O

∗)f(O∗, die at t = 1)dO∗ + Jc1m1
N

N − c0 − c1

∫
S0(O

∗)f(O∗, alive at t = 1)dO∗

+ c0w0
N

c0

∫
S0(O

∗)f(O∗, die at t = 0)dO∗ + Jc0m0
N

N − c0

∫
S0(O

∗)f(O∗, alive at t = 0)dO∗

= w1N

∫
S0(O

∗)f(O∗, alive at t = 0)dO∗ + c0w0
N

c0

∫
S0(O

∗)f(O∗, die at t = 0)dO∗

+ Jc0m0
N

N − c0

∫
S0(O

∗)f(O∗, alive at t = 0)dO∗

= w0N

∫
S0(O

∗)f(O∗)dO∗

= w0NE∗
0{S0(O

∗)}.

If we let w0 = N−1, then E{S(O)} = E∗
0{S0(O

∗)}. But if we only need E{S(O)} =
w0NE∗

0{S0(O
∗)} = 0, then it is not necessary to set w0 = N−1.

A5 PROOF OF THEOREM 1

We have already known that the ICE estimator in Algorithm A1 is consistent given that the models
are correctly specified. To show that the estimator in Algorithm 1 to be consistent, we only need
to prove that at each step, the expectation of the new estimating equation based on the case-control
sample is zero if and only if the expectation of the original estimating equation is zero.

Proof. Let

S(O) = ck−1wk−1S(Ok−1,c) +Kk−1ck−1ℓk−1S(Ok−1,s) + Jk−1ck−1mk−1S(Ok−1,m)

+ · · ·+ c0w0S(O0c) +K0c0ℓ0S(O0s) + J0c0m0S(O0m),

then

E{S(O)}

= ck−1wk−1

∫
S0(O

∗)f(O∗ | die at t = k − 1)dO∗ +Kk−1ck−1ℓk−1

∫
S0(O

∗)f(O∗ | censored at t = k − 1)dO∗

+ Jk−1ck−1mk−1

∫
S0(O

∗)f(O∗ | alive at t = k − 1)dO∗ + · · ·

13
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+ c0w0

∫
S0(O

∗)f(O∗ | die at t = 0)dO∗ +K0c0ℓ0

∫
S0(O

∗)f(O∗ | censored at t = 0)dO∗

+ J0c0m0

∫
S0(O

∗)f(O∗ | alive at t = 0)dO∗

=
ck−1wk−1

Pr(die at t = k − 1)

∫
S0(O

∗)f(O∗, die at t = k − 1)dO∗ +
Kk−1ck−1ℓk−1

Pr(censored at t = k − 1)

∫
S0(O

∗)f(O∗, censored at t = k − 1)dO∗

+
Jk−1ck−1mk−1

Pr(alive at t = k − 1)

∫
S0(O

∗)f(O∗, alive at t = k − 1)dO∗ + · · ·

+
c0w0

Pr(die at t = 0)

∫
S0(O

∗)f(O∗, die at t = 0)dO∗ K0c0ℓ0
Pr(censored at t = 0)

∫
S0(O

∗)f(O∗, censored at t = 0)dO∗

+
Jc0m0

Pr(alive at t = 0)

∫
S0(O

∗)f(O∗, alive at t = 0)dO∗

= ck−1wk−1
N

ck−1

∫
S0(O

∗)f(O∗, die at t = k − 1)dO∗ +Kk−1ck−1ℓk−1
N

sk−1

∫
S0(O

∗)f(O∗, censored at t = k − 1)dO∗

+ Jk−1ck−1mk−1
N

N −
∑k−1

j=0 cj −
∑k−1

j=0 sj

∫
S0(O

∗)f(O∗, alive at t = k − 1)dO∗ + · · ·

+ c0w0
N

c0

∫
S0(O

∗)f(O∗, die at t = 0)dO∗ +K0c0ℓ0
N

s0

∫
S0(O

∗)f(O∗, censored at t = 0)dO∗

+ J0c0m0
N

N − c0 − s0

∫
S0(O

∗)f(O∗, alive at t = 0)dO∗

= wk−1N

∫
S0(O

∗)f(O∗, die at t = k − 1)dO∗ + wk−1N

∫
S0(O

∗)f(O∗, censored at t = k − 1)dO∗

+ wk−1N

∫
S0(O

∗)f(O∗, alive at t = k − 1)dO∗ + · · ·

+ w0N

∫
S0(O

∗)f(O∗, die at t = 0)dO∗ + w0N

∫
S0(O

∗)f(O∗, censored at t = 0)dO∗

+ Jc0m0
N

N − c0

∫
S0(O

∗)f(O∗, alive at t = 0)dO∗

= wk−1N

∫
S0(O

∗)f(O∗, alive at t = k − 2)dO∗ + wk−2N

∫
S0(O

∗)f(O∗, die at t = k − 2)dO∗

+ wk−2N

∫
S0(O

∗)f(O∗, censored at t = k − 2)dO∗ + (wk−2 − wk−1)N

∫
S0(O

∗)f(O∗, alive at t = k − 2)dO∗

+ · · ·+ w0N

∫
S0(O

∗)f(O∗, die at t = 0)dO∗ + w0N

∫
S0(O

∗)f(O∗, censored at t = 0)dO∗

+ (w0 − w1)N

∫
S0(O

∗)f(O∗, alive at t = 0)dO∗

= w0N

∫
S0(O

∗)f(O∗)dO∗

= w0NE∗
0{S0(O

∗)}

Therefore, E{S(O)} = 0 if and only if E∗
0{S0(O

∗)} = 0.

A6 MORE NUMERICAL EXAMPLES

We also tried two more simulation setups, with only the model of Y changing to

Yt ∼ Ber
(
expit(−4 + 2At + β⊤Lt−1)

)
,

and

Yt ∼ Ber
(
expit(−5 + 2At + β⊤Lt−1)

)
corresponding to different event rates, referred to medium/high prevalence scenario. The results are
shown in Tables A3-A4, and Figures A1-A2.
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Table A2: Summary of the computation time (in mins) with superlearner.

ICE (Ā = 0̄) ICE (Ā = 1̄)

Complete 63.32 (6.19) 62.97 (6.32)

(model-fitting time)
Case-control (J=20) 5.42 (0.75) 5.58 (0.79)
Case-control (J=10) 3.12 (0.51) 3.21 (0.52)

(total runtime)
Case-control (J=20) 5.44 (0.76) 5.60 (0.80)
Case-control (J=10) 3.14 (0.52) 3.23 (0.53)

Table A3: Summary of the computation time for medium prevalence scenario (in secs)

NICE, Ā = 0̄ ICE, Ā = 0̄ NICE, Ā = 1̄ ICE, Ā = 1̄

Complete 11.26 (1.80) 4.22 (1.03) 11.28 (1.97) 3.91 (1.00)

(model-fitting time)
Case-control (J=20) 8.27 (2.23) 3.02 (0.90) 8.30 (2.32) 2.85 (0.89)
Case-control (J=10) 6.92 (1.96) 2.04 (0.86) 6.89 (1.97) 1.95 (1.01)
Case-control (J=5) 6.16 (1.59) 1.40 (0.47) 6.15 (1.33) 1.35 (0.47)

(total runtime)
Case-control (J=20) 9.92 (2.78) 3.89 (1.26) 9.91 (2.75) 3.74 (1.28)
Case-control (J=10) 8.48 (2.62) 2.94 (1.53) 8.50 (2.93) 2.86 (1.75)
Case-control (J=5) 7.35 (2.08) 2.04 (0.91) 7.33 (1.79) 1.98 (0.86)

Table A4: Summary of the computation time for high prevalence scenario (in secs)

NICE, Ā = 0̄ ICE, Ā = 0̄ NICE, Ā = 1̄ ICE, Ā = 1̄

Complete 11.06 (2.33) 4.44 (2.44) 11.22 (2.60) 4.01 (2.26)

(model-fitting time)
Case-control (J=20) 12.38 (2.35) 5.21 (1.94) 12.41 (2.54) 4.79 (1.88)
Case-control (J=10) 8.30 (1.99) 3.26 (1.63) 8.27 (1.83) 3.02 (1.59)
Case-control (J=5) 7.31 (1.76) 2.44 (1.30) 7.30 (1.70) 2.33 (1.40)

(total runtime)
Case-control (J=20) 14.20 (2.94) 6.49 (2.72) 14.25 (3.09) 6.08 (2.64)
Case-control (J=10) 9.96 (2.60) 4.31 (2.27) 9.93 (2.48) 4.06 (2.23)
Case-control (J=5) 8.94 (2.42) 3.36 (1.98) 8.91 (2.28) 3.25 (2.24)

Remark: Since the prevalence is approximately 5–8%, when J = 20 the sample size exceeded the original
sample sizes, and consequently the time also exceeded that of the complete-data version.
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Figure A1: Risk estimates for always or never exposed to treatment for medium prevalence scenario.
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Figure A2: Risk estimates for always or never exposed to treatment for high prevalence scenario.
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A7 SBDH, CLINICAL COMORBIDITIES, AND MENTAL HEALTH DISORDERS

Structured SBDH categories. We used ICD-10-CM Z codes 2 to extract information about 10
structured SDOH categories -

1. Problems related to education and literacy (Z55),
2. Problems related to employment and unemployment (Z56),
3. Occupational exposure to risk factors (Z57),
4. Problems related to housing and economic circumstances (Z59),
5. Problems related to social environment (Z60),
6. Problems related to upbringing (Z62),
7. Other problems related to primary support group, including family circumstances (Z63),
8. Problems related to certain psychosocial circumstances (Z64),
9. Problems related to other psychosocial circumstances (Z65), and

10. Problems related to medical facilities and other health care (Z75)

NLP-extracted SBDH categories. We considered 12 NLP-extracted SBDH categories - Social
isolation, job or financial insecurity, housing instability, legal problems, violence, barriers to care,
transition of care, food insecurity, psychiatric symptoms, substance abuse, pain, and patient disabil-
ity. Definitions and sample examples of all SBDH categories as well as the deep-learning model
used to extract these SBDH information are available in the appendix section of the study by Mitra
et al. (Mitra et al., 2023).

Clinical comorbidities and mental health disorders. From the Charlson Comorbidity Index
(Quan et al., 2011), we included 17 clinical comorbidities: acute myocardial infarction, congestive
heart failure, peripheral vascular disease, cerebrovascular disease, dementia, chronic obstructive
pulmonary disease, rheumatoid disease, peptic ulcer disease, mild liver disease, diabetes without
complications, diabetes with complications, hemiplegia or paraplegia, kidney disease, cancer, mod-
erate or severe liver disease, metastatic solid tumor, and AIDS/HIV. We considered 7 mental health
disorders (Blosnich et al., 2020): major depressive disorder, alcohol use disorder, drug use disorder,
anxiety disorder, posttraumatic stress disorder, schizophrenia, and bipolar disorder.

Table A5: Summary of the real dataset.

Time Total # # of Cases # of Controls # of Censored Censor Rate Event Rate

1 125,928 331 124,351 1,473 1.17% 0.27%
2 124,351 227 122,673 1,591 1.28% 0.18%
3 122,673 76 102,047 20,550 16.755% 0, 07%
4 102,047 64 76,537 25,466 24.96% 0.08%
5 76,537 20 48,008 28,509 37.25% 0.04%

2https://www.bcbsnm.com/docs/provider/nm/icd-10-z-codes.pdf
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Table A6: Summary Statistics of the real dataset.

Variables Case
(n=440), %

Control
(n=126,959), %

Race
White 369 (83.86) 81,443 (64.15)
Black 43 (9.77) 34,536 (27.20)
Others 28 (6.36) 10,980 (8.65)

Sex Male 403 (91.59) 113,690 (89.55)
Female 37 (8.41) 13,269 (10.45)

Age

18-29 74 (16.82) 11,956 (9.42)
30-39 97 (22.05) 23,731 (18.69)
40-49 78 (17.73) 18,918 (14.90)
50-59 94 (21.36) 34,597 (27.25)
60-69 73 (16.59) 29,067 (22.89)
70-79 22 (5.00) 6,625 (5.22)
79< 2 (0.45) 2,065 (1.63)

Marital Status
Married 71 (16.14) 11,722 (9.23)
Not married 163 (37.05) 25,031 (19.72)
Unknown 206 (46.82) 90,206 (71.05)

A8 GUIDANCE ON SELECTING WEIGHTING SCHEMES / SAMPLING RATIO

Our framework allows a family of valid weighting schemes that lead to statistically consistent es-
timation, provided that the weights satisfy the balance equations in (4). While different choices of
weights and sampling ratios do not affect consistency, they indeed may influence efficiency. Unfor-
tunately, deriving closed-form variance formulas for either the NICE or the ICE implementation of
the g-formula is prohibitively complex, rendering analytic efficiency comparisons across weighting
choices difficult to carry out in practice. Accordingly, the prevailing practice in applied g-formula
work is to obtain standard errors via non-parametric bootstrap resampling (Young et al., 2011; Keil
et al., 2014; Wen et al., 2021), and we follow the same practice throughout our simulations and
real-data application.

As mentioned above, the variance should not be sensitive to the case-control ratio as long as the
number of controls becomes adequate (Wang, 2020). We recommend a pragmatic procedure for
selecting the sampling ratios as follows.

(i) begin with five controls per case; this ratio is commonly used in EHR applications.

(ii) if events become sparse in later periods, raise adaptively until each regression retains a reasonable
effective sample size (e.g., observations); and

(iii) run a short pilot bootstrap comparing two or three candidate ratios to gauge the marginal drop
in standard error versus added computation time.

In practice, this empirical tuning typically finds a ratio that preserves nearly all of the precision of
the full-data estimator while still delivering substantial speed-ups.

A9 NOTATION TABLE

For clarity, we provide in Table A7 a summary of the notation used used throughout the paper.
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Table A7: Summary of the key notation used throughout the paper.

Symbol Definition
N Total number of individuals in the study population
T Maximum number of discrete follow-up time points
Lj Covariates measured at time j
Aj Treatment indicator at time j
Cj+1 Censoring indicator at time j + 1 (1 = censored, 0 = observed)
Yj+1 Event indicator at time j + 1 (1 = event occurred, 0 = no event)
L̄j History of covariates up to time j
Āj History of treatments up to time j
Y g
t Potential survival outcome at time t under strategy g

E(Y g
t ) Counterfactual risk under strategy g at time t

g Deterministic treatment strategy mapping histories to assigned treatments
ct Number of cases (events) occurring at time t
st Number of censored individuals at time t
Jt Sampling ratio for controls (number of controls per case) at time t
Kt Sampling ratio for censored individuals (number of censored individuals per case) at time t
wt Sampling weight assigned to cases at time t
mt Sampling weight assigned to controls at time t
ℓt Sampling weight assigned to censored individuals at time t

ĥg
T,k Predicted conditional expectation at time k under strategy g

Q̂g
T,k Recursively defined pseudo-outcome used in ICE estimation

θT,k Regression parameters estimated at time k
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