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Abstract

Pruning at Initialization (PaI) makes training overparameterized neural networks more ef-
ficient by reducing the overall computational cost from training to inference. Recent PaI
studies showed that random pruning is more effective than ranking-based pruning, which
learns connectivity. However, the effectiveness of each pruning method depends on the ex-
istence of skip connections and the compression ratio (the before-after pruning parameter
ratio). While random pruning performs better than ranking-based pruning on architectures
with skip connections, the superiority without skip connections is reversed in the high com-
pression range. This paper proposes Minimum Connection Assurance (MiCA) that achieves
higher accuracy than conventional PaI methods for architectures with and without skip
connections, regardless of the compression ratio. MiCA preserves the random connection
between the layers and maintains the performance at high compression ratios without the
costly connection learning that ranking-based pruning requires. Experiments on CIFAR-10
and CIFAR-100 show that MiCA enhances the compression ratio and accuracy trade-offs
compared to existing PaI methods. In VGG-16 with CIFAR-10, MiCA improves the accu-
racy of random pruning by 27.0% at 104.7× compression ratio. Furthermore, experimental
analysis reveals that increasing the utilization of the nodes through which information flows
from the first layer is essential for maintaining high performance at a high compression ratio.

1 Introduction

Although deep neural networks (DNNs) have high generalization capability, both their training and inference
are computationally expensive (Arora et al., 2019; Zhang et al., 2019; 2021; Neyshabur et al., 2019; Wen et al.,
2022). These high costs arise because their computation depends on a large amount of parameters (Shoeybi
et al., 2019; Brown et al., 2020; Dosovitskiy et al., 2021; Woo et al., 2023).

Network pruning achieves high generalization capability despite fewer parameters and can solve this problem.
There are various types of pruning, including methods that train while sparsifying the network gradually
by penalty terms (Chauvin, 1988; Weigend et al., 1990; Ishikawa, 1996), prune the network after training
and then finetune it (LeCun et al., 1989; Hassibi et al., 1993; Lee et al., 2021), and prune and learn itera-
tively (Frankle & Carbin, 2019; Frankle et al., 2019; Renda et al., 2020). However, these aim to reduce the
inference computational cost and need to train the dense model. By contrast, dynamic sparse training (Mo-
canu et al., 2018; Evci et al., 2020; Jayakumar et al., 2020) and pruning at initialization (PaI) train with
sparse networks, thus reducing training costs. In particular, PaI has the lowest training computational cost
among pruning methods because the network structure is fixed (Price & Tanner, 2021).

Basically, PaI calculates a criterion to determine which parameters are essential and selects the parameters
to be pruned based on it. This type of PaI called ranking-based pruning at initialization (RbPI) (Lee et al.,
2019; Wang et al., 2020; Tanaka et al., 2020) can learn the network connections explicitly but needs to
calculate the criterion using an expensive process such as backpropagation. On the other hand, another
type of PaI called random pruning at initialization (RPI) has a negligibly small additional cost because it
only prunes a network randomly without calculating a criterion. At first glance, RbPI seems to perform
better than RPI since it learns connections, but some works suggested that RPI could construct subnetworks

1



Under review as submission to TMLR

with similar or better performance obtained by RbPI. Frankle et al. (2021) revealed that RPI and RbPI
had comparable accuracy at 1–102× compression ratios when applying the same sparsity set separately for
each layer (i.e., the sparsity distribution). Similarly, the work by Su et al. (2020) showed that RPI with
ad-hoc sparsity distribution improved the trade-off between parameter ratio of dense to sparse network—
compression ratio—and accuracy than RbPI. Furthermore, randomly pruned networks outperform dense
networks in aspects such as out-of-distribution detection and adversarial robustness (Liu et al., 2022). Thus,
RPI seems to combine simple pruning processing with high performance among PaI methods.

On the other hand, a recent thread of PaI research (Vysogorets & Kempe, 2023) showed a curious phenomenon
of RPI: its efficiency at high compression ratios depends on skip connections in the DNN. At more than 102×
compression ratios, randomly pruned models without skip connections are less accurate than RbPI. It differs
from the result in low compression ratio by Frankle et al. (2021) and implicates that highly sparse networks
need to learn connection. However, whether connection learning is essential in the high compression range is
debatable. For instance, the work by Gadhikar et al. (2023) improved the performance of skip connection-
free architecture by adding parameters (i.e., edges) to non-functional neurons in a randomly pruned network
at 10–103× compression ratios. It indicates that even random pruning can improve performance if the
connections between layers are preserved. However, this approach is not essential for higher compression
ratios because the additional edges inhibit compression. Therefore, there is a need for more essential solutions
to improve performance in skip connection-free architecture.

In order to address this problem, this paper introduces a novel PaI algorithm for high compression range:
Minimum Connection Assurance (MiCA). Specifically, it preserves top-to-bottom information propagation
among randomly pruned layers by building a random connection—minimum connection—using some of
the pre-allocated edges. The minimum connection is constructed by pre-determining and connecting the
neurons that the subnetwork uses, and the subnetwork with the connection maintains the pre-defined sparsity
distribution even when connecting its neurons randomly. Thus, all allocated edges can be functional even
in a high compression range. Since MiCA has this small constraint on the placement of the edges while
keeping the connection random, it stands as restricted RPI algorithm in the field of PaI algorithms. We
evaluate MiCA on CIFAR-10 and CIFAR-100 datasets (Krizhevsky et al., 2009) with VGG (Simonyan &
Zisserman, 2014) and ResNet (He et al., 2016) architectures. MiCA enhances the performance for not only
skip connection-free architectures such as VGG but also architectures with skip connections such as ResNet.
Furthermore, despite the random connection, MiCA improves the trade-off between compression ratio and
inference accuracy compared to RPI and RbPI methods. In other words, MiCA shows that the connections
learned by RbPI can be replaced by random connections even in the high-compression range.

The rest of the paper is organized as follows. Section 2 outlines existing PaI methods and describes how to
calculate a compression ratio that correctly compares them with MiCA. Then, Section 3 proposes MiCA,
and Section 4 compares MiCA with the RPI and RbPI methods. Finally, Section 5 concludes this paper.

2 Related Work

PaI algorithms can be categorized into two groups: 1) those that learn the criterion of pruning before training
weights (i.e., RbPI); and 2) those that prune randomly (i.e., RPI). The methods included in these groups can
be compared by using the compression ratio obtained by eliminating unused edges (Vysogorets & Kempe,
2023). This section recapitulates the method for calculating the corrected compression ratio and outlines
the literature on RPI and RbPI.

Calculation of Corrected Compression Ratios. Recently, Vysogorets & Kempe (2023) found that PaI
algorithms produce significant amounts of redundant parameters that can be removed without affecting the
output. Figure 1 illustrates this phenomenon. A pruned network has 10 edges, but the 4 dashed edges do
not affect the output. Thus, the apparent compression ratio is 21/10 = 2.1, but it can also be regarded
as 21/(10 − 4) = 3.5. Correcting the compression ratio calculation by removing them results in a fairer
comparison between subnetworks. Subsequent sections use this compression ratio calculation.

Random Pruning at Initialization (RPI). RPI prunes each layer randomly based on a pre-defined
sparsity distribution calculated by a pre-defined compression ratio. To date, various sparsity distribution
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Figure 1: Some edges and nodes stop affecting the output (dashed line) as the network becomes sparser by
pruning dotted lines.

design methods have been proposed. For example, Erdős-Rényi-Kernel (ERK) (Evci et al., 2020), which
was devised in the context of random graphs, determines the density of l-th layer to be proportional to
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channels, output channels, kernel height, and kernel width of the l-th layer, respectively. Ideal Gas Quotas
(IGQ) (Vysogorets & Kempe, 2023) focuses on the fact that traditional global pruning methods (Lee et al.,
2019; 2021; Tanaka et al., 2020) intensively remove parameter-heavy layers. It determines the constant F

based on the target compression ratio and calculates the density of l-th layer as
(
F

∣∣E(l)
∣∣ + 1

)−1, where
∣∣E(l)

∣∣
is the number of edges in the l-th layer. The subnetworks to be pruned based on these sparsity distributions
achieve comparable or better performance against RbPI and RPI using other distributions (Vysogorets &
Kempe, 2023). However, those with skip connection-free architectures cannot achieve such performance as
the compression ratio increases. Although some solutions, such as adding edges and resampling (Gadhikar
et al., 2023), are proposed to address this RPI weakness, they are impossible at higher compression ratios
or inefficient. Unlike these methods, our approach is efficient and works at higher compression ratios.
It constructs a subnetwork with only pre-allocated edges, except that pre-defined sparsity distributions
invariably cause non-functional neurons (i.e., nodes). Moreover, our approach does not require the iterative
pruning operation.

Ranking-Based Pruning at Initialization (RbPI). RbPI determines the pruning priorities based on
the initial state of a network and a dataset. For example, SNIP (Lee et al., 2019) uses the magnitude of
the backpropagation gradient after one iteration as a parameter’s pruning priority. GraSP (Wang et al.,
2020) prunes the edges that do not reduce the gradient flow of a subnetwork for a dataset preferentially.
SynFlow (Tanaka et al., 2020) updates a parameter’s pruning priority by using the l1-path norm of a
network (Neyshabur et al., 2015) as a loss and prunes iteratively without dataset. Unlike other RbPI
methods, it can avoid layer-collapse (Hayou et al., 2020) at high compression ratios. As seen from these,
RbPI takes into account the information flow of the initialized network for the pruning criteria. Hence, its
sparse sub-networks tend to connect layers to each other. On the other hand, RbPI requires pre-training to
calculate priorities, which is prohibitively expensive. RPI and our approach have a lower cost because they
do not need to calculate priorities.

3 MiCA: Minimum Connection Assurance

Recently, Vysogorets & Kempe (2023) showed that RPI degrades accuracy significantly in skip connection-
free architectures in high compression range. Gadhikar et al. (2023) focused on the connection of each
layer to improve accuracy in the situation, but those methods cannot put higher compression ratios into
perspective or are inefficient due to iterative operations. Given the importance of the connection of each
layer as revealed by Gadhikar et al. (2023), this section introduces a novel PaI method, MiCA, which is
completed in a single procedure and takes into account the case of extremely high compression ratios. MiCA
constructs a subnetwork using the minimum connection as a frame. In order to create a minimum connection,
it is essential to determine how many nodes are used in each layer based on the architecture and pre-allocated
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Figure 2: In cases 1 and 2, randomly pruning the network can make some edges non-functional. On the
other hand, MiCA keeps all edges functional while allowing randomness in the connections.
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Figure 3: A node in l-th convolutional layer has a
connection with up to kernel size k
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Figure 4: Edge placement procedures to construct
a minimum connection. Each kernel is connected
to an output node, and then unconnected nodes are
connected.

edges. Therefore, we first introduce the way to analyze the number of nodes. Then, we describe how to
create a minimum connection with a small amount of edges using the analysis result.

Figure 2 exemplifies two situations that are suboptimal for training or inference with a sparse network: in
case 1, the edges of l-th layer connect to almost all nodes of (l + 1)-th layer. It causes some non-functional
edges at l-th layer if the number of edges of the (l + 1)-th layer is low; in case 2, almost all edges connect
to a few nodes of the next layer. It will cause some non-functional edges at (l + 1)-th layer if the number of
edges of the (l + 1)-th layer is high. These can happen when pre-determining the number of edges in each
layer and pruning a model randomly. We pre-determine which nodes to use to avoid these dire situations
based on a pre-defined sparsity distribution and each layer architecture.

This section considers a convolutional neural network constructed with L layers. Let |C(l)
in |, |C(l)

out|, k
(l)
h , and

k
(l)
w be the number of input channels, the number of output channels, height, and width of the kernel of

l-th layer, respectively. Note that these values are pre-determined in the architecture of the layer. Then, we
define the input nodes and the output nodes in the pruned l-th layer as V

(l)
in and V

(l)
out, respectively. Pruned
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(l)
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(l)

out. Thus,
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Solving this inequality for
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As shown in Equation 3, it is necessary to know

∣∣∣V (l)
out

∣∣∣ for setting
∣∣∣V (l−1)

out

∣∣∣. Thus, we sequentially analyze the
number of connectable nodes from the output layer to the input layer. For the L-th layer (e.g., a classifier),
the number of output nodes

∣∣∣V (L)
out

∣∣∣ takes the number of classes. If the network has a branching structure,

such as residual connections, we select the larger
∣∣∣V (l−1)

out

∣∣∣ obtained at each branch to keep all input nodes
connected. The computational cost of this analysis is negligibly tiny because it is completed using only
simple operations.

Once the nodes used in each layer are determined, the subnetwork construction of MiCA is completed by
placing the edges. First, we construct a minimum connection in two steps, as shown in Figure 4:

1. Select an input node from a kernel and connect it to an unconnected output node. Note that it is
performed for all kernels.

2. Connect the unconnected nodes. If the minimum degree of input or output nodes is already 1, we
connect the unconnected nodes to randomly selected nodes.

Step 1 is particularly essential when the compression ratio is extremely high (i.e., there are a few edges to
place). For a network between convolutional layers, as shown in Figure 3, using one edge for each kernel
first prevents the edges in the previous layer from becoming non-functional. These steps are completed
sequentially from the input layer to the output layer as we connect the nodes used in the input side to the
output node. Finally, we place the remaining edges randomly within the nodes in the minimum connection.
These edges work wherever they are placed because minimum connection exists.

4 Experiments and Results

This section evaluates MiCA on image classification using the experimental setup described in Section 4.2.
It shows that MiCA performs better than conventional RPI and RbPI methods, especially in the high
compression range and regardless of whether skip connections exist.
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Figure 5: Comparison of the ratio of functional edges between RPI and MiCA with ERK and IGQ for
pre-defined compression ratios. Unlike other RPI methods, MICA makes all edges functional, even at a high
compression ratio.

4.1 Notation of Methods

We briefly introduce the notation of the methods compared in the subsequent experiments in advance.
RPI uses a pre-defined sparsity distribution for ERK, IGQ, SNIP, GraSP, and SynFlow. Here, we consider
the sparsity distribution of the network pruned by SNIP, GraSP, and SynFlow, which are RbP, as a pre-
defined sparsity distribution. RPI methods with these distributions are denoted RPI-ERK, RPI-IGQ,
RPI-SNIP, RPI-GraSP, and RPI-SynFlow, respectively. Similarly, MiCA using these distributions are
denoted MiCA-ERK, MiCA-IGQ, MiCA-SNIP, MiCA-GraSP, and MiCA-SynFlow, respectively.
For the RbPI experiments, SNIP, GraSP, and SynFlow are chosen as RbPI methods, and these are specified
as RbPI-SNIP, RbPI-GraSP, RbPI-SynFlow, respectively. For more detail on each RPI and RbPI
method, see Section 2.

4.2 Experimental Settings

This paper evaluates MiCA in image classification on the CIFAR-10 and CIFAR-100 datasets. For CIFAR-10
and CIFAR-100, 40,000 images are used as training data and 10,000 as validation data. The architectures
used in the experiments are VGG-16 and ResNet-20. Implementation is based on the code provided by
Tanaka et al. (2020). In particular, VGG-16 includes a batch normalization layer and removes the bias of the
convolutional layer. All experiments use stochastic gradient descent (SGD) applying Nesterov’s acceleration
method (Nesterov, 1983) with a momentum of 0.9. We use values 100.5, 101, ..., 105.5, and 106 as a pre-
defined compression ratio. Note that results are not plotted if all edges are non-functional after compression.
CIFAR-10 and CIFAR-100 experiments are run three times with a batch size 128 for 160 epochs. For VGG-
16, the weight decay is set to 0.0001, and the learning rate is started at 0.1 and multiplied by 0.1 after 60
and 120 epochs. For ResNet-20, the weight decay is set to 0.0005, and the learning rate is started at 0.01
and multiplied by 0.2 after 60 and 120 epochs. SNIP and GraSP use 10× the training data amount relative
to the dataset’s number of classes and a batch size of 128. SynFlow prunes the initialized network for 100
iterations.

4.3 Pre-Defined Sparsity Distribution Maintenance of MiCA

This section shows how much MiCA and RPI leave functional edges for each pre-defined compression ratio.
The result is plotted in Figure 5. The ratios of functional edges for RPI-ERK and RPI-IGQ begin to decrease
around 103× compression ratio for VGG-16 and 102× for ResNet-20. On the other hand, MiCA continues to
use all the pre-allocated edges as much as possible and maintains the sparsity distribution even in the high
compression range. MiCA-ERK and MiCA-IGQ have almost all functional edges even at 105× compression
ratio for VGG-16 and 103.5× compression ratio for ResNet-20. However, all edges can be non-functional at
high compression ratios, as seen in MiCA-ERK for VGG-16 at 105.5× compression ratio. This phenomenon
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(a) CIFAR-10 experiments.

(b) CIFAR-100 experiments.

Figure 6: Comparison of accuracy between RPI and MiCA on CIFAR-10 and CIFAR-100. The two columns
on the left compare RPI and MiCA with ERK and IGQ, and the two columns on the right compare RPI and
MiCA using the sparsity distribution of SNIP, GraSP, and SynFlow. In VGG-16, MiCA reduces performance
degradation in the high compression range and improves the accuracy and compression ratio trade-offs. It also
shows slight performance improvement for the sparsity distributions such as IGQ and SynFlow in ResNet-20
experiments using CIFAR-10. Note that some plots are not plotted because the corrected compression ratio
is infinite.

is caused by the way the pre-defined sparsity distribution is designed. Some pre-defined sparsity distributions
allocate no edges to a few layers when the pre-defined compression ratio is exceptionally high. As a result,
all edges are non-functional, regardless of how they are placed.

4.4 MiCA vs. Random Pruning

Figure 6 compares MiCA and RPI with ERK, IGQ, SNIP, GraSP, and SynFlow. First, we focus on the ERK
and IGQ experiments of the two left columns. In the VGG-16 experiment (first column), RPI-ERK and
RPI-IGQ have a sharp performance drop for ≥ 103× compression ratios for both CIFAR-10 and CIFAR-100.
These with a pre-defined compression ratio of 103.5× have an actual compression ratio of > 104×, and those
with a pre-defined compression ratio of 104×, 104.5×, ..., 105×, and 106× cannot be plotted as all edges are
non-functional (i.e., the corrected compression ratio is infinite). On the other hand, MiCA-ERK and MiCA-
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(a) CIFAR-10 experiments.
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(b) CIFAR-100 experiments.

Figure 7: Comparison of accuracy between RbPI and MiCA. MiCA improves the accuracy and compres-
sion ratio trade-off more than RbPI in ResNet-20. MiCA also performs as well as RbPI in the VGG-16
experiments. Interestingly, MiCA outperforms RbPI in both VGG-16 and ResNet-20 experiments using
CIFAR-100.

IGQ maintain the same compression ratio as the pre-defined compression ratio and suffer less performance
degradation. Note that MiCA-ERK is not plotted for 105.5× and 106× compression ratios. This phenomenon
is due to ERK’s design, as mentioned in Section 4.3, and the same occurs in other sparsity distributions
(e.g., IGQ) and other experiments. As shown in Figure 6 (a), MiCA-IGQ achieves an accuracy of 44.4%
for 104.5× compression ratio, significantly higher than RPI-IGQ’s accuracy of 12.6% for 104.3× compression
ratio. This result suggests that the minimum connection supports learning in the high compression range.

In the ResNet-20 experiment (second column), the performance difference between MiCA and RPI is less
drastic than in the VGG-16 experiment. In particular, CIFAR-100 experiments (Figure 6 (b)) show little
difference. However, it is hardly surprising considering that skip connections help randomly pruned net-
works learn in the high compression range (Hoang et al., 2023). For CIFAR-10 experiments (Figure 6 (a)),
MiCA-ERK slightly improves the trade-off between compression ratio and accuracy against RPI-ERK in the
compression range of 102–103×. ResNet-20 has several layers that do not have skip connections, and it is
therefore considered that the minimum connection supports learning in those layers.

Then, we state the results of the right two columns in Figure 6. In the VGG-16 experiment (third column),
MiCA-SNIP, MiCA-GraSP, and MiCA-SynFlow significantly improve the trade-off between accuracy and
compression ratio as in the ERK and IGQ experiments. It is particularly evident in the CIFAR-100 experi-
ment (Figure 6 (b)). Thus, MICA overcomes the performance degradation at a high compression range for
skip connection-free architectures, regardless of the pre-defined sparsity distribution. However, the perfor-
mance improvements in the ResNet-20 (fourth column) are still minute. This result seems regrettable but
highlights the importance of skip connections to RPI.

4.5 MiCA vs. Ranking-Based Pruning

Figure 7 compares the compression ratio and accuracy between RbPI and MiCA on CIFAR-10 (left two
columns) and CIFAR-100 (right two columns). We employ SNIP, GraSP, and SynFlow as RbPI methods.
Despite random connections, MiCA achieves comparable performance to RbPI in VGG-16. Although it has
already been observed that randomly pruned networks achieve performance comparable to RbPI (Frankle
et al., 2021), to the best of our knowledge, this is the first time that the same result is reported in the high
compression range. In other words, this result shows that RbPI only learns layer-to-layer connections, not
high-performance subnetworks, regardless of the compression ratio. Interestingly, the ResNet-20 experiments
show a more pronounced performance difference than the RPI result in Figure 6. It suggests that MiCA’s
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(a) CIFAR-10 experiments.

(b) CIFAR-100 experiments.

Figure 8: The accuracy of RPI and MiCA with the same sparsity distribution is compared on CIFAR-10 and
CIFAR-100. When the number of parameters used in each layer is matched, MiCA performs better than
other PaI methods when the compression ratio is high.

RPI aspect helps it to maintain higher performance than RbPI in ResNet-20 because MiCA connects each
layer randomly.

4.6 Performance Comparison for the Same Sparsity Distribution

Previous sections match the pre-defined sparsity distribution of MICA and other PaI methods and compare
each method. In contrast, this section evaluates the corrected sparsity distribution of RPI and RbPI as the
pre-defined sparsity distribution of MiCA. Then, we show that the network structure constructed by MiCA
achieves higher performance against other PaI methods, even when the number of edges at each layer is
matched.

Figure 8 compares RPI, RbPI, and MiCA for the same sparsity distribution. The two columns on the left
show RPI experiments, while the two on the right show RbPI experiments. Even when using the same
sparsity distribution, MiCA improves the accuracy more than RPI (left two columns). The results in VGG-
16 on CIFAR-10 are remarkable: MiCA-ERK achieves 27.0% higher accuracy than RPI-ERK with 104.7×
compression ratio. Performance improvements of MiCA can also be seen in ResNet-20 at a high compression
ratio. Both RPI and MiCA ought to make similar networks due to the random connection in this situation,
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Figure 9: Comparison of the compression ratio with the ratio of functional nodes among the nodes flowing
information from the first layer. MiCA maintains a high functional node ratio even in a high compression
range compared to other PaI methods. Exceptions are RbPI-SynFlow, which retains a higher ratio than
MiCA at high compression ratios.

but the performance difference is more noticeable when the compression ratio is high. In addition, the
subnetworks built by RbPI suffer more performance degradation than those built by MiCA, regardless
of compression ratio and architecture (right two columns). However, in the VGG-16 experiments (third
column), RbPI-SynFlow is more accurate than MiCA in the compression range above 105×. At 105.5×
compression ratio in CIFAR-10 experiments, MiCA-SynFlow achieves 10.0%, which is not different from
the random performance, while RbPI-SynFlow achieves 20.3%. Furthermore, these accuracies are almost
identical for CIFAR-100 experiments. In other words, RbPI-SynFlow is superior to MiCA only when the
compression ratio is extremely high and the architecture does not have skip connections.

4.7 Top-to-Bottom Information Propagation

This section shows that MiCA propagates information without loss compared to other PaI methods. As
in the previous section, the pre-defined sparsity distribution of MICA is matched to the corrected sparsity
distribution of each method.

Figure 9 compares the ratio of functional nodes to all nodes that information flows from the first layer for each
compression ratio. While RPI and RbPI methods reduce the ratio of functional nodes as the compression
ratio increases, MiCA maintains the high ratio of functional nodes. In particular, RPI-ERK and RPI-IGQ
have almost 3/4 of the nodes non-functional in VGG-16 at 103× compression ratio, whereas MiCA-ERK
and MiCA-IGQ keep all nodes functional. Interestingly, RbPI-SynFlow keeps the ratio of functional nodes
relatively higher than other PaI methods without MiCA, even in the high compression range. In contrast,
RbPI methods make nodes non-functional even in the low compression range. At the compression ratio of
> 104× in VGG-16 and > 102× in ResNet-20, RbPI has a higher ratio of functional nodes than MiCA.
Given that RbPI-SynFlow achieves comparable or higher accuracy than MiCA at ≥ 105× compression ratio
in VGG-16 (Figure 8) and that RbPI builds a specific network at the skip connection-free architecture (Hoang
et al., 2023), it suggests that sparse networks with a high ratio of functional nodes maintain accuracy at
a high compression ratio. MiCA makes nodes non-functional in a high compression range, but the ratio is
lower than in other methods. At 104.7× compression ratio in VGG-16, MiCA-ERK keeps nearly 50% of the
nodes functional, whereas RPI-ERK keeps most of the nodes non-functional. In the ResNet-20 experiments,
MiCA also has a higher ratio of functional nodes than other methods, but the difference is lower than in
VGG-16. It shows that information from the first layer flows to the subsequent layers even after pruning
due to skip connections. In other words, the top-to-bottom information flow is narrowed by pruning, but
skip connections allow it to flow to the subsequent layers.
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Why do some nodes become non-functional even after recalculating the compression ratio? This is because
the convolution process produces non-functional nodes. The convolution process connects one input node
in l-th convolutional layer with several output nodes in (l + 1)-th convolutional layer, as shown in Figure 3.
This connection does not use network parameters; hence, it is preserved after recalculating the compression
ratio. Consequently, nodes can be non-functional if the number of remaining edges in (l + 1)-th layer is
small.

5 Conclusion and Future Work

This paper proposes Minimum Connection Assurance (MiCA), a restricted random pruning at initialization
method. MiCA combines a departure from costly connection learning by random connections and the
prevention of rapid accuracy degradation in the high compression range by preserving connections between
layers. In other words, it takes the best of both RPI and RbPI’s respective strengths. It improves the accuracy
and compression ratio trade-off of conventional PaI methods on the VGG and ResNet architectures. In
particular, MiCA allows training at high compression ratios, which RPI could not achieve on the architectures
without skip connections. Our experiments find that random connections can substitute the connections
learned by RbPI. Although this has been demonstrated previously in the low compression range, this work is
the first to demonstrate it in the high compression range. The analysis of the experimental results shows that
MiCA sends information flowing from the first layer to the subsequent layers without loss compared to other
PaI methods. It suggests that controlling the spread of information at each layer and sending information
to the bottom layers without loss by pruning improves accuracy, even if the pruning is random.

A future direction of this work is to investigate sparsity distributions regarding minimum connection. Al-
though MiCA achieves higher performance than conventional PaI methods, the accuracy in terms of com-
pression ratio depends on the assigned sparsity distribution. Therefore, it is possible to discover a novel
sparsity distribution by examining the importance of each layer, assuming a condition where the connection
is maintained.
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