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Abstract

Reinforcement learning (RL) algorithms face two distinct challenges: learning
effective representations of past and present observations, and determining how
actions influence future returns. Both challenges involve modeling long-term depen-
dencies. The Transformer architecture has been very successful to solve problems
that involve long-term dependencies, including in the RL domain. However, the
underlying reason for the strong performance of Transformer-based RL methods
remains unclear: is it because they learn effective memory, or because they perform
effective credit assignment? After introducing formal definitions of memory length
and credit assignment length, we design simple configurable tasks to measure these
distinct quantities. Our empirical results reveal that Transformers can enhance the
memory capability of RL algorithms, scaling up to tasks that require memorizing
observations 1500 steps ago. However, Transformers do not improve long-term
credit assignment. In summary, our results provide an explanation for the success
of Transformers in RL, while also highlighting an important area for future research
and benchmark design. Our code is open-sourced1.

1 Introduction

In recent years, Transformers (Vaswani et al., 2017; Radford et al., 2019) have achieved remarkable
success in domains ranging from language modeling to computer vision. Within the RL community,
there has been excitement around the idea that large models with attention architectures, such as
Transformers, might enable rapid progress on challenging RL tasks. Indeed, prior works have shown
that Transformer-based methods can achieve excellent results in offline RL (Chen et al., 2021; Janner
et al., 2021; Lee et al., 2022), online RL (Parisotto et al., 2020; Lampinen et al., 2021; Zheng et al.,
2022; Melo, 2022; Micheli et al., 2022; Robine et al., 2023), and real-world tasks (Ouyang et al.,
2022; Ichter et al., 2022) (see Li et al. (2023); Agarwal et al. (2023) for the recent surveys).

However, the underlying reasons why Transformers achieve excellent results in the RL setting remain
a mystery. Is it because they learn better representations of sequences, akin to their success in
computer vision and NLP tasks? Alternatively, might they be internally implementing a learned
algorithm, one that performs better credit assignment than previously known RL algorithms? At the
core of these questions is the fact that RL, especially in partially observable tasks, requires two distinct
forms of temporal reasoning: (working) memory and (temporal) credit assignment. Memory refers
to the ability to recall a distant past event at the current time (Blankenship, 1938; Dempster, 1981),

1https://github.com/twni2016/Memory-RL
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while credit assignment is the ability to determine when the actions that deserve current credit oc-
curred (Sutton, 1984). These two concepts are also loosely intertwined – learning what bits of history
to remember depends on future rewards, and learning to assign current rewards to previous actions
necessitates some form of (episodic) memory (Zilli and Hasselmo, 2008; Gershman and Daw, 2017).

Inspired by the distinct nature of memory and credit assignment in temporal dependencies, we aim
to understand which of these two concepts Transformers address in the context of RL. Despite
empirical success in prior works, directly answering the question is challenging due to two issues.
First, many of the benchmarks used in prior works, such as Atari (Bellemare et al., 2013) and
MuJoCo (Todorov et al., 2012), require minimal memory and short-term credit assignment, because
they closely resemble MDPs and their rewards are mostly immediate. Other benchmarks, such as
Key-to-Door (Hung et al., 2018; Mesnard et al., 2021), entangle medium-term memory and credit
assignment. Second, there is a lack of rigorous definition of memory and credit assignment in
RL (Osband et al., 2020). The absence of quantifiable measures creates ambiguity in the concept of
“long-term” often found in prior works.

In this paper, we address both issues concerning memory and credit assignment to better understand
Transformers in RL. First, we provide a mathematical definition of memory lengths and credit
assignment lengths in RL, grounded in common understanding. We distinguish the memory lengths
in reward, transition, policy, and value, which relate to the minimal lengths of recent histories needed
to preserve the corresponding quantities. Crucially, our main theoretical result reveals that the memory
length of an optimal policy can be upper bounded by the reward and transition memory lengths. For
credit assignment, we adopt the forward view and define its length as the minimal number of future
steps required for a greedy action to start outperforming any non-greedy counterpart.

The definitions provided are not only quantitative in theory but also actionable for practitioners,
allowing them to analyze the memory and credit assignment requirements of many existing tasks.
Equipped with these tools, we find that many tasks designed for evaluating memory also evaluate
credit assignment, and vice versa, as demonstrated in Table 1. As a solution, we introduce toy
examples called Passive and Active T-Mazes that decouple memory and credit assignment. These toy
examples are configurable, enabling us to perform a scalable unit-test of a sole capability, in line with
best practice (Osband et al., 2020).

Lastly, we evaluate memory-based RL algorithms with LSTMs or Transformers on our configurable
toy examples and other challenging tasks to address our research question. We find that Transformers
can indeed boost long-term memory in RL, scaling up to memory lengths of 1500. However,
Transformers do not improve long-term credit assignment, and struggle with data complexity in even
short-term dependency tasks. While these results suggest that practitioners might benefit from using
Transformer-based architectures in RL, they also highlight the importance of continued research on
core RL algorithms. Transformers have yet to replace RL algorithm designers.

2 Measuring Temporal Dependencies in RL

MDPs and POMDPs. In a partially observable Markov decision process (POMDP) MO =
(O,A, P,R, γ, T )2, an agent receives an observation ot ∈ O at step t ∈ {1, . . . , T}, takes an
action at ∈ A based on the observed history h1:t := (o1:t, a1:t−1) ∈ Ht

3, and receives a reward
rt ∼ Rt(h1:t, at) and the next observation ot+1 ∼ P (· | h1:t, at). The initial observation h1:1 := o1
follows P (o1). The total horizon is T ∈ N+ ∪{+∞} and the discount factor is γ ∈ [0, 1] (less than 1
for infinite horizon). In a Markov decision process (MDP)MS = (S,A, P,R, γ, T ), the observation
ot and history h1:t are replaced by the state st ∈ S . In the most generic case, the agent is composed
of a policy π(at | h1:t) and a value function Qπ(h1:t, at). The optimal value function Q∗(h1:t, at)
satisfies Q∗(h1:t, at) = E[rt | h1:t, at]+γEot+1∼P (|h1:t,at)

[
maxat+1

Q∗(h1:t+1, at+1)
]

and induces
a deterministic optimal policy π∗(h1:t) = argmaxat

Q∗(h1:t, at). Let Π∗
M be the space of all optimal

policies for a POMDPM.

2The classic notion of POMDPs (Kaelbling et al., 1998) includes a state space, but we omit it because we
assume that it is unknown.

3For any k ∈ {1, . . . , t}, let ot−k:t denote the sequence (ot−k, . . . , ot), and similarly for at−k:t. In
particular, let ht:t = ot to align with the MDP setting, and let ht′:t = ∅ for t′ > t and ht′:t = h1:t for t′ < 1.
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Below, we provide definitions for context-based policy and value function, as well as the sum of n-step
rewards given a policy. These concepts will be used in defining memory and credit assignment lengths.

Context-based policy and value function. A context-based policy π takes the recent lctx(π)
observations and actions as inputs, expressed as π(at | ht−lctx(π)+1:t). Here, lctx(π) ∈ N represents
the policy context length. For simplicity, we refer to context-based policies as “policies”. Let
Πk be the space of all policies with a context length of k. Markovian policies form Π1, while
ΠT , the largest policy space, contains an optimal policy. Recurrent policies, recursively taking
one input at a time, belong to Π∞; while Transformer-based policies have a limited context length.
Context-based value function Qπ

n of a POMDPM is the expected return conditioned on the past
n observations and actions, denoted as Qπ

n(ht−n+1:t, at) = Eπ,M
[∑

i=t γ
i−tri | ht−n+1:t, at

]
. By

definition, Qπ(h1:t, at) = Qπ
T (h1:t, at),∀h1:t, at.

The sum of n-step rewards. Given a POMDPM and a policy π, the expectation of the discounted
sum of n-step rewards is denoted as Gπ

n(h1:t, at) = Eπ,M

[∑t+n−1
i=t γi−tri | h1:t, at

]
. By definition,

Gπ
1 (h1:t, at) = E[rt | h1:t, at] (immediate reward), and Gπ

T−t+1(h1:t, at) = Qπ(h1:t, at) (value).

2.1 Memory Lengths

In this subsection, we introduce the memory lengths in the common components of RL, including
the reward, transition, policy, and value functions. Then, we will show the theoretical result of the
relation between these lengths.

The reward (or transition) memory length of a POMDP quantifies the temporal dependency distance
between current expected reward (or next observation distribution) and the most distant observation.

Definition 1.A (Reward memory length mM
reward). For a POMDP M, mM

reward is the smallest
n ∈ N such that the expected reward conditioned on recent n observations is the same as the one
conditioned on full history, i.e., E[rt | h1:t, at] = E[rt | ht−n+1:t, at],∀t, h1:t, at.

Definition 1.B (Transition memory length mM
transit). For a POMDPM, mM

transit is the smallest
n ∈ N such that next observations are conditionally independent of the rest history given the past n
observations and actions, i.e., ot+1 ⊥⊥ h1:t, at | ht−n+1:t, at.

Next, policy memory length is defined based on the intuition that while a policy may take a long
history of observations as its context, its action distribution only depends on recent observations.
Therefore, policy memory length represents the temporal dependency distance between current action
and the most distant observation.

Definition 1.C (Policy memory length lmem(π)). The policy memory length lmem(π) of a policy π
is the minimum horizon n ∈ {0, . . . , lctx(π)} such that its actions are conditionally independent of
the rest history given the past n observations and actions, i.e., at ⊥⊥ ht−lctx(π)+1:t | ht−n+1:t.

Lastly, we define the value memory length of a policy, which measures the temporal dependency
distance between the current value and the most distant observation.

Definition 1.D (Value memory length of a policy lMvalue(π)). A policy π has its value memory length
lMvalue(π) as the smallest n such that the context-based value function is equal to the value function,
i.e., Qπ

n(ht−n+1:t, at) = Qπ(h1:t, at), ∀t, h1:t, at.

Now we prove that the policy and value memory lengths of optimal policies can be upper bounded by
the reward and transition memory lengths (Proof in Appendix A).

Theorem 1 (Upper bounds of memory lengths for optimal policies). For optimal policies with the
shortest policy memory length, their policy memory lengths are upper bounded by their value memory
lengths, which are further bounded by the maximum of reward and transition memory lengths.

lmem(π
∗) ≤ lMvalue(π

∗) ≤ max(mM
reward,m

M
transit) := mM, ∀π∗ ∈ argmin

π∈Π∗
M

{lmem(π)} (1)
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Thm. 1 suggests that the constant of mM can serve as a proxy to analyze the policy and value memory
lengths required in a task, which are often challenging to directly compute, as we will demonstrate in
Sec. 3.4

2.2 Credit Assignment Lengths

Classically, temporal credit assignment is defined with a backward view (Minsky, 1961; Sutton, 1984) –
how previous actions contributed to current reward. The backward view is specifically studied through
gradient back-propagation in supervised learning (Lee et al., 2015; Ke et al., 2018). In this paper,
we consider the forward view in reinforcement learning – how current action will influence future
rewards. Specifically, we hypothesize that the credit assignment length n of a policy is how long the
greedy action at the current time-step starts to make a difference to the sum of future n-step rewards.

Before introducing the formal definition, let us recall the common wisdom on dense-reward versus
sparse-reward tasks. Dense reward is generally easier to solve than sparse reward if all other aspects
of the tasks are the same. One major reason is that an agent can get immediate reward feedback in
dense-reward tasks, while the feedback is delayed or even absent in sparse-reward tasks. In this view,
solving sparse reward requires long-term credit assignment. Our definition will reflect this intuition.

Definition 2.A (Credit assignment length of a history given a policy c(h1:t;π)). Given a policy π
in a task, the credit assignment length of a history h1:t quantifies the minimal temporal distance n5,
such that a greedy action a∗t is strictly better than any non-greedy action a′t in terms of their n-step
rewards Gπ

n. Formally, let A∗
t := argmaxat

Qπ(h1:t, at)
6, define

c(h1:t;π) := min
1≤n≤T−t+1

{n | ∃a∗t ∈ A∗
t , s.t. Gπ

n(h1:t, a
∗
t ) > Gπ

n(h1:t, a
′
t),∀a′t ̸∈ A∗

t } (2)

Definition 2.B (Credit assignment length of a policy c(π) and of a task cM). Credit assignment
length of a policy π represents the worst case of credit assignment lengths of all visited histories. For-
mally, let dπ be the history occupancy distribution of π, define c(π) := maxh1:t∈supp(dπ) c(h1:t;π).

Further, we define the credit assignment length of a taskM, denoted as cM, as the minimal credit
assignment lengths over all optimal policies7, i.e., cM := minπ∗∈Π∗

M
c(π∗).

As an illustrative example, consider the extreme case of a sparse-reward MDP where the reward is
only provided at the terminal time step T . In this environment, the credit assignment length of any
policy π is c(π) = T . This is because the credit assignment length of the initial state s1 is always
c(s1;π) = T , as the performance gain of any greedy action at s1 is only noticeable after T steps.

Our definition of credit assignment lengths has ties with the temporal difference (TD) learning
algorithm (Sutton, 1988). With the tabular TD(0) algorithm, the value update is given by V (st)←
V (st)+α(rt+γV (st+1)−V (st)). This formula back-propagates the information of current reward
rt and next value V (st+1) to current value V (st). When we apply the TD(0) update backwards in
time for n steps along a trajectory, we essentially back-propagate the information of n-step rewards
to the current value. Thus, the credit assignment length of a state measures the number of TD(0)
updates we need to take a greedy action for that state.

3 Environment Analysis of Memory and Credit Assignment Lengths

By employing the upper bound mM on memory lengths (Thm. 1) and credit assignment length cM

(Def. 2.B), we can perform a quantitative analysis of various environments. These environments
include both abstract problems and concrete benchmarks. In this section, we aim to address two
questions: (1) Do prior environments actually require long-term memory or credit assignment? (2)
Can we disentangle memory from credit assignment?

4Thm. 1 also applies to MDPs, where it provides a quick proof of the well-known fact that optimal policies
and values of MDPs can be Markovian: mM

reward, mM
transit are both at most 1, so the policy and value memory

lengths are also at most 1.
5The n is guaranteed to exist because a greedy action must be the best in T − t + 1-step rewards (i.e.

Q-value).
6If A∗

t = A, i.e. all actions are greedy, then the set of n contains all integers between 1 and T − t+ 1.
7If there are multiple optimal policies, c(π∗) may be not unique. See Appendix A for an example.
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Table 1: Estimated memory and credit assignment lengths required in prior tasks, as defined in
Sec. 2. The top block shows tasks designed for memory, while the bottom one shows tasks designed
for credit assignment. All tasks have a horizon of T and a discount factor of γ ∈ (0, 1). The T
column shows the largest value used in prior work. The terms “long” and “short” are relative to
horizon T . We manually estimate these lengths from task definition and mark tasks purely evaluating
long-term memory or credit assignment in black.

TaskM T lmem(π
∗) mM cM

M
em

or
y

Reacher-pomdp (Yang and Nguyen, 2021) 50 long long short
Memory Cards (Esslinger et al., 2022) 50 long long 1

TMaze Long (Noise) (Beck et al., 2019) 100 T T 1
Memory Length (Osband et al., 2020) 100 T T 1
Mortar Mayhem (Pleines et al., 2023) 135 long long ≤ 25

Autoencode (Morad et al., 2023) 311 T T 1
Numpad (Parisotto et al., 2020) 500 long long short

PsychLab (Fortunato et al., 2019) 600 T T short
Passive Visual Match (Hung et al., 2018) 600 T T ≤ 18

Repeat First (Morad et al., 2023) 831 2 T 1
Ballet (Lampinen et al., 2021) 1024 ≥ 464 T short

Passive Visual Match (Sec. 5.1; Our experiment) 1030 T T ≤ 18
172 MiniGrid-Memory (Chevalier-Boisvert et al., 2018) 1445 ≤ 51 T ≤ 51

Passive T-Maze (Eg. 1; Ours) 1500 T T 1
152 Memory Maze (Pasukonis et al., 2022) 4000 long long ≤ 225

HeavenHell (Esslinger et al., 2022) 20 T T T
T-Maze (Bakker, 2001) 70 T T T

Goal Navigation (Fortunato et al., 2019) 120 T T T
T-Maze (Lambrechts et al., 2021) 200 T T T

Spot the Difference (Fortunato et al., 2019) 240 T T T
PyBullet-P benchmark (Ni et al., 2022) 1000 2 2 short
PyBullet-V benchmark (Ni et al., 2022) 1000 short short short

C
re

di
tA

ss
ig

nm
en

t Umbrella Length (Osband et al., 2020) 100 1 1 T
Push-r-bump (Yang and Nguyen, 2021) 50 long long long

Key-to-Door (Raposo et al., 2021) 90 short T T
Delayed Catch (Raposo et al., 2021) 280 1 T T

Active T-Maze (Eg. 2; Ours) 500 T T T
Key-to-Door (Sec. 5.2; Our experiment) 530 short T T
Active Visual Match (Hung et al., 2018) 600 T T T

Episodic MuJoCo (Ren et al., 2022) 1000 1 T T

3.1 How Long Do Prior Tasks Require Memory and Credit Assignment?

To study memory or credit assignment in RL, prior works propose abstract problems and evaluate
their algorithms in benchmarks. A prerequisite for evaluating agent capabilities in memory or credit
assignment is understanding the requirements for them in the tested tasks. Therefore, we collect
representative problems and benchmarks with a similar analysis in Sec. 3.2, to figure out the quantities
mM related to memory lengths and cM related to credit assignment length.

Regarding abstract problems, we summarize the analysis in Appendix B. For example, decomposable
episodic reward assumes the reward is only given at the terminal step and can be decomposed into
the sum of Markovian rewards. This applies to episodic MuJoCo (Ren et al., 2022) and Catch with
delayed rewards (Raposo et al., 2021). We show that it has policy memory length lmem(π

∗) at most
1 while requiring mM

reward and cM of T , indicating that it is really challenging in both memory
and credit assignment. Delayed environments are known as difficult to assign credit (Sutton, 1984).
We show that delayed reward (Arjona-Medina et al., 2019) or execution (Derman et al., 2021) or
observation (Katsikopoulos and Engelbrecht, 2003) with n steps all require mM

reward of n, while only
delayed rewards and execution may be challenging in credit assignment.

As for concrete benchmarks, Table 1 summarizes our analysis, with detailed descriptions of these
environments in Appendix B. First, some tasks designed for long-term memory (Beck et al., 2019;
Osband et al., 2020; Hung et al., 2018; Yang and Nguyen, 2021; Esslinger et al., 2022) or credit
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assignment (Osband et al., 2020) indeed solely evaluate the respective capability. Although some
memory tasks such as Numpad (Parisotto et al., 2020) and Memory Maze (Pasukonis et al., 2022) do
require long-term memory with short-term credit assignment, the exact memory and credit assignment
lengths are hard to quantify due to the complexity. In contrast, our Passive T-Maze introduced in
Sec. 3.2, provides a clear understanding of the memory and credit assignment lengths, allowing us to
successfully scale the memory length up to 1500.

Conversely, other works (Bakker, 2001; Lambrechts et al., 2021; Esslinger et al., 2022; Hung et al.,
2018; Raposo et al., 2021; Ren et al., 2022) actually entangle memory and credit assignment together,
despite their intention to evaluate one of the two. Lastly, some POMDPs (Ni et al., 2022) only require
short-term memory and credit assignment, which cannot be used for any capability evaluation.

3.2 Disentangling Memory from Credit Assignment

Figure 1: T-Maze task. In the passive version, the
agent starts at the oracle state (“S” and “O” are
the same state), while the active version requires
that the agent navigate left from the initial state to
collect information from the oracle state.

We can demonstrate that memory and credit as-
signment are independent concepts by providing
two examples, all with a finite horizon of T and
no discount. The examples have distinct pairs
of (max(rM,mM

transit), c
M): (T, 1), (T, T ), re-

spectively.

We adapt T-Maze (Fig. 1), a POMDP envi-
ronment rooted in neuroscience (O’Keefe and
Dostrovsky, 1971) and AI (Bakker, 2001; Os-
band et al., 2020), to allow different credit as-
signment lengths. Passive and active concepts
are borrowed from Hung et al. (2018).
Example 1 (Passive T-Maze). T-Maze has a 4-direction action space {L,R,U ,D}. It features
a long corridor of length L, starting from (oracle) state O and ending with (junction) state J ,
connecting two potential goal states G1 and G2. O has a horizontal position of 0, and J has L.
The agent observes null N except at states J,O,G1, G2. The observation space {N, J,O,G1, G2}
is two-dimensional. At state O, the agent can observe the goal position G ∈ {G1, G2}, uniformly
sampled at the beginning of an episode. The initial state is S. The transition is deterministic, and
the agent remains in place if it hits the wall. Thus, the horizontal position of the agent xt ∈ N is
determined by its previous action sequence a1:t−1.

In a Passive T-MazeMpassive, O = S, allowing the agent to observe G initially, and L = T − 1.
Rewards are given by Rt(h1:t, at) =

1(xt+1≥t)−1
T−1 for t ≤ T−1, and RT (h1:T , aT ) = 1(oT+1 = G).

The unique optimal policy π∗ moves right for T −1 steps, then towards G, yielding an expected return
of 1.0. The optimal Markovian policy can only guess the goal position, ending with an expected
return of 0.5. The worst policy has an expected return of −1.0.
Example 2 (Active T-Maze). In an Active T-MazeMactive, O is one step left of S and L = T − 2.
The unique optimal policy moves left to reach O, then right to J . The rewards R1 = 0, Rt(h1:t, at) =
1(xt+1≥t−1)−1

T−2 for 2 ≤ t ≤ T − 1, and RT (h1:T , aT ) = 1(oT+1 = G). The optimal Markovian and
worst policies have the same expected returns as in the passive setting.

Mpassive is specially designed for testing memory only. To make the final decision, the optimal policy
must recall G, observed in the first step. All the memory lengths are T as the terminal reward depends
on initial observation and observation at J depends on the previous action sequence. The credit
assignment length is 1 as immediate penalties occur for suboptimal actions. In contrast,Mactive also
requires a credit assignment length of T , as the initial optimal action L only affects n-step rewards
when n = T . Passive and Active T-Mazes are suitable for evaluating the ability of pure memory, and
both memory and credit assignment in RL, as they require little exploration due to the dense rewards
before reaching the goal.

4 Related Work

Memory and credit assignment have been extensively studied in RL, with representative works
shown in Table 1. The work most closely related to ours is bsuite (Osband et al., 2020), which
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Figure 2: Pixel-based tasks, Passive Visual Match (left) and Key-to-Door (right), evaluated
in our experiments. Each task has three phases, where we adjust the length of Phase 2 and keep
the lengths of the others constant. The agent (in beige) only observes nearby grids (within white
borders) and cannot pass through the walls (in black). In Passive Visual Match, the agent observes
a randomized target color (blue in this case) in Phase 1, collects apples (in green) in Phase 2, and
reaches the grid with the matching color in Phase 3. In Key-to-Door, the agent reaches the key (in
brown) in Phase 1, collects apples in Phase 2, and reaches the door (in cyan) in Phase 3.

also disentangles memory and credit assignment in their benchmark. bsuite is also configurable
with regard to the memory and credit assignment lengths to evaluate an agent’s capability. Our
work extends Osband et al. (2020) by providing formal definitions of memory and credit assignment
lengths in RL for task design and evaluation. Our definitions enable us to analyze existing POMDP
benchmarks.

Several prior works have assessed memory (Parisotto et al., 2020; Esslinger et al., 2022; Chen et al.,
2022; Pleines et al., 2023; Morad et al., 2023) in the context of Transformers in RL. However, these
prior methods use tasks that require (relatively short) context lengths between 50 and 831. In addition,
there are two separate lines of work using Transformers for better credit assignment. One line of
work (Liu et al., 2019; Ferret et al., 2020) has developed algorithms that train Transformers to predict
rewards for return redistribution. The other line of work (Chen et al., 2021; Zheng et al., 2022)
proposes return-conditioned agents trained on offline RL datasets. Both lines are beyond the scope of
canonical online RL algorithms that purely rely on TD learning, which we focus on.

5 Evaluating Memory-Based RL Algorithms

In this section, we evaluate the memory and credit assignment capabilities of memory-based RL
algorithms. Our first experiment aims to evaluate the memory abilities by disentangling memory from
credit assignment, using our Passive T-Maze and the Passive Visual Match (Hung et al., 2018) tasks
in Sec. 5.1. Next, we test the credit assignment abilities of memory-based RL in our Active T-Maze
and the Key-to-Door (Raposo et al., 2021) tasks in Sec. 5.2. Passive Visual Match and Key-to-Door
tasks (demonstrated in Fig. 2) can be viewed as pixel-based versions of Passive and Active T-Mazes,
respectively. Lastly, we evaluate memory-based RL on standard POMDP benchmarks that only
require short-term dependencies in Sec. 5.3, with a focus on their sample efficiency.

We focus on model-free RL agents that take observation and action sequences as input, which
serves as a simple baseline that can achieve excellent results in many tasks (Ni et al., 2022). The
agent architecture is based on the codebase from Ni et al. (2022), consisting of observation and
action embedders, a sequence model, and actor-critic heads. We compare agents with LSTM and
Transformer (GPT-2 (Radford et al., 2019)) architectures. For a fair comparison, we use the same
hidden state size (128) and tune the number of layers (varying from 1, 2, 4) for both LSTM and
Transformer architectures. Since our tasks all require value memory lengths to be the full horizon,
we set the context lengths to the full horizon T .

For the T-Maze tasks, we use DDQN (van Hasselt et al., 2016) with epsilon-greedy exploration as
the RL algorithm to better control the exploration strategy. In pixel-based tasks, we use CNNs as
observation embedders and SAC-Discrete (Christodoulou, 2019) as RL algorithm following Ni et al.
(2022). We train all agents to convergence or at most 10M steps on these tasks. We provide training
details and learning curves in Appendix C.

5.1 Transformers Shine in Pure Long-Term Memory Tasks

First, we provide evidence that Transformers can indeed enhance long-term memory in tasks that
purely test memory, Passive T-Mazes. In Fig. 3 (left), Transformer-based agents consistently solve the
task requiring memory lengths from 50 up to 1500. To the best of our knowledge, this achievement
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Figure 3: Transformer-based RL outperforms LSTM-based RL in tasks (purely) requiring
long-term memory. Left: results in Passive T-Mazes with varying memory lengths from 50 to 1500;
Right: results in Passive Visual Match with varying memory lengths from 60 to 1000. We also show
the performance of the optimal Markovian policies. Each data point in the figure represents the final
performance of an agent with the memory length indicated on the x-axis. All the figures in this paper
show the mean and its 95% confidence interval over 10 seeds.
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Figure 4: Transformer-based agent can solve long-term memory low-dimensional tasks with
good sample efficiency. In Passive T-Maze with long memory length (from left to right: 500, 750,
1000, 1500), Transformer-based agent is significantly better than LSTM-based agent.

may well set a new record for the longest memory length of a task that an RL agent can solve. In
contrast, LSTM-based agents start to falter at a memory length of 250, underperforming the optimal
Markovian policies with a return of 0.5. Both architectures use a single layer, yielding the best
performance. We also provide detailed learning curves for tasks requiring long memory lengths in
Fig. 4. Transformer-based agent also shows much greater stability and sample efficiency across seeds
when compared to their LSTM counterparts.

On the other hand, the pixel-based Passive Visual Match (Hung et al., 2018) has a more complex
reward function: zero rewards for observing the color in Phase 1, immediate rewards for apple
picking in Phase 2 requiring short-term dependency, and a final bonus for reaching the door of the
matching color, requiring long-term memory. The success rate solely depends on the final bonus.
The ratio of the final bonus w.r.t. the total rewards is inversely proportional to the episode length, as
the number of apples increases over time in Phase 2. Thus, the low ratio makes learning long-term
memory challenging for this task. As shown in Fig. 3 (right), Transformer-based agents slightly
outperform LSTM-based ones8 in success rates when the tasks require a memory length over 120,
yet their success rates are close to that of the optimal Markovian policy (around 1/3). Interestingly,
Transformer-based agents achieve much higher returns with more apples collected, shown in Fig. 5.
This indicates Transformers can help short-term memory (credit assignment) in some tasks.

5.2 Transformers Enhance Temporal Credit Assignment in RL, but not Long-Term

Next, we present evidence that Transformers do not enhance long-term credit assignment for memory-
based RL. As illustrated in Fig. 6 (left), in Active T-Mazes, by merely shifting the Oracle one step
to the left from the starting position as compared to Passive T-Mazes, both Transformer-based and
LSTM-based agents fail to solve the task when the credit assignment (and memory) length extends
to just 250. The failure of Transformer-based agents on Active T-Mazes suggests the bottleneck of
credit assignment. This is because they possess sufficient memory capabilities to solve this task
(as evidenced by their success in Passive T-Mazes), and they can reach the junction state without
exploration issues (as evidenced by their return of more than 0.0). A similar trend is observed in
pixel-based Key-to-Door tasks (Raposo et al., 2021), where both Transformer-based and LSTM-

8It is worth noting that at the memory length of 1000, LSTM-based agents encountered NaN gradient issues
in around 30% of the runs, which were not shown in the plots.
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Figure 5: Transformer-based agent is more sample-efficient in long-term memory high-
dimensional tasks. In Passive Visual Match with long memory length (750 on the left; 1000 on the
right), Transformer-based agents show a slight advantage over LSTM-based agents in the memory
capability (as measured by success rate), while being much higher in total rewards (as measured
by return).
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Figure 6: Transformer-based RL improves temporal credit assignment compared to LSTM-
based RL, but its advantage diminishes in long-term scenarios. Left: results in Active T-Mazes
with varying credit assignment lengths from 20 to 500; Right: results in Key-to-Door with varying
credit assignment lengths from 60 to 500. We also show the performance of the optimal policies that
lack (long-term) credit assignment – taking greedy actions to maximize immediate rewards. Each data
point in the figure represents the final performance of an agent in a task with the credit assignment
length indicated on the x-axis, averaged over 10 seeds.

based agents struggle to solve the task with a credit assignment length of 250, as indicated by the
low success rates in Fig. 6 (right). Nevertheless, we observe that Transformers can improve credit
assignment, especially when the length is medium around 100 in both tasks, compared to LSTMs.

On the other hand, we investigate the performance of multi-layer Transformers on credit assignment
tasks to explore the potential scaling law in RL, as discovered in supervised learning (Kaplan et al.,
2020). Fig. 7 reveals that multi-layer Transformers greatly enhance performance in tasks with credit
assignment lengths up to 100 in Active T-Maze and 120 in Key-to-Door. Yet they fail to improve
long-term credit assignment. Interestingly, 4-layer Transformers have similar or worse performance
compared to 2-layer Transformers, suggesting that the scaling law might not be seamlessly applied to
credit assignment in RL.
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Figure 7: Increasing the number of layers (and heads) in Transformers aids in temporal, but not
long-term, credit assignment. The left two figures show the final results from Active T-Maze and
Key-to-Door, varying the number of layers and heads in Transformers from 1, 2 to 4. The right two
figures show the associated learning curves in Active T-Maze with different credit assignment lengths.

5.3 Transformers in RL Raise Sample Complexity in Certain Short-Term Memory Tasks

Lastly, we revisit the standard POMDP benchmark used in prior works (Ni et al., 2022; Han et al.,
2020; Meng et al., 2021). This PyBullet benchmark consists of tasks where only the positions
(referred to as “-P” tasks) or velocities (referred to as “-V” tasks) of the agents are revealed, with
dense rewards. As a result, they necessitate short-term credit assignment. Further, the missing
velocities can be readily inferred from two successive positions, and the missing positions can be
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Figure 8: Transformer-based RL is sample-inefficient compared to LSTM-based RL in most
PyBullet occlusion tasks. The top row shows tasks with occluded velocities, while the bottom row
shows tasks with occluded positions. Results are averaged over 10 seeds.

approximately deduced by recent velocities, thereby requiring short-term memory. Adhering to the
implementation of recurrent TD3 (Ni et al., 2022) and substituting LSTMs with Transformers, we
investigate their sample efficiency over 1.5M steps. We find that in most tasks, Transformer-based
agents show worse sample efficiency than LSTM-based agents, as displayed in Fig. 8. This aligns with
the findings in POPGym paper (Morad et al., 2023) where GRU-based PPO is more sample-efficient
than Transformer-based PPO across POPGym benchmark that requires relatively short memory
lengths. These observations are also consistent with the known tendency of Transformers to thrive in
situations with large datasets in supervised learning.

6 Limitations

We provide quantitative definitions of memory and credit assignment lengths, but developing programs
capable of calculating them for any given task remains an open challenge. This can often be
desirable since sequence models can be expensive to train in RL agents. The worst compute
complexity of cM can be O(|S||A|T 2) for a finite MDP, while the complexity of mM can be O((|O|+
|A|)T |O||A|T ) for a finite POMDP. In addition, cM does not take the variance of intermediate
rewards into account. These reward noises have been identified to complicate the learning process
for credit assignment (Mesnard et al., 2021). On the other hand, mM does not take into account the
memory capacity (i.e., the number of bits) and robustness to observation noise (Beck et al., 2019).

On the empirical side, we evaluate Transformers on a specific architecture (GPT-2) with a relatively
small size in the context of online model-free RL. As a future research direction, it would be
interesting to explore how various sequence architectures and history abstraction methods may impact
and potentially improve long-term memory and/or credit assignment.

7 Conclusion

In this study, we evaluate the memory and credit assignment capabilities of memory-based RL agents,
with a focus on Transformer-based RL. While Transformer-based agents excel in tasks requiring
long-term memory, they do not improve long-term credit assignment and generally have poor sample
efficiency. Furthermore, we highlighted that many existing RL tasks, even those designed to evaluate
(long-term) memory or credit assignment, often intermingle both capabilities or require only short-
term dependencies. While Transformers are powerful tools in RL, especially for long-term memory
tasks, they are not a universal solution to all RL challenges. Our results underscore the ongoing need
for careful task design and the continued advancement of core RL algorithms.
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A Proofs

Lemma 1 (Upper bound of value memory length). For any policy π,

lMvalue(π) ≤ max(mM
reward,m

M
transit, lmem(π)− 1) (3)

Proof of Lemma 1. We show this by expanding the sum of rewards in Q-value function:

Qπ(h1:t, at) = Eπ,M

[
T∑
i=t

γi−tri | h1:t, at

]
(4)

= E[rt | h1:t, at]︸ ︷︷ ︸
reward memory

+

T−1∑
i=t

γi+1−t (5)

∫
P (oi+1 | h1:i, ai)︸ ︷︷ ︸

transition memory

π(ai+1 | h1:i+1)︸ ︷︷ ︸
policy memory

E[ri+1 | h1:i+1, ai+1]︸ ︷︷ ︸
reward memory

dot+1:i+1dat+1:i+1 (6)

(A)
= E

[
rt | ht−mM

reward+1:t, at

]
+

T−1∑
i=t

γi+1−t (7)∫
P (oi+1 | hi−mM

transit+1:i, ai)π(ai+1 | hi−lmem(π)+2:i+1)E
[
ri+1 | hi−mM

reward+2:i+1, ai+1

]
dot+1:i+1dat+1:i+1

(8)

= Eπ,M

[
T∑
i=t

γi−tri | hmin(t−mM
reward+1,t−mM

transit+1,t−lmem(π)+2,t−mM
reward+2):t, at

]
(9)

= Eπ,M

[
T∑
i=t

γi−tri | ht+1−max(mM
reward,m

M
transit,lmem(π)−1):t, at

]
(10)

where line (A) follows from the definition of memory lengths in policy (Def. 1.C), reward (Def. 1.A),
and transition (Def. 1.B). By the definition of value memory length (Def. 1.D), the shortest history to
match the value, we have the upper bound: lMvalue(π) ≤ max(mM

reward,m
M
transit, lmem(π)− 1).
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Lemma 2 (Lower bound of value memory length). For an optimal policy π∗ ∈
argminπ∈Π∗

M
{lmem(π)}, we have lmem(π

∗) ≤ lMvalue(π
∗).

Proof. Proof by contradiction. Suppose lMvalue(π
∗) < lmem(π

∗). We can construct a deterministic
policy π′ that has context length of lMvalue(π

∗):

π′(ht−lMvalue(π
∗)+1:t) = argmax

at

Qπ∗

lMvalue(π
∗)(ht−lMvalue(π

∗)+1:t, at) (11)

= argmax
at

Qπ∗
(h1:t, at), ∀t, h1:t (12)

This is a greedy policy derived from π∗’s value function. The policy memory length of π′ is strictly
shorter than lmem(π

∗), by definition and assumption:

lmem(π
′) ≤ lctx(π

′) = lMvalue(π
∗) < lmem(π

∗) (13)

Similar to policy improvement theorem (Sutton and Barto, 2018, Chap 4.2) in Markov policies, we
can show that π′ is at least as good as π∗, thus contradicting the assumption that π∗ is an optimal
policy that has the shortest policy memory length. To see this, for any t and h1:t,

V π∗
(h1:t) ≤ max

at

Qπ∗
(h1:t, at) (14)

(A)
= max

at

Qπ∗
(h1:t, π

′(ht−lMvalue(π
∗)+1:t)) (15)

(B)
= EM

[
rt + γQπ∗

(h1:t+1, at+1) | h1:t, at ∼ π′, at+1 ∼ π∗
]

(16)

(C)

≤ EM

[
rt + γQπ∗

(h1:t+1, at+1) | h1:t, at:t+1 ∼ π′
]

(17)

. . . (18)

≤ EM

[
T∑
i=t

γi−tri | h1:t, at:T−1 ∼ π′

]
(19)

= Eπ′,M

[∑
i=t

γi−tri | h1:t

]
= V π′

(h1:t) (20)

where (A) follows the definition of π′, (B) uses the Bellman equation and (C) uses the property of
greedy policy π′.

Proof of Theorem 1. By Lemma 2, lMvalue(π
∗) ≥ lmem(π

∗). On the other hand, by Lemma 1,
lMvalue(π

∗) ≤ max(mM
reward,m

M
transit, lmem(π

∗)− 1). Thus,

lmem(π
∗) ≤ max(mM

reward,m
M
transit, lmem(π

∗)− 1) (21)

This implies

lmem(π
∗)− 1 < max(mM

reward,m
M
transit) (22)

lMvalue(π
∗) ≤ max(mM

reward,m
M
transit) (23)

c(π∗) may be not unique among all optimal policies. For example, consider an MDP described in
Fig. 9, and two optimal deterministic Markov policy, π∗

1 , π
∗
2 , only different at the state P2: π∗

1(P2) = x
while π∗

2(P2) = y. It is easy to compute the credit assignment length in this MDP, because only state
P1 contains suboptimal action. At state P1, the optimal action y starts to be better than suboptimal
action x at the next 2 steps for π∗

2 , while at the next 3 steps for π∗
1 . Thus, c(π∗

1) = 3 and c(π∗
2) = 2.
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Figure 9: An MDP that shows the credit assignment length over optimal policies is not a constant.
Each node is a state with its name on the top and its reward at the bottom. The initial state is P1. The
action space is {x, y}. The finite horizon T ≥ 4 and γ = 1.

B Details on Environments Related to Memory and Credit Assignment

B.1 Abstract Problems

Example 3 (n-order MDPs). It is a POMDP where the recent n observations form the current state,
i.e. the transition is P (ot+1 | ot−n+1:t, at) and the reward is Rt(ot−n+1:t, at).
Example 4 (Episodic reward). It is a POMDP with a finite horizon of T . The reward function is
episodic in that Rt = 0 for ∀t < T .
Example 5 (Decomposed episodic reward (Ren et al., 2022)). It has an episodic reward (Eg. 4),
decomposed into the sum of Markovian rewards: RT (h1:T , aT ) =

∑T
t=1 r

′(ot, at), where r′ :
O × A → R is a Markovian reward function. The transition P (ot+1 | ot, at) is Markovian. The
smallest policy memory length for an optimal policy lmem(π

∗) can be shown as 1 (see below).

Proof of decomposed episodic reward problem requiring lmem(π
∗) = 1 at most. Suppose the pol-

icy is non-stationary, composed of {πt}Tt=1. For any time step t ≤ T in the POMDPM,

Qπ(h1:t, at) = Eπ,M

[
T∑

k=t

rk | h1:t, at

]
(24)

= Eπ,M[rT | h1:t, at] = Eπ,M

[
T∑

k=1

r′(ok, ak) | h1:t, at

]
(25)

=

t∑
k=1

r′(ok, ak) + Eπt+1:T ,ot+1∼P (|ot,at),M

[
T∑

k=t+1

r′(ok, ak) | h1:t, at

]
(26)

By taking argmax,

argmax
at

Qπ(h1:t, at) = argmax
at

r′(ot, at) + Eπt+1:T ,ot+1∼P (|ot,at),M

[
T∑

k=t+1

r′(ok, ak) | h1:t, at

]
(27)

Now we show that there exists an optimal policy that is Markovian by backward induction. When
t = T , (27) reduces to

argmax
aT

Qπ(h1:T , aT ) = argmax
aT

r′(oT , aT ) (28)

thus Markovian policy πT (oT ) = argmaxaT
r′(oT , aT ) is optimal. Now assume πt+1:T are Marko-

vian and optimal, consider the step t in (27), all future observations and actions (ot+1:T , at+1:T )
rely on (ot, at) by the property of Markovian transition and induction, thus optimal action a∗t can
only rely on ot.

Example 6 (Delayed rewards of n steps (Arjona-Medina et al., 2019)). The transition P (ot+1 | ot, at)
is Markovian, and the reward Rt(ot−n+1, at−n+1) depends on the observation and action n steps
before. Decomposed episodic rewards (Eg. 5) can be viewed as an extreme case of delayed rewards.
Example 7 (Delayed execution of n steps (Derman et al., 2021)). The transition is P (ot+1 | ot, at−n),
and the reward is Rt(ot, at−n).
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Table 2: The memory and credit assignment lengths required in the related abstract problems,
using our notion. Assume all tasks have a horizon of T .

Abstract ProblemM lmem(π
∗) mM

reward mM
transit cM

MDP [0, 1] [0, 1] [0, 1] [1, T ]
n-order MDP (Eg. 3) [0, n] [0, n] [0, n] [1, T ]

POMDP [0, T ] [0, T ] [0, T ] [1, T ]
Episodic reward (Eg. 4) T T [0, T ] T

Decomposed episodic reward (Eg. 5) [0, 1] T [0, 1] T
Delayed rewards of n steps (Eg. 6) [0, 1] n [0, 1] [n, T ]

Delayed execution of n steps (Eg. 7) n n n [n, T ]
Delayed observation of n steps (Eg. 8) n n n [0, T ]

Example 8 (Delayed observation of n steps (Katsikopoulos and Engelbrecht, 2003)). The transition
is P (ot+1 | ot, at−n), and the reward is Rt(ot, at−n:t).

We summarize our analysis in Table 2.

B.2 Concrete Benchmarks for Memory

T-Maze (Bakker, 2001). The task is almost the same as our Passive T-Maze, except that the agent
is not penalized if it moves left instead of right in the corridor. The modification results in a credit
assignment length closer to T . The authors test RL algorithms with the largest horizon of 70.

MiniGrid-Memory (Chevalier-Boisvert et al., 2018). This task has the same structure as our Active
T-Maze. In the worst-case scenario, the optimal policy can traverse the horizontal corridor back and
forth, and then follow the vertical corridor to solve the task. Thus, the memory and credit assignment
lengths of optimal policy is upper bounded by three times the maze side length, which is 3× 17 = 51
for a 17× 17 maze (MiniGrid-MemoryS17Random-v0). The reward memory length can equal the
horizon of 1445.

Passive Visual Match (Hung et al., 2018). The environment consists of a partially observable 7× 11
grid-world, where the agent can only observe a 5×5 grid surrounding itself. The task is separated into
three phases. In the first, the agent passively observes a randomly generated color. In the second, the
agent must pick up apples with immediate reward. In the final phase, three random colored squares
are displayed, and the agent must pick up the one corresponding to the color observed in the first
phase, which tests the agent’s ability to recall temporally distant events. Since rewards are relatively
immediate with respect to the agent’s actions, the credit assignment length of optimal policy is upper
bounded by the length of the shortest path needed to traverse the grid-world, i.e. 7 + 11 = 18.

TMaze Long and TMaze Long Noise (Beck et al., 2019). Both tasks are structurally similar to
our Passive T-Maze. In TMaze Long, the agent is forced to take the forward action until reaching
the junction (i.e., the action space is a singleton except at the junction). At the junction, the agent is
required to choose the goal candidate matching the color it observed at the starting position. Therefore,
the memory length is the horizon T and the credit assignment length is 1 since only the terminal
action can be credited. TMaze Long Noise introduces uniform noise appended to the observation
space. Both tasks have a horizon and corridor length of 100.

PsychLab (Fortunato et al., 2019). This environment simulates a lab environment in first person,
and can be sub-categorized into four distinct tasks. In all tasks, one or many images are shown,
and the overall objective of all tasks is to correctly memorize the contents of the images for future
actions. Images are passively observed by the agent, thus eliminating the need for long-term credit
assignment, and instead focusing on long-term memory.

Spot the Difference (Fortunato et al., 2019). In this task, two nearly identical rooms are randomly
generated, and the agent must correctly identify the differences between the rooms. The agent must
navigate through a corridor of configurable length to go from one room to another. While this task
was designed to test an agent’s memory, effective temporal credit assignment is also necessary for an
optimal policy. Similar in flavor to Active Visual Match (Hung et al., 2018), an agent must first
explore the initial room to be able to identify the differences in the second room. Rewards for this
exploratory phase are only given near the end of the task once the agent has identified all differences.
Long-term credit assignment is needed to incorporate these actions into an optimal policy.
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Goal Navigation (Fortunato et al., 2019). A random maze and goal state is generated at the
start of each episode. The agent is rewarded every time it reaches the goal state, and is randomly
re-initialized in the maze each time it does so. Crucial information about the maze needs to be
memorized throughout the episode for optimal performance, while exploratory actions may also
be taken early for better quicker navigation later. Consequently, this environment fails to cleanly
disentangle temporal credit assignment from memory.

Numpad (Parisotto et al., 2020; Humplik et al., 2019). This is a visual RL problem with continuous
control. In this task, there is an N ×N number pad, and the goal of the agent is to activate up to N2

pads in a specific order. The order is randomized at the beginning of each episode. The agent does
not know the order, and has to explore to figure it out. The agent will receive an immediate reward of
1 if it hits the next pad correctly; otherwise, the agent must restart. As a result, the credit assignment
length is short, although the exact value is hard to determine. The optimal policy needs to memorize
the order of N2 pads during the whole episode, thus the memory length is upper bounded by the full
horizon of 500.

Memory Length (Osband et al., 2020, A.6). The task is similar to our Passive T-Maze in terms of
reward memory and credit assignment lengths. However, we did not adopt this task because the agent
cannot change the observation through its action, making the task solvable by supervised learning.
Moreover, in this task, the observation is i.i.d. sampled at each time step, making a transition memory
length of only 1. The authors set the horizon at a maximum of 100.

Reacher-pomdp (Yang and Nguyen, 2021). In this task, the goal position in Reacher is only revealed
at the first step. The optimal policy has to memorize the goal until it is reached. The policy memory
length is thus long, but not necessarily the full horizon. The task provides dense rewards, so the credit
assignment length is short, although the exact value is unclear. The horizon is set to 50.

T-Maze (Lambrechts et al., 2021). This task has the same structure as T-Maze (Bakker, 2001). The
RL algorithms are tested with the largest horizon of 200.

Ballet (Lampinen et al., 2021). Ballet is a 2D gridworld task with the agent situated at the center. In
its most challenging variant, there are 8 dancers around the agent, each executing a 16-step dance
sequentially. A 48-step interval separates two consecutive dances. Consequently, the agent observes
the environment for a minimum of 16 ∗ 8 + 48 ∗ (8− 1) = 464 steps. Following the final dance, the
agent receives a reward upon reaching the dancer performing a specific routine. Hence, the optimal
policy’s memory length is at least 464 steps, and the reward memory length is capped by the horizon
of 1024. The agent’s actions are constrained to the post-dance phase, resulting in a short credit
assignment length determined by the time taken to reach the correct dancer.

HeavenHell (Esslinger et al., 2022; Thrun, 1999). This task has the same structure as our Active
T-Maze. The agent has to first move south to reach the oracle and then move north to reach the
heaven. The reward is given only at the terminal step. The credit assignment length is the full horizon,
which is around 20. The Gym-Gridverse and Car Flag tasks in their work have the same structures as
HeavenHell but feature more complex observation spaces.

Memory Cards (Esslinger et al., 2022). The task can be viewed as a discrete version of Numpad.
There are N pairs of cards, with each pair sharing the same value. The agent can observe a random
card’s value at each step, after which the card value is hidden. The agent then takes action to choose
the paired card that matches the observed card. It will get an immediate reward of 0 if it makes the
correct choice, otherwise, a reward of −1. The credit assignment length is thus 1. The minimal
memory length is around O(N) to observe all cards’ values, but hard to determine exactly due to
randomness. The finite horizon is set to 50.

Memory Maze (Pasukonis et al., 2022). In this environment, the agent is placed in a randomly
generated N ×N maze with N = 15 at most. There are K colored balls in the maze, and the agent
must pick up the K colored balls in a specified order (randomized in every episode). As for the
reward memory, the reward is given only when the agent picks up the correct ball and solely depends
on current observation and action, thus mM

reward = 1. Although their longest horizon T can be 4000,
the credit assignment length is upper bounded by the size of the maze. In the worst-case scenario, an
optimal policy can perform a naive search on the entire maze and uncover the maze plan to obtain
a reward, which costs O(N2) steps. Nevertheless, the optimal policy memory length can be much
longer than O(N2) steps and close to the horizon T . This is because the optimal policy may need to
memorize the initial subsequence of observations to infer the maze plan when taking current actions.
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POPGym (Morad et al., 2023). This benchmark comprises 15 tasks from which we examine several
representative ones:

• The diagnostic POMDP task, Repeat First, provides a reward based on whether the action repeats
the first observation. Thus, the credit assignment length is 1. Although this task indeed has a reward
memory length of T , the optimal policy memory length can be as low as 2 simply by recalling the
previous optimal action. The horizon T of this task can be 16 decks (831 steps).

• In another diagnostic POMDP task, Autoencode, an agent first observes a sequence of cards,
and then must reproduce the exact sequence in a reverse order to earn rewards. Here, the credit
assignment length is 1, and the optimal policy memory length is at most twice the number of cards,
which is 6 decks (311 steps).

• The control POMDP tasks, Stateless Cartpole and Pendulum, occlude velocities, making them
similar to the “-P” tasks we previously evaluated. These tasks require short-term dependencies.

• The game POMDP task, Battleship, requires the agent to deduce the locations of all ships on a
board without observing the board. This requires a memory length upper bounded by the area of
the board, i.e. 122 = 144, and short-term credit assignment. Similarly, the Concentration game
requires the agent to maximize the number of card matches in an episode. Although the reward
memory length of horizon T , the optimal policy memory length can be restricted to the number of
cards, i.e. 2 ∗ 52 = 104.

Overall, this benchmark indeed emphasizes the evaluation of memory capabilities with short-term
credit assignment, where the memory length is limited by the maximal horizon of around 831.

Memory Gym (Pleines et al., 2023). This benchmark has a pixel-based observation space and a
discrete action space for controlling movement within a gridworld. The Mortar Mayhem (MM) task
is considered as one of the hardest tasks in this benchmark. MM requires the agent to first memorize
a sequence of five commands, and then execute the exact commands in order. A reward is given
when the agent successfully executes one command. Thus, the credit assignment length for optimal
policy is at most the area of the gridworld, which is 5 ∗ 5 = 25. The memory length is at most the
full horizon, which according to their Table 3 is at most 135.

B.3 Concrete Benchmarks for Credit Assignment

Active Visual Match (Hung et al., 2018). The agent has to open the door to observe the color in the
first phase, picks apples up in the second phase, and goes to the door with the corresponding color in
the final phase. Thus, the policy needs to memorize the color.

Episodic MuJoCo (Liu et al., 2019; Ren et al., 2022). It is a decomposed episodic reward problem
(Eg. 5). The terminal reward is the sum of the original Markov dense rewards. They tried the maximal
horizon as 1000.

Umbrella Length (Osband et al., 2020, A.5). It is an MDP and the initial action taken by the agent
will be carried through the episode. The terminal reward depends on the terminal state, which is
determined by the initial action. Thus, the credit assignment length is the full horizon, at most 100.
There are also some random intermediate rewards that are independent of actions.

Key-to-Door (Raposo et al., 2021; Mesnard et al., 2021; Chen et al., 2021). The agent has to reach
the key in the first phase, picks apples up in the second phase, and goes to the single door. Thus, the
policy has little memory, while the terminal reward depends on whether the agent picks the key up in
the first phase. In this sense, it can be also viewed as a decomposed episodic reward problem with
some noisy immediate rewards. Raposo et al. (2021) tried the maximal horizon as 90. The horizon
in Mesnard et al. (2021); Chen et al. (2021) is unknown but should be similar.

Catch with delayed rewards (Raposo et al., 2021). It is a decomposed episodic reward problem
(Eg. 5). The terminal reward is given by how many times the agent catches the ball in an episode.
They tried the maximal horizon as 280.

Push-r-bump (Yang and Nguyen, 2021). The agent has to first explore to find out the correct bump,
and then move towards it to receive a terminal reward. The credit assignment length is thus long. The
horizon is 50.
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C Experiment Details

C.1 Memory-Based RL Implementation

Our implementation builds upon prior work (Ni et al., 2022), providing a strong baseline on a variety of
POMDP tasks, including Key-to-Door and PyBullet tasks used in this work. We denote this implemen-
tation9 as POMDP-baselines. All parameters of our agents in our experiments are trained end-to-end
with model-free RL algorithms from scratch. The following paragraphs provide detailed descriptions.

Figure 10: Agent architectures for memory-based DDQN (left) and TD3 (right) in our implementa-
tion. While rewards are not used as inputs in our experiments, they are included in this figure for
completeness. Compared to POMDP-baselines (Ni et al., 2022), we have removed shortcuts from
ot to the MLPs and shared the same sequence model between the actor and critic.

Sharing the sequence model in actor-critic with frozen critic parameters in the actor loss.
Our agent architecture, depicted in Fig. 10, simplifies the one in POMDP-baselines by sharing
the sequence model between the actor and critic. Previously, POMDP-baselines found sharing the
RNNs between actor and critic causes instability in gradients, thus they adopt the separate sequence
encoders for actor and critic. We examine their code and find that it is mainly due to the gradient
bias in the actor loss. This issue is also discussed in prior (Yang and Nguyen, 2021) and concurrent
works (Grigsby et al., 2023) on memory-based RL and related to sharing CNN encoders in visual
RL (Yarats et al., 2021a,b). Below we formalize the issue and introduce our solution.

In the separate encoder setting, we consider an actor and a critic with distinct history encoders
fϕπ and fϕQ

, mapping a history h into latent states zπ and zQ, respectively. The history encoder
parameters are denoted as ϕπ and ϕQ. The actor is parameterized by πν(fϕπ (h)) and the critic is pa-
rameterized by Qω(fϕQ

(h), a) with ν and ω denoting their respective MLP parameters. Considering
the DDPG algorithm (Lillicrap et al., 2016) for training10 and a tuple of data (h, a, o′, r)11, the loss
of critic parameters is

LQ(ϕQ, ω) =
1

2
(Qω(fϕQ

(h), a)−Qtar(h, a, o′, r))2, (29)

where Qtar(h, a, o′, r) := r+γQω(fϕQ
(h′), πν(fϕπ

(h′))) and θ denotes the stopped-gradient version
of θ and h′ = (h, a, o′). The loss of actor parameters is

Lπ(ϕπ, ν) = −Qω(fϕQ
(h), πν(fϕπ (h))). (30)

The total loss of actor and critic parameters is thus Lsep(ϕπ, ϕQ, ω, ν) := LQ(ϕQ, ω) + Lπ(ϕπ, ν).
The gradients of Lsep are

∇ϕQ
Lsep = (Qω(fϕQ

(h), a)−Qtar(h, a, o′, r))∇zQQω(fϕQ
(h), a)∇ϕQ

fϕQ
(h) (31)

∇ωLsep = (Qω(fϕQ
(h), a)−Qtar(h, a, o′, r))∇ωQω(fϕQ

(h), a) (32)

∇ϕπ
Lsep = −∇aQω(fϕQ

(h), πν(fϕπ (h)))∇zππν(fϕπ (h))∇ϕπfϕπ (h) (33)

∇νLsep = −∇aQω(fϕQ
(h), πν(fϕπ (h)))∇νπν(fϕπ (h)) (34)

9https://github.com/twni2016/pomdp-baselines
10The analysis can be generalized to stochastic actors by the reparametrization trick.
11It denotes current history, current action, next observation, and current reward.
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Now we consider an actor and a critic with a shared encoder denoted as fϕ, mapping a history h
into a latent state z. The history encoder has parameters ϕ. The actor is parameterized by πν(fϕ(h))
and the critic is parameterized by Qω(fϕ(h), a). The total loss of actor and critic

Lsha(ϕ, ω, ν) = LQ(ϕ, ω)−Qω(fϕ(h), πν(fϕ(h))) (35)

has such gradients:

∇ϕLsha = (Qω(fϕ(h), a)−Qtar(h, a, o′, r))∇zQω(fϕ(h), a)∇ϕfϕ(h)

−∇aQω(fϕ(h), πν(fϕ(h)))∇zπν(fϕ(h))∇ϕfϕ(h)−∇zQω(fϕ(h), πν(fϕ(h)))∇ϕfϕ(h)︸ ︷︷ ︸
extra gradient term

(36)

∇ωLsha = (Qω(fϕ(h), a)−Qtar(h, a, o′, r))∇ωQω(fϕ(h), a)−∇ωQω(fϕ(h), πν(fϕ(h)))︸ ︷︷ ︸
extra gradient term

(37)

Comparing the two gradient formulas across the two settings, we find the extra gradient terms using
the same value of ϕ for ϕπ and ϕQ in Lsep:

∇ϕπ
Lsep(ϕ, ϕ, ω, ν) +∇ϕQ

Lsep(ϕ, ϕ, ω, ν)−∇ϕLsha(ϕ, ω, ν)

= ∇zQω(fϕ(h), πν(fϕ(h)))∇ϕfϕ(h)
(38)

∇ωLsep(ϕ, ϕ, ω, ν)−∇ωLsha(ϕ, ω, ν) = ∇ωQω(fϕ(h), πν(fϕ(h))) (39)

To remove these extra gradient terms, we propose freezing the critic parameters ϕ and ω in the actor
loss for the shared encoder setting, resulting in a modified loss function Lsha-ours(ϕ, ω, ν):

Lsha-ours(ϕ, ω, ν) = LQ(ϕ, ω)−Qω(fϕ(h), πν(fϕ(h))). (40)

This offers a theoretical explanation for the practice of detaching critic parameters in the actor loss,
adopted in prior works (Yarats et al., 2021a,b; Yang and Nguyen, 2021). It is worth noting that these
works take an additional step of freezing the encoder parameters present in actions, resulting in an
expression like Qω(fϕ(h), πν(fϕ(h))). In our preliminary experiments conducted on PyBullet tasks,
we observed negligible differences in the empirical performance between their method and ours.
Consequently, to maintain consistency with our theoretical insights, we have chosen to implement
our approach Lsha-ours in all of our experimental setups.

Implementation of sequence encoders in our experiments. We train both LSTM and Transformer
sequence encoders with a full context length equal to the episode length on all tasks, except for
PyBullet tasks where we follow POMDP-baselines to use a context length of 64. The training
input of sequence encoders is based on a history of t observations and t actions (with the first
action zero-padded). The history is embedded as follows according to the POMDP-baselines. For
state-based tasks (T-Mazes and PyBullet), the observations and actions are individually embedded
through a linear and ReLU layer. For pixel-based tasks (Passive Visual Match and Key to Door), the
observations (images) are embedded through a small convolutional neural network. For all tasks, the
sequence of embedded observations and actions are then concatenated along their final dimension to
form the input sequence to the sequence model.

For LSTMs (Hochreiter and Schmidhuber, 1997), we train LSTMs with a hidden size of 128, varying
the number of layers from 1, 2, 4. We find single-layer LSTM performs best in T-Mazes and Passive
Visual Match, and two-layer best in Key-to-Door, which are reported in Fig. 3 and Fig. 6. See Table 3
for details.

For Transformers, we utilize the GPT-2 model (Radford et al., 2019) implemented by Hugging
Face Transformer library (Wolf et al., 2019). Our Transformer is a stack of N layers with H-headed
self-attention modules. It includes causal masks to condition only on past context. A sinusoidal
positional encoding (Vaswani et al., 2017) is added to the embedded sequence. The same dropout rate
is used for regularization on the embedding, residual, and self-attention layers. We tune (N,H) from
(1, 1), (2, 2), (4, 4). We find (N,H) = (1, 1) performs best in Passive T-Maze and Passive Visual
Match, and (2, 2) best in Active T-Maze and Key-to-Door, which are reported in Fig. 3 and Fig. 6.
See Table 4 for details.

For PyBullet tasks, we follow POMDP-baselines to use single-layer LSTMs and Transformers.
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Table 3: LSTM hyperparameters used for all
experiments.

Hyperparameter Value
State Obs. embedding size 32
embedder Act. embedding size 16

No. channels (8, 16)
Pixel Kernel size 2
embedder Stride 1

Obs. embedding size 100
Act. embedding size 0

LSTM Hidden size 128
No. layers 1, 2, 4

Table 4: Transformer hyperparameters used
for all experiments.

Hyperparameter Value
State Obs. embedding size 64
embedder Act. embedding size 64

No. channels (8, 16)
Pixel Kernel size 2
embedder Stride 1

Obs. embedding size 100
Act. embedding size 0

GPT
Dropout 0.1

No. heads (H) 1, 2, 4
No. layers (N ) 1, 2, 4

Implementation of RL algorithms in our experiments. We use SAC-Discrete (Christodoulou,
2019) for pixel-based tasks, and TD3 (Fujimoto et al., 2018) for PyBullet tasks, following
POMDP-baselines. We use DDQN (van Hasselt et al., 2016) for T-Maze tasks, which outper-
forms SAC-Discrete in our preliminary experiments. We use epsilon-greedy exploration strategy in
DDQN with a linear schedule, where the ending epsilon is 1

T with T being the episode length. This en-
sures that the probability of always taking deterministic actions throughout an episode asymptotically
approaches a constant:

lim
T→+∞

(1− ϵ)T = lim
T→+∞

(
1− 1

T

)T

=
1

e
≈ 0.368 (41)

where e is the base of the natural logarithm. This approach is critical to solving T-Maze tasks which
strictly require a deterministic policy. Table 5 summarizes the details of RL agents.

Table 5: RL agent hyperparameters used in all experiments.

Hyperparameter Value

Network hidden size (256, 256)
Discount factor (γ) 0.99
Target update rate 0.005
Replay buffer size 106

Learning rate 0.0003
Batch size 64

DDQN epsilon greedy schedule linear(1.0, 1
T , schedule_steps)

schedule_steps 0.1∗ num_episodes
SAC-Discrete entropy temperature 0.1

Table 6: Training hyperparameters in our experiments.

Tasks context_length num_episodes

Passive T-Maze 1500 8000
Active T-Maze 500 4000

Passive Visual Match 1000 10000
Key-to-Door 500 4000

C.2 Additional Results

Fig. 11 shows the learning curves of training Transformers with varying numbers of layers and heads.

Similar to the scaling experiments on Transformers we demonstrated in Sec. 5.2, we conduct an
ablation study on scaling the number of layers in LSTMs from 1, 2 to 4 in credit assignment tasks.
Fig. 12 shows the results that multi-layer (stacked) LSTMs do not help performance, aligned with
empirical findings in stacked LSTMs (Pascanu et al., 2014).
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Figure 11: Learning curves of scaling the number of layers and heads in Transformers in Key-to-Door
tasks, associated with Fig. 7.
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Figure 12: Scaling the number of layers in LSTMs does not affect performance much.

C.3 Plotting Details

For all the learning curve plots in this paper, we use seaborn.lineplot (Waskom, 2021) to show
the mean and its 95% confidence interval across 10 seeds. For the aggregation plots, we also use
seaborn.lineplot to report the final performance, which is averaged over the evaluation results
during the last 5% of interactions.

C.4 Training Compute

Here we report the training compute of the experiments in Sec. 5.1 and Sec. 5.2, because the PyBullet
experiments (Sec. 5.3) are relatively cheap to compute. Each experiment run was carried out on a
single A100 GPU and a single CPU core. For Transformer-based RL, the GPU memory usage is
approximately proportional to the square of the context lengths, with a maximum usage of 4GB for
Passive T-Maze with a context length of 1500. For LSTM-based RL, GPU memory usage is roughly
linearly proportional.

In our tasks, the context length equals the episode length (and also memory length), thus the total
training time is proportional to num_episodes * context_length**2 * update_frequency
for both Transformers and LSTMs. The update_frequency, set as 0.25, is the ratio of parameter
update w.r.t. environment step. Additionally, for multi-layer Transformers, the training time is roughly
linear to the number of layers. Table 6 summarizes the training hyperparameters.

In Passive T-Maze with a memory length of 1500, it took around 6 and 4 days to train Transformer-
based and LSTM-based RL, respectively. In Passive Visual Match with a memory length of 1000, it
took around 5 days for both Transformer-based and LSTM-based RL.

D Broader Impacts

Our work enhances understanding of long-term memory capability in Transformer-based RL. This
improved memory capability, while offering advancements in RL, may pose privacy concerns if
misused, potentially enabling systems to retain and misuse sensitive information. As this technology
develops, strict data privacy measures are essential. However, negative impacts directly tied to our
foundational research are speculative, as we propose no specific application of this technology.
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