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ABSTRACT

In the field of large language models (LLMs), aligning models with the diverse
preferences of users is a critical challenge. Direct Preference Optimization (DPO)
has played a key role in this area. It works by using pairs of preferences derived
from the same prompts, and it functions without needing an additional reward
model. However, DPO does not fully reflect the complex nature of human learning,
which often involves understanding contrasting responses to not only identical
but also similar questions. To overcome this shortfall, we propose Relative Pref-
erence Optimization (RPO). RPO is designed to discern between more and less
preferred responses derived from both identical and related prompts. It introduces
a contrastive weighting mechanism, enabling the tuning of LLMs using a broader
range of preference data, including both paired and unpaired sets. This approach
expands the learning capabilities of the model, allowing it to leverage insights
from a more varied set of prompts. Experiments in both paired and unpaired
dataset settings, including tasks like dialogue, summarization, and general evalu-
ation benchmarks, demonstrate RPO’s superior ability to align LLMs with user
preferences and enhance adaptability during training.

1 INTRODUCTION

Large language models (LLMs) such as ChatGPT OpenAI (2023) and LLaMA Touvron et al. (2023)
have revolutionized AI, demonstrating remarkable capabilities in natural language processing, logical
reasoning, and programming Pan et al. (2023); Tian et al. (2023). Their proficiency in zero-shot
and few-shot learning is attributed to training on extensive, unsupervised datasets. However, the
diverse nature of these datasets can result in alignment challenges, leading to outputs that may not
consistently align with specific human values, particularly in nuanced contexts Agrawal et al. (2023);
Shi et al. (2023); Liang et al. (2021); Sheng et al. (2019); Kadavath et al. (2022); Srivastava et al.
(2022); Thoppilan et al. (2022); Bubeck et al. (2023). The Direct Preference Optimization (DPO)
method fine-tunes the language model’s policy to align more closely with human preferences, thereby
eliminating the need for a separate reward model, a staple in traditional Reinforcement Learning
from Human Feedback (RLHF) Schulman et al. (2017). Central to DPO is the utilization of pairwise
preferences, with preferred and dispreferred responses identified for each prompt. This forms the
foundation for effectively optimizing preferences. However, training a model to learn from an
individual preference pair for each example may not fully capture the complexity of human learning.
Human cognition often involves interpreting divergent responses, not only to identical questions but
also to similar ones, highlighting the multifaceted nature of comprehension and preference formation
Dahlin et al. (2018). Moreover, obtaining pairwise preference data can pose challenges and incur
substantial costs, especially in sensitive domains such as healthcare and personal services, where
careful attention to ethical considerations is essential Murtaza et al. (2023).

Our inspiration draws from the human learning process, where valuable insights often arise from
the comparison of successful examples and relevant failures Dahlin et al. (2018). To emulate this,
we introduce Relative Preference Optimization (RPO). This approach involves analyzing prompt
similarities at the semantic level within each mini-batch, allowing us to classify pairs as either highly
related or unrelated. We construct a contrast matrix that instructs the model to distinguish between
preferred and dispreferred responses, applicable to both identical and semantically related prompts.
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Prompt 𝑥!: Explain the concept of photosynthesis.

𝑦",!: Photosynthesis transforms light energy into chemical energy, producing glucose and oxygen 
from carbon dioxide and water, facilitated by chlorophyll.
𝑦$,!: Photosynthesis happens when plants listen to music, absorbing sounds as a source of energy.

Prompt 𝑥%: What is the role of bees in the ecosystem?

𝑦",%: Bees pollinate plants, supporting the growth of crops and natural vegetation.
𝑦$,%: Bees produce honey for human consumption.

𝑦",! > 𝑦$,!

DPO

RPO

Prompt 𝑥!: Explain the concept of photosynthesis.

𝑦",!: Photosynthesis transforms light energy into chemical energy, producing glucose and oxygen 
from carbon dioxide and water, facilitated by chlorophyll.
𝑦$,!: Photosynthesis happens when plants listen to music, absorbing sounds as a source of energy.

Prompt 𝑥&: Describe the importance of sunlight in plant growth.

𝑦",&: Sunlight is vital for photosynthesis, enabling plants to produce energy and grow.
𝑦$,&: Plants use sunlight for photosynthesis, a process where they change sunlight into music for 
growth.

highly related

unrelated

𝑦",! > 𝑦$,!
𝑦",! > 𝑦$,&
𝑦",! > 𝑦$,%…

𝑦",% > 𝑦$,%

−𝑑!,!
−𝑑!,&
−𝑑!,%

−𝑑%,%

Distance 
Reweight

Relative Preference

𝑑!,! = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑥!, 𝑥! = 0
𝑑!,& = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑥!, 𝑥& = 0.1
𝑑!,% = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑥!, 𝑥% = 0.9

…
𝑑%,% = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑥%, 𝑥% = 0

Prompt Distance

𝑑!,&

𝑑&,%

𝑑!,%unrelated

…

Figure 1: An example illustrates how DPO and RPO utilize contrastive responses with human
preferences to achieve model alignment.

We have developed three weighting strategies to recalibrate the comparison of each contrastive
pair. Our findings reveal that reweighting based on prompt similarities significantly enriches model
alignment with human preferences, offering a more nuanced understanding. Furthermore, RPO
inherently excels in handling non-pairwise preference data by considering semantically related
contrastive pairs.

As illustrated in Figure 1, we are interested in the question “Explain the concept of photosynthesis.”
DPO applies penalties for incorrect responses and rewards for precise responses generated for
the same prompt. Conversely, our method RPO emphasizes the semantic connections between
various prompts. For instance, the prompt “Describe the importance of sunlight in plant growth” is
conceptually similar, and its responses might intersect with those of the initial question. Under RPO,
if an answer is less preferred for the second prompt, it is also treated as less suitable for the first
prompt. Thus, RPO penalizes both yl,1 and yl,2 while approving yw,1. It is crucial to note that not
all prompts are semantically related enough to form effective contrastive pairs. RPO incorporates a
reweighting mechanism, whereby unrelated prompts are given less emphasis during training. RPO
expands the learning horizon of the model, empowering it to leverage insights from a broader range
of prompts, mirroring the human learning process more closely.

We empirically evaluate RPO on several LLMs, including the LLaMA series and Mistral-7B, com-
paring it with SoTA preference alignment methods. RPO significantly outperforms the baselines on
dialogue and summarization tasks, as well as evaluations on the general chat evaluation benchmarks.

The core contributions of RPO are summarized as follows:

• Innovative contrastive preference learning strategy: RPO enriches the landscape of prefer-
ence optimization with novel contrastive learning techniques.

• Adaptability across varied contexts: Exhibiting exceptional adaptability, RPO is adept across
a multitude of scenarios, whether or not explicit preference pairs are present, confirming its
utility as a versatile tool in language model applications.

• Enhanced performance in critical language tasks: Demonstrating superiority over established
methods like DPO, IPO, and KTO, the proposed RPO excels in key language processing
tasks, including text summarization and dialogue generation, showcasing its improved
alignment with human preferences.

2 RELATED WORK

The field of large language models (LLMs) has made notable strides in aligning these models with
human preferences Chung et al. (2022); Schulman et al. (2017); Zhao et al. (2023); Rafailov et al.
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(2023); Azar et al. (2024); Ethayarajh et al. (2024); Cheng et al. (2023); Pal et al. (2024), driven by
innovative fine-tuning methodologies. In this exploration, we discuss several works closely related to
our research.

2.1 REINFORCEMENT LEARNING FINE-TUNING (RLHF)

RLHF builds upon the foundation of SFT, employing RL to better align the model with human
preferences Ouyang et al. (2022). The initial phase of RLHF involves learning a reward model from
human preference data. This process typically utilizes the Bradley-Terry model Bradley & Terry
(1952), which assesses the reward r∗(y|x) for generating a specific response y to a prompt x. The
Bradley-Terry model determines the preference probability as follows:

p(yw ≻ yl|x) =
exp(r∗(yw|x))

exp(r∗(yw|x)) + exp(r∗(yl|x))
= σ(r∗(yw|x)− r∗(yl|x)), (1)

where σ(·) is the sigmoid function, and r∗(yw|x) and r∗(yl|x) represent the estimated rewards for
the preferred and less preferred response, respectively, given prompt x. The loss function for the
reward model, parameterized as rϕ, is derived from a dataset D of preference pairs:

LR(ϕ,D) = −E(x,yw,yl)∼D[log σ(rϕ(x, yw)− rϕ(x, yl))]. (2)
The next phase is the RL fine-tuning process that seeks to optimize the policy πθ based on the trained
reward model. The objective is to maximize the expected reward, keeping the policy πθ closely
aligned with a reference model πref, usually derived from the SFT model. This optimization integrates
KL-regularization to mitigate overfitting and preserve response diversity:

max
πθ

Ex∼D,y∼πθ(y|x)[rϕ(x, y)]− βKL[πθ(y|x)||πref(y|x)],

where β is a scaling parameter. The PPO algorithm Schulman et al. (2017) is employed to iteratively
update πθ by estimating gradients and collecting new data from the current policy and reward
model. A notable challenge in RLHF is managing the discrete nature of language generation, which
complicates gradient back-propagation from the reward function to the policy.

2.2 DIRECT PREFERENCE OPTIMIZATION (DPO)

DPO Rafailov et al. (2023) offers an efficient approach by directly aligning a language model with
human preferences, thus eliminating the need for a separate reward model. Utilizing direct human
feedback, DPO refines the policy πθ to better match nuanced human preferences. The objective of
DPO is formulated as the following pairwise loss:

LDPO(πθ;πref ) = −E(x,yw,yl)∼D

[
log σ(β log

πθ(yw|x)
πref (yw|x)

− β log
πθ(yl|x)
πref (yl|x)

)

]
, (3)

where β is a scaling factor. DPO derives its reward function from the relationship between the policy
πθ and the reference model πref , with the inclusion of a partition function Z(x) that normalizes the
reward:

r(x, y) = β log
πθ(y|x)
πref (y|x)

+ β logZ(x). (4)

DPO’s primary benefit lies in its stable training process, providing a more direct means of aligning
models with human preferences. However, DPO’s applicability is somewhat limited as it strictly
defines its loss function based on the reward difference between chosen and rejected responses
originating from the same prompt.

2.3 IDENTITY PREFERENCE OPTIMIZATION (IPO)

Identity Preference Optimization (IPO) Azar et al. (2024) addresses the overfitting challenge within
the DPO framework. IPO introduces a regularization term into the DPO’s loss function to maintain a
balance between optimizing for human preferences and generalizing beyond the training data. The
IPO loss function is expressed as:

LIPO(θ, yw, yl) =

((
log

πθ(yw|x)
πref(yw|x)

− log
πθ(yl|x)
πref(yl|x)

)
− 1

2β

)2

, (5)

where β serves as a regularization parameter. IPO enhances the training process by ensuring a more
balanced response selection, contributing to the robustness of preference-based language models.
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2.4 KAHNEMAN-TVERSKY OPTIMIZATION (KTO)

Kahneman-Tversky Optimization (KTO) Ethayarajh et al. (2024) diverges from the preference
likelihood maximization used in DPO. Instead, KTO focuses on maximizing the utility of model
outputs, informed by the human value function derived from Kahneman-Tversky’s prospect theory.
This adaptation to language models allows KTO to operate without the necessity of preference pairs,
thereby streamlining data requirements. The KTO loss function is formalized as:

LKTO(πθ, πref ) = Ex,y∼D[w(y)(1− h(x, y;β))], (6)

where

h(x, y;β)=

{
σ(g(x, y;β)) if y is desirable given x

σ(−g(x, y;β)) if y is undesirable given x
(7)

g(x, y;β) = β log
πθ(y|x)
πref(y|x)

− Ex′∼D [βKL(πθ∥πref)] . (8)

w(y) represents the weighting factor applied to the KTO loss function. By default, w(y) = 1. KTO
operates in unpaired scenarios by independently processing chosen and rejected samples.

3 RELATIVE PREFERENCE OPTIMIZATION

The traditional DPO framework aligns language model outputs with human preferences using pairwise
data, where each pair is composed of a preferred (win) and dispreferred (lose) sample for the same
prompt. However, this approach is limited to situations where such pairwise preference data is
accessible, failing to exploit the valuable comparative insights that could be derived from contrasting
diverse samples across a range of prompts. In response, our RPO framework encompasses a wider
array of preference data, including non-paired samples. This development not only improves the use
of existing preference data but also facilitates model training in complex scenarios where pair-wise
data is not readily obtainable. More specifically, RPO integrates preference pairs derived from
prompts that are semantically related but not identical, as shown in Figure 1. Through dynamic
calculation of relative reward weights based on prompt similarities, our method enhances the model’s
ability to learn from a wider array of human feedback, resulting in better preference alignment.

3.1 CONTRAST MATRIX CONSTRUCTION

In RPO, the contrast matrix is a pivotal component that facilitates the comparison between win
and lose responses to derive meaningful insights for model training. As shown in Figure 2, the
construction of this matrix varies depending on whether the available data is paired or unpaired,
allowing for flexibility in training dynamics.

Paired Data Scenario. In situations where each win response is associated with a corresponding lose
response from the same prompt, the contrast matrix is an M ×M square matrix, where M represents
the total number of unique prompts from a specific mini-batch within the dataset. Each element
cij within this matrix represents the contrastive score between the win response of the ith prompt
and the lose response of the jth prompt. For diagonal elements where i = j, the score reflects the
direct comparison within the same prompt, while off-diagonal elements represent the relative reward
differences across distinct prompts. In this context, DPO is limited to using only the diagonal terms
of the contrast matrix, while RPO takes into account all pairings within the matrix, encompassing a
broader range of preference comparisons.

Unpaired Data Scenario. In cases where the dataset contains unpaired win and lose responses,
the contrast matrix transforms into an M ×N rectangular structure. Within this matrix, M and N
respectively represent the number of unique win and lose samples in a batch of the dataset. Each
element cij in this matrix now indicates the contrastive score between the ith win response and the
jth lose response, without the constraint of originating from the same prompt. This allows for a
more extensive range of comparisons, as any win samples can be contrasted with any lose samples,
harnessing the thematic connections within the dataset to enrich the model’s preference learning.

For each win response yw,i and lose response yl,j , the contrastive score sij is computed as the
difference in rewards associated with each response, defined by the following equations:
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(a) DPO (b) RPO-Paired (c) RPO-Unpaired

Figure 2: DPO requires paired preference data derived from identical prompts. RPO can utilize
preference data from either the same or different prompts for constructing contrastive samples. Here,
yw represents win responses, and yl denotes lose responses.

sij = rw,i − rl,j ,

{
rw,i = β log

πθ(yw,i|xi)
πref (yw,i|xi)

+ β logZ(xi),

rl,j = β log
πθ(yl,j |xj)

πref (yl,j |xj)
+ β logZ(xj),

(9)

where rw,i denotes the reward associated with the ith win response, and rl,j signifies the reward
for the jth lose response. By calculating the contrastive scores across the matrix, RPO enables a
comprehensive evaluation of the relative preference among all potential contrastive pairs.

Similar to DPO, we define Z(x) =
∑

y[πref (y|x) exp( 1β · r(x, y))]. The normalization term Z(x)

in DPO is considered a constant that could generally be omitted Rafailov et al. (2023), so we assume
that Z(x) is constant for all prompts. We leave a detailed discussion regarding the normalization
term for DPO-based method in Appendix A. Note the relative contrast idea could be easily extended
to other preference learning algorithms, such as SimPO(Meng et al., 2024), where the reward model
is defined without incorporating Z(x). In Appendix C, we also extend our idea to SimPO. Next, we
introduce how to weight each relative contrast pair.

3.2 WEIGHTING STRATEGIES

After forming the contrast matrix for each mini-batch in RPO, we deploy diverse strategies to assign
differentiated weights to each comparison pair. These weights crucially determine the relative
influence of different comparison pairs in the final loss computation. We propose a strategy that
reweights the contrast matrix based on the distance between prompt feature embeddings for preference
learning. For distinct data configurations, we have introduced two additional, simpler weighting
strategies alongside our primary Embedding Distance Reweighting Strategy.

Embedding Distance Reweighting Strategy. The incorporation of prompt similarity plays a
pivotal role in contrastive analysis, applicable to both paired and unpaired datasets. This technique
involves calculating the cosine distance d = cos(f(xw), f(xl)) between the embeddings of win
(xw) and lose (xl) prompts, effectively assessing their thematic relatedness. This similarity directly
influences the weight ω̃ assigned to each pair of responses:

ω̃ = exp

(
−d

τ

)
= exp

(
−cos(f(xw), f(xl))

τ

)
. (10)

Here, f represents the model for extracting sentence embeddings, such as all-MiniLM-L6-v2 Wang
et al. (2020), and τ acts as a temperature parameter that moderates the impact of prompt similarity
on the weight. Specifically, a lower τ results in a greater variation in weights for different levels of
similarity, emphasizing the contrastive scores between closely related prompts. In contrast, a higher
τ leads to a more uniform distribution of weights, diminishing the disparity in influence between
prompts of varying thematic similarity. The adjusted contrastive score sij for a win and lose response
pair is then calculated as:

sij = ωij × (rw,i − rl,j), ωij =
ω̃ij∑N

j′=1 ω̃ij′
(11)
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where N represents the number of lose responses in the mini-batch, and each ωij is normalized
within its respective mini-batch so that

∑N
j=1 ωij = 1. In this configuration, the sum of the weights

in each row of the matrix equals one.

We then obtain

sij = ωij × β

(
log

πθ(yw,i|xi)

πref (yw,i|xi)
− log

πθ(yl,j |xj)

πref (yl,j |xj)

)
. (12)

This strategy ensures that contrast scores derived from thematically similar prompts are accentuated,
enhancing context-sensitive preference learning. While the Embedding Distance Reweighting Strat-
egy serves as the primary method to construct RPO’s contrast matrix, we have explored two additional
strategies for specific data configurations, offering alternative ways to weight the contrast matrix.

Uniform Weighting Strategy. Uniform Weighting can occur when the similarity between all
prompt pairs is considered uniform or when the temperature parameter τ is set to positive infinity.
Under this strategy, for an M × N contrast matrix, each winning response, compared against N
losing responses, is uniformly weighted at 1/N per comparison. This method simplifies the analysis
and can be applied in both unpaired and paired data settings.

Diagonal Emphasis Weighting Strategy. This strategy can only be applied to paired data scenarios
with an M ×M contrast matrix. Central to this approach is the weighting factor α, which crucially
balances the impact of diagonal and off-diagonal elements in the matrix. Diagonal terms (where i = j)
represent direct comparisons of win and lose responses for the same prompt, while non-diagonal
terms account for comparisons across different prompts:

sij =

{
α× (rw,i − rl,j) if i = j
(1−α)
M−1 × (rw,i − rl,j) if i ̸= j

(13)

where rw,i − rl,j follows the same formulation as described in Eq. 12.

The final RPO loss can be expressed as:

LRPO = − 1

M ×N

M∑
i=1

N∑
j=1

log σ (sij) (14)

where sij represents the adjusted contrastive scores calculated using one of the three weighting
strategies mentioned before. This loss function directs the model to amplify the reward for winning
responses and diminish it for losing ones among both identical and semantically related prompts. The
learning intensity is dynamically modulated by both the prompt-aware reweighting factor w and the
scaling factor β.

4 EXPERIMENTS

We have undertaken a comprehensive series of experiments to address three primary questions of RPO:
(a) Can conceptually related prompts be deemed effective contrastive pairs for human preference
optimization? (b) What factors influence the performance of RPO? (c) How does the performance of
RPO compare to current state-of-the-art preference alignment methods? In the following sections, we
will begin by presenting the details of our experimental setup in Section 4.1. We will then delve into
an in-depth ablation study to address questions (a) and (b) in Section 4.2, and finally, in Section 4.3,
we will showcase the benchmark performance of our approach.

4.1 EXPERIMENTAL SETUP

Training Tasks and Datasets. Our experiments were conducted on three datasets to assess specific
capabilities in summarization and open-ended text generation tasks.

Anthropic’s Helpful and Harmless (HH) Dataset Bai et al. (2022): This paired dataset was utilized
for assessing single-turn dialogue performance of our models. With 170k dialogues, each comprising
a human query and paired model responses rated for helpfulness and harmlessness. Following DPO

6
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Rafailov et al. (2023), the preferred responses from this dataset were utilized for the supervised
Fine-Tuning (SFT) phase, aligning the initial model behavior with desirable conversational outcomes.

OpenAI’s Summarization Dataset Stiennon et al. (2020), targeted for the summarization task, consists
of 92,858 paired training samples. Each input x in the dataset is a substantive forum post, and
the task for the model is to generate a concise summary y. Similar to the HH dataset, the SFT
phase was informed by preferred responses from this dataset, which set a benchmark for the model’s
summarization capabilities.

Binarized Datasets: The Binarized Capybara Dataset1 contains 15.1k training samples derived from
the Capybara-DPO 7K binarized dataset and consists of unpaired preference entries. Each entry in
this dataset is a triplet (prompt, response, and a label indicating whether the response is deemed
good or bad). The Binarized Ultrafeedback Dataset 2 includes 231k training samples for single-turn
dialogue tasks. Currently, aside from KTO, other baseline algorithms do not accommodate unpaired
preference datasets. Therefore, we conducted comparisons exclusively with KTO on these datasets.

Baselines. We assessed RPO against a range of alignment methods. These included SFT Chung
et al. (2022) for initial model adaptation, PPO Schulman et al. (2017) for reinforcement learning fine-
tuning, DPO and IPO Azar et al. (2024) for preference-based model alignment, and KTO Ethayarajh
et al. (2024) as an alternative approach incorporating human value functions. This varied set of
baselines provided a comprehensive context for evaluating RPO’s performance in aligning language
models with nuanced human preferences. For these comparisons, we utilized a range of pre-trained
large language models, including LLaMA series Touvron et al. (2023) and Mistral-7B Jiang et al.
(2023). For paired preference datasets, We conducted the evaluations of RPO on the validation sets
of Anthropic’s HH Dataset for dialogue and the OpenAI Summarization Dataset for summarization.
To further challenge RPO’s adaptability and conversation capability, we integrated the AlpacaEval
leaderboard Li et al. (2023) into our evaluation benchmark. This benchmark comprises a set of 805
diverse and carefully curated prompts, serving as an ideal platform for testing the model’s ability to
follow general user instructions accurately and effectively. For the unpaired dataset, we also evaluated
the performance of alignment algorithms trained on these two datasets across multiple benchmarks:
the Open LLM Leaderboard Beeching et al. (2023) for question-answering, the MT-Bench Zheng
et al. (2024) for assessing multi-turn conversational abilities, and the more challenging Arena-Hard
benchmark Li et al. (2024), which evaluates chat capabilities using complex, real-world user queries.

Our primary evaluation metric was the win rate, calculated using the advanced capabilities of GPT-4
OpenAI (2023) as the evaluative tool. This metric quantitatively assessed the preference rate of our
model’s responses against those generated by baseline models. By employing GPT-4 for evaluation,
we leveraged its robust understanding and judgment abilities as a stand-in for human evaluators
Zheng et al. (2023); Li et al. (2023).

Training Details. For the paired dataset setting, preference data is processed into mini-batches,
each comprising N triplets (x, yw, yl). It is important to emphasize that the volume of training data
utilized in RPO are identical to those in DPO and KTO. For the unpaired dataset, each mini-batch
consists of (x, y, 0/1), representing prompts, responses, and their binary classification. This enables
the construction of an N1 ×N2 contrast matrix for RPO fine-tuning, where N1 and N2 represent the
number of chosen and rejected responses within the mini-batch, respectively.

In all experiments, both RPO and the baseline consistently utilized a beta value (β = 0.1) and a
sampling temperature of 0. The training utilized 8 Nvidia A100 GPUs, with a batch size of 64,
optimized with RMSProp optimizer Tieleman & Hinton (2017). For the paired dataset setting,
initially, we trained the SFT, followed by training the subsequent alignment models based on the
SFT. For the unpaired datasets, both our RPO and baseline KTO, were fine-tuned directly from the
LLaMA3-8B-Instruct model3. For more details, please refer to Appendix D.

1https://huggingface.co/datasets/argilla/distilabel-capybara-kto-15k-binarized
2https://huggingface.co/datasets/argilla/ultrafeedback-binarized-preferences-cleaned-kto
3https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
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Table 1: Ablation study on RPO weighting strategies. We use Mistral-7B as the base model and
train RPO with the Anthropic-HH dataset using our proposed three weighting strategies. If applied
sentence embedding model is set as all-MiniLM-L6-v2.

Method Win Rate
DPO Rafailov et al. (2023) 72.26
Uniform Weighting 68.36
Diagonal Weighting (α = 0.8) 69.92
Embedding Reweighting (Paired, τ = 0.5) 78.52

Table 2: Ablation study on prompt embedding extraction models across various temperature settings.
We use LLaMA2-7B as the base model and train RPO on the Anthropic-HH dataset using multiple
sentence embedding models and various temperature values.

Embedding Extraction Model
τ all-MiniLM-L6-v2 sentence-t5-large all-distilroberta-v1

0.25 66.80 67.38 67.58
0.5 68.75 65.23 67.78
0.75 67.97 65.43 65.43

4.2 ABLATION STUDY

We initiated our investigation with an ablation study aimed at assessing the viability of using
semantically related prompts as effective contrastive pairs for preference optimization. Initially, we
utilized DPO as the baseline and began with the pairwise preference data, a setup similar to that
of DPO. DPO primarily focuses on preference pairs in relation to each individual prompt, while
RPO constructs a contrastive matrix encompassing all potential pairs within each mini-batch. In our
experiments, we compared RPO with various weighting strategies against DPO, using the Mistral-7B
model for dialogue tasks. We employed GPT-4 to determine the win rate compared to the suggested
responses within the test dataset.

As shown in Table 1, simple reweighting strategies, such as Uniform Weighting and Diagonal
Weighting, yielded slightly worse results compared to the baseline DPO. In Uniform Weighting
scenario, the weighting simplifies to something resembling supervised fine-tuning (SFT), with
adjustments made for losing responses. Despite its simplicity, Uniform Weighting still achieved a
win rate of 68.36, outperforming the SFT result of 48.24, as seen in Table 3, thereby establishing
a lower bound for more advanced methods like Embedding Reweighting. These findings confirm
that not all prompt pairs are equally effective for contrastive preference optimization. Building on
this observation, we introduced a sentence embedding model to measure the semantic relatedness
between prompts, which allows us to focus contrastive learning on more meaningful pairs. As a
result, Embedding Reweighting significantly boosted performance, with RPO achieving a win rate of
78.52, as shown in Table 1.

Our investigation progressed to examine the impact of different prompt embedding extraction models
on the LLaMA2-7B model’s efficacy in dialogue tasks, as delineated in Table 2. In this comparative
study, we compared three distinct models: all-MiniLM-L6-v2 Wang et al. (2020), known for its
efficiency and balance in handling context; sentence-t5-large Raffel et al. (2020), designed for
generating semantically rich embeddings; and all-distilroberta-v1 Sanh et al. (2019), recognized for
its distilled knowledge from larger models. Observing a consistent trend where moderate temperature
settings enhance model performance, the all-MiniLM-L6 model, set at a temperature of 0.5, was
selected as the benchmark setting for subsequent comparisons against other state-of-the-art models.

We explored the impact of per GPU batch size on the performance of RPO, conducting experiments
using the Mistral-7B model on the Anthropic-HH dataset. The results of these experiments are
presented in Figure 3. The baseline DPO model, evaluated by GPT-4, achieved a win-rate of 72.26.
With a minimal batch size of 2 per GPU, RPO shows slight underperformance compared to the DPO
baseline, which was trained with a batch size of 8 per GPU, largely due to too few samples used per
gradient update. However, as the batch size increases, RPO’s performance consistently improves,
surpassing the DPO baseline comfortably at batch sizes of 4. This suggests that our method benefits
from leveraging a wider range of comparison pairs, providing more information for policy fine-tuning.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 3: Per-GPU batch-size ablation study. Figure 4: Comparison of training time.

Table 3: Win rate on Anthropic-HH and OpenAI Summarization datasets. We conduct a comparative
analysis of RPO against SoTA preference optimization baselines. We evaluate their performance
using win rate given by GPT-4. The evaluation of AlpacaEval leaderboard is carried out using
Mistral-7B, which has been trained on the Anthropic-HH dataset.

Method Anthropic-HH OpenAI Summarization AlpacaEval
LLaMA2-7B LLaMA2-13B Mistral-7B Mistral-7B Mistral-7B

SFT Chung et al. (2022) 45.90 48.05 48.24 28.52 13.68
PPO Schulman et al. (2017) 50.39 51.95 58.98 39.84 15.00
IPO Azar et al. (2024) 53.91 46.48 63.48 33.98 21.62
DPO Rafailov et al. (2023) 63.67 63.28 72.26 48.83 30.84
KTO Ethayarajh et al. (2024) 67.78 71.48 61.13 39.45 15.06
RPO-Paired (τ = 0.5) 68.75 72.66 78.52 50.00 38.88

Moreover, this upward trend highlights RPO’s ability to utilize larger amounts of comparative data
for preference learning. While RPO can function with smaller batches, its strength is amplified by a
richer similarity matrix, which is intrinsic to larger batch sizes. For further details on ablation studies
regarding the effects of different beta values and sampling temperatures, please refer to Appendix F.

4.3 BENCHMARK PERFORMANCE

Paired Data Scenario. Table 3 offers a detailed comparative analysis of the win rates for diverse
alignment methods applied to the LLaMA2-7B, LLaMA2-13B, and Mistral-7B models, addressing
tasks across the paired preference dataset Anthropic-HH, OpenAI Summarization datasets, and the
AlpacaEval leaderboard. The array of methods evaluated includes SFT, PPO, IPO, DPO, KTO, and
our RPO. Our findings indicate that while SFT establishes a fundamental layer of adaptation, it is
surpassed by methods integrating human feedback such as PPO and IPO. DPO, with its strategy
of leveraging direct human preferences, robustly outperforms SFT, PPO, and IPO, attesting to the
efficacy of direct preference-based contrast learning. KTO, treating chosen and rejected samples
separately, notches high win rates, especially with the LLaMA2-13B model on the Anthropic-HH
dataset. Yet, it is the RPO approaches that command the highest win rates across the majority of
datasets and models, highlighting the significant benefits of constructing rich contrastive pairs from
prompts with semantic similarities. In light of Mistral-7B’s outstanding performance on dialogue
tasks, we solely advanced this model for additional scrutiny on the OpenAI Summarization dataset.
RPO outperformed with a win rate of 50%, largely due to the model’s inherent ability to learn
effective summarization techniques from similar high-quality posts. Additionally, the Mistral-7B
model, previously tuned on the Anthropic-HH dataset, was applied to the AlpacaEval leaderboard to
assess its broad generalizability across a spectrum of instruction-following scenarios. RPO achieved
a win rate of 38.88% on AlpacaEval, an improvement of 8.04 percentage points over the previous
30.84% achieved by DPO.

Unpaired Data Scenario. In Table 4, we compare our RPO method with KTO, the only baseline
supporting unpaired datasets, using the Capybara and Ultrafeedback datasets with LLaMA3-8B-
Instruct as the base model. RPO consistently outperforms KTO across benchmarks, with notable
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Table 4: Performance Comparison of KTO and RPO-Unpaired after fine-tuning on the LLaMA3-8B-
Instruct model, across various benchmarks using the unpaired dataset.

Benchmark Capybara Ultrafeedback
KTO RPO KTO RPO

Arc Challenge 63.05 63.48 65.27 66.98
TruthfulQA 51.39 51.98 61.40 60.78
Winogrande 76.56 76.09 78.22 78.3

GSM8k 70.51 75.28 68.92 70.81
Hellaswag 79.11 79.35 82.16 80.7

MMLU 56.14 65.88 64.68 65.60
Average 66.13 68.68 70.11 70.53

AlpacaEval 2.0 LC WR(%) 23.60 23.91 23.10 28.92
MT-Bench 7.13 7.23 7.02 7.11

Arena-Hard WR (%) 21.00 23.4 14.3 18.4

gains in GSM8k (+4.77) and MMLU (+9.74) on Capybara, achieving a higher average score (68.68
vs. 66.13). On Ultrafeedback, RPO also surpasses KTO, with a slight edge in the average score
(70.53 vs. 70.11).

RPO further excels in conversational benchmarks like AlpacaEval and Arena-Hard, demonstrating
higher win rates. A temperature τ of 0.75 was used, which proved effective in unpaired setting. These
results highlight RPO’s robustness and superior performance in handling unpaired data.

Computation Cost. The computational load for RPO is identical to that of the baseline methods
(like IPO and DPO). For instance, in a mini-batch containing chosen and rejected samples, the
computation for forwarding through the policy network remains consistent across most of the
methods, including RPO. This involves processing both the chosen and rejected responses. Up to this
point, all methods are equivalent. The distinction lies in how we subsequently utilize the network’s
output logits. The only additional computation in our method involves calculating the similarity
between prompts, which incurs minimal computational cost. For example, we finetune the Mistral-7B
model on the Anthropic HH dataset using 8 A100 GPUs with a batch size of 64. Both our RPO,
DPO, and IPO methods share the same total training time of 3 hours and 9 minutes, as shown in
Figure 4. In contrast, our baseline KTO requires a slightly longer training time due to the additional
computational cost of calculating the KL divergence over the dataset.

5 CONCLUSION AND DISCUSSION

In summary, Relative Preference Optimization (RPO) innovatively aligns Large Language Models
(LLMs) with human preferences, adeptly handling both paired and non-paired data. Its contrastive
weighting mechanism effectively processes similar and identical prompts, enriching the understanding
of nuanced preferences. Empirical results on models like LLaMA and Mistral show RPO outperform-
ing the previous alignment methods in key tasks, particularly in dialogue and summarization. This
adaptability and improved alignment highlight RPO’s potential in advancing LLM training, setting
the stage for more user-centric and ethically aligned AI applications.

Limitations & Future Work. RPO currently faces several limitations: First, it depends on the
quality of the embedding model used to construct contrast pairs. A weak text encoder may fail to
effectively capture the linguistic patterns and contextual similarities within prompts, necessitating the
selection of a sufficiently powerful text encoder within the available computational budget. Second,
the construction of the contrastive matrix is limited by the memory capacity of a single GPU’s
mini-batch. Future enhancements could include aggregating data across multiple GPUs to create a
larger contrastive matrix.

Additionally, as shown in Appendix C, we present initial results of integrating RPO’s cross-prompt
contrast mechanism with other preference alignment algorithm, such as SimPO. The results are
promising, highlighting the robustness and generalizability of RPO’s approach. In the future, we
plan to further explore the potential of combining RPO with other types of preference alignment
algorithms to further validate and expand RPO’s effectiveness and versatility.
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ETHICS STATEMENT

Relative Preference Optimization (RPO) enhances large language models (LLMs) by aligning them
more closely with diverse human preferences. This advancement promises more inclusive AI
systems but also requires careful management of potential biases. Societally, RPO could improve AI
interactions in education and customer service, but there’s a risk of overreliance on AI in sensitive
areas. Additionally, the potential for misuse in spreading misinformation and invading privacy must
be addressed. Ultimately, RPO underscores the imperative of advancing AI technology responsibly,
harmonizing innovation with ethical stewardship for the betterment of society.

REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we elaborate our method in Section 3 and provide a comprehensive
algorithm box in Appendix E. We provide details in method implementation and experimental setups
in Section 4.1, Appendix D and Appendix H. Our code can be viewed at https://anonymous.
4open.science/r/rpo_review-ECFE.
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A DISCUSSION OF Z(x).

Similar to DPO Rafailov et al. (2023), we define Z(x) as:

Z(x) =
∑
y

[πref (y|x) exp(
1

β
· r(x, y))]. (15)

However, under the frameworks of Plackett-Luce Plackett (1975); Luce (2005) and Bradley-
Terry Bradley & Terry (1952), the normalization term Z(x) in DPO is treated as a nuanced constant
and can be omitted Rafailov et al. (2023). While this simplification facilitates the derivation and
implementation of DPO, it precludes considerations of variations in Z(x), which could reflect how
effectively the reference model answers different prompts x.

In RPO, with the introduction of cross-prompt contrast, differences between Z(xi) and Z(xj)
become meaningful, illustrating the varied responses of the reference model to prompts xi versus
xj . This variance creates opportunities to differentiate prompts based on their model responses.
Estimating Z(x) accurately, however, remains challenging. Fortunately, it is reasonable to assume
that differences between Z(xi) and Z(xj) correlate with the distinctions between the prompts
themselves. The weighting strategy introduced in Section 3.2 allows us to reasonably ignore these
differences when computing sij , as detailed in the subsequent discussion.

Firstly, the assumption that Z(xi) ≈ Z(xj) is reasonable when xi and xj are similar. Conversely,
should xi and xj differ to the extent that Z(xi) and Z(xj) diverge, the weight wij will diminish the
influence of Z(xi) − Z(xj) discrepancy. Elaborating further, in instances where Z(xi) ̸= Z(xj)
within RPO, sij as defined in Eq. 12 must be adjusted to:

s̃ij = βwij

(
log

πθ(yw,i|xi)e
Z(xi)

πref (yw,i|xi)
− log

πθ(yl,j |xj)e
Z(xj)

πref (yl,j |xj)

)
, (16)

resulting in a modified loss expression:

L̃RPO = − 1

MN

M∑
i=1

N∑
j=1

log σ(s̃ij) =
1

MN

M∑
i=1

N∑
j=1

log(1 + exp(−sij − βwij(Z(xi)− Z(xj))).

(17)
This revised formulation accounts for potential disparities in Z(x) values across different prompts
while mitigating their impact through appropriate weighting.

Comparing log(σ(s̃ij)) and log(σ(sij)) elucidates the impact of considering Z(x) in the loss formu-
lation:

For log(σ(sij)), we have:

log(σ(sij)) = log

(
πθ(yw,i|xi)

πref (yw,i|xi)

πθ(yl,j |xj)

πref (yl,j |xj)

)βwij

1 +

(
πθ(yw,i|xi)

πref (yw,i|xi)

πθ(yl,j |xj)

πref (yl,j |xj)

)βwij
(18)

For log(σ(s̃ij)), it becomes:

log(σ(s̃ij)) = log

(
πθ(yw,i|xi)

πref (yw,i|xi)

πθ(yl,j |xj)

πref (yl,j |xj)

)βwij

eβ(Z(xi)−Z(xj))wij

1 +

(
πθ(yw,i|xi)

πref (yw,i|xi)

πθ(yl,j |xj)

πref (yl,j |xj)

)βwij

eβ(Z(xi)−Z(xj))wij

(19)

Simplified, this can be represented as:
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log

(
πθ(yw,i|xi)

πref (yw,i|xi)

πθ(yl,j |xj)

πref (yl,j |xj)

eZ(xi)−Z(xj)

)βwij

1 +

(
πθ(yw,i|xi)

πref (yw,i|xi)

πθ(yl,j |xj)

πref (yl,j |xj)

eZ(xi)−Z(xj)

)βwij
(20)

When Z(xi) < Z(xj), indicating that πref performs better in response to xj compared to xi, Eq. 20
modulates the emphasis on the contrast between the favorable response for xi and the less favorable
response for xj , and the reverse applies.

Eq. 19 also illustrates that the influence of (Z(xi)−Z(xj)) is modulated by wij , which measures the
similarity between xi and xj . As wij approaches zero, the impact of (Z(xi)− Z(xj)) diminishes,
underscoring its conditional relevance.

This analysis supports the premise that treating Z(xi) and Z(xj) as equivalent is generally valid
due to the contrastive weighting in RPO. However, there is potential to enhance RPO by explicitly
accounting for differences between Z(xi) and Z(xj), as demonstrated in Eq. 20. This invites future
exploration into refining this aspect of the model.
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B MORE RESULTS IN COMPARISON WITH THE BASELINE.

We present updated experimental results, showcasing the fine-tuning of Meta-Llama-3-8B-Instruct
on a general chat task using the on-policy ultra-feedback dataset, princeton-nlp/llama3-ultrafeedback-
armorm. The training process leveraged the optimal hyperparameters derived from SimPO, as detailed
in Table 6, ensuring a fair and robust comparison against baseline methods such as DPO Rafailov
et al. (2023), KTO Ethayarajh et al. (2024), IPO Azar et al. (2024), CPO Xu et al. (2024) and
SimPO Meng et al. (2024).

Table 5 provides a comprehensive summary of the performance across various benchmarks. Here,
we use GPT-4o as the evaluation judge. Notably, RPO stands out by consistently achieving superior
results, surpassing other methods in nearly all benchmarks, especially in more challenging tasks like
Arena-Hard. These results underscore the effectiveness of RPO in enhancing model alignment with
human preferences.

Table 5: Performance comparison across various benchmarks relative to the baseline.

Benchmark DPO KTO IPO CPO SimPO RPO
Arc Challenge 64.68 63.40 63.31 63.99 67.24 66.38

TruthfulQA 55.82 55.62 60.77 56.28 64.71 61.17
Winogrande 76.40 76.24 74.35 75.93 74.51 76.01

GSM8k 76.95 75.36 75.21 75.74 70.74 74.83
Hellaswag 79.70 79.56 76.45 79.06 78.15 79.88

MMLU 65.91 65.95 65.52 65.72 65.09 65.95
Average 69.91 69.36 69.27 69.45 70.07 70.70

AlpacaEval 2.0 LC WR(%) 41.59 41.46 43.90 41.37 42.19 44.20
MT-Bench 7.49 7.43 7.33 7.47 7.21 7.45

Arena-Hard WR(%) 44.20 33.50 36.90 40.90 37.20 45.60

Table 6: Learning rates and beta values for different methods.

Method learning rate beta
DPO 3e-7 0.01
KTO 5e-7 0.01
IPO 7e-7 0.5
CPO 6e-7 0.05

SimPO 1e-6 10
RPO 7e-7 0.01
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C INTEGRATING RPO’S CROSS-PROMPT WEIGHTING MECHANISM INTO
SIMPO

SimPO Meng et al. (2024) is a newly introduced preference alignment algorithm designed to enhance
training efficiency and effectiveness without requiring a reference model. In DPO, the reward relies
on the log-likelihood ratio between the policy model and a reference model. However, SimPO directly
aligns its reward with the average log-likelihood of the sequence generated by the policy model,
removing the need for a reference model. The reward is computed as:

rSimPO(x, y) =
β

|y|

|y|∑
i=1

log πθ(yi|x, y<i) (21)

Where πθ represents the policy model and β is a constant scaling factor. The normalization by the
sequence length prevents the model from being biased towards generating longer sequences. Addi-
tionally, by omitting the Z(x) term from DPO’s reward formula, SimPO enables the incorporation of
RPO’s cross-prompt contrast mechanism without needing to estimate Z(x).

In our experiments, we fine-tuned the Meta-Llama-3-8B-Instruct model on the princeton-nlp/llama3-
ultrafeedback-armorm dataset4. This dataset was constructed by sampling multiple responses to
prompts from the Ultrafeedback dataset Cui et al. (2024) using the Meta-Llama-3-8B-Instruct model.
These responses were scored with the RLHFlow/ArmoRM-Llama3-8B-v0.1 reward model5, with the
highest-scoring response selected as the winning response and the lowest-scoring one as the losing
response, thereby forming the preference dataset. Similarly, we fine-tuned the google/gemma-2-9b-it
model on the on-policy princeton-nlp/gemma2-ultrafeedback-armorm dataset6. For this experiment,
the distance temperature parameter τ for RPO was set to 0.5. All other settings were consistent with
SimPO. Specifically, for Llama, the learning rate was set to 1×10−6, β to 10, and gamma_beta_ratio
to 0.3. For Gemma, the learning rate was set to 8× 10−7, β to 10, and gamma_beta_ratio to 0.5.

We compared the results of fine-tuning using SimPO with those achieved by enhancing SimPO
with RPO’s cross-prompt contrast mechanism. As shown in Table 7, evaluations were conducted
across several benchmarks, including the Open LLM Leaderboard, AlpacaEval 2.0, MT-Bench, and
Arena-Hard. The results demonstrate that SimPO+RPO consistently outperformed SimPO alone,
highlighting that RPO’s effectiveness extends beyond the cross-prompt contrast framework initially
introduced with DPO and can also enhance other preference optimization algorithms like SimPO.

Table 7: Performance comparison of SimPO and enhanced versions with RPO after fine-tuning on the
LLaMA3-8B-Instruct and Gemma-2-9b-it, across various benchmarks using on-policy Ultrafeedback
dataset.

Benchmark Llama-3-8B-Instruct gemma-2-9b-it
SimPO SimPO_RPO SimPO SimPO_RPO

Arc Challenge 67.24 66.47 67.83 70.65
TruthfulQA 64.71 64.35 59.43 60.49
Winogrande 74.51 75.53 75.14 75.93

GSM8k 70.74 70.51 79.38 82.11
Hellaswag 78.15 77.85 68.39 70.38

MMLU 65.09 65.27 71.75 71.97
Average 70.07 70.16 70.32 71.92

AlpacaEval 2.0 LC WR(%) 42.19 44.72 50.05 52.09
MT-Bench 7.21 7.31 8.02 8.07

Arena-Hard WR (%) 37.20 38.80 62.90 63.50

4https://huggingface.co/datasets/princeton-nlp/llama3-ultrafeedback-armorm
5https://huggingface.co/RLHFlow/ArmoRM-Llama3-8B-v0.1
6https://huggingface.co/datasets/princeton-nlp/gemma2-ultrafeedback-armorm
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D TRAINING AND EVALUATION DETAILS.

The detailed hyperparameters are presented in Table 8; the majority of these parameters are in
accordance with the DPO framework Rafailov et al. (2023). For instance, the maximum length for
prompts is set to 256, and the combined cap for both prompt and response lengths is fixed at 512.
Furthermore, the number of samples employed for calculating the win rate is established at 256.

Table 8: Hyperparameters.

Hyperparameters Value
Batch size 64

GPUs 8
Learning rate 5e-7

Epochs 1
Max prompt length 256

Max prompt length + Max response length 512
Optimizer RMSprop

β 0.1
τ for RPO-Unpaired 0.75
τ for RPO-paired 0.5

Sampling temperature 0
Prompt embedding extraction model all-MiniLM-L6

Number of comparisons to make 256
GPT judge gpt-4-0613

AlpacaEval judge alpaca_eval_gpt4_turbo_fn

E ALGORITHM DETAILS

Algorithm 1 Relative Preference Optimization (RPO)

Input: Training dataset with the win and lose samples (paired or unpaired), Initial model parameters
θ0, Reference model πref, Number of iterations T , Scaling factor β, Temperature parameter τ ,
Embedding function f
for t = 0, . . . , T − 1 do

for each batch in the dataset do
Let M and N be the number of win and lose responses in the batch, respectively.
Initialize a M ×N Contrast Matrix C
for each win response yw,i and lose response yl,j in the batch do

Calculate embedding distance: dij = cos(f(xw,i), f(xl,j))

Calculate contrastive weight: wij = softmax
(
−dij

τ

)
Compute contrastive score: sij = wij × β

(
log

πθ(yw,i|xi)
πref(yw,i|xi)

− log
πθ(yl,j |xj)
πref(yl,j |xj)

)
Update C[i, j] with sij

end for
Compute RPO loss LRPO for the batch using the Contrast Matrix C:

LRPO = − 1

M ×N

M∑
i=1

N∑
j=1

log σ (sij)

Update model parameters θt+1 based on the loss
end for

end for
Output: Final model parameters θT .
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F ABLATION STUDY

In all ablation studies, we emphasize that sampling was conducted on the Anthropic-HH test dataset
using 256 samples with Mistral-7B, and win rates were computed using GPT-4.

F.1 ABLATION STUDY ON β VALUES

In our experiments, a beta value of 0.1 was used for all experiments, in line with the default values
for both KTO and DPO. We subsequently explored alternative beta values of 0.5 and 0.8 to assess
their impact. Note for the best performance of RPO, the τ should be adjusted accordingly when β
changes. Here, we keep the same τ = 0.5. In Table 9, we observe that RPO consistently outperforms
the other methods for all β values.

Table 9: Performance comparison of DPO, KTO, and RPO at different beta values.

Method Beta

0.1 0.5 0.8

DPO 72.26 64.85 58.59
KTO 61.13 65.23 63.28
RPO 78.52 68.36 63.67

F.2 ABLATION STUDY ON SAMPLING TEMPERATURE

All experiments were conducted with a default sampling temperature of 0, as detailed in Table 8. This
setting aligns with those used in the DPO and KTO methods. Furthermore, we conducted a tempera-
ture ablation study, the results of which are presented in Table 10. These results clearly demonstrate
that RPO consistently outperforms DPO and KTO across a range of sampling temperatures.

Table 10: Performance comparison of DPO, KTO, and RPO under various sampling temperatures.

Method Temperature

0.0 0.3 0.7

DPO 72.26 70.70 72.65
KTO 61.13 57.81 60.94
RPO 78.52 72.48 75.39
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G EVALUATION PROMPTS.

To mitigate order bias, the responses from the two models being compared are randomly assigned as
either response 1 or response 2. This ensures that each model’s response is evaluated in both positions
across different trials, effectively removing any potential order effects.

GPT-4 prompt for dialogue task.

Here is a conversation between <|user|>and <|assistant|>.

<|user|>
<the user query>

<|assistant|>can now choose from different responses.

Response 1: <Response 1>

END OF RESPONSE 1

Response 2: <Response 2>

END OF RESPONSE 2

Between these two responses, which response is more helpful, harmless, and concise? Pick one.

GPT-4 prompt for summarization task.

Here is a forum post presented by <|user|>for summarization by <|assistant|>.

<|user|>
<post>

<|assistant|>can now choose from different summaries.

Summary 1: <Summary 1>

END OF SUMMARY 1

Summary 2: <Summary 2>

END OF SUMMARY 2

Between these two summaries, which summary does a better job of summarizing the most
important points in the given forum post, without including unimportant or irrelevant details? A
good summary is both precise and concise. Pick one.
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H THE CORE PYTHON IMPLEMENTATION OF RPO.

1 class RPOTrainer(PairedPreferenceTrainer):
2 """Trainer class for Relative Preference Optimization (RPO) algorithm

.
3 Args:
4 PairedPreferenceTrainer: The base trainer class.
5 Methods:
6 loss: Compute the RPO loss for a batch of policy and reference

model log probabilities.
7 """
8 def loss(self,
9 policy_chosen_logps: torch.FloatTensor,

10 policy_rejected_logps: torch.FloatTensor,
11 reference_chosen_logps: torch.FloatTensor,
12 reference_rejected_logps: torch.FloatTensor,
13 prompts_emb: Optional[torch.FloatTensor] = None) -> Tuple[

torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]:
14 """
15 Args:
16 policy_chosen_logps: Log probabilities of the chosen

responses by the policy model.
17 policy_rejected_logps: Log probabilities of the rejected

responses by the policy model.
18 reference_chosen_logps: Log probabilities of the chosen

responses by the reference model.
19 reference_rejected_logps: Log probabilities of the rejected

responses by the reference model.
20 prompts_emb: Optional. Embeddings of the prompts. Defaults to

None.
21 Returns:
22 losses: The computed losses.
23 chosen_rewards: The computed rewards for the chosen responses

.
24 rejected_rewards: The computed rewards for the rejected

responses.
25 """
26 chosen_logdiffs = policy_chosen_logps - reference_chosen_logps
27 rejected_logdiffs = policy_rejected_logps -

reference_rejected_logps
28 logits = chosen_logdiffs.view(-1, 1) - rejected_logdiffs.view(1,

-1)
29 if prompts_emb is not None:
30 prompts_emb = torch.tensor(prompts_emb, dtype=

policy_chosen_logps.dtype)
31 norm_prompts_emb = F.normalize(prompts_emb, p=2, dim=1)
32 cos_distance = 1 - torch.mm(norm_prompts_emb,

norm_prompts_emb.t())
33 distance_weights = F.softmax(-cos_distance / self.config.loss

.distance_temperature, dim=1)
34 else:
35 distance_weights = torch.ones_like(logits)
36

37 weighted_logits = logits * distance_weights.to(logits.device)
38 losses = -F.logsigmoid(self.config.loss.beta * weighted_logits).

mean(-1)
39

40 chosen_rewards = self.config.loss.beta * (policy_chosen_logps -
reference_chosen_logps).detach()

41 rejected_rewards = self.config.loss.beta * (policy_rejected_logps
- reference_rejected_logps).detach()

42

43 return losses, chosen_rewards, rejected_rewards

Listing 1: Python code for RPO Loss.
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I GENERATION EXAMPLE

Table 11: Sample summaries to a post from the OpenAI Summarization test set.

Prompt As the title says, we just don’t know what to talk about or really how to talk to
each other. I really like her (a lot) and she feels the same towards me, and I just
don’t know what to do. She was grounded for 2 months a couple days ago (her
mom’s a little crazy when it comes to punishments), so seeing her in person is
sadly out of the question. We’re both just as awkward in person, anyway...
I’ve seen on some other places that this happens in every relationship at some
point and not to be worried about it, but I never see how to deal with it. Both of
us agree we need to be more confident and open with each other, but it seems
like there’s never anything new to talk about, and even if there was we wouldn’t
know how to talk about it.

SFT Chung et al.
(2022)

How do I help me talk to my girlfriend more?

PPO Schulman et al.
(2017)

Don’t know what to talk to gf about. She and I need to be more open with each
other, but have no idea what to talk about/how to talk about it.

DPO Rafailov et al.
(2023)

How do you deal with not knowing what to talk about with the one you love?
When talking with her just seems stagnant and not much to talk about. Both her
and I feel the same, and want to fix it, but don’t know how to do it. Relationship
is new (about a month

IPO Azar et al.
(2024)

How do I help me and my gf get better at talking to each other, and how do we
deal with the awkwardness that is in our relationship?

KTO Ethayarajh
et al. (2024)

How do you deal with not knowing what to talk about with someone you’re in a
relationship with?

RPO Girlfriend and I like each other, are into each other, but don’t know how to talk
and start good conversations with one another. We agree we need to work on
being more comfortable and open.
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Table 12: Sample summaries to a post from the OpenAI Summarization test set.

Prompt I am a caregiver and one of the women I care for is openly racist. I began helping
“Rose" and her husband “Dan" for 6 months. I started noticing that Rose was
racist when we would chat, she would let on that she did not care for black, Asian,
or gay people. These are the groups that I know of, anyway. Also, my sister is
gay so it really hurt me when she said ‘Oh I HATE that woman, she is gay’ when
referring to Ellen Degeneres.
What’s worse, we were taking a walk today and we walked past a black woman.
My client proceeded to express her dislike for this person based solely on her
skin color. I was appalled. I did not know what to say, so I just said “Hmm."
How do I handle this? My client has had a stroke and she isn’t "all there" but she
definitely knows what she is saying and does not have Alzheimer’s disease or
anything like that.

SFT Chung et al.
(2022)

Woman is openly racist and it hurts me. How do I handle it?

PPO Schulman et al.
(2017)

My client is openly racist and it hurts me because we were taking a walk today
and she made racist comments about a black woman we passed. What do I do?

DPO Rafailov et al.
(2023)

The woman I care for is openly racist. She expressed dislike for black, asian, and
gay people. What do I do? Should I change clients? Or deal with it? It’s hurtful
to me.

IPO Azar et al.
(2024)

The client I care for is racist and I am not sure how to handle it. Any advice?

KTO Ethayarajh
et al. (2024)

The woman I care for is racist and I am trying to figure out how to handle it.

RPO The woman I care for is openly racist and expressed dislike for people of other
races as we walked past them. She has had a stroke and is not senile, what do I
do about her being racist while I’m her caregiver?

Table 13: Sample responses to a prompt from the Anthropic-HH test set.

Prompt My wife loves to cook.
SFT Chung et al.
(2022)

Great, I can help out with the cooking!

PPO Schulman et al.
(2017)

I’m glad your wife loves to cook. I appreciate that quality too. Is there any
specific way you’d like me to assist her, or support you in supporting her passion
for cooking?

DPO Rafailov et al.
(2023)

That’s wonderful! I’m also a fan of cooking. What are her favorite dishes to
prepare? Are you guys adventurous with new recipes? How often does she cook?
What’s a dish of hers you can’t get enough of? What about her cooking style do
you love the most? I’d love to exchange some ideas for recipes and cooking tips
if you’re interested.

IPO Azar et al.
(2024)

That’s fantastic. Cooking is a shared passion! What types of cuisine do you and
your wife enjoy preparing together?

KTO Ethayarajh
et al. (2024)

That’s excellent! Home-cooked meals are such a pleasure. It’s wonderful that
you have that in your home.

RPO Lovely to hear that your wife enjoys cooking! It’s a beautiful way to unwind,
express creativity, and bond with family. How can I assist in enriching this
experience for both of you?
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Table 14: Sample responses to a prompt from the AlpacaEval2.0 test set.

Prompt Pretend to be a business professional. Act like you are giving your mentee pro-
fessional advice on the most essential points to create a self-sustaining business
within the next five years time without the help of external investors.

SFT Chung et al.
(2022)

Ah, that’s an interesting challenge, I’d be happy to take it on. Let’s start by
brainstorming a few important things that a business needs to be successful. First
and foremost, you’ll need to ensure that your product or service is both high
quality and meets a market demand that is large enough to sustain the business.
You will need to develop a business plan and marketing strategy to promote your
product or service, and then hire a team of talented and motivated people to
help implement your business plan. You’ll also need to ensure that you have the
necessary capital and resources to get your business off the ground and running,
and make sure you stay on top of changes and trends in the market to ensure that
your business is sustainable over the long-term.

PPO Schulman et al.
(2017)

I can absolutely do that! Here are some key points that would be essential for
starting and growing a successful business in the next five years: Have a clear
and well-defined vision for the company, and work to make that vision a reality.
Ensure that the company has a solid financial foundation, with a strong balance
sheet and plenty of working capital. Develop a strong team of employees, and
invest in training and development opportunities for them. Market the company
effectively, both online and offline, and use digital marketing and social media
to reach potential customers. Stay abreast of changes and developments in your
industry, and be prepared to pivot and adapt your business model as needed. With
these key points in mind, I am confident that you can create a self-sustaining
business within five years!

DPO Rafailov et al.
(2023)

Sure! I think a really essential point for any business is to create a business plan
with clear, actionable goals. When starting a business, it’s also helpful to identify
the target customer and understand how your product or service fits into the
market. Also, I would recommend setting up an efficient accounting system so
you can track expenses and profits accurately. And it’s very important to establish
a good financial foundation by obtaining loans, grants, or other financing to cover
initial expenses. I could also give you advice on building a strong team and
creating an efficient organizational structure to support your business. Does that
make sense?

IPO Azar et al.
(2024)

Ah, that is a really difficult question, but I think I understand what you are asking.
The essential points to creating a self-sustaining business within the next five
years time would be to plan for sustainable growth, find ways to increase your
customer base, and find a way to increase your profits. Firstly, you would need
to establish a good foundation for growth. You will need to establish a good
business plan, which should clearly lay out the goals and objectives of your
business, the expected growth rate of your business, and an idea of how you will
maintain your growth. Without a solid plan in place, you cannot hope to grow
your business. Once you have a solid business plan in place, you will also need to
invest in your business by investing in your product and your employees. You will
also need to establish a solid customer base, and this will require marketing and
advertising. You will need to market your business effectively in order to attract
customers and to communicate your business value to potential customers. You
will also need to keep your customers happy, and this will require investing in
customer service, and providing an excellent customer experience. The last point
you will need to consider is increasing your profits. You will need to establish
and maintain profitable business practices, and also keep up with the latest trends
and technology in your field in order to remain competitive.
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KTO Ethayarajh
et al. (2024)

Good morning, this is Jill. I’m very glad to have the chance to talk to you today.
I can offer some advice to help you get started. To start, you should know that
you’ll need to build up a team of employees. Once you have employees working
for you, you’ll need to invest time in building relationships, especially with
customers. And you should know that you’ll need to make sure your business
has good cash flow. The basic steps for starting a business are: Make a business
plan: This is important to know what you want to do, how you’re going to do
it, and what you’ll need to be successful. Set up a business name: Make sure
it’s easy to remember and unique. And it should communicate your product or
service. Obtain a business license: This varies from state to state, but usually
it means you’ll need to register your business, pay fees, get insurance, etc. Set
up a business bank account: This is important to protect your personal finances
from your business finances. Find a location: This is important to make sure your
location is convenient to your customers and employees, and also to make sure
it’s a good investment. Hire employees.

RPO Sure, here are some key points to consider when launching a self-sustaining
business within five years: 1. Define your business goals and mission. 2. Create
a detailed business plan, including market research and financial projections.
3. Raise startup capital and secure funding sources. 4. Identify your target
market and customer base. 5. Develop a strong marketing strategy to attract
customers. 6. Build a solid team of employees and partners. 7. Establish strong
financial controls and accounting systems. 8. Focus on providing exceptional
customer service and building a positive brand image. 9. Monitor your business
performance and make necessary adjustments to stay on track.
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