
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

VALUE EXPLICIT PRETRAINING FOR LEARNING TRANS-
FERABLE REPRESENTATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Understanding visual inputs for a given task amidst varied changes is a key chal-
lenge posed by visual reinforcement learning agents. We propose Value Explicit
Pretraining (VEP), a method that learns generalizable representations for transfer
reinforcement learning. VEP enables efficient learning of new tasks that share
similar objectives as previously learned tasks, by learning an objective-conditioned
encoder that is invariant to changes in environment dynamics and appearance. To
pre-train the encoder from a sequence of observations, we use a self-supervised
contrastive loss that enables the model to relate states across different tasks based
on the Bellman return estimate that is reflective of task progress, resulting in tem-
porally smooth representations that capture the objective of the task. Experiments
on a realistic navigation simulator and Atari benchmark show VEP outperforms
current SoTA pretraining methods on the ability to generalize to unseen tasks. VEP
achieves up to a 2× improvement in rewards, and up to a 3× improvement in
sample efficiency. For videos of policy performance visit our website.

1 INTRODUCTION

While performing everyday tasks, humans have an innate ability to appropriately extract information
from what they perceive. This is often regardless of various changes related to the appearance and
the dynamics of the tasks. This ability stems from understanding the objective of the tasks. While
this ability is natural to humans, we need to equip robots with generalizable representations of their
visual observations to achieve the same advantages.

Unfortunately, learning generalizable representations for control is still an open problem in visual
sequential decision-making. Typically in such representation learning works, an encoder ϕ is learned
using a large offline dataset via a predetermined objective function. Subsequently, ϕ is used for control
by mapping high-dimensional visual observations from the environment o:t into a lower-dimensional
latent representation zt. The representation zt is fed into a policy π(· | zt) to generate an action at to
solve a task. The key question in visual representation learning is: what should the learned ϕ be?

The challenge in learning ϕ mainly lies in discovering the correct inductive biases that yield repre-
sentations that can be used to learn a variety of downstream tasks in a sample efficient manner. It is
unclear, however, what such useful inductive biases are. Initial approaches (Shah & Kumar, 2021;
Yuan et al., 2022; Parisi et al., 2022) to this problem included simply reusing pretrained vision models
trained to solve computer vision tasks like image recognition, zero-shot for control. Works like R3M
(Nair et al., 2022) and VIP (Ma et al., 2023) tried to utilize temporal consistency, enforcing images
that are temporally close in a video demonstration are embedded close to each other. Other works
like Voltron Karamcheti et al. (2023) and Masked Visual Pretraining Radosavovic et al. (2023); Xiao
et al. (2022); Seo et al. (2023) attempt to use image reconstruction as one such inductive bias.

While biases induced by pretraining objectives like image reconstruction and temporal consistency
have been shown to greatly improve downstream policy performance, these pretraining objectives
used to learn ϕ are distinct from the downstream usage of ϕ, e.g., the task of image reconstruction is
very different from that of action prediction. There exists an unmet need for representation learning
approaches that explicitly encode information directly useful for downstream control during the
process of learning ϕ.

1

https://sites.google.com/view/value-explicit-pretraining/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

. . .

Offline Play datasets for Training Tasks

Encoder ⏀

Test Environment

Phase 1: Pretraining on offline Play datasets Phase 2: Online RL on Test Environment

Encoder ⏀

Figure 1: High-level overview of our problem statement The encoder fϕ is pretrained using play
data from a set of train tasks, that is then reused for an unseen task. We evaluate pretrained encoders
produced by our method and the baselines on the Atari and Navigation benchmarks.

This is, of course, challenging — how do we encode control-specific information without actually
training online on a control task? Our crucial insight is that encoding control-specific information in
the representations generated by ϕ is possible by harnessing the power of Monte Carlo estimates of
control heuristics computed offline using gameplay datasets.

Our key contribution is Value Explicit Pretraining (VEP), a contrastive learning approach that utilizes
offline play datasets (without any action labels) to learn a representation for visual observations. Our
method utilizes the insight that estimates of Bellman returns across multiple tasks share a similar
propensity of success, and, in tasks with related goals, also share a similar optimal policy. For
example, in shooter games on Atari, despite differences in the visual appearances of adversaries, the
strategy to effectively shoot them is similar. Our approach thus focuses on the similarity of progress
towards the objective, as opposed to visual similarity.

VEP utilizes this intuition to learn an encoder using a contrastive loss which embeds observations
with similar value function estimates across a set of training tasks near each other. We investigate
the performance gains obtained by utilizing the VEP representation for policy learning, both on
the training set of tasks and on visually distinct yet related held-out tasks. We experiment on the
Atari benchmark and on a visual navigation benchmark comparing VEP to state-of-the-art methods
like VIP Ma et al. (2023) and SOM Eysenbach et al. (2022). We find up to a 2× improvement in
the rewards obtained on both benchmarks and 3× improvement in sample efficiency of online RL
algorithms trained on VEP.

2 RELATED WORK

Representation Learning for Robotics. Besides the general idea that the representations have the
role of encoding the essential information for a given task, while discarding irrelevant aspects of
the original data, typical state representation learning methods attempt to embed an observation
into a latent representation that could be utilized by the downstream task Lesort et al. (2018). It
is also important that these methods produce a low dimensional representation that allows the
control policy to efficiently learn the downstream task. Traditionally, unsupervised methods like
variational autoencoders Kingma & Welling (2014), can learn disentangled representations that
can be used to correlate with underlying factors that cause variation in observation data Higgins
et al. (2017) for policy learning Ha & Schmidhuber (2018). However, in many environments, these
representations prove difficult to learn an optimal policy, since the temporal structure is missing
in these representations. Anand et al. (2019) explore this direction and learn representations by
enforcing temporal structure through contrastive loss.

Pretraining for RL. Pretraining for representation learning, in the context of RL, involves learning
transferable knowledge, typically in the form of good representations, that helps the agent utilize its
observations better Xie et al. (2022). Compared with traditional unsupervised methods for pretraining,
the objective of self-supervised pretraining for RL is to learn representations by exploiting the
underlying structure within the data distribution. Majority of the earlier online pretraining works
learn representations that model the task dynamics that can be learned through a sequence of
observations during the RL procedure Pathak et al. (2019). More recent offline pretraining methods

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

like Schwarzer et al. (2021) build on the prior work Anand et al. (2019) by pretraining an encoder
using unlabeled data and then finetune on a small amount of task-specific data. In comparison
with these approaches, our method focuses on learning representations that not only aid in solving
in-distribution tasks but also can generalize to the out-of-distribution by learning representations that
relate to general objectives and not overfit to individual task-specific attributes.

. . . .

. . . .

Task 1 Play dataset

Anchors and Positives near

Negatives far away

G = 0.71

G = 0.7 G = 0.72

G = 0.73

G = 0.8

G = 0.9

Task 2 Play dataset

Bellman return
estimate

Bellman return
estimate

Figure 2: Description of our method (VEP). We compute value estimates (Bellman returns), as
denoted by G, for each frame. We then use a contrastive learning-based pretraining method that
learns task-agnostic representations based on G. The above figure is a pictorial representation of
a training scenario where the sampling batch size bT is 2 and the training batch size bG is 1. This
results in anchor, positive and negative sampled from two sequences in each batch.

Transfer after Pretraining. Transferring knowledge or skills learned from a given set of tasks to
an unseen set of tasks is an active research area. Early works like progressive networks Rusu et al.
(2016) attempt to solve it by reusing features learned from source tasks through adapters. Gamrian
& Goldberg (2019) perform image-to-image translation using GANs. However these methods are
limited to predefined source or target domains. More recent works focus on the more challenging
problem of using only expert videos for offline pretraining that could later be transferred to solve a
novel downstream task. These methods have gained popularity in RL for their use of self-supervised
based pretraining Sermanet et al. (2018) based on contrastive learning. Compared to these methods,
our method only requires sub-optimal play data that consists of episodes that need not always be
successful in achieving the task objective.

Baselines for VEP. Value Implicit Pretraining (VIP) Ma et al. (2023) encodes the goal (positive) and
the start (anchor) images close and the middle images (negatives) further away in the embedding
space. By training on this objective through sampling multiple sub-episodes, the encoder recursively
learns temporally smooth and continuous embeddings in a trajectory. Time Contrastive Learning
(TCN) involves sampling the positive within a certain margin distance dthresh from the anchor and
a negative anywhere from the positive to the end of the trajectory Sermanet et al. (2018). If the
anchor is sampled at time instant ta, positive is sampled at tp and the negative sampled at tn, then
|tn− ta| > |tp− ta|. We then use the standard triplet loss for optimization, although other contrastive
losses could also be used. Unlike TCN, Eysenbach et al. (2022) sample the positives from State
Occupancy Measure (SOM) that could be embedded close to the anchor. The negative, on the other
hand, is sampled anywhere from the other episodes of the same task or from the other tasks. State
occupancy measure at a specific instant t is a truncated geometric distribution GeoHt (1 − γ) with
probability mass re-distributed over the interval [t,H], where H is the horizon. Mazoure et al. (2023).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 PROBLEM SETTING AND PRELIMINARIES

Let Ttrain = {T1, T2, ...Tm} be the set of training tasks with the associated play datasets that consists
of a stream of images and sparse reward signals, denoted by Dtrain. During pretraining, we assume
that the encoder model fϕ parameterized by ϕ has access to Dtrain. Data in Dtrain corresponding to
Ti consists of a sequence of frames {oit}. The encoder fϕ learns to encode images/observations ot
into an embedding zt, which is taken as an input by the policy π to perform a test-task. The set of
test-tasks are denoted by Ttest = {Tm+1, Tm+2, ...Tn}. Note that although Ttrain ∩ Ttest = ∅, all
the tasks in Ttrain ∪ Ttest share a semantically similar objective.

Carnival

Demon Attack PhoenixSpace Invaders

Beam Rider

E
pi

so
de

 R
ew

ar
ds

E
pi

so
de

 R
ew

ar
ds

E
pi

so
de

 R
ew

ar
ds

E
pi

so
de

 R
ew

ar
ds

E
pi

so
de

 R
ew

ar
ds

VEP (Ours) Random

SOM (Eysenbach et al. 2022) TCN (Sermanet et al. 2018)

E
pi

so
de

 R
ew

ar
ds

Air Raid

VIP (Ma et al. 2023)

Timesteps Timesteps Timesteps

Timesteps Timesteps Timesteps

Figure 3: Pretraining results on Atari. Performance of different pretraining methods on the respec-
tive games as mentioned above. The encoder is pretrained only on the first 2 games (Demon-Attack
and Space-Invaders) and is evaluated on the other out-of-distribution games.

For evaluation, we selected tasks that have semantically similar objectives, in two settings or bench-
marks: 1) For urban visual-based navigation, every task corresponds to navigating to the same
goal destination with respect to the start location but in different cities; we use several cities and
photographs taken along the available streets for the agent to navigate. 2) In Atari games, we obtain
several shooter games that all contain the "FIRE" action in the action space and whose objective
semantically relates to "shoot up the enemy". All of them highly resemble the Space-Invaders
concept, albeit with graphical and other variations: an army of alien enemies descends towards the
bottom of the screen, where the agent’s ship is, which can move left or right or shoot straight up.

For both our method and the baselines, the encoder fϕ is trained only using the play data Dtrain

without any fine-tuning. The objective of our method is to efficiently learn the encoder using a
sequence of observations and sparse reward signals Dtrain from the source tasks Ttrain, such that
the embeddings from fϕ could be zero-shot transferred to unseen test tasks Ttest.

3.1 CONTRASTIVE REPRESENTATION LEARNING

Typically, contrastive representation learning methods for RL utilize offline video demonstration
datasets. These methods typically input a batch of anchors oan, positives ops, and negatives ong and
minimize a predetermined similarity metric that enables an encoder model to learn consistent and

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

meaningful representations that can be used for downstream tasks. The earliest known formulation
by Schroff et al. (2015) uses Euclidean distance to embed the positives and the anchor close to each
other and the negatives far away from the anchor.

Ltriplet =
∑
z∈X

max
[
0, ||zan − zps||22 − ||zan − zng||22 + ϵ

]
(1)

In the above equation zan, zps and zng represent the embeddings that are obtained after passing
observations oan, ops and ong (anchors, positives and negatives) through the encoder network fϕ.
Other metrics like cosine similarity could also be used instead of Euclidean distance, to compute the
similarity between embeddings. This loss is used by VEP and all our baselines except for VIP.

Wall Street Union Square Hudson River

Allegheny South Shore CMU

VEP (Ours) Random

SOM (Eysenbach et al. 2022) TCN (Sermanet et al. 2018)

VIP (Ma et al. 2023)

E
pi

so
de

 R
ew

ar
ds

E
pi

so
de

 R
ew

ar
ds

E
pi

so
de

 R
ew

ar
ds

E
pi

so
de

 R
ew

ar
ds

E
pi

so
de

 R
ew

ar
ds

E
pi

so
de

 R
ew

ar
ds

Timesteps Timesteps Timesteps

Timesteps Timesteps Timesteps

Figure 4: Pretraining results on Navigation. Performance of different pretraining methods on
the respective cities as mentioned above. Similar to the Atari experiments, for all the baselines,
play data from the first two tasks (Wall Street and Union Square) were used for pretraining. VEP
representations improve PPO policy performance by up to 2×.

Similar to recent methods like Ma et al. (2023), the InfoNCE van den Oord et al. (2018) objective can
also be used to optimize the encoder parameters. Unlike Triplet loss from Eq. equation 1, InfoNCE
permits utilizing multiple negative examples for calculating the loss (via the expectation term in the
denominator of Eq. equation 2). As depicted below, InfoNCE aims to maximize mutual information
of the anchors and positives. This loss is used by VIP:

LInfoNCE = Ezps

[
− log

Sϕ (zan, zps)

EzngSϕ (zan, zng)

]
(2)

In the above equation, Sϕ is a distance function in the ϕ-representation space that is used to compute
the similarity between a pair of embeddings. In our experiments that use InfoNCE, Sϕ takes the form
of cosine similarity.

More recently, Soft-Nearest Neighbor loss was proposed Frosst et al. (2019) that generalizes InfoNCE
to use single or multiple positive examples Weng (2021) in the computation of the objective. We
also experimented with this loss function and were able to obtain almost the same performance as
compared to the standard triplet loss function.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Allegheny

Compute time in min Compute time in min

South Shore

Compute time in min

CMU

Compute time in min

VEP (Ours) End-to-End

E
pi

so
de

 R
ew

ar
ds

E
pi

so
de

 R
ew

ar
ds

E
pi

so
de

 R
ew

ar
ds

E
pi

so
de

 R
ew

ar
ds

Union Square

Figure 5: Comparison of our method with End-to-end trained method for Navigation task. Note
that in each of the above training curves, the end-to-end baseline has the entire model trained on each
of the above tasks, whereas our method (VEP) is pretrained only on play data from Wall Street
and Union Square. The x axis corresponds to the wall-clock time. Compared to any pretrained
method, End-to-end training baseline takes significantly longer time (2.1× for Navigation and 3.3×
for Atari). Since both the methods were trained for the same number of timesteps (20M), our method
finished earlier and the dotted line is only for comparison

3.2 DISCOUNTED RETURNS AND VALUE FUNCTIONS

We consider a POMDP (Partially Observable Markov Decision Process) denoted by the tuple (O,
S, A, p, θ, r, T , γ) representing an observation space O, state space S, action space A, transition
function p, emission function θ, reward function r, time horizon T , and discount factor γ. An
agent in state st takes an action at and consequently causes a transition in the environment through
p(st+1 | st,at). The agent receives the next observation ot+1 and reward rt that is calculated using
the state st and action at. The objective for the agent is to learn a policy π which maximizes the
expected discounted sum of rewards. The discounted sum of rewards at a state st in a trajectory τ is
given by G:

G(st, τ) = rt + γrt+1 + · · ·+ γ3rt+3 + · · · =
T∑

k=t

γ(k−t)rk (3)

The expectation of this discounted return is often defined as the value of the state st under policy π,
denoted by Vπ(st).

4 METHOD

The value Vπ(st) of a state st under a policy π intuitively defines the propensity for the success of
solving a task by following policy π. If two states have similar value estimates, they likely have a
similar expected return under π.

With this in mind, we now motivate VEP with an example. Consider the task of shooting an adversary
in the Atari game of Space-Invaders. Assume that there exists an optimal policy for this task
denoted by π∗(· | ot) which operates on image observations and the associated optimal value function
Vπ∗

(·). Now, consider a slightly perturbed version of this game in which all the adversaries are
colored orange. If policy π∗ must solve this perturbed task, it must be invariant to the color of the
adversary. One way to achieve this invariance is to enforce that the value estimates of states with
similar propensities for success are similar, e.g., the value estimate of a state containing a bullet very
close to an adversary should be the same regardless of whether the adversary is yellow or orange.
VEP utilizes this exact intuition by learning representations that induce such an invariance. We
assume access to play data from suboptimal agents doing the task (playing the game), consisting
of only observations and reward values (obtained sparsely) for the set of training tasks Ttrain: This
kind of data can be obtained from various online sources of gameplay, and does not contain any
action labels. Further, it is assumed to be generated by a sub-optimal agent which contains at least
a few positive reward signals in the gameplay. Note that, these play datasets consist of data that is
not always guaranteed to succeed in task completion. We also do not have access to the true reward
function, so we operate under a sparse reward setting, assuming that a reward of 1 at a few timesteps
in the play data and 0 everywhere else. We now compute a value estimate to each observation using

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Eq. equation 3. Ideally, this value estimate would be computed using Vπ∗
(·), but since we do not

have access to the true value function of the optimal policy, we utilize a Monte Carlo estimate of this
using Eq. 3. Note how the computation of value estimates is completely algorithmic and requires no
human effort.

Having obtained several play datasets, for tasks in Ttrain, and computed value estimates at each frame
with G(·) from Eq. equation 3, we now train the encoder ϕ using a contrastive learning objective.
This procedure first involves sampling a scalar value estimate g between 0 and 1 and then further
sample multiple observations from Dtrain values within an vthresh of g. Subsequently, an encoder ϕ
is learned which embeds these observations close to each other. Consequently, observations with a
similar propensity for success have similar embeddings.

4.1 IMPLEMENTATION

To make the training computationally efficient, we preprocess Dtrain and save a dictionary that
maps sorted bellman returns G(·) to the indices of corresponding observations with the same Monte
Carlo value estimate. This speeds-up the value look-up subroutines through binary search (see
supplementary material for implementation details).

Algorithm 1 Value Explicit Pretraining
Require: Dtrain as the entire set of play data that are collected from tasks {Ti}j=m

j=0

Require: Encoder fϕ parameterized by ϕ
Require: bG, bT as the train and the sample batch size
Require: dthresh, vthresh as the distance and the value thresholds
Require: N as the number of Iterations
1: Randomly Initialize ϕ
2: Compute value estimates G(.) for every frame ot in the play data Dtrain with reward of the last frame as 1
3: For every task Ti, create a dictionary Vi mapping sorted value estimates as keys to list of frame indices in

Dtrain

4: while iterations until N do
5: Sample a bG sized batch of values g ∼ (0, 1]
6: For each g in the batch, sample a bT sized batch of τ ∼ {Ti}mi=0

7: For each sampled task τ , select a frame oan that has a value estimate of g within vthresh
8: Sample a positve ops within dthresh
9: Mine for negatives ong such that ong is further away from oan than ops

10: Estimate embeddings zan, zps, zng for a batch of oan, ops, ong by propagating through fϕ
11: Compute contrastive loss using zan, zpo and zng

12: Optimize ϕ
13: end while

We first sample a batch of value estimates from the dataset determined by training batch size bG.
Next, we sample a bT number of training tasks. In our experiments, we only sample 2 training tasks
(Ti and Tj) during pretraining, i.e., bT = 2. Subsequently, the pretraining objective becomes the
following:

max
ϕ

∑
Ti∈Ttrain

∑
Tj∈Ttrain

E
g∼Unif(G)

[Sϕ(z
T1
an, z

T1
ps) + Sϕ(z

T2
an, z

T2
ps) + Sϕ(z

T1
an, z

T2
ps) + Sϕ(z

T2
an, z

T1
ps)

− Sϕ(z
T1
an, z

T1
ng)− Sϕ(z

T2
an, z

T2
ng)− Sϕ(z

T1
an, z

T2
ng)− Sϕ(z

T2
an, z

T1
ng)]

(4)

where G ⊂ (0, 1] is the set of Bellman return estimates of all observations in Dtrain. As mentioned
before, the similarity metric Sϕ computes distance between 2 embeddings that are obtained from
an encoder parameterized by weights ϕ. zT1

an corresponds to the embedding of the anchor, i.e.,
observation sampled from task T1 with a value estimate within an vthresh of g, and zT2

an corresponds
to the embedding of the anchor sampled from task T2, that is also within an vthresh of g. Similarly,
zT1
ps corresponds to a positive, and is temporally closer to the anchor than the negative zT1

ng . Likewise,
zT2
ps and zT2

ps are in regards to T2
Intuitively, this objective encourages the positives and anchors from all the sampled tasks to embed
near each other, using the a value function estimate to organize the latent space of the learned encoder
ϕ. For full implementation details like batch sizes etc., please refer to the supplementary material.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

VEP(Ours) R3M VC-1 CLIP MVP
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
ea

n
Re

wa
rd

South Shore

VEP(Ours) R3M VC-1 CLIP MVP
0

2

4

6

8

M
ea

n
Re

wa
rd

CMU

Figure 6: (a). Reward functions for Navigation (left). For a specific map, the agent spawns at a
predetermined starting location (red), with the flexibility to initiate at a random location within a
r-step to the fixed starting point. The sparsity of the rewards (brown lines) that enable the agent to
navigate to the goal (green) can be adjusted through the parameter L. (b). Comparison with other
existing pretrained models (right). We show the bar plot that compares VEP with other existing
pretrained models using the mean cumulative reward of the policy on the out-of-distribution task.

5 EXPERIMENTAL SETUP

We study whether utilizing VEP as a pretraining objective to learn an encoder improves (1) policy
learning on in-distribution tasks, i.e., those tasks for which data was available to pre-train the
encoder and (2) whether the learned encoder aids transfer learning of new tasks. We performed
our experiments using the benchmark specified in the next paragraph. We used the RLLib library
Liang et al. (2018) under the Ray ecosystem for all our RL experiments. We used PPO Schulman
et al. (2017) for training the policy. For all these baselines, we use the same datasets as our method
for pretraining. Additional details for our experimental setup are mentioned in the Supplementary
material.

5.1 ENVIRONMENTS

Atari. We used six Atari games with "FIRE" in their action set, which all are Shoot’em up games
similar in spirit to Space Invaders. Although all the games share a common objective of shooting
enemies that spawn from above, there are significant differences in appearances and dynamics across
games. We then split these games into Ttrain and Ttest. For pretraining the encoder, we use a play data,
without action labels from the D4RL datasets Fu et al. (2020). The value estimates of each frame at
timestep t in a sequence are then computed using 3 with T being the closest frame in the episode that
obtains a reward.

Navigation. We build an engine that loads the StreetLearn dataset Mirowski et al. (2019) to perform
visual navigation, based on gym Brockman et al. (2016). In a typical Navigation task, the agent is
designed to randomly respawn within a radius r of a predetermined location (srcx, srcy), with the
objective reaching a goal location that is sampled within a radius r of a location (dx+srcx, dy+srcy).
Reward acquisition is structured through a linear distribution of L reward points (including the reward
obtained upon reaching the target) uniformly spanning the starting point to the goal. The agent only
earns rewards as it moves closer to the goal as depicted through the yellow lines in Figure 6. We have
six cities for this benchmark, and we established consistent horizontal and vertical displacements
(dx, dy) between the starting and target points across all cities, avoiding the need for any explicit
goal information (details are provided in the supplementary material). The agent is then expected to
transfer to an unseen test city after learning from the play data obtained from a set of cities. Note
that each task corresponding to a specific city is non-trivial since the agent needs to navigate in an
unknown city with a different map and appearance. Tasks across all the cities are all solvable within
a predefined horizon. Lastly, using a planner, we obtain the play data by randomly generating paths
with a specific distance bound. To ensure that the play data had at least a few sparse rewards, the
start and the end locations of the path was chosen to be between the actual source and the destination
location. For all the tasks, we set L = 15, and r = 5.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

We use the same encoder architecture for both Atari and Navigation to embed pixel observation into
vector space. To enable to temporal understanding of the state, all the embeddings in the past four
timesteps are concatenated together and passed onto the policy. For the Navigation task, apart from
the image embeddings, we also obtain odometry information (odomx, odomy), of the agent, that is
concatenated with the image embedding and passed into a linear layer. This enables the agent to
understand its ego-centric pose with respect to the source location, which is crucial for understanding
the objective and navigating to the goal. We first pretrain the encoder fϕ using the method described
in the previous section and visually shown in 2. This is achieved by using a sequence of unlabelled
trajectories from both the games. Once we obtain the pretrained encoder, we use an online RL
algorithm, in our case PPO Schulman et al. (2017), to train a policy. We summarize results in Figure.
3 and Figure. 4.

Wall Street

E
pi

so
de

 R
ew

ar
ds

Timesteps

VEP 1 epoch, 4 cities
E

pi
so

de
 R

ew
ar

ds
VEP 1 epoch, 2 cities

Union Square

Timesteps Timesteps Timesteps

E
pi

so
de

 R
ew

ar
ds

E
pi

so
de

 R
ew

ar
ds

Wall Street Union Square

TCN+ 1epoch, 2citiesVEP 0.25 epoch, 4 cities

Figure 7: (a) Different early stop iterations (left). Notice that with an increase in number of
pretraining tasks (cities) from 2 to 4, our method performs better with fewer training iterations. (b)
Larger batch size (right). We compared TCN by equating the batch size and the number of iterations
to match those of VEP by combining sample and train batch size, to show that the learning ability of
our method is due to value estimates amidst tasks.

5.2 RESULTS

Online RL experiments on Atari. For experiments involving Atari games, we trained the policy
by freezing the pretrained encoder, without any additional fine-tuning. The encoder is pretrained
using offline play data from Demon-Attack and Space-Invaders, and evaluated on a set of
in-distribution and out-of-distribution environments. We find that the pretrained encoder is able to
outperform baselines on the in-distribution by ∼ 25 percent. This margin is increased in the transfer
experiments, most notably on Phoenix, with nearly 2× improvement over baselines.

Online RL experiments on Navigation. Similar to the above, we froze the encoder and trained a
layer policy. As mentioned before, unlike the model that was used for Atari, we also had the odometry
information for a specific image that had to part of the embedding for the policy to perform the task.
The embedding that was obtained from the CNN was concatenated with the 2D odometry information
and was passed through another fully connected layer to obtain an embedding. All these parameters
were used to pretrain. VEP outperforms all of our baselines by a larger margin in the navigation
set as seen in Figure 4. VEP also outperformed the End-to-End trained baseline by achieving the
same performance 2.1× faster (Figure 5). In addition, we evaluate our method on out-of-distribution
tasks along with existing pretrained models. Specifically, we compared our method (VEP) with CLIP
Radford et al. (2021), MVP Radosavovic et al. (2022), R3M Nair et al. (2022) and VC-1 Majumdar
et al. (2023) and the results are shown in Figure 6. We hypothesize that the better performance of our
method in the Navigation tasks was due to a more similar distribution of value estimates across the
cities in the Navigation task, than the Atari games. Detailed specifications of the value estimates for
all the Atari games and the cities in Navigation are described in the supplementary material.

Larger batch size and more iterations for training. All the baseline approaches we compared
against had a fixed train batch size that is used for computing gradients. For VEP, we are required to
use a larger batch size — bG × bT . To ensure that gains demonstrated by VEP cannot be attributed to
larger batch sizes, we doubled the batch size for TCN (known as TCN+) as seen in Figure 7. The
larger batch size for TCN still does not match the performance of VEP.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Early stopping to prevent overfitting. For the Navigation task, we increased the number of training
tasks from 2 to 4. We observed that the performance degraded in this setting. As shown in Figure 7,
when we reduce the number of iterations, the model retains the performance, which suggests that
our method learns much faster with an increase in data diversity and early stopping can prevent
overfitting.

Quality of play data. We also evaluated our method by using different amounts of diversity and
optimality in the play dataset. Specifically, we compared with the datasets that have episodes of
length that are less than 400, 500-800, 1000-1400. All of the episodes in the respective datasets
have a cumulative reward between 12-15. Along with that, we also used play datasets that consist of
episodes that complete 10% of the actual task. Further, we also included play datasets that consists of
sub-optimal episodes from 3 and 4 cities. The results are shown in Figure 8.

Wall Street Union Square

Allegheny South Shore

2 cities, <400 steps 2 cities, 1000-1400 steps

2 cities, 10% task completion 3 cities

2 cities, 500-800 steps

E
pi

so
de

 R
ew

ar
ds

E
pi

so
de

 R
ew

ar
ds

E
pi

so
de

 R
ew

ar
ds

E
pi

so
de

 R
ew

ar
ds

E
pi

so
de

 R
ew

ar
ds

E
pi

so
de

 R
ew

ar
ds

4 cities (.25 epochs)

Hudson River

CMU

Figure 8: Performance comparison on the quality of play data Each of the above bar plots
corresponds to the evaluation of the encoder in a different city. Each coloured bar corresponds to a
specific play dataset used for pretraining. We also provide 95% confidence intervals along with the
mean cumulative reward.

6 CONCLUSION

Transferring policies to novel but related tasks is an important problem that needs to be addressed.
We formulated a method to learn representations of states from different tasks solely based on the
temporal distance to the goal frame. This way, the skills learned from the train tasks could be
transferred to unseen related tasks. We show the efficacy of our method by performing comprehensive
evaluations on Atari and Visual Navigation.

7 ETHICS STATEMENT

Our work opens new avenues for efficient training of new RL tasks by leveraging what was previously
learned on similar tasks. We believe that has the potential to enable a much broader use of RL in
real-life scenarios, as it eliminates the major hurdle of long and tedious training from scratch for each
new task. We do not believe this work has particular ethical concerns. Its potential transformative
societal impact is high as it makes RL for sequential tasks more achievable than previously possible.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-Alexandre Côté, and R. De-
von Hjelm. Unsupervised state representation learning in atari. In Hanna M. Wallach, Hugo
Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.),
Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
8766–8779, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
6fb52e71b837628ac16539c1ff911667-Abstract.html.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. CoRR, abs/1606.01540, 2016. URL http://arxiv.org/
abs/1606.01540.

Benjamin Eysenbach, Tianjun Zhang, Sergey Levine, and Ruslan Salakhutdinov.
Contrastive learning as goal-conditioned reinforcement learning. In NeurIPS,
2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
e7663e974c4ee7a2b475a4775201ce1f-Abstract-Conference.html.

Nicholas Frosst, Nicolas Papernot, and Geoffrey E. Hinton. Analyzing and improving representations
with the soft nearest neighbor loss. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.),
Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June
2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning Research, pp.
2012–2020. PMLR, 2019. URL http://proceedings.mlr.press/v97/frosst19a.
html.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: datasets for
deep data-driven reinforcement learning. CoRR, abs/2004.07219, 2020. URL https://arxiv.
org/abs/2004.07219.

Shani Gamrian and Yoav Goldberg. Transfer learning for related reinforcement learning tasks via
image-to-image translation. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings
of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings of Machine Learning Research, pp. 2063–2072.
PMLR, 2019. URL http://proceedings.mlr.press/v97/gamrian19a.html.

David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. In Samy Ben-
gio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Gar-
nett (eds.), Advances in Neural Information Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp.
2455–2467, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
2de5d16682c3c35007e4e92982f1a2ba-Abstract.html.

Irina Higgins, Loïc Matthey, Arka Pal, Christopher P. Burgess, Xavier Glorot, Matthew M. Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. In 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net,
2017. URL https://openreview.net/forum?id=Sy2fzU9gl.

Siddharth Karamcheti, Suraj Nair, Annie S Chen, Thomas Kollar, Chelsea Finn, Dorsa Sadigh,
and Percy Liang. Language-driven representation learning for robotics. arXiv preprint
arXiv:2302.12766, 2023.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Yoshua Bengio and
Yann LeCun (eds.), 2nd International Conference on Learning Representations, ICLR 2014,
Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014. URL http:
//arxiv.org/abs/1312.6114.

Timothée Lesort, Natalia Díaz Rodríguez, Jean-François Goudou, and David Filliat. State represen-
tation learning for control: An overview. Neural Networks, 108:379–392, 2018. doi: 10.1016/J.
NEUNET.2018.07.006. URL https://doi.org/10.1016/j.neunet.2018.07.006.

11

https://proceedings.neurips.cc/paper/2019/hash/6fb52e71b837628ac16539c1ff911667-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/6fb52e71b837628ac16539c1ff911667-Abstract.html
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
http://papers.nips.cc/paper_files/paper/2022/hash/e7663e974c4ee7a2b475a4775201ce1f-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/e7663e974c4ee7a2b475a4775201ce1f-Abstract-Conference.html
http://proceedings.mlr.press/v97/frosst19a.html
http://proceedings.mlr.press/v97/frosst19a.html
https://arxiv.org/abs/2004.07219
https://arxiv.org/abs/2004.07219
http://proceedings.mlr.press/v97/gamrian19a.html
https://proceedings.neurips.cc/paper/2018/hash/2de5d16682c3c35007e4e92982f1a2ba-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/2de5d16682c3c35007e4e92982f1a2ba-Abstract.html
https://openreview.net/forum?id=Sy2fzU9gl
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
https://doi.org/10.1016/j.neunet.2018.07.006

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph
Gonzalez, Michael I. Jordan, and Ion Stoica. Rllib: Abstractions for distributed reinforcement
learning. In Jennifer G. Dy and Andreas Krause (eds.), Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15,
2018, volume 80 of Proceedings of Machine Learning Research, pp. 3059–3068. PMLR, 2018.
URL http://proceedings.mlr.press/v80/liang18b.html.

Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, and Amy
Zhang. VIP: towards universal visual reward and representation via value-implicit pre-training.
In The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/pdf?
id=YJ7o2wetJ2.

Arjun Majumdar, Karmesh Yadav, Sergio Arnaud, Yecheng Jason Ma, Claire Chen, Sneha Silwal,
Aryan Jain, Vincent-Pierre Berges, Pieter Abbeel, Jitendra Malik, Dhruv Batra, Yixin Lin, Olek-
sandr Maksymets, Aravind Rajeswaran, and Franziska Meier. Where are we in the search for an
artificial visual cortex for embodied intelligence? 2023.

Bogdan Mazoure, Jake Bruce, Doina Precup, Rob Fergus, and Ankit Anand. Accelerating exploration
and representation learning with offline pre-training. CoRR, abs/2304.00046, 2023. doi: 10.48550/
arXiv.2304.00046. URL https://doi.org/10.48550/arXiv.2304.00046.

Piotr Mirowski, Andras Banki-Horvath, Keith Anderson, Denis Teplyashin, Karl Moritz Hermann,
Mateusz Malinowski, Matthew Koichi Grimes, Karen Simonyan, Koray Kavukcuoglu, Andrew
Zisserman, and Raia Hadsell. The streetlearn environment and dataset. CoRR, abs/1903.01292,
2019. URL http://arxiv.org/abs/1903.01292.

Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A universal
visual representation for robot manipulation. arXiv preprint arXiv:2203.12601, 2022.

Simone Parisi, Aravind Rajeswaran, Senthil Purushwalkam, and Abhinav Gupta. The unsurprising
effectiveness of pre-trained vision models for control. In International Conference on Machine
Learning, pp. 17359–17371. PMLR, 2022.

Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via disagreement.
In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA,
volume 97 of Proceedings of Machine Learning Research, pp. 5062–5071. PMLR, 2019. URL
http://proceedings.mlr.press/v97/pathak19a.html.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision. In Marina Meila and
Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning,
ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning
Research, pp. 8748–8763. PMLR, 2021. URL http://proceedings.mlr.press/v139/
radford21a.html.

Ilija Radosavovic, Tete Xiao, Stephen James, Pieter Abbeel, Jitendra Malik, and Trevor Darrell.
Real-world robot learning with masked visual pre-training. In Karen Liu, Dana Kulic, and Jeffrey
Ichnowski (eds.), Conference on Robot Learning, CoRL 2022, 14-18 December 2022, Auckland,
New Zealand, volume 205 of Proceedings of Machine Learning Research, pp. 416–426. PMLR,
2022. URL https://proceedings.mlr.press/v205/radosavovic23a.html.

Ilija Radosavovic, Tete Xiao, Stephen James, Pieter Abbeel, Jitendra Malik, and Trevor Darrell.
Real-world robot learning with masked visual pre-training. In Conference on Robot Learning, pp.
416–426. PMLR, 2023.

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,
Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. CoRR,
abs/1606.04671, 2016. URL http://arxiv.org/abs/1606.04671.

12

http://proceedings.mlr.press/v80/liang18b.html
https://openreview.net/pdf?id=YJ7o2wetJ2
https://openreview.net/pdf?id=YJ7o2wetJ2
https://doi.org/10.48550/arXiv.2304.00046
http://arxiv.org/abs/1903.01292
http://proceedings.mlr.press/v97/pathak19a.html
http://proceedings.mlr.press/v139/radford21a.html
http://proceedings.mlr.press/v139/radford21a.html
https://proceedings.mlr.press/v205/radosavovic23a.html
http://arxiv.org/abs/1606.04671

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for
face recognition and clustering. In IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR 2015, Boston, MA, USA, June 7-12, 2015, pp. 815–823. IEEE Computer Society,
2015. doi: 10.1109/CVPR.2015.7298682. URL https://doi.org/10.1109/CVPR.2015.
7298682.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/
1707.06347.

Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Charlin, R. De-
von Hjelm, Philip Bachman, and Aaron C. Courville. Pretraining representations for data-efficient
reinforcement learning. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy
Liang, and Jennifer Wortman Vaughan (eds.), Advances in Neural Information Processing Systems
34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December
6-14, 2021, virtual, pp. 12686–12699, 2021. URL https://proceedings.neurips.cc/
paper/2021/hash/69eba34671b3ef1ef38ee85caae6b2a1-Abstract.html.

Younggyo Seo, Danijar Hafner, Hao Liu, Fangchen Liu, Stephen James, Kimin Lee, and Pieter Abbeel.
Masked world models for visual control. In Conference on Robot Learning, pp. 1332–1344. PMLR,
2023.

Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Stefan Schaal, and
Sergey Levine. Time-contrastive networks: Self-supervised learning from video. In 2018 IEEE
International Conference on Robotics and Automation, ICRA 2018, Brisbane, Australia, May
21-25, 2018, pp. 1134–1141. IEEE, 2018. doi: 10.1109/ICRA.2018.8462891. URL https:
//doi.org/10.1109/ICRA.2018.8462891.

Rutav Shah and Vikash Kumar. Rrl: Resnet as representation for reinforcement learning. arXiv
preprint arXiv:2107.03380, 2021.

Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. CoRR, abs/1807.03748, 2018. URL http://arxiv.org/abs/1807.03748.

Lilian Weng. Contrastive representation learning. lilianweng.github.io, May 2021. URL https:
//lilianweng.github.io/posts/2021-05-31-contrastive/.

Tete Xiao, Ilija Radosavovic, Trevor Darrell, and Jitendra Malik. Masked visual pre-training for
motor control. arXiv preprint arXiv:2203.06173, 2022.

Zhihui Xie, Zichuan Lin, Junyou Li, Shuai Li, and Deheng Ye. Pretraining in deep reinforcement
learning: A survey. CoRR, abs/2211.03959, 2022. doi: 10.48550/ARXIV.2211.03959. URL
https://doi.org/10.48550/arXiv.2211.03959.

Zhecheng Yuan, Zhengrong Xue, Bo Yuan, Xueqian Wang, Yi Wu, Yang Gao, and Huazhe Xu.
Pre-trained image encoder for generalizable visual reinforcement learning. Advances in Neural
Information Processing Systems, 35:13022–13037, 2022.

13

https://doi.org/10.1109/CVPR.2015.7298682
https://doi.org/10.1109/CVPR.2015.7298682
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://proceedings.neurips.cc/paper/2021/hash/69eba34671b3ef1ef38ee85caae6b2a1-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/69eba34671b3ef1ef38ee85caae6b2a1-Abstract.html
https://doi.org/10.1109/ICRA.2018.8462891
https://doi.org/10.1109/ICRA.2018.8462891
http://arxiv.org/abs/1807.03748
https://lilianweng.github.io/posts/2021-05-31-contrastive/
https://lilianweng.github.io/posts/2021-05-31-contrastive/
https://doi.org/10.48550/arXiv.2211.03959

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A ADDITIONAL IMPLEMENTATION DETAILS

All the baseline methods that we compare against sample a training batch of size bG and dimension
bT × 3×D that consists of D sized anchor, positive and negative embedding for optimization, since
they focus on data only within each specific episode in the play datasets, with the hope of learning
generalizable representations. Unlike others, since we enforce the model to learn representations by
relating the tasks, our method samples a batch of size bG×bT ×3×D. All the samples corresponding
to the second axis (bT) pertain to the same value estimate and are sampled uniformly across all tasks.
We then create labels, such that the anchors and the positives share the same labels and the negatives
have independent labels.

We experimented with both the Triplet loss (Equation 1 in the main paper) and SNN (Soft Nearest
Neighbors) and obtained better results with the Triplet loss in almost all the environments.

In each iteration, value lookup is performed efficiently through binary search, for each g (value
estimate) takes O(log Y) time, where Y is the number of keys in the value dictionary Vi. Sampling
a positive ops within dthresh is a constant-time operation, denoted as O(1).

B ADDITIONAL EXPERIMENT DETAILS

For all the experiments for both Atari and Navigation benchmarks, we used a Core-10 desktop with
64-96 GB of memory and 2 3090-Ti GPUs. We used a distributed version of PPO with 6-10 workers
(depending on the amount of memory a specific machine had).

B.1 ATARI

We selected six Atari games that share a common genre, specifically shooting. The chosen games in-
clude Demon Attack, Space Invaders, Carnival, Phoenix, Beam Rider, and Air
Raid, as illustrated in Figure 1.

We used the following hyperparameters for the three baselines. We used a CNN architecture of 4
blocks of 16, 32, 256 and 512 channels with average pooling and a train batch size of 32 for all the
baseline methods. For TCN, we sample the positive anywhere until the end of the truncated episode,
and the negative from the positive to the end of the truncated episode. This worked the best most of
the time. For VIP, we set the minimum length of the subsequence and the maximum length of the
sampled subsequence to be 15 and 50 timesteps, respectively. For SOM, we set the γ parameter to be
0.9. Hyperparameters for our method (VEP) are specified in Table 1.

We access the similarity of value distribution by comparing the value estimates of different games
with Demon Attack, as illustrated in Figure 2. Air Raid, Phoenix, and Space Invaders
exhibit a notable resemblance to Demon Attack, which is a factor of high performance. For games
demonstrating a lower similarity with Demon Attack, we also attain SoTA results; however, the
margin of improvement is not substantially greater than that achieved by other methods.

Table 1: Model architecture & training hyperparameters for Atari and Navigation.
Name Value

Architecture
Visual Backbone CNN (4 blocks of 16, 32, 256, 512 channels)
Greyscale True (Atari), False (Navigation)
Input channel 1 (Atari), 3 (Navigation)
Embedding Layer Output Dim 512

Hyperparameters
Optimizer Adam (Kingma & Ba, 2014)
Learning rate 0.0001
Train batch size 32
Sample batch size 2
vthresh 0.01
dthresh 2

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 9: List of all Atari games we used in the experiment.

Figure 10: Histogram of value estimates from the play dataset across all the games in Atari.

B.2 NAVIGATION

We build a Navigation engine to simulate the Streetlearn navigation, which is a simulator based on
OpenAI Gym (Brockman et al.). Currently, the engine uses panorama images from the StreetLearn
dataset to simulate the navigation task. We split one panorama image to five normal images, which is
an observation for the agent, as as illustrated in Figure 5. For the navigation task, the agent has to

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

reach the goal without map and goal information, solely based on reward signals. At every timestep,
it only gets the current view and its horizontal and vertical distances from the starting point.

We have 6 cities for the experiment, and we established consistent horizontal (dx) and vertical (dy)
displacements between the starting and target points across all cities, as illustrated in Figure 4.

To create a diverse offline play dataset, we place two randomly selected must-pass points within the
designated square area between the start and the goal point. Subsequently, we execute the shortest
path algorithm between points. The effectiveness of this approach is demonstrated by the distribution
of horizontal (dx) and vertical (dy) displacements in each truncated episode across every map (We
set dx = −40.3 dy = −47.5), as depicted in Figure 6. We also calculate the average steps and 95%
confidence intervals for each city, as depicted in Figure 8. These figures illustrate the task and data
complexity by showcasing path and task diversity in each truncated episode.

We access the similarity of value distribution by comparing the value estimates of different games
with Wall Street, as illustrated in Figure 3. Due to the analogous nature of the tasks, each city
exhibits a similar distribution. A few trajectories in the play datasets are shown in Figure 7.

Figure 11: Histogram of value estimates from the play dataset across all the tasks in the Navigation
benchmark.

C T-SNE EMBEDDINGS

To understand the nature of the embeddings by different models, we use t-SNE (Maaten et al.), as
depicted in Figure 10 and Figure 11. The plots showcase two episodes, from each of the two tasks,
with different colors representing value estimates. Our method produces more temporally continuous
and smooth embeddings across the entire episode.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 12: Maps of all the six cities in the Navigation benchmark.

Figure 13: Observations from sample tasks from each of the six cities in the Navigation benchmark.

Figure 14: Distribution of horizontal (dx) and vertical (dy) displacements for each truncated episode.
This estimate is the difference of the end position and the start position in a truncated episode.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 15: Some examples of the sampled paths obtained from that planner that were used as part of
the play dataset.

Figure 16: Average episode length in the play dataset, with 95% confidence intervals for each city in
the Navigation benchmark.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 2: PPO Hyperparameters for Atari and Navigation
Name Value
Learning rate 0.0001
Kl-coeff 0.0
Clip param 0.1
Vf-clip param 10.0
Gamma 0.95
Train-batch size 20000
Train SGD mini-batch size 2000
Horizon for Atari 4650
Horizon for Navigation 700

Figure 17: t-SNE result for Atari using embeddings obtained from random episodes from the play
datasets for Demon Attack (dot) and Space Invaders (cross).

Figure 18: t-SNE result for Navigation using embeddings obtained from random episodes from play
datasets for Union Square (dot) and Wall Street (cross).

19

	Introduction
	Related Work
	Problem Setting and Preliminaries
	Contrastive Representation Learning
	Discounted Returns and Value Functions

	Method
	Implementation

	Experimental Setup
	Environments
	Results

	Conclusion
	Ethics Statement
	Additional implementation details
	Additional Experiment details
	Atari
	Navigation

	t-SNE embeddings

