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ABSTRACT

Graph generation is a critical yet challenging task as empirical analyses require
a deep understanding of complex, non-Euclidean structures. Although diffusion
models have recently made significant achievements in graph generation, these
models typically adapt from the frameworks designed for image generation, mak-
ing them ill-suited for capturing the topological properties of graphs. In this
work, we propose a Cellular-Guided Graph Generative (CG3) model that fol-
lows a coarse-to-fine generation curriculum and is guided by cellular information,
enabling the progressive generation of authentic graphs with inherent topolog-
ical structures. Experimental results show that our method is able to generate
molecules that lie close to the training distribution yet do not violate the chemical
valency rule, demonstrating the effectiveness of CG3 in modelling the higher-
order relationships.

1 INTRODUCTION

Graphs provide an elegant abstraction for representing complex empirical phenomena (Zeng et al.,
2024b). The study of graph generation aims to synthesize graphs that align with the observed dis-
tribution. Recently, diffusion-based models have achieved remarkable success in image generation
by learning a model to denoise a noisy sample (Ho et al., 2020; Song et al., 2021). With their
emergence, applying diffusion models to graphs with complex topological structures has garnered
significant scientific interest (Niu et al., 2020; Jo et al., 2022; Vignac et al., 2023).

Despite these advances, existing graph generative models typically inherit the frameworks designed
for image generation, which fundamentally limits their ability to capture the intrinsic topological
properties of networks. Notably, networks exhibit higher-order structures, such as motifs, sim-
plices, and cells, which capture multi-way interactions and critical topological dependencies beyond
pairwise relationships (Battiston et al., 2020; Zeng et al., 2024a; Papamarkou et al., 2024). These
structures are vital for representing complex phenomena in domains like molecular graphs, social
networks, and protein interactions. However, current methods are ineffective at modelling the topo-
logical properties of higher-order systems since learning to denoise the noisy samples does not
explicitly preserve the intricate structural dependencies required for generating realistic graphs.

Moreover, the image corrupted by Gaussian noise retains recognizable numerical patterns during
the early and middle stages of forward diffusion. By contrast, the graph adjacency matrix quickly
degrades into a dense matrix with uniformly distributed entries within a few diffusion steps. In addi-
tion, directly applying diffusion-based generative models to graph topology generation by injecting
isotropic Gaussian noise to adjacency matrices is harmful as it destroys critical graph properties
such as sparsity and connectivity. Therefore, a graph-friendly diffusion process should also retain
meaningful intermediate states and trajectories and avoid inappropriate noise addition.

Motivated by these principles and advances in topological deep learning (Hajij et al., 2022; Pa-
pamarkou et al., 2024; Huang et al., 2024), we propose the Cellular-Guided Graph Generative
(CG3) framework, illustrated in Figure 1. CG3 introduces a coarse-to-fine generation curriculum,
preserving higher-order topologies throughout the diffusion process to better capture complex graph
structures. Specifically, we decompose the graph generation task into manageable sub-tasks, begin-
ning by generating higher-order graph skeletons that capture core structures, which are then refined
to include pairwise interactions and finer details, resulting in complete graphs with both topological
and semantic fidelity. Additionally, CG3 integrates diffusion bridge and spectral diffusion to ensure
effective generation and adherence to the aforementioned graph generation principles. Our theo-
retical analysis reveals that CG3 converges more rapidly in score matching and achieves sharper
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reconstruction error bounds than classical approaches, offering strong theoretical support for the
proposed framework. Furthermore, our framework promises to enhance interpretability by enabling
the analysis of different topological guides’ performance in the generation process.

2 CELLULAR-GUIDED DIFFUSION FRAMEWORK
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Figure 1: Overview of CG3. The dashed line above
illustrates the classical generation process, where
graphs quickly degrade into random structures. In
contrast, as shown in the coloured region below, CG3
adopts a coarse-to-fine generation curriculum based
on the diffusion bridge, explicitly learning higher-
order structures during intermediate steps.

We now present our Cellular-Guided Graph
Generative (CG3) model, which enhances
graph generation by exploiting cell struc-
tures. We begin by detailing a coarse-to-
fine generation curriculum that incremen-
tally constructs graphs, followed by the in-
troduction of three essential supporting tech-
niques: the diffusion bridge, spectral diffu-
sion, and a denoising model, respectively.

Coarse-to-fine Generation. Drawing in-
spiration from curriculum learning (Soviany
et al., 2022; Xiao & Blanco, 2022; Karami,
2024), we believe that an ideal graph genera-
tion curriculum should be composed of mul-
tiple easy-to-learn and meaningful interme-
diate steps. Higher-order structures, espe-
cially cells, encapsulate rich structural prop-
erties beyond pairwise interactions that are
crucial for various empirical systems (Huang et al., 2024; Wu et al., 2024). As a graph-friendly
generation framework, CG3 incorporates cell structures during the intermediate stages of forward
diffusion and reverse generative processes, thereby realizing a coarse-to-fine generation curriculum.

To implement our coarse-to-fine generation curriculum, we introduce a key operation termed cell
complex filtering (CCF). CCF generates an intermediate state of a graph by pruning nodes and
edges that do not belong to a given cell complex. This operation plays a crucial role in decomposing
the graph generation task into manageable sub-tasks, with the filtered results serving as natural
intermediaries in hierarchical graph generation.

The overall framework of CG3 is depicted in Figure 1. Specifically, the forward and reverse diffu-
sion processes in CG3 are divided into K hierarchical time windows, denoted as {[τk−1, τk]}Kk=1,
where 0 = τ0 < · · · < τk−1 < τk < · · · < τK = T . The process begins by generating coarse-
grained higher-order skeletons, which are then refined into finer pairwise relationships, simplifying
the modeling of complex graph distributions. Formally, our generation process factorizes the joint
distribution of the final graph G0 into a product of conditional distributions across these time win-
dows: p(G0) =

∏K
k=1 p(Gτk−1

| Gτk). Here, intermediate states Gτk correspond to different levels
of cell filtering applied to the graph and the ordering reflects a coarse-to-fine generation process.
This approach aligns intermediate stages of the diffusion process with realistic graph representa-
tions, reflecting the hierarchical nature of many real-world graphs and enabling smoother training
and improved sampling performance.

Diffusion Bridge Process. We implement guided diffusion based on diffusion bridge process (Ah-
mad, 1988; Luo et al., 2023b). Over time, the marginal distribution of the generalized Ornstein-
Uhlenbeck (GOU) process stabilizes around a fixed mean and variance, making it well-suited for
stochastic modelling with terminal constraints. The GOU process is governed by:

dGt = θt(µ−Gt)dt+ gt(Gt)dWt, (1)

where µ = Gτk is the target terminal state, θt denotes a scalar drift coefficient and gt represents the
diffusion coefficient. To ensure the process remains analytically tractable, θt and gt are constrained
by the relationship g2t /θt = 2σ2 (Luo et al., 2023b), where σ2 is a given constant scalar. Under
these conditions, its transition probability admits a closed-form solution:

p(Gt | Gs) = N (ms:t, v
2
s:tI) = N

(
µ+ (Gs − µ) e−θ̄s:t , σ2(1− e−2θ̄s:t)I

)
. (2)
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Here, θ̄s:t =
∫ t

s
θzdz, and for notional simplicity, θ̄0:t is replaced by θ̄t when s = 0. At time t

progress, p(Gt) gradually approaches a Gaussian distribution characterized by mean µ and variance
σ2, indicating that the GOU process exhibits the mean-reverting property.

The Doob’s h-transform (Doob & Doob, 1984) can modify an SDE such that it passes through a
specified endpoint. When applied to the GOU process, this eliminates variance in the terminal state,
driving the diffusion toward a Dirac distribution centered at Gτk (Heng et al., 2021; Yue et al., 2024).
Proposition 1. Let Gt evolve according to the GOU process in Eq. (1), subject to the terminal
conditional µ = Gτk . Then, conditional marginal distribution p(Gt | Gτk) evolves according to:

dGt = θt

(
1 +

2

e2θ̄t:τk − 1

)
(Gτk −Gt)dt+ gk,tdWt. (3)

The conditional transition probability has an analytical form as

p(Gt | Gτk−1 ,Gτk ) = N (m̄t, v̄
2
t I) = N (Gτk +(Gτk−1 −Gτk )e

−θ̄τk−1:t
v2t:τk

v2τk−1:τk

,
v2τk−1:tv

2
t:τk

v2τk−1:τk

). (4)

We can directly use the closed-form solution in Proposition 1 for one-step forward sampling without
performing multi-step forward iteration using the SDE.

Spectral Diffusion. Generating graph adjacency matrices presents several significant challenges.
Firstly, the non-uniqueness of graph representations means that a graph with n vertices can be equiv-
alently modelled by up to n! distinct adjacency matrices. This ambiguity requires a generative model
to assign probabilities uniformly across all equivalent adjacencies. Additionally, sparsity distin-
guishes graphs from densely distributed image data, causing adjacency score functions to reside on
a low-dimensional manifold. Consequently, noise injected into out-of-support regions of the full
adjacency space severely impairs the score-matching process. Even for densely connected graphs,
isotropic noise distorts global message-passing patterns by encouraging interactions on sparsely
connected regions. Moreover, the adjacencies scale quadratically with the number of nodes, making
the direct generation of adjacencies computationally prohibitive for large-scale graphs.

To address these challenges, inspired by Martinkus et al. (2022); Luo et al. (2023a), we introduce
noise in the eigenvalue domain of the graph Laplacian matrix L = D−A, instead of the adjacency
matrix A, where D denotes the diagonal degree matrix. As a symmetric positive semi-definite
matrix, the graph Laplacian can be diagonalized as L = UΛU⊤. Here, the orthogonal matrix
U = [u1, · · · ,un] comprises the eigenvectors, and the diagonal matrix Λ = diag(λ1, · · · , λn)
holds the corresponding eigenvalues. Therefore, the target graph distribution p(G0) represents a
joint distribution of X0 and Λ0, exploiting the permutation invariance and structural robustness of
the Laplacian spectrum. Consequently, we split the forward and reverse SDE into two parts that
share drift and diffusion coefficients as{

dXt =fk,t(Xt) dt+ gk,tdW
1
t

dΛt =fk,t(Λt) dt+ gk,tdW
2
t

,

dXt =
[
fk,t(Xt)− g2k,t∇X log pt(Gt|Gτk )

]
dt̄+ gk,tdW̄

1
t

dΛt =
[
fk,t(Λt)− g2k,t∇Λ log pt(Gt|Gτk )

]
dt̄+ gk,tdW̄

2
t

.

Here, the superscript of X(k)
t and Λ

(k)
t are dropped for simplicity, and fk,t is defined as in Eq. (3).

To approximate the score functions ∇Xt
log pt(Gt|Gτk) and ∇Λt

log pt(Gt|Gτk), we employ a
neural network s

(k)
θ (Gt,Gτk , t), composed of a node (s(k)θ,X ) and a spectrum (s(k)θ,Λ) output, respec-

tively. The model is optimized by minimizing the loss function:

ℓ(k)(θ) = Et,Gt,Gτk−1
,Gτk

{ω(t)[c1∥s(k)
θ,X −∇X log pt(Gt|Gτk )∥

2
2+c2||s(k)

θ,Λ−∇Λ log pt(Gt|Gτk )||
2
2]},
(5)

where ω(t) is a weighting function, and c1, c2 controls the relative importance.

We sample (XτK ,ΛτK ) from the prior distribution and uniformly sample U0 from the observed
eigenvector matrices. The generation process involves multi-step diffusion to produce samples
(X̂τK−1

, Λ̂τK−1
), · · · , (X̂τ1 , Λ̂τ1), (X̂0, Λ̂0) in sequence by reversing the diffusion bridge, where

the endpoint of one generation step serves as the starting point for the next. Finally, plausible sam-
ples with higher-order structures Ĝ0 = (X̂0, L̂0 = U0Λ̂0U

⊤
0 ) can be reconstructed.
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Denoising Network Architecture. We design a neural network s
(k)
θ (Gt,Gτk , t) to estimate score

functions, which comprises two different graph processing modules: a standard graph convolution
network (GCN) (Kipf & Welling, 2017) for local feature aggregation and a graph transformer net-
work (ATTN) (Dwivedi & Bresson, 2021; Vignac et al., 2023) for global information extraction.
The outputs of these modules are fused with time information through a Feature-wise Linear Mod-
ulation (FiLM) layer (Perez et al., 2018). The resulting representations are concatenated to form a
unified hidden embedding. This hidden embedding is further processed through separate multilayer
perceptrons (MLPs) to produce predictions for ∇X log p(Gt|Gτk) and ∇Λ log p(Gt|Gτk), respec-
tively. It is worth noting that our graph noise prediction model is permutation equivalent as each
component of our model avoids any node ordering-dependent operations.

3 EXPERIMENT

To assess the capability of the proposed graph generation method, we conduct evaluations on two
well-known molecular datasets: QM9 (Ramakrishnan et al., 2014) and ZINC250k (Irwin et al.,
2012), and obtain the intermediate higher-order skeletons using 2-cell complex filtering. We evaluate
the quality of 10, 000 generated molecules with three metrics: Neighborhood Subgraph Pairwise
Distance Kernel (NSPDK) MMD (Costa & Grave, 2010), Fréchet ChemNet Distance (FCD) (Preuer
et al., 2018) and Validity without correction (Val. w/o corr.) (Jo et al., 2022). We compare our
model against state-of-the-art molecular generation models, including GraphAF (Shi et al., 2020),
GraphDF (Luo et al., 2021), MoFlow (Zang & Wang, 2020), EDP-GNN (Niu et al., 2020), Graph-
EBM (Liu et al., 2021), GDSS (Jo et al., 2022), and DiGress (Vignac et al., 2023). For a fair
comparison, as recommended by Jo et al. (2022), we extend GraphAF and GraphDF to account for
formal charges in the molecular generation, termed GraphAF+FC and GraphDF+FC, respectively.

Table 1 indicates that CG3 consistently outperforms both auto-regressive and one-shot models. No-
tably, the dramatic decrease in NSPDK and FCD implies that CG3 is able to generate molecules
with data distributions close to those of the real molecules in both the chemical and graph space.
We provide the visualizations of the generated molecules in Appendix B. These results demonstrate
CG3 ’s ability to model the intricate interdependencies between nodes and edges effectively.

Table 1: Comparison of different methods based on molecular datasets.

Methods QM9 ZINC250k

NSPDK↓ FCD↓ Val. w/o corr.↑ NSPDK↓ FCD↓ Val. w/o corr.↑
GraphAF 0.020 5.268 67.00 0.044 16.289 68.00
GraphAF+FC 0.021 5.625 74.43 0.044 16.023 68.47
GraphDF 0.063 10.816 82.67 0.176 34.202 89.03
GraphDF+FC 0.064 10.928 93.88 0.177 33.546 90.61

MoFlow 0.017 4.467 91.36 0.046 20.931 63.11
EDP-GNN 0.005 2.680 47.52 0.049 16.737 82.97
GraphEBM 0.003 6.143 8.22 0.212 35.471 5.29
GDSS 0.003 2.900 95.72 0.019 14.656 97.01
DiGress 0.0005 0.360 99.00 0.082 23.060 91.02
CG3 (Ours) 0.0003 0.172 98.74 0.001 1.533 98.56

4 CONCLUSION

We introduce a coarse-to-fine graph generation framework, called CG3, that explicitly exploits
higher-order topological information. CG3 decomposes the complicated generation process into
multiple easy-to-learn generation sub-steps, which are realized with the help of a generalized
Ornstein-Uhlenbeck bridge process. Moreover, our model outperforms existing molecular graph
generative methods in both graph space and chemical space for distribution learning. Additionally,
our framework promises to improve interpretability by enabling the analysis of different topological
guides’ performance in the generation process. We believe that our work suggests a new formulation
of graph generative models.
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with flower-petals laplacians on simplicial complexes. In Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI), pp. 12653–12661, 2024.

John J Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad, and Ryan G Coleman. Zinc:
a free tool to discover chemistry for biology. Journal of chemical information and modeling, 52
(7):1757–1768, 2012.

Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via the
system of stochastic differential equations. In International Conference on Machine Learning
(ICML), pp. 10362–10383. PMLR, 2022.

Mahdi Karami. Higen: Hierarchical graph generative networks. In Proceedings of International
Conference on Learning Representations (ICLR), 2024.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In Proceedings of International Conference on Learning Representations (ICLR), 2017.

Meng Liu, Keqiang Yan, Bora Oztekin, and Shuiwang Ji. Graphebm: Molecular graph generation
with energy-based models. In Energy Based Models Workshop-ICLR, 2021.

Tianze Luo, Zhanfeng Mo, and Sinno Jialin Pan. Fast graph generation via spectral diffusion. IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2023a.

Youzhi Luo, Keqiang Yan, and Shuiwang Ji. Graphdf: A discrete flow model for molecular graph
generation. In International Conference on Machine Learning (ICML), pp. 7192–7203. PMLR,
2021.

5



Published as a conference paper at ICLR 2025

Ziwei Luo, Fredrik K Gustafsson, Zheng Zhao, Jens Sjölund, and Thomas B Schön. Image restora-
tion with mean-reverting stochastic differential equations. In International Conference on Ma-
chine Learning (ICML), pp. 23045–23066, 2023b.
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A FORMAL STATEMENTS AND PROOFS

In this section, we derive the generalized Ornstein-Uhlenbeck (GOU) bridge process using Doob’s
h-transform (Doob & Doob, 1984).

Recall that the generalized Ornstein-Uhlenbeck (GOU) process is the time-varying OU process. It is
a stationary Gaussian-Markov process whose marginal distribution gradually tends towards a stable
mean and variance over time. The GOU process Q is generally defined as follows (Ahmad, 1988;
Luo et al., 2023b):

Q : dGt = θt (µ−Gt) dt+ gtdWt, (6)
where µ is a given state vector, θt denotes a scalar drift coefficient and gt represents the diffusion
coefficient. At the same time, we require θt, gt to satisfy the specified relationship 2σ2 = g2t /θt,
where σ2 is a given constant scalar. As a result, its transition probability possesses a closed-form
analytical solution:

p (Gt | Gs) = N (ms:t, v
2
s:tI),

ms:t = µ+ (Gs − µ) e−θ̄s:t ,

v2s:t = σ2
(
1− e−2θ̄s:t

)
.

(7)

Here, θ̄s:t =
∫ t

s
θzdz. When the starting time t = 0, we substitute θ̄0:t with θ̄t for notation simplicity.

Proposition 1. Let Gt evolve according to the generalized OU process in Eq. (1), subject to the
terminal conditional µ = Gτk . The conditional marginal distribution p(Gt | Gτk) then evolves
according to the following SDE:

dGt = θt

(
1 +

2

e2θ̄t:τk − 1

)
(Gτk −Gt)dt+ gk,tdWt. (8)

The conditional transition probability p(Gt | Gτk−1
,Gτk) has analytical form as follows:

p(Gt | Gτk−1
,Gτk) = N (m̄t, v̄

2
t I),

m̄t = Gτk + (Gτk−1
−Gτk)e

−θ̄τk−1:t
v2t:τk

v2τk−1:τk

,

v̄2t = v2τk−1:t
v2t:τk/v

2
τk−1:τk

.

(9)

Here, θ̄a:b =
∫ b

a
θsds, and va:b = σ2(1− e−2θ̄a:b).

Proof. To simplify the notion, in the k-th generation step, we adopt the following conventions:
T = τk, xt = G

(k)
t , 0 = τk−1, x0 = Gτk−1

, xT = Gτk .

From Eq. (2), we can derive the following conditional distribution

p(xT | xt) = N (xT + (xt − xT )e
θ̄t:T , v2t:T I). (10)

According to the definition of Doob’s h-transform, the h-function can be directly computed as:
h(xt, t,xT , T ) = ∇xt

log p(xT | xt)

= −∇xt

[
(xt − xT )

2e−2θ̄t:T

2v2t:T
+ const

]

= (xT − xt)
e−2θ̄t:T

v2t:T

= (xT − xt)σ
−2/(e2θ̄t:T − 1).

(11)

Then the Doob’s h-transform yields the representation of an endpoint xT conditioned process de-
fined by the following SDE:

dxt =
[
f(xt, t) + g2th(xt, t,xT , T )

]
dt+ gtdwt

=

(
θt +

g2t
σ2(e2θ̄t:T − 1)

)
(xT − xt)dt+ gtdwt

= θt

(
1 +

2

e2θ̄t:T − 1

)
(xT − xt)dt+ gtdwt.

(12)
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Given that the joint distribution of [x0,xt,xT ] is multivariate normal, the conditional distribution
p(xt | x0,xT ) is also Gaussian:

p(xt | x0,xT ) = N (m̄t, v̄
2
t I), (13)

where the mean m̄t and variance v̄2t are determined using the conditional formulas for multivariate
normal variables:

m̄t = E[xt | x0 | xT ] = E[xt | x0] + Cov(xt,xT | x0)Var(xT | x0)
−1(xT − E[xT | x0]),

v̄2t = Var(xt | x0 | xT ) = Var(xt | x0)− Cov(xt,xT | x0)Var(xT | x0)
−1Cov(xT ,xt | x0).

(14)

Notice that

Cov(xt,xT | x0) = Cov
(
xt, (xt − xT )e

−θ̄t:T | x0

)
= e−θ̄t:TVar(xt | x0). (15)

By substituting this and the results in Eq. (2) into Eq. (14), we can obtain

m̄t =
(
xT + (x0 − xT )e

−θ̄t
)
+
(
e−θ̄t:T v2t

)
/v2T ·

(
xT − xT − (x0 − xT )e

−θ̄T
)

= xT + (x0 − xT )
(
e−θ̄t − e−θ̄t:T e−θ̄T v2t /v

2
T

)
= xT + (x0 − xT )e

−θ̄t

(
1− e−2θ̄T − e−2θ̄t:T (1− e−2θ̄t)

1− e−2θ̄T

)
= xT + (x0 − xT )e

−θ̄tv2t:T /v
2
T ,

(16)

and

v̄2t = v2t −
(
e−θ̄t:T v2t

)2
/v2T

=
v2t
v2T

(v2T − e−2θ̄t:T v2t )

=
v2t
v2T

σ2
(
1− e−2θ̄T − e−2θ̄t:T (1− e−2̄θt)

)
= v2t v

2
t:T /v

2
T .

(17)

Finally, we conclude the proof by reverting to the original notations.

Note that the generalized OU bridge process, also referred to as the conditional GOU process, has
been studied theoretically in previous works (Salminen, 1984; Heng et al., 2021; Yue et al., 2024).
However, we are the first to demonstrate its effectiveness in explicitly learning higher-order struc-
tures within the graph generation process.

B VISUALIZATION RESULTS

In this section, we additionally provide the visualizations of the generated molecular graphs. Fig-
ures 2 and 3 illustrate non-curated samples generated for QM9 and Zinc250k dataset, respectively.
It can be observed that CG3 is capable of generating high-quality samples that closely resemble the
topological properties of empirical data while preserving essential structural details.
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(a) Training set (b) Ours

Figure 2: Visualization of random samples taken from the CG3 trained on the QM9 dataset.

(a) Training set (b) Ours

Figure 3: Visualization of random samples taken from the CG3 trained on the Zinc250k dataset.
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