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Abstract
Circuit discovery has recently attracted attention
as a potential research direction to explain the
non-trivial behaviors of language models. It aims
to find the computational subgraphs, also known
as circuits, within the model that are responsible
for solving specific tasks. However, most exist-
ing studies overlook the holistic nature of these
circuits and require designing specific corrupted
activations for different tasks, which is inaccu-
rate and inefficient. In this work, we propose
an end-to-end approach based on the principle
of Information Bottleneck, called IBCircuit, to
identify informative circuits holistically. IBCir-
cuit is an optimization framework for holistic cir-
cuit discovery and can be applied to any given
task without tediously corrupted activation design.
In both the Indirect Object Identification (IOI)
and Greater-Than tasks, IBCircuit identifies more
faithful and minimal circuits in terms of critical
node components and edge components compared
to recent related work. The code is available at
https://github.com/ivanniu/IBCircuit.

1. Introduction
Circuit discovery in language models usually involves iden-
tifying the subgraphs (circuits) within the model that are
responsible for solving specific tasks (Olah et al., 2020).
Previous efforts to identify circuits within language mod-
els have led to the discovery of components (e.g., attention
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heads and MLPs in Transformers (Vaswani et al., 2017))
that either partially or fully explain the model’s behaviors
on tasks like Indirect Object Identification (IOI), modular
arithmetic, and forecasting subsequent dates (Wang et al.,
2022; Nanda et al., 2023; Hanna et al., 2024). The challenge
of circuit discovery lies in the fact that circuits are hidden in
the complex black boxes of language models which involve
complex non-linear interactions in densely-connected layers
and embed in a high-dimensional space (Wang et al., 2022;
Li et al., 2025a).

Recent circuit discovery works seek to decode these models
by reverse engineering (Räuker et al., 2023), such as acti-
vation patching (Meng et al., 2022) and attribution patch-
ing (Nanda, 2023). The activation patching (Geiger et al.,
2021; Goldowsky-Dill et al., 2023; Conmy et al., 2023;
Wang et al., 2022) performs causal interventions indepen-
dently on each component, ignoring that the circuit is a
holistic system rather than an independent combination.
Additionally, they do not scale well with the model size. An-
other research line has proposed attribution patching (Nanda,
2023) and its variants (Chintam et al., 2023; Hanna et al.,
2022; Marks et al., 2024) to efficiently estimate the impor-
tance of each component in the computational graph based
on gradient methods. However, they still need to redesign
corrupted activations for different tasks, which is inconve-
nient and complicated.

An ideal minimal circuit should (i) contain only the es-
sential components for specific tasks, and (ii) exclude any
irrelevant or redundant components. Intuitively, to identify
high-quality circuits, we should maximize the circuit’s rele-
vance to the tasks while minimizing irrelevant components.
Interestingly, the objective of circuit discovery aligns with
the Information Bottleneck (IB) principle. The IB leverages
Shannon mutual information to distill the compressed yet
informative data distributions (Tishby et al., 2000). From
the IB perspective, circuit discovery is to (i) find circuits
that are the most informative to the specific tasks and (ii)
compress them from the overall language models.

In this work, we propose the Information Bottleneck Circuit
(IBCircuit), a novel IB framework designed to identify the
informative components within Transformer-based language
models. IBCircuit is an optimization framework for holistic
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circuit discovery and can be applied to any given task with-
out tediously corrupted activation design. To parameterize a
circuit, IBCircuit injects controllable Gaussian noise with
learnable IB weights into various model components (e.g.,
the activations of attention heads and MLPs). It modulates
the flow of clean information from the original pretrained
model to its distorted version. The IBCircuit objective en-
courages the distorted flow to retain its informativeness.
Therefore, IBCircuit preserves the most informative compo-
nents with minimal noise injection. This process simulates
information compression, ensuring that the most informa-
tive components are preserved while irrelevant components
are filtered out. Finally, the circuit is formed by discretiz-
ing the continuous weights to select the most informative
components. The contributions of this work are as follows:

• We propose a circuit discovery framework, IBCircuit,
which utilizes information bottleneck to holistically
identify the most informative and compressed circuit
within the language models.

• We introduce a circuit parameterization strategy that
incorporates noise injection with learnable IB weights,
providing a task-agnostic alternative to the task-
specific corrupted activation construction.

• We conducted experiments in the Indirect Object Iden-
tification (IOI) and Greater-Than tasks, verifying that
IBCircuit can identify more faithful and minimal cir-
cuits in terms of selecting critical node and edge com-
ponents compared to baseline methods.

2. Related Work
Circuit Analysis Recent advances in circuit analysis fo-
cus on reverse-engineering neural networks through two
primary methodologies: activation patching and attribu-
tion patching. The activation patching paradigm (Vig et al.,
2020; Finlayson et al., 2021; Geiger et al., 2021; Goldowsky-
Dill et al., 2023; Conmy et al., 2023; Wang et al., 2022)
conducts causal interventions by modifying individual com-
ponents’ activations. Common implementations include
overwriting activations with zeros (Cammarata et al., 2021;
Olsson et al., 2022), substituting with dataset mean values
(Wang et al., 2022; Hanna et al., 2024), or applying inter-
change interventions (Geiger et al., 2021; Wu et al., 2024).
However, these approaches face two fundamental limita-
tions: (1) They treat circuit components as independent
entities, disrupting the model’s holistic computation flow
(Räuker et al., 2023); (2) The substituted activations often
deviate from plausible activation distributions (Chan et al.,
2022), and their sequential intervention process becomes
computationally expensive for large models. In contrast,
attribution patching methods (Nanda, 2023) and their vari-
ants (Chintam et al., 2023; Hanna et al., 2022; Marks et al.,

2024) employ gradient-based approaches to estimate com-
ponent importance across the computational graph. While
these techniques improve efficiency through parallelizable
gradient computations, they introduce new practical chal-
lenges. Current implementations require task-specific en-
gineering of corrupted activation patterns (Nanda, 2023),
creating implementation complexity and limiting generaliz-
ability across different behaviors. This fundamental tension
between intervention fidelity and computational efficiency
remains unresolved in existing literature.

Information Bottleneck The principle of the information
bottleneck (IB) aims to extract a compressed yet predic-
tive code from the input signal (Tishby et al., 2000; Yu
et al., 2024). Alemi et al. (2017) initially introduced the
variational information bottleneck (VIB) to deep learning
interpretability research. Currently, IB and VIB primarily
focus on informative representation learning and feature se-
lection. In representation learning, researchers aim to learn a
compressed representation with the IB principle (Luo et al.,
2019; Qian et al., 2020; Wu et al., 2020; Liu et al., 2024).
For feature selection, IB is used to select a subset of input
features, such as image pixels or vector dimensions (Achille
& Soatto, 2018b; Kim et al., 2021; Schulz et al., 2020). For
instance, Yu et al. (2020) et al. present a graph information
bottleneck to identify important subgraphs. Wu & Deng
(2023) et al. introduce the Two-Stream Information Bottle-
neck (TIB) method, which uses a standard IB and a Reverse
Information Bottleneck (RIB) to detect unknown objects.

3. Preliminaries
Neural Circuits A Neural Circuit for a given task is the
minimal computation subgraph C ⊂ G, where C and G
denote the set of components in the circuit and complete
model, respectively (Olah et al., 2020). In the computational
graph of transformer-based language models G, the nodes
are defined as MLPs and attention heads, and the edges are
defined as the dependencies between nodes (Li et al., 2025b;
Chang et al., 2024). The objective of circuit discovery is to
identify a sparse subgraph that encapsulates the behavior of
the complete model for a specific task. We denote the output
of the circuit, given the original and distorted information
flows x, x̃, as pC(y | x, x̃), while the output of the complete
model is represented as pG(y | x). Formally, the goal of
circuit discovery can be expressed as follows:

argmin
C

E(x,x̃)∈T [D(pG(y | x) || pC(y | x, x̃))] ,

s.t. 1− |C|/|G| ≥ c
(1)

The constraint c is designed to ensure a desired sparsity for
the circuit. The set T represents the relevant task distribu-
tion. The objective function D captures the discrepancy
between the outputs of the complete model and the circuit.
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Information Bottleneck The Information Bottleneck
(IB) (Tishby et al., 2000) is to optimize the representation
Z to capture the minimal sufficient information within the
input data D to predict the target Y . Its objective can be
formulated as follows:

min
P(Z|D)∈Ω

IBβ(D, Y ;Z) ≜ [−I(Y ;Z) + βI(D;Z)], (2)

where Ω defines the search space of the optimal model, and
I(·; ·) denotes the mutual information (Cover, 1999). The
first term −I(Y ;Z) encourages Z to be informative about
the target Y , while the second term I(D;Z) ensures that
Z does not receive irrelevant information from D. The IB
provides a critical principle for representation learning: an
optimal representation should contain the minimal sufficient
information for the downstream prediction task.

4. IBCircuit
4.1. Intuition: Informative Circuit

In language model, let us consider the specific task X =
{x(i)}Ni=1 consisting of N i.i.d. samples and the target
Y = {y(i)}Ni=1. We assume that the data are generated
by some random process, involving an unobserved random
circuit C = {c(i)}Ni=1. An ideal minimal circuit (i) contains
the most informative components for specific tasks, and
(ii) does not include irrelevant or redundant components.
Intuitively, the goal of circuit discovery in Eq. (1) aligns with
the concept of the Information Bottleneck (IB) principle. We
denote G = {g(i)}Ni=1 as the whole computation graph of
the transformer-based model, Y as the output of the model
on specific tasks X , and C as the circuit composed of critical
components. We reformulate Eq. (2) to obtain the objective
of IBCircuit as follows:

min
P(C|G)

IBβ(G, Y ; C) ≜ [−I(Y ; C) + βI(G; C)], (3)

The first term encourages the circuit C to be informative
on the targets Y . The second term ensures that C receives
limited information from the whole computation graph G,
i.e., minimizing task-irrelevant components. However, in
practice, the mutual information in Eq. (3) is intractable.

4.2. Estimation of Mutual Information

Exact computation of I(Y ; C) and I(G; C) is intractable.
Hence, we introduce variational approximation to estimate
the variational bounds on these two terms and propose the
IBCircuit framework to find informative circuits. The deriva-
tion is detailed in Appendix A.

Maximizing I(Y ; C). We first examine the first term
I(Y ; C) in Eq. (3), which encourages C to be informative
of the output Y . We derive the variational lower bound of
I(Y ; C) as follows:

Proposition 4.1 (Variational lower bound of I(Y ; C)). For
the output Y of the original transformer language model G,
the output YC of the given circuit C, the variational lower
bound can be written as:

I(Y ; C) ≥ − 1

N

N∑
i=1

[DKL(y
(i)||y(i)c ) +H(y(i))]. (4)

where DKL(·||·) is the Kullback-Leibler Divergence, H(·)
is the entropy.

In general, given a language model on a specific task,
the H(y(i)) is a constant. Therefore, we can omit this
term, and the lower bound of Eq. (4) can be reformulated
as − 1

N

∑N
i=1 DKL(y

(i)||y(i)c ). This inequality is highly
intuitive, demonstrating that maximizing I(Y ; C) can be
achieved by minimizing the KL Divergence of the output
between the whole computation graph and the circuit. In
other words, the circuit contains the most informative com-
ponents for specific tasks.

Minimizing I(G; C). For the second term I(G; C) in
Eq. (3), which ensures C contains minimal irrelevant or
redundant information about G. Its variational upper bound
is as follows:

Proposition 4.2 (Variational upper bound of I(G; C)). For
the complete transformer language model G, and the circuit
C, the variational upper bound can be written as:

I(G; C) ≤ DKL[q(C|G)||p(C)], (5)

where q(C|G) and p(C) is the posterior and prior of the
circuit. Minimizing the upper bound of I(G; C) constrains
the irrelevant information that C retains from G. Therefore,
we can select the circuit C from G after training the IBCircuit
with the tractable bounds.

4.3. Circuit Parameterization

To implement IBCircuit, we follow the variational
method (Rockafellar & Wets, 2009) and assume the prior of
the circuit to be an isotropic Gaussian. Given a pretrained
model composed of n components with intermediate ac-
tivations h = [h1, h2, · · · , hn], we introduce IB weights
λ = [λ1, λ2, · · · ] to control information flow through
λi = Sigmoid(ωi) with learnable parameter ωi. To con-
struct circuit, we adopt Gaussian noise ϵi ∼ N (µi, σ

2
i )

scaled by λi ∈ (0, 1) to perturb activations, where µi and
σ2
i are computed from batch activations of hi. Following

established circuit analysis protocols (Wang et al., 2022;
Conmy et al., 2023), we parameterize the circuit on node
and edge level:

Node-wise Parameterization. Following previous work on
node-level circuit discovery (Wang et al., 2022), we focus
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Figure 1. (a) Transformer blocks from the perspective of the resid-
ual stream. (b) Adding Gaussian noise to the activations of atten-
tion heads using node-wise IB weights and optimizing through the
Information Bottleneck. (c) Selecting attention heads with less
noise as the node-level circuit. (d) Adding Gaussian noise to the
activations of source nodes using edge-wise IB weights and opti-
mizing through the Information Bottleneck. (e) Selecting edges
with less noise as the edge-level circuit.

on attention heads as node components. We perturb the
output activations of each attention head in the Transformer
architecture and train the distorted model holistically. For
individual attention heads:

ĥi = λihi︸︷︷︸
signal preservation

+(1− λi)ϵi︸ ︷︷ ︸
noise injection

, (6)

where hi denotes the i-th attention head’s activation and ĥi

denotes the distorted activation, λi is node-wise IB weight.

Edge-wise Parameterization. Inspired by ACDC (Conmy
et al., 2023), we explicitly model the Transformer’s resid-
ual stream through two node types: (1) Source Nodes:
Token/positional embeddings, attention head outputs, and
MLP outputs. (2) Target Nodes: Q/K/V projection in-
puts and MLP inputs. Following the layer-wise residual
architecture, each target node at layer l (denoted as trg(l))
aggregates information from all preceding source nodes up
to layer l − 1 (denoted as src(< l)), forming directed edges
E = {(j, i)|j ∈ src(< l), i ∈ trg(l)}. We parameterize the
edge through:

ĥi =
∑

(j,i)∈E

[
λjihj︸ ︷︷ ︸

signal propagation

+(1− λji)ϵj︸ ︷︷ ︸
noise injection

]
, (7)

where hj denotes the j-th source node’s activation and ĥi de-
notes the distorted target node’s activation, and λji denotes
edge-wise IB weight.

The IB weights λ implement differentiable information
gates: λi → 1 preserves original activations while λi → 0
induces maximal noise. Crucially, our formulation enables
simultaneous optimization of all λ through holistic gradi-
ent flow across the computational graph and adaptive noise
calibration via batch statistics. This contrasts with existing
patching methods that require sequential intervention.

4.4. Objective for Training

The circuit C is designed to extract information from the
pre-trained model G by approaching the original outputs Y .
Our framework operates through two complementary mech-
anisms: (1) maximizing the mutual information between
C’s outputs and the target outputs Y to maintain functional
consistency, and (2) introducing controlled noise injection
to minimize dependence on the pre-trained model G, thereby
preserving task-critical components while perturbing non-
essential components. Considering the theoretical results
in Propositions 4.1 and 4.2, the variational upper bound
IBCircuitβ(G, Y ; C) can be formulated as:

1

N

N∑
i=1

DKL(y
(i)||y(i)c ) + βDKL[q(C|G)||p(C)], (8)

where β is the hyperparameter. Consider our circuit pa-
rameterization, the second term DKL[q(C|G)||p(C)] can be
further specified as:

DKL[q(C|G)||p(C)] = − logA

n
+

A2 +B2 − 1

2n
, (9)

where A = −
∑n

i=1(1 − λi), B =
∑n

i=1
λi(hi−µi)

σi
, and

n is the number of component in the language model. Al-
though the exact computation of I(Y ; C) and I(G; C) is
intractable, we can calculate their variational bounds. There-
fore, we adopt IBCircuitβ(G, Y ; C) as the overall objective
function. Compared to existing methods, (1) IBcircuit is an
optimization framework that allows us to optimize the IB
weight holistically through end-to-end training; (2) IBCir-
cuit uses the original output Y of the transformer model as
supervision signals, avoiding the need to manually design
corrupted activations.

4.5. Circuit Formation

The learned IB weights λ encode component importance
through their information transmission capacity. We develop
circuit formation protocols for node and edge components:

Node Component Selection. Corresponding to node-wise
perturbation in Eq. (6), we identify critical attention heads:

C∗
node =

{
i ∈ [n]

∣∣∣ λi > τnode

}
, (10)
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where the adaptive threshold τnode is determined via:

τnode = inf
{
τ ∈ (0, 1)

∣∣∣ n∑
i=1

I(λi > τ) ≤ knode

}
, (11)

with knode controlling the maximum allowed nodes.

Edge Component Selection. Similar to node component
selection, we select essential residual connections through:

C∗
edge =

{
(j, i) ∈ E

∣∣∣ λji > τedge

}
. (12)

The edge threshold τedge is determined via:

τedge = inf
{
τ ∈ (0, 1)

∣∣∣ |E|∑
i=1

I(λji > τ) ≤ kedge

}
, (13)

with kedge controlling the edge sparsity.

5. Experiments
In this section, we conduct the evaluation to answer the
following research questions (RQs):

• RQ1-Grounded in Previous Work: Can IBCircuit ef-
fectively reproduce circuits taken from previous works
that found the circuit explaining behavior for tasks?

• RQ2-Ablation Study: Are both KL loss and MI loss
used for training IBCircuit necessary? How does the
different α affect the effectiveness of IBCircuit? What
is the contribution of each component in the IBCircuit?

• RQ3-Faithfulness & Minimality: Does IBCircuit
avoid including components that do not participate
in the behavior while maintaining better faithfulness?

• RQ4-Scalability to Large Models: Does IBCircuit
have the scalability to be applied on large models?

5.1. Experiment Setting

Tasks We primarily focus on GPT-2 (Radford et al., 2019)
for better evaluation, as it is a classical model typically
studied from a circuit’s perspective. We intentionally choose
two tasks (IOI and Greater-Than) that have been studied
before for fair comparison with previous work.

• Indirect Object Identification (IOI) (Wang et al.,
2022): An IOI sentence involves an initial dependent
clause, e.g., “When Mary and John went to the store”,
followed by a main clause, e.g., “John gave a drink to
Mary.” In this case, the indirect object (IO) is “Mary”
and the subject (S) is “John”. The IOI task is to predict
the final token in the sentence to be the IO. IOI Circuit
Discovery aims to identify which components of the
model are crucial for performing such IOI tasks.

• Greater-Than (Hanna et al., 2024): In the Greater-
Than task, models receive input like “The war lasted
from the year 1741 to the year 17”, and must predict
a valid two-digit end year, i.e., one that is greater than
41. In this paper, we aim to identify which components
of the model are crucial for predicting the end year.

Baselines. We compare the proposed method with the
following methods designed for node component selection
and edge component selection, respectively:

Node Component Selection Methods:

• Subnetwork Probing (SP) (Cao et al., 2021): SP
learns a mask for each node in the circuit to determine
if it is part of the circuit via gradient descent.

• Automated Circuit DisCovery (ACDC) (Conmy
et al., 2023): ACDC is originally designed for edge
component selection. We derive the score of a node by
summarizing the impact of its removal on the model.

• Attribution Patching (AP) (Nanda, 2023): AP as-
signs scores to all nodes at the same time by leveraging
gradient information and again prunes nodes below a
certain threshold to form the final circuit.

Edge Component Selection Methods:

• Automated Circuit DisCovery (ACDC) (Conmy
et al., 2023): ACDC traverses the transformer’s compu-
tational graph in reverse topological order, iteratively
assigning scores to edges and pruning the circuit.

• Edge Attribution Patching (EAP) (Nanda, 2023):
EAP is an edge version of AP that takes into account
the activations of both the source and target nodes.

We also compared two variants of IBCircuit, namely
IBCircuit-woMI and IBCircuit-onlyMI in RQ2, which
represent IBCircuit models trained solely with KL loss and
MI loss, respectively. Further details about experimental
setup are in Appendix B.

Metrics For the IOI task, we use Logit Difference for evalu-
ation. Logit Difference measures the difference in logits as-
signed to the correct and incorrect answers. For example, for
the input “When Mary and John went to the store, John gave
a drink to,” we calculate logit(Mary)-logit(John). The larger
the Logit Difference, the better the performance of the model
or circuit. In the Greater-Than task, we use the Greater Prob-
ability metric, which sums the total probability assigned to
all correct and incorrect options and calculates the differ-
ence, e.g., for the input “The war lasted from the year 1741
to the year 17”, we calculate

∑
y>41 P (y)−

∑
y≤41 P (y).

A larger difference indicates better model or circuit perfor-
mance. For these two tasks, we calculate the KL Divergence
between the logits output by the Circuit and the pre-trained
model. A smaller KL Divergence indicates that the results
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(a) IOI (b) Greater-Than

Figure 2. ROC curves of SP, ACDC, AP and IBCircuit identifying model components from previous work, across IOI circuit and
Greater-Than circuit.
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Figure 3. Comparison of the impact of different trade-off coefficients α on IBCircuit in implementing the IOI task.

of the Circuit have greater faithfulness.

Circuit Ablation We ablate the nodes that are not included
in the circuit by using activation patching to evaluate the
effectiveness of identified circuit. We implement randomly
selected activations from the corrupted dataset for patching.
In IOI task, we construct corrupted inputs by replacing IO
and S with arbitrary names. In Greater-Than task, the start
year’s last two digits are changed to “01”, leading models
to output years prior to the start year.

5.2. RQ1-Grounded in Previous Work

Following (Conmy et al., 2023), we formulate circuit dis-
covery as a binary classification problem, where nodes are
classified as positive (in the canonical circuit taken from
previous works) or negative (not in the canonical circuit).
We determine a series of thresholds for ACDC, SP, AP, and
IBCircuit by varying the number of nodes from 10% to
100%, increasing by 10% each time. We plot the pessimistic
segments between the Pareto frontiers of TPR and FPR for
each method across this range of thresholds.

Figure 2 illustrates the performance of IBCircuit in recover-
ing the canonical circuit within GPT2-small, compared to
existing methods. Our findings are as follows: i) IBCircuit
shows competitive performance on both the IOI and Greater-
Than tasks, notably outperforming baseline methods on the
IOI task; ii) however, IBCircuit underperforms compared to
ACDC on the Greater-Than task. This discrepancy might
be attributed to the fact that the Greater-Than task, unlike
the IOI task, does not have a clearly defined expected out-
put. The broader range of possible correct outputs could
potentially increase the learning difficulty of the IBCircuit.

5.3. RQ2-Ablation Study

The Influence of KL Loss and MI Loss In Figure 2, we
compare the IBCircuit models trained without KL loss or
MI loss. We find that: on the IOI task, IBCircuit outper-
forms IBCircuit-woMI and significantly surpasses IBCircuit-
onlyMI. This can be intuitively explained using Information
Bottleneck, as the KL loss primarily serves to align the
performance of the noisy model with that of the pretrained
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(a) Greater Probability (b) KL Divergence

Figure 4. Comparison of IBCircuit and ablation variants in terms of Greater Probability and KL Divergence metrics.

(a) IOI (b) Greater-Than

Figure 5. Comparison of IBCircuit and related methods in terms of Logit Difference and Greater Probability metrics under different node
number thresholds. Higher metric scores and fewer nodes correspond to better circuits.

model, while the MI loss helps reduce irrelevant information
in the noisy model. Consequently, the absence of MI loss in
IBCircuit-woMI results in slightly worse performance com-
pared to IBCircuit, whereas the lack of KL loss in IBCircuit-
onlyMI severely diminishes the performance.

Parameter Sensitivity Analysis We further compare the
impact of different trade-off coefficients α on IBCircuit in
implementing the IOI task in Figure 3. In Figure 3a, we
found that as α increases, IBCircuit can achieve a smaller
average λ with the same number of training steps, indicating
that a larger α can learn a sparser Circuit. Correspondingly,
as shown in Figure 3b, as α increases, the Circuit obtained
by IBCircuit with the same number of training steps has
a larger KL Divergence. This indicates that during the
learning process, IBCircuit will sacrifice KL divergence to
obtain a sparser Circuit. How to set the hyperparameter
α depends on whether the user wants to obtain a sparser
Circuit or a Circuit with more stable KL divergence.

Contribution of Each Component To validate the contri-
bution of each component in IBCircuit, we further compare
the following two variants:

• IBCircuit (hard mask): We replaced the sigmoid-
based mask used for Gaussian perturbations with Hard-
concrete Masking (Cao et al., 2021).

• IBCircuit (SP Obj): We substituted the mutual
information-based loss LMI with the SP (Subnetwork
Probing (Cao et al., 2021)) Objective, which penalizes
the mask based on the probability of it being non-zero.

We conducted two comparative experiments on the
Greaterthan task using the Greater Probability and KL
Divergence metrics. The evaluation results for these two
metrics are shown in Figure 4. Higher Greater Probabil-
ity (Lower KL Divergence) and fewer nodes correspond to
better circuits.

Gaussian Perturbations vs. Hard-concrete Masking. We
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(a) IOI (b) Greater-Than

Figure 6. Comparison of IBCircuit and related methods in terms of KL Divergence metric under different node number thresholds. Lower
metric scores and fewer nodes correspond to better circuits.

(a) IOI (b) Greater-Than

Figure 7. Comparison of IBCircuit and related methods in terms of Logit Difference and Greater Probability metrics under different edge
number thresholds. Higher metric scores and fewer edges correspond to better circuits.

observed that, except for cases with a few nodes (fewer than
about 45), the circuits optimized via Hard-concrete Masking
achieved better Greater Probability compared to IBCircuit.
However, in such small-node scenarios, all methods resulted
in high KL Divergence between the identified circuits and
the original pretrained model’s outputs, indicating signifi-
cant degradation of the circuit’s capabilities. Since preserv-
ing the pretrained model’s performance is critical, extreme
cases with very few nodes are less meaningful. Focusing
on scenarios where pretrained capabilities are maintained
(cases with more nodes), IBCircuit outperforms the Hard-
concrete Masking variant, demonstrating the superiority of
Gaussian Perturbations.

Mutual Information Regularization vs. SP Objective.
The model optimized with the SP Objective performed com-
parably to IBCircuit only when the number of nodes is fewer
than 20. In all other cases, it shows significantly worse per-
formance in both Greater Probability and KL Divergence.

This highlights that the mutual information-based regular-
ization (LMI ) is more effective at preserving the pretrained
model’s capabilities while optimizing circuit discovery.

5.4. RQ3-Faithfulness & Minimality

Intuitively, a circuit with fewer nodes or edges that still
achieves high metrics is less likely to contain components
that do not participate in the behavior (Conmy et al., 2023).
We measure the performance of various methods in terms of
Logit Difference, Greater Probability, and KL Divergence
under different node and edge number thresholds.

Figure 5 and Figure 6 present a comparison of metric
scores for various methods across different numbers of node
components in the Indirect Object Identification (IOI) and
Greater-Than tasks. In the IOI task, IBCircuit achieves a
higher Logit Difference with fewer nodes, demonstrating su-
perior efficiency in utilizing limited components to maintain
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(a) IOI (b) Greater-Than

Figure 8. Comparison of IBCircuit and related methods in terms of KL Divergence metric under different edge number thresholds. Lower
metric scores and fewer edges correspond to better circuits.

Figure 9. Comparison of IBCircuit and related methods in terms
of Logit Difference metric under different edge number thresholds.
Higher metric scores and fewer edges correspond to better circuits.

predictive accuracy. Although IBCircuit does not perform as
well as other methods when the number of nodes is greater
than 90, it still maintains a large Logit Difference (around
4). This may not affect its performance compared to the
pretrained model. Additionally, the proposed method
does not require manually designing corrupted data. In
Figure 6, a larger number of nodes achieved a lower KL
Divergence, which also supports the idea that when the
Logit Difference is large enough, minor differences do not
affect the performance of the Circuit. In the Greater-Than
task, when the number of nodes is greater than 70, IBCir-
cuit shows comparable performance to ACDC in terms of
Greater Probability and KL Divergence. However, when
the number of nodes is low, IBCircuit performs worse than
ACDC. This may be because the Greater Than task does
not have a specific token as the answer, unlike the IOI task.
When the model’s sparsity is highly pursued, IBCircuit finds
it difficult to achieve the best faithfulness.

For edge component selection presented in Figure 7 and
Figure 8, IBCircuit outperforms baseline methods in both
IOI and Greater-Than tasks. In the IOI task, as the num-
ber of edges decreases, IBCircuit consistently achieves a
higher Logit Difference and lower KL Divergence compared
to ACDC and EAP. Notably, in the Greater-Than task, IB-
Circuit maintains a Greater Probability above 50% and a KL
Divergence below 0.15 even with very sparse edge counts.
This highlights its efficiency and reliability in optimizing
circuit performance under constrained components.

5.5. RQ4-Scalability to Large Models

Following the experimental setup of EAP-IG (Hanna et al.,
2022), we compare IBCircuit with EAP-IG and EAP on
the IOI task using GPT-2 XL (1.5B) (Radford et al., 2019).
As shown in the Figure 9, IBCircuit achieves performance
comparable to EAP and a better logit difference than EAP
when the number of edges ranges from 30k to 70k (approxi-
mately 97%-98.5% of the total 2235025 edges). This result
demonstrates the scalability of IBCircuit to larger models.

6. Conclusion
In this paper, we aim to address the challenge of understand-
ing the behavior of Transformer-based models, which are
often seen as black boxes due to their complex computations.
In this work, we propose an end-to-end approach based on
the principle of Information Bottleneck, called IBCircuit, to
identify informative circuits holistically. IBCircuit is an opti-
mization framework for holistic circuit discovery and can be
applied to any given task without tediously corrupted activa-
tion design. In both the Indirect Object Identification (IOI)
and Greater-Than tasks, IBCircuit identifies more faithful
and minimal circuits in terms of critical node components
and edge components.
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A. Analysis of IBCircuit
A.1. Proof of IBCircuit Objective

We justify the above formulation through the following derivation. Let Gs be a subset of G, which is independent to Y .
Denote Gϵ as the noisy subset of G determined by injected noise, if we select the circuit C by dropping Gϵ in G, the following
inequality holds:

I(Gs; C) ≤ I(Gs; Ĝ) ≤ I(G; Ĝ)− I(Y ; Ĝ). (14)

This equation indicates when setting α = 1 in Eq. (8), the IBCircuit objective upper bounds the mutual information of Gs

and C. Hence, optimizing the IBCircuit objective encourages C to be less related to components in Gs which are irrelevant to
Y .

Proof. We follow the proof in (Yu et al., 2022). Suppose G, C, Gs and Y satisfy the Markov condition (Y,Gs) → G →
C (Achille & Soatto, 2018a). Then we have the following inequality:

I(C;G) ≥ I(C;Y,Gs) = I(C;Gs) + I(C;Y |Gs). (15)

Since Y and Gs are independent, we have H(Y |Gs) = H(Y ) and H(Y |Gs, C) ≤ H(Y |C). Then we have:

I(C;Y |Gs) = H(Y |Gs)−H(Y |Gs, C) ≥ H(Y )−H(Y |C) = I(C;Y ) (16)

Combine Eq. (15) and Eq. (16), we:
I(C;Gs) ≤ I(C;G)− I(C;Y ) (17)

Suppose G, Ĝ, Gs and Y satisfy the Markov condition (Y,Gs) → G → Ĝ (Achille & Soatto, 2018a). Then, combine with
Eq. (17) we have:

I(Ĝ;Gs) ≤ I(Gs;G)− I(Ĝ;Y ) (18)

Ĝ is deterministic given Gϵ and C, since we can recover Ĝ by combining Gϵ with C. Then for the left part in Eq. (18), we
have:

I(Ĝ;Gs) = I(Gϵ, C;Gs) = I(C;Gs) + I(C;Gϵ|Gs) ≥ I(C;Gs) (19)

Therefore, by combining Eq. (18) and Eq. (19) we have the follow inequality:

I(C;Gs) ≤ I(Ĝ;Gs) ≤ I(Ĝ;G)− I(Ĝ;Y ) (20)

which proofs Eq. (14).

A.2. Derivation of MI Loss

The Kullback-Leibler (KL) divergence is a measure of how one probability distribution diverges from a second, expected
probability distribution. In this section, we derive the KL divergence formula between two Gaussian distributions Qi and Pi,
and further calculate the average KL divergence over a batch of data.

A.2.1. KL DIVERGENCE FORMULA

Given two Gaussian distributions: Pi : N (µi, σi) and Qi : N (λihi + (1 − λi)µi, (1 − λi)σi). The KL divergence
DKL(Qi∥Pi) is given by:

DKL(Qi∥Pi) =
1

2

(
log

σ2
P,i

σ2
Q,i

+
σ2
Q,i + (µQ,i − µP,i)

2

σ2
P,i

− 1

)
(21)

Substituting the parameters:

DKL(Qi∥Pi) =
1

2

(
log

σ2
i

(1− λi)2σ2
i

+
(1− λi)

2σ2
i + (λihi + (1− λi)µi − µi)

2

σ2
i

− 1

)
(22)
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Simplifying the terms:

DKL(Qi∥Pi) =
1

2

(
log

1

(1− λi)2
+

(1− λi)
2σ2

i + λ2
i (hi − µi)

2

σ2
i

− 1

)
(23)

= − log(1− λi) +
(1− λi)

2 − 1

2
+

λ2
i (hi − µi)

2

2σ2
i

(24)

A.2.2. AVERAGE KL DIVERGENCE OVER A BATCH

For a batch of n data points, the average KL divergence is:

DKL =
1

n

n∑
i=1

DKL(Qi∥Pi) (25)

Substituting the expression for DKL(Qi∥Pi):

DKL =
1

n

n∑
i=1

(
− log(1− λi) +

(1− λi)
2 − 1

2
+

λ2
i (hi − µi)

2

2σ2
i

)
(26)

Breaking down the summation:

DKL = −
n∑

i=1

1

n
log(1− λi) +

n∑
i=1

(1− λi)
2 − 1

2n
+

n∑
i=1

λ2
i (hi − µi)

2

2nσ2
i

(27)

Assuming AG = −
∑n

i=1(1− λi), BG =
∑n

i=1
λi(hi−µi)

σi
:

DKL = − 1

n
logAG +

(AG)
2 − 1

2n
+

B2
G

2n
(28)

B. Experimental Setting
For node-level circuit discovery, we set the learning rate to 0.05, trained for 1300 epochs using the Adam optimizer for IB
weights, and set α to 1. For edge-level circuit discovery, we set the learning rate to 0.1, trained for 3000 epochs using the
Adam optimizer for IB weights with a learning rate warm-up scheduler (200 warm-up steps), and set α between 0.01 and 1
to balance the sparsity of the circuit and the KL divergence (see the analysis of the parameter α in Section 5.3). To obtain
the performance of IBCircuit with fewer edges, we selected higher values of α.
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