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Abstract

Reasoning about time and temporal relations is001
an integral aspect of human cognition, essen-002
tial for perceiving the world and navigating our003
experiences. Though language models (LMs)004
have demonstrated impressive performance in005
many reasoning tasks, temporal reasoning re-006
mains challenging due to its intrinsic complex-007
ity. In this work, we first study an essential task008
of temporal reasoning—temporal graph genera-009
tion, to unveil LMs’ inherent, global reasoning010
capabilities. We show that this task presents011
great challenges even for the most powerful012
large language models (LLMs), such as GPT-013
3.5/4. We also notice a significant performance014
gap by small LMs (< 10B) that lag behind015
LLMs by 50%. Next, we study how to close016
this gap with a budget constraint, e.g., not using017
model finetuning. We propose a new prompt-018
ing technique tailored for temporal reasoning,019
GENSORT, that first converts the events set to020
a Python class, then prompts an LM to gener-021
ate a temporally grounded narrative, guiding022
the final generation of a temporal graph. Ex-023
tensive experiments showcase the efficacy of024
GENSORT in improving various metrics. No-025
tably, GENSORT attains the highest F1 on the026
Schema-11 evaluation set, while securing an027
overall F1 on par with GPT-3.5. GENSORT also028
achieves the best structural similarity across the029
board, even compared with GPT-3.5/4.030

1 Introduction031

Temporal reasoning is essential for humans to032

perceive the world, understand daily communica-033

tions, and interpret the temporal aspects of expe-034

riences (Allen, 1983; Nebel and Bürckert, 1995).035

The recent advent of language models (LMs) has036

garnered substantial attention to their impressive037

performance in various reasoning tasks, such as038

arithmetic reasoning (Cobbe et al., 2021; Zhong039

et al., 2024) and commonsense reasoning (Talmor040

et al., 2019; Anil et al., 2023). Nonetheless, few041
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class BusinessChange:
  title = “Business Change"
  steps = 6
  def stepA(self):
    return “Government approve the deal”
  def stepD(self):
    return “Companies negotiate”
  ··· ··· [more events]
  def get_relations(self):
    return [
      “stepB -> stepC,
      “stepC -> stepD”,
      “stepD -> stepF”,
      “stepF -> stepE”,
      “stepA -> stepE”,
    ]
# END

Figure 1: Task overview of temporal graph generation
(TGG), where the input is a goal and a set of unordered
events. In this work, to better unleash the pre-training
power of LMs trained with a mixture of text and code,
we cast TGG as a code completion task.

LMs exist to handle temporal reasoning well (Wang 042

and Zhao, 2023; Chu et al., 2023; Chan et al., 2024), 043

due to the task’s inherent complexity, mingled with 044

implicit logical inference and the necessity for pro- 045

found world knowledge. 046

To gain deeper insights, the research community 047

mainly focuses on two extremes along the spec- 048

trum: either a simple relation extraction task that 049

orders a pair of events (UzZaman et al., 2013; Yuan 050

et al., 2023), or a perplexing commonsense un- 051

derstanding task demanding multi-axis reasoning 052

skills beyond the mere temporal aspect (Wenzel 053

and Jatowt, 2023; Tan et al., 2023; Xiong et al., 054

2024). Worse still, the former is limited to a lo- 055

cal scope spanning two adjacent sentences only 056

and fails to account for the significance of global 057

temporal relations, leading to overly optimistic re- 058
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sults (Yuan and Liu, 2022; Wang and Zhao, 2023).059

Therefore, neither setup provides a clear under-060

standing of LMs’ true temporal reasoning abilities.061

In this work, we aim to unveil the inherent,062

global temporal reasoning capabilities of LMs,063

evaluating them in isolation free from confounding064

factors, and addressing the limitations of previous065

studies which only focused on local contexts. We066

first introduce a task of temporal graph genera-067

tion (TGG; fig. 1): Given a high-level goal T 1068

(e.g., business change) and a set of events V , the069

objective is to produce a temporal graph G(V, E)070

where a directed edge in E reveals the temporal071

order between events. Though this specific notion072

of TGG is new, many of its applications are not.073

With TGG, we put forth the first research question.074

RQ1: What is the temporal reasoning capability075

of popular LMs? Prior work (Wang and Zhao,076

2023; Chu et al., 2023) shows a huge gap between077

AI systems and human performance on various tem-078

poral understanding tasks. Additionally, there is a079

notable performance disparity between proprietary080

LMs (e.g., GPT-4) and open-source LMs, particu-081

larly those with fewer than 10 billion parameters082

(henceforth, small LMs). Our study on temporal083

reasoning reveals a similar trend and identifies the084

existence of both gaps, as demonstrated in Table 1.085

This further highlights the importance of an in-086

depth investigation of TGG, since the performance087

of downstream tasks (e.g., temporal commonsense088

understanding) is positively correlated with the in-089

herent, global temporal reasoning capability. Ob-090

serving the model deficiencies, we are motivated091

to fill the gap between open-source, small LMs and092

proprietary large models. This is due to the fact093

that open-source LMs are generally more accessi-094

ble, reproducible, and cost-effective to use (Chen095

et al., 2023; Zhou et al., 2023). In pursuit of this096

goal, we present the second research question.097

RQ2: With a budget constraint (e.g., not allow-098

ing further training), how can small LMs catch099

up with large models like GPT-3.5/4? Given the100

constraint that no training will be used, we propose101

GENSORT, a special prompting technique tailored102

for temporal reasoning. This method capitalizes on103

the recent success of the Chain-of-Thought (CoT)104

technique (Wei et al., 2022b; Kojima et al., 2022),105

found effective in solving complex reasoning tasks.106

To approach TGG, GENSORT produces a final107

temporal graph via first Generating a temporally108

1We use goal and scenario interchangeably.

grounded narrative2 then Sorting the input events 109

topologically in reference to the recounted narra- 110

tive. Inspired by Madaan et al. (2022); Chen et al. 111

(2022); Gao et al. (2023), GENSORT also features 112

structural representations by converting the input- 113

output mapping to a Python class, and instructing 114

the generation in code space. We further improve 115

GENSORT by introducing high-quality reference 116

narratives as part of few-shot demonstrations. 117

Extensive experiments across three evaluation 118

benchmarks of diverse genres reveal six interesting 119

findings: 1) small LMs critically struggle with 120

temporal reasoning even with few-shot examples; 121

2) CoT is also ineffective at temporal reasoning, in 122

line with existing finding (Chu et al., 2023); 3) GPT- 123

4 sometimes falls off the throne due to alignment, 124

when answering sensitive queries; 4) GENSORT 125

is a powerful tool to assist small LMs to catch 126

up with or even surpass GPT-3.5, and presents 127

strong compatibility with various base LMs; 5) the 128

temporally grounded narratives are significant in 129

improving LMs’ temporal reasoning process; 6) AI 130

systems are far from mastering temporal reasoning, 131

trailing the human baseline by 30 F1 points. 132

We also analyze the impact of shot numbers and 133

perform a holistic evaluation of reference narratives 134

in few-shot examples. 5-shot is found to be the 135

sweet spot for temporal reasoning, after which the 136

performance plateaus, likely due to long-context 137

challenge. We identify three key characteristics of 138

reference narratives for them to avail small LMs 139

most: conciseness, simplicity, and factuality. 140

2 Related Work 141

2.1 Temporal Reasoning 142

This work is deeply rooted in a long-standing yet 143

still challenging NLP domain—temporal reasoning 144

(Allen, 1983; Nebel and Bürckert, 1995), which 145

involves extraction, representation and reasoning 146

with time and events (Sanampudi and Kumari, 147

2010). Depending on the cognitive complexity, 148

temporal reasoning in NLP is studied at three levels: 149

temporal expression detection, temporal relation 150

extraction, and temporal graph generation. The 151

simplest temporal expression detection task is to 152

identify phrases in the text that convey temporal 153

information (Setzer, 2001; Mani et al., 2001; Puste- 154

jovsky et al., 2003), commonly known as TimeX. 155

2In our context, “temporally grounded” refers to events
being organized and presented in a way that accurately reflects
their temporal sequence or timeline.
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Further, under-specified TimeX is typically con-156

verted to explicit expressions (e.g., Summer 2024)157

through a process called time expression normal-158

ization (Verhagen et al., 2010).159

Explicit TimeX is often absent in text, and events160

usually carry implicit temporal information. To161

bridge the gap, TempEval (Verhagen et al., 2009;162

UzZaman et al., 2013) is curated to support the163

study of temporal relation extraction, which aims164

to detect the temporal relation between two events165

in a document. The most common benchmarks,166

TB-dense (Chambers et al., 2014) and MATRES167

(Ning et al., 2018), have witnessed the technique168

evolution from LSTM (Dligach et al., 2017) and169

GNN-augmented BERT (Mathur et al., 2021; Wang170

et al., 2022), to LMs prompting (Yuan et al., 2023).171

Yet, these benchmarks are limited by their locality172

assumption, where only pairs of events within a173

two-sentence window are annotated. Even in this174

simplified scenario of temporal relation extraction,175

ChatGPT perform poorly, trailing supervised sys-176

tems by over 30% (Chan et al., 2024).177

The most challenging task, contextualized tem-178

poral graph extraction, is defined as, given a179

document, generating a corresponding event-level180

temporal graph (UzZaman et al., 2013; Madaan181

and Yang, 2021). This task addresses the limita-182

tion of locality by priming models to comprehend183

the entire article and infer relationships even be-184

tween distant events. Yet, this area is largely under-185

investigated, partly due to the scarcity of available186

datasets. A similar task is script learning (Regneri187

et al., 2010; Modi et al., 2016; Sakaguchi et al.,188

2021), which targets inducing a stereotypical pro-189

gression of complex events (Schank and Abelson,190

1975), represented as a temporal graph of more191

atomic events. This task is usually approached by192

first extracting information snippets from a given193

document to build an instance graph, and then ex-194

panding the graph to generate a schematic graph195

using GNN (Li et al., 2021; Jin et al., 2022) or196

LLM prompting (Dror et al., 2023). Given the197

remarkable similarities between these two tasks,198

we instead study a temporal reasoning task formu-199

lation that is fundamental to both, i.e., temporal200

graph generation. It differs from prior work in at201

least two dimensions: (1) a limited-context setting,202

where only abstract event descriptions are avail-203

able, and (2) only a few training samples at hand,204

rendering fine-tuning techniques inapplicable. This205

motivates a training-free assessment of LMs’ in-206

herent, global temporal reasoning capability.207

2.2 Chain-of-Thought and its Variants 208

Despite the strong problem-solving capability in 209

the general domain (Wei et al., 2022a), LMs strug- 210

gle to address more complex reasoning tasks, such 211

as commonsense understanding and arithmatic rea- 212

soning (Patel et al., 2021; Talmor et al., 2021a; 213

Huang and Chang, 2023). Wei et al. (2022b) first 214

introduce the concept Chain-of-Thought (CoT) by 215

decomposing multi-step problems into intermedi- 216

ate steps. Kojima et al. (2022) further adds a phrase 217

“Let’s think step by step” to perform zero-shot CoT. 218

These studies underpin the CoT technique in en- 219

hancing LMs’ capability for complex reasoning. 220

Down the line, sophisticated prompting schemes 221

are devised through structuralization. One ap- 222

proach is to extend the linear chain structure to 223

Tree-of-Thoughts (Yao et al., 2023) and Graph-of- 224

Thoughts (Besta et al., 2024), enabling expanded 225

exploration space. The huge search space, however, 226

results in a computational resource dilemma. On 227

top of that, leveraging the deterministic execution 228

to narrow the discrepancy between reasoning and 229

final answer, PoT (Chen et al., 2022), PAL (Gao 230

et al., 2023) and Faithful CoT (Lyu et al., 2023) 231

introduce programming languages to describe the 232

reasoning process structurally. These methods are 233

designed exclusively for solving mathematical rea- 234

soning and symbolic reasoning, where the reason- 235

ing process and computation can be decoupled. In 236

contrast, for temporal reasoning, the reasoning pro- 237

cess and the temporal sorting step are intrinsically 238

interleaved. In fact, Chu et al. (2023) has attempted 239

to apply CoT but proved unsuccessful. 240

Moreover, existing methods are mostly applied 241

to generate intermediate rationales for simple, 242

atomic outputs, usually in the format of multi- 243

choice options (Mihaylov et al., 2018; Talmor 244

et al., 2019; Liu et al., 2020), a number (Cobbe 245

et al., 2021; Hendrycks et al., 2021), or yes/no op- 246

tions (Talmor et al., 2021b; Wei et al., 2022a). Our 247

work draws a clear distinction where our focus is 248

on structural output generation, augmented with 249

producing a rationale in the form of a compelling 250

and pertinent narrative. 251

3 Method: GENSORT 252

Figure 2 provides an overview of the proposed 253

GENSORT method, and draws a comparison 254

against common prompting techniques. Overall, 255

given a scenario and a set of events, GENSORT 256

first converts the input into a Python class, then 257
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class WalkIntoStore:
  def stepA(self):
    return “park the car”
  def stepD(self):
    return “get out of car”
  ··· ··· [more events]
  def get_relations(self):
    return [
      “stepB -> stepD”,
      “stepA -> stepB”,
      ··· ··· 
    ]

# END

class WalkIntoStore:
  def stepA(self):
    return “park the car”
  def stepD(self):
    return “get out of car”
  ··· ··· [more events]
  #Let's think about a 

narrative ···
  def get_narrative(self):
    return "This is a 

report about walking into a 
store. ··· Once the car is 
parked, the key is taken out of 
the ignition. Next, the person 
gets out of the car ··· Finally 
they walk into the store."
  def get_relations(self):
    return [
      “stepA -> stepB”,
      “stepB -> stepD”,
      ··· ··· 
    ]

# END

Vanilla Demonstrations

Narrative-aware 
Demonstrations

Demo1

Demo2

DemoN

···

class BusinessChange:
  def stepE(self):
    return “companies merge”
  def stepA(self):
    return “government approve 

the deal”
  ··· ··· [more events]
  def get_relations(self):
    #TODO

return [
“stepE -> stepF”,
“stepA -> stepB”,
··· ··· 

]
# END

[TEXT]: Key temporal information pertinent 
to the presented partial temporal graph, i.e., 
return statement of get_relations(self). 
[TEXT]: Generations by language models (LMs).
Note: Python class and instructions simplified.

Demo1

Demo2

DemoN

···

class BusinessChange:
  def stepE(self):
    return “companies merge”
  def stepA(self):
    return “government approve 

the deal”
  ··· ··· [more events]
  #Let's think step by step

The “BusinessChange” class        
represents the steps involved in  
a business acquisition. ··· StepE
leads to stepA, as the companies  
merge and then the government     
approves the deal ···
  def get_relations(self):
    #TODO

return [
“stepE -> stepA”,
··· ··· 

]
# END

Demo1

Demo2

DemoN

···

class BusinessChange:
  def stepE(self):
    return “companies merge”
  def stepA(self):
    return “government approve 

the deal”
  ··· ··· [more events]
  #Let's think about a  

narrative ···
  def get_narrative(self):
    #TODO
   return “This is a report   

about ‘business change’. First,    
companies plan on an acquisition.  
Then, they offer an acquisition    
deal to the other company. The     
other company accepts the deal and 
the two companies start            
negotiating the terms of the deal. 
After they reach an agreement,     
they submit the deal to the        
government for approval. Once the  
government approves the deal, the  
companies can merge. By adhering   
to the provided temporal           
information, the desired goal is   
achieved.”
  def get_relations(self):
    #TODO

return [
“stepA -> stepE”,
··· ··· 

]
# END

Standard structural prompting

Structuralized Chain-of-Thought

GENSORT prompting

Temporally Grounded    
Narrative:
• Better factuality
• More structural
• Lower redundancy

More accurate temporal 
graph generation!

Figure 2: Overview of GENSORT, a prompting technique tailored for temporal reasoning. GENSORT improves the
temporal graph by recounting a temporally grounded narrative. Also shown are comparisons with existing methods.
The same test example from fig. 1 is displayed. Full example is in fig. A4 with GENSORT output in fig. A7.

guides LMs to produce a temporally grounded nar-258

rative by arranging events in the correct temporal259

order, leveraging LMs’ intrinsic temporal knowl-260

edge. Based on the recounted temporal relations261

articulated in the narrative, LMs are instructed to262

sort events into a temporal graph. This section will263

discuss major components in detail: (1) structural264

representation, (2) GENSORT prompting template,265

and (3) narrative-aware demonstrations.266

Structural Representation. Following prior267

work (Madaan et al., 2022; Chen et al., 2022; Gao268

et al., 2023), we cast temporal reasoning as a code269

completion task. This design decision is motivated270

by the unordered nature of both event sets and tem-271

poral relation sets, making a structural representa-272

tion the optimal choice. Wang et al. (2023a) also273

shows that combining structural event representa-274

tions with LMs trained with a mixture of text and275

code can unleash the full pretraining power. We ex-276

tend this framing to handle cross-event structures.277

Specifically, a temporal graph is commonly pre-278

sented in DOT format (Madaan and Yang, 2021;279

Sakaguchi et al., 2021), the appearance of which280

lends itself naturally to the usage of coding for-281

mat. Furthermore, code execution follows a clear,282

step-by-step logical flow, mirroring the process of283

reasoning. Bringing these aspects together results284

in an alignment between temporal graphs and code285

structure, facilitating temporal reasoning process.286

Concretely, each scenario is represented as a287

Python class. Each class encapsulates events as288

functions, where the function name is in the form of 289

“step[A-Z]” such as “stepX”, and the function body 290

indicates the event description. The temporal graph 291

is represented as a collection of pairwise temporal 292

relations, enclosed within the return statement of 293

“get_relation()” function, marked by “TODO” for 294

LMs to implement. 295

GENSORT. At inference time, GENSORT first 296

prompts LMs to produce a temporally grounded 297

narrative using Narrative Prompt. Drawing on the 298

generated narrative, LMs proceed and complete 299

generation in response to Temporal Graph Prompt. 300

The entire generation process is in an end-to-end 301

manner, ensuring that LMs explicitly leverage the 302

temporal relations articulated in the narrative to 303

assist the generation of the final temporal graph. 304

We provide a complete example in Appendix C. 305

Narrative Prompt

# Let’s think of a narrative to link aforementioned
events in the correct temporal order.
def get_narrative(self):
# TODO

306

Temporal Graph Prompt

def get_relations(self):
# TODO
# END

307
Overall, GENSORT narrows the gap between pre- 308

training and inference by allowing the LM to unfold 309

the narrative knowledge seen during pre-training. 310
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Concretely, our approach leverages LMs’ inherent311

strengths in generating and comprehending text for312

narrative and temporal graph generation, respec-313

tively. In contrast, directly mapping abstract events314

to a temporal graph is less effective, as such ex-315

amples are rarely encountered during pre-training.316

Practically, generated narratives create imagined317

experiences for LMs to navigate, which are crucial318

for tasks requiring temporal reasoning. By reading319

the recounted narrative, it becomes easier for the320

LMs to construct an implicit timeline to guide event321

sorting, significantly reducing the reasoning com-322

plexity compared to generating temporal graphs323

from scratch (i.e., using abstract events alone).324

Our GENSORT draws a clear distinction from325

the CoT prompting and its variants in three aspects.326

First, for CoT, a final answer cannot be easily ex-327

tracted unless a post-hoc script is designed (Kojima328

et al., 2022; Wang et al., 2023b), while the out-329

put of GENSORT is easy to obtain by parsing the330

get_relations() function. Second, GENSORT331

produces final outputs in the structural space, while332

existing methods solely produce simple, atomic333

outputs as discussed in §2.2. Third, the generated334

rationales by CoTs are not necessarily grounded in335

real-world experience. In contrast, generated narra-336

tives by GENSORT are steered to be more tempo-337

rally grounded, creating an imagined experience338

for LMs to navigate, which is proved effective.339

Narrative-aware Demonstrations. Existing340

studies (Brown et al., 2020; Wei et al., 2022a) have341

demonstrated that in-context demonstrations play a342

critical role in guiding LMs to produce meaningful343

outputs. GENSORT is no exception, as Table 1344

reveals that even GPT-3.5 struggles with temporal345

reasoning in a zero-shot setting. Thus, few-shot346

examples are provided by default. For GENSORT347

to succeed, high-quality and relevant rehearsed348

narratives, termed reference narratives, need to be349

created and embedded in these demonstrations.350

Capitalizing on the recent success of using LMs351

to generate demonstrations (Yu et al., 2023; Li et al.,352

2023), we prompt GPT-3.5/4 to produce reference353

narratives. Concretely, for each demonstration, ab-354

stracted as G(V, E), we feed both V and E into355

GPT-3.5/4, using our designed reference narrative356

generation templates, dubbed meta prompts. In357

total, we create 4 types of meta prompts covering358

diverse genres like news and children’s stories. Ad-359

ditionally, when feeding G(V, E) into GPT-3.5/4,360

we use two input formats to define a Python class361

(alphabetical like “stepX” in fig. A8 vs. descriptive 362

like “pushPedal” in fig. A9). We later evaluate the 363

usefulness of each meta prompt in §5.2. Details of 364

meta prompts are documented in Appendix D. 365

4 Experiment 366

In this work, we focus on Temporal Graph Gener- 367

ation (TGG), an essential task of temporal reason- 368

ing. Here, we discuss datasets, experimental setup, 369

baselines, and evaluation metrics. We provide ad- 370

ditional implementation details in Appendix A. 371

4.1 Dataset 372

In line with the literature, we use ProScript (Sak- 373

aguchi et al., 2021) as the major benchmark, where 374

a temporal script is represented as a directed acyclic 375

graph, which were collected from a diverse range of 376

sources including ROCStories (Mostafazadeh et al., 377

2016), Descript (Wanzare et al., 2016), and Virtual 378

home (Puig et al., 2018). We also adopt two other 379

datasets to enrich the evaluated genres and domains, 380

and make necessary changes for the TGG task: 381

1) Schema-11 evaluation set (Dror et al., 2023), 382

which contains human-curated event schemas for 383

11 newsworthy topics, such as armed robbery and 384

business change; and 2) WikiHow Script corpus 385

(Lyu et al., 2021), a collection of multilingual how- 386

to articles depicting necessary steps performed in 387

sequence to achieve a high-level goal, covering a 388

wide range of daily activities. Dataset statistics 389

are included in Table A2, and we provide detailed 390

dataset processing scripts in Appendix B. 391

4.2 Setup 392

As our goal is to study the capability and generaliz- 393

ability of existing LMs, and our GENSORT without 394

any fine-tuning, we assume no access to large-scale 395

training sets except for few-shot demonstrations. 396

Therefore, all experiments are conducted in a 5- 397

shot setting. We provide analysis on the impact of 398

the shots numbers in §5.2. We consider three base 399

models to spotlight the compatibility and versatil- 400

ity of GENSORT. We include very recent, strong 401

LMs, showing promising results on various reason- 402

ing tasks and code completion tasks, MISTRAL-7B 403

(Jiang et al., 2023), GEMMA-7B (Mesnard et al., 404

2024), and LLAMA3-8B (AI@Meta, 2024). For 405

all base models, we use their instruction-fine-tuned 406

versions for experiments. 407

Shown in fig. 2, we represent the event set as 408

a suite of Python methods, by serializing the un- 409

ordered event set. For each scenario, we randomly 410
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Method
Proscript Schema-11 WikiHow Script Avg.

F1↑ GED↓ k(G) Cons.↑ F1↑ GED↓ k(G) Cons.↑ F1↑ GED↓ k(G) Cons.↑ F1↑ GED↓

Baselines

Random 14.0 1.47 1.00 7.8 19.4 3.91 1.00 7.8 14.2 0.06 1.00 8.8 15.9 1.81
GPT-3.5 (0-shot)* 18.4 2.25 1.06 38.6 30.1 4.48 1.27 30.2 17.2 2.80 1.11 40.8 21.9 3.18
GPT-3.5 43.4 1.71 1.07 38.8 62.8 3.30 1.36 50.2 31.0 1.58 1.10 35.4 45.7 2.20
GPT-4 63.9 1.64 1.02 61.4 44.1 7.97 0.64 46.3 43.0 1.71 1.04 48.5 50.3 3.77

GEMMA-7B (Mesnard et al., 2024)

Standard Prompting 19.7 2.35 1.02 20.4 27.8 5.03 1.03 18.3 17.5 2.88 0.96 17.3 21.7 3.42
Chain-of-Thought 20.0 2.35 1.01 20.0 26.4 5.03 1.03 14.9 13.6 5.91 0.73 11.5 20.0 4.43
GENSORT (no reference) 20.0 2.47 1.00 17.3 27.9 4.78 1.09 18.1 15.2 5.03 0.81 13.9 21.0 4.09
GENSORT (alphabetical meta) 21.8 2.48 1.00 18.3 36.0 4.84 1.06 19.7 17.9 2.95 0.96 16.9 25.2 3.42
GENSORT (descriptive meta) 21.3 2.60 0.99 17.8 34.8 5.00 1.06 20.8 17.9 2.88 0.95 16.8 24.7 3.49

MISTRAL-7B (Jiang et al., 2023)

Standard Prompting 30.7 2.16 1.05 22.3 35.3 4.55 1.12 29.1 22.5 2.09 1.11 18.9 29.5 2.93
Chain-of-Thought 29.8 2.66 1.02 22.1 35.2 5.33 0.94 30.5 20.5 2.59 1.10 17.4 28.5 3.53
GENSORT (no reference) 32.5 3.04 0.95 19.4 42.3 5.27 1.00 27.6 21.8 3.33 0.98 15.4 32.2 3.88
GENSORT (alphabetical meta) 35.2 2.11 1.02 22.4 50.9 4.30 1.03 36.1 21.7 2.49 1.04 14.8 35.9 2.97
GENSORT (descriptive meta) 35.4 2.14 1.02 23.0 52.7 3.90 1.06 32.5 22.1 2.53 1.04 15.1 36.7 2.86

LLAMA3-8B (AI@Meta, 2024)

Standard Prompting 25.1 2.39 1.18 19.9 28.3 4.42 1.24 19.9 20.6 1.17 1.07 21.2 24.7 2.66
Chain-of-Thought 30.1 2.06 1.00 23.3 37.3 5.79 0.85 23.5 22.6 0.99 1.02 24.3 30.0 2.95
GENSORT (no reference) 35.5 1.88 1.00 25.3 52.6 3.18 1.12 35.0 25.4 0.99 1.02 20.9 37.8 2.02
GENSORT (alphabetical meta) 39.5 1.87 1.01 28.8 59.0 3.72 1.12 39.1 26.3 1.01 1.03 22.5 41.6 2.20
GENSORT (descriptive meta) 38.7 1.86 1.01 28.4 61.5 3.57 1.09 45.6 26.5 1.04 1.03 22.3 42.2 2.16

Table 1: Main results of base LMs and strong baselines on TGG evaluation benchmarks (average of 3 runs). For
each base model, best results are bold, and GENSORT’s variants better than both Standard Prompting and CoT
are highlighted . GENSORT results that outperform 5-shot GPT-3.5 and GPT-4 are in blue . Results that meet

both criteria are in purple . On average, GENSORT boosts F1 metric over its base model by 16% to 71%, and
sometimes improves the GED metric. GENSORT-augmented LLAMA3-8B achieves best overall F1 (63.5 F1 by
3-shot variant; fig 3) and GED results on Schema-11. Also, it only trails GPT-3.5 and GPT-4 by 8% and 14% on
average, while yielding a lower average GED. By default, 5-shot examples are provided. Full results in Table A1.

shuffle the input Python methods three times, ap-411

ply models to each shuffle with greedy decoding at412

inference. For GENSORT, we use Simple Report-413

style narratives by GPT-4 (style details in table A3).414

4.3 Baselines415

To showcase the effectiveness of GENSORT, for416

each base model we compare with standard struc-417

tural prompting and structuralized chain-of-thought418

prompting (fig. 2). We also remove reference narra-419

tives in demonstrations to highlight the importance420

of narrative-aware few-shot demonstrations, and421

conduct a holistic evaluation of reference narra-422

tives in §5.2. We include a random baseline, where423

events are naively connected to form a linear tem-424

poral chain based on the order they appear in the425

input. We also experiment with two strong pro-426

prietary models, GPT-3.53 and GPT-4 (OpenAI,427

2023)4 to help gauge the gap between AI systems428

and human-level performance.429

4.4 Evaluation Metrics430

We denote the ground-truth and generated temporal431

graphs as G(V, E) and Ĝ(V, Ê), respectively. we432

compare both semantic and structural similarities433

3https://chat.openai.com/;
gpt-35-turbo-16k-0613, training data up to Sept. 2021.

4gpt-4-turbo-0125-preview, data up to Dec. 2023.

between G and Ĝ, following prior work (Sakaguchi 434

et al., 2021; Madaan et al., 2022). To evaluate 435

semantic similarity, we report precision (P) and 436

recall (R), defined as below, as well as F1. 437

Precision =
|E ∩ Ê|
|Ê |

Recall =
|E ∩ Ê|
|E| 438

To assess structural similarities, we consider: 439

• Graph Edit Distance (GED; Abu-Aisheh et al., 440

2015) calculates the minimum number of edits 441

(node/edge removal/additions) to transform Ĝ 442

to a graph isomorphic to G. 443

• Graph Statistics: fraction of the number of 444

edges between Ĝ and G ( |Ê||E| ); the number of 445

connected components in Ĝ, denoted as k(G). 446

The goal is to bring both statistics closer to 1, 447

additionally ensuring k(G) is at least 1. 448

We further calculate Pair-wise Consistency be- 449

tween Ĝi and Ĝj , where we compare generated 450

graphs, based on two randomly shuffled inputs, 451

and compute the proportion of common temporal 452

links produced in both graphs, i.e., |Êi∩Êj |
|Êi∪Êj |

. 453

5 Results and Analyses 454

5.1 Main Results 455

Major results are included in Table 1, and the full 456

results (across all 7 metrics) can be found in Ta- 457
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ble A1. Below are our major findings.458

1) With the few-shot setup, small LMs are dra-459

matically underperforming, reaching barely 50%460

of GPT-4’s capabilities. The three base models,461

whether using standard prompting or CoT, consis-462

tently under-perform GPT-4 and attain 40% to 60%463

of its average F1 scores. Among them, MISTRAL-464

7B achieves the highest F1 scores, while LLAMA3-465

8B produces temporal graphs most similar to the466

ground truth, as measured by GED.467

2) Unlike many other reasoning tasks, CoT does468

not always work for temporal reasoning and some-469

times degrades performance. Unlike mathemati-470

cal or logical reasoning (Wei et al., 2022b), CoT471

prompting does not necessarily enhance model per-472

formance on temporal reasoning tasks. Across473

all three base models, there is a notable degrada-474

tion in F1 and GED scores with CoT, except for475

LLAMA3’s F1 scores. This is not TGG-specific, but476

rather a common pattern across various temporal477

understanding tasks (Chu et al., 2023), highlight-478

ing the need for specialized approaches to temporal479

reasoning. Outputs by CoT are included in fig. A6.480

3) GPT-4 is not always the champion, owing to481

the added safety layer. GPT-4 implements safety482

measures through human-preference alignment483

(OpenAI, 2023), which enhances model safety by484

prompting more cautious responses, potentially485

leading to performance drop (Bai et al., 2022; Bek-486

bayev et al., 2023). Especially on Schema-11,487

GPT-4 refrains from providing answers to sensi-488

tive scenarios like “bombing attacks”,5 and thus489

fails to produce a valid temporal graph.490

4) With GENSORT, small LMs can perform com-491

parably to GPT-3.5, or even take the lead. When492

equipped with GENSORT, the overall semantic cor-493

rectness (F1) and structural similarity (GED) of494

the generated temporal graphs are significantly en-495

hanced, regardless of which base LM is used. The496

average improvement of F1 over naively prompt-497

ing the base model is between 16% to 71%. As the498

power of the base LM grows, GENSORT demon-499

strates greater consistency in its outputs. Notably,500

with LLAMA3-8B, the strongest base LM, GEN-501

SORT achieves an F1 score that is comparable to502

GPT-3.5 (42.2 vs. 45.7), and even outperforms503

GPT-3.5/4 on GED. These results demonstrate the504

potential of applying GENSORT in a wide range of505

temporal understanding tasks in future research.506

5) Recounting temporally grounded narrative507

5In our experiments, we already disabled content filtering.

is a prerequisite for LMs to generate temporal 508

graphs accurately. Without high-quality reference 509

narratives, LMs struggle to generate temporally 510

grounded narratives, leading to a detrimental im- 511

pact on GENSORT-augmented GEMMA-7B (e.g., 512

a 0.7 F1 drop and a 0.67 GED increase). 513

6) LMs, including the powerful GPT-4, lag far 514

behind human-level performance in temporal rea- 515

soning. The SOTA F1 score (by GPT-4) on Pro- 516

Script is 63.9, whereas the human baseline F1 is 517

89.3 (Sakaguchi et al., 2021). While GENSORT has 518

notably narrowed the gap between small and large 519

LMs, AI models have not mastered temporal rea- 520

soning yet, and further research efforts are needed 521

for LMs to match human performance. 522

5.2 Further Studies on GENSORT 523

We conduct ablation studies using LLAMA3-8B, to 524

explore the effect of the few-shot demonstrations 525

and the recounted reference narratives. 526

Does the number of shots matter? Fig. 3 illus- 527

trates how F1 scores change with the number of 528

shots in demonstrations. As can be seen, GPT-3.5 529

and GENSORT show resilience to changes in shot 530

numbers after an initial sharp increase. The perfor- 531

mance nearly stabilizes in the range of 5-10 shots, 532

though a slight drop is observed later, presumably 533

due to insufficient capability of long-context com- 534

prehension (Liu et al., 2023; Li et al., 2024). Of 535

particular interest is the performance of GENSORT 536

with 3 shots on Schema-11, outperforming the best 537

variant of GPT-3.5 (F1 of 63.5 vs. 62.8). This fur- 538

ther illustrates GENSORT’s potential of boosting 539

small LMs in the long run. It is also noticeable that 540

F1 scores of the standard prompting technique have 541

a V-shape between 1-shot and 5-shot, highlighting 542

its sensitiveness to in-context demonstrations. 543

We also display the GED scores in relation to 544

number of shots in fig. A1. We observe similar in- 545

stability in the standard prompting technique, along 546

with the performance plateau after 5 shots. 547

What characteristics define effective reference 548

narratives? Given that reference narratives in 549

GENSORT are machine-generated, we aim to ex- 550

plore what qualities matter most for the TGG task. 551

Here, the three variables influencing reference nar- 552

ratives are: (1) narrative generation model (GPT- 553

3.5 vs. GPT-4), (2) input format (alphabetical vs. 554

descriptive), and (3) 4 meta prompt types (varying 555

degrees of factuality and readability). We show 556

detailed meta prompts in Appendix D. 557
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Figure 3: F1 scores on ProScript and Schema-11 in
relation to the number of shots in demonstrations. We
identify the instability in the standard prompting, and
the performance plateau after 5 shots.

Fig. 4 and fig. A2 show results of F1 and GED558

with varying meta prompts. Surprisingly, the559

choice of the generator does not significantly im-560

pact the graph quality, with average F1 scores of561

36.4 for GPT-3.5 and 37.0 for GPT-4, and GED562

scores of 1.90 vs. 1.94. Similarly, there is no563

significant difference between alphabetical and de-564

scriptive input formats. The most impactful factor565

is the meta prompt type. Grouping performance566

bars by prompt type reveals a clear variance in567

model performance. Among the first three groups,568

Simple English narratives, i.e., good for 10-year-569

olds, stand out. This suggests that narratives should570

be simple and concise, as verbose ones are less571

effective. We find that News Report narratives pri-572

oritize procedural and factual content, minimizing573

distractions like descriptive settings or figurative574

language that can often be found in both fiction or575

non-fiction stories. We thus combine Simple En-576

glish and News Report to leverage their strengths,577

dubbed Simple Report. In summary, we identify578

three key characteristics for reference narratives:579

conciseness, simplicity and factuality.580

How faithful is the temporal graph to interme-581

diate narratives? Here, we look into whether582

GENSORT-augmented LMs are self-faithful, i.e.,583

whether the narrative and the temporal graph align584

in terms of the temporal order of events. Higher585

self-faithfulness is crucial and desired, as misalign-586

ment would diminish the effort of generating a587

temporally grounded narrative.6588

Motivated by the recent success of using LMs589

as judges (Zheng et al., 2023; Zhang et al., 2024),590

6Faithfulness ̸= correctness. A faithful temporal graph
may still contain logical errors from the generated narratives.
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Figure 4: F1 scores on ProScript and Schema-11 with
different meta prompts. Average performance grouped
by prompt type is also shown. Notably, a Simple Re-
port-style, GPT-4 generated narrative leads to the best
score due to its conciseness, simplicity and factuality,
essential qualities for a high-quality reference narrative.

we employ GPT-4 to assess the self-faithfulness 591

of 600 randomly sampled outputs by GENSORT- 592

augmented LLAMA3-8B. We prompt GPT-4 to 593

perform a 5-way assessment and provide judgment 594

rationales. Additionally, GPT-4 is instructed to 595

count the temporal links in the temporal graphs and 596

identifies aligned temporal links for a sanity check. 597

This helps humans capture the failure modes and 598

make necessary interventions. Based on automated 599

responses and on-demand human inspections, we 600

find a medium-to-high alignment of 72.8%. De- 601

tails of templates and the inspection process are 602

included in Appendix E. 603

6 Conclusion 604

In this paper, we assess the inherent, global tempo- 605

ral reasoning capabilities of LMs, by studying the 606

core challenge of temporal reasoning—temporal 607

graph generation (TGG). To this end, we propose 608

GENSORT, a novel prompting technique tailored 609

for temporal reasoning. Concretely, with few- 610

show narrative-aware demonstrations as references, 611

GENSORT prompts LMs to first generate a tem- 612

porally grounded narrative and then sort the in- 613

put events topologically into a temporal graph, by 614

manipulating the generation in code space. Ex- 615

tensive experiments showcase GENSORT’s effec- 616

tiveness, demonstrated by its superior performance 617

over GPT-3.5 on multiple metrics, as well as the 618

compatibility of GENSORT with various LMs. 619
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7 Limitations620

Evaluation benchmarks. In this work, we have621

included three evaluation benchmarks, aiming to622

cover a diverse array of genres and domains. Yet,623

these three benchmarks cannot comprehensively624

represent the entire spectrum. For example, health-625

care and biomedical (Alfattni et al., 2020) domains626

offer great opportunities to study temporal graph627

generation as well. In future research, we plan to628

extend GENSORT to more applications, and exam-629

ine its true generalizability in the wild.630

Human Baseline Comparison. The last finding631

we deliver in §5.1 might not hold for all bench-632

marks, as the human baseline comparison was con-633

ducted solely on the ProScript dataset. We will634

continue the endeavor of seeking participants to per-635

form human evaluations on the other two datasets636

to enhance the credibility of our claim.637

GPU resources. The base LMs used in this work638

are of 7 to 8 billions parameters. It is thus more639

time-consuming than traditionally small models640

like BERT (Devlin et al., 2019) at inference time,641

which in turn results in a higher carbon footprint.642

Specifically, we run each base LM on 1 single643

NVIDIA A40 or NVIDIA L40 with significant644

CPU and memory resources. The combined in-645

ference time for each LM on the three benchmarks646

ranges from 10 to 20 hours, depending on the con-647

figurations.648

References649

Zeina Abu-Aisheh, Romain Raveaux, Jean-Yves Ramel,650
and Patrick Martineau. 2015. An exact graph edit651
distance algorithm for solving pattern recognition652
problems. In ICPRAM 2015 - Proceedings of the653
International Conference on Pattern Recognition Ap-654
plications and Methods, Volume 1, Lisbon, Portugal,655
10-12 January, 2015, pages 271–278. SciTePress.656

AI@Meta. 2024. Llama 3 model card.657

Ghada Alfattni, Niels Peek, and Goran Nenadic. 2020.658
Extraction of temporal relations from clinical free659
text: A systematic review of current approaches. J.660
Biomed. Informatics, 108:103488.661

James F. Allen. 1983. Maintaining knowledge about662
temporal intervals. Commun. ACM, 26(11):832–843.663

Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin John-664
son, Dmitry Lepikhin, Alexandre Passos, Siamak665
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng666
Chen, Eric Chu, Jonathan H. Clark, Laurent El667

Shafey, Yanping Huang, Kathy Meier-Hellstern, Gau- 668
rav Mishra, Erica Moreira, Mark Omernick, Kevin 669
Robinson, Sebastian Ruder, Yi Tay, Kefan Xiao, 670
Yuanzhong Xu, Yujing Zhang, Gustavo Hernández 671
Ábrego, Junwhan Ahn, Jacob Austin, Paul Barham, 672
Jan A. Botha, James Bradbury, Siddhartha Brahma, 673
Kevin Brooks, Michele Catasta, Yong Cheng, Colin 674
Cherry, Christopher A. Choquette-Choo, Aakanksha 675
Chowdhery, Clément Crepy, Shachi Dave, Mostafa 676
Dehghani, Sunipa Dev, Jacob Devlin, Mark Díaz, 677
Nan Du, Ethan Dyer, Vladimir Feinberg, Fangxi- 678
aoyu Feng, Vlad Fienber, Markus Freitag, Xavier 679
Garcia, Sebastian Gehrmann, Lucas Gonzalez, and 680
et al. 2023. Palm 2 technical report. CoRR, 681
abs/2305.10403. 682

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda 683
Askell, Anna Chen, Nova DasSarma, Dawn Drain, 684
Stanislav Fort, Deep Ganguli, Tom Henighan, 685
Nicholas Joseph, Saurav Kadavath, Jackson Kernion, 686
Tom Conerly, Sheer El Showk, Nelson Elhage, Zac 687
Hatfield-Dodds, Danny Hernandez, Tristan Hume, 688
Scott Johnston, Shauna Kravec, Liane Lovitt, Neel 689
Nanda, Catherine Olsson, Dario Amodei, Tom B. 690
Brown, Jack Clark, Sam McCandlish, Chris Olah, 691
Benjamin Mann, and Jared Kaplan. 2022. Train- 692
ing a helpful and harmless assistant with rein- 693
forcement learning from human feedback. CoRR, 694
abs/2204.05862. 695

Aibek Bekbayev, Sungbae Chun, Yerzat Dulat, and 696
James Yamazaki. 2023. The poison of alignment. 697
CoRR, abs/2308.13449. 698

Maciej Besta, Nils Blach, Ales Kubicek, Robert Ger- 699
stenberger, Lukas Gianinazzi, Joanna Gajda, Tomasz 700
Lehmann, Michał Podstawski, Hubert Niewiadomski, 701
Piotr Nyczyk, and Torsten Hoefler. 2024. Graph of 702
Thoughts: Solving Elaborate Problems with Large 703
Language Models. Proceedings of the AAAI Confer- 704
ence on Artificial Intelligence, 38(16):17682–17690. 705

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie 706
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind 707
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 708
Askell, Sandhini Agarwal, Ariel Herbert-Voss, 709
Gretchen Krueger, Tom Henighan, Rewon Child, 710
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, 711
Clemens Winter, Christopher Hesse, Mark Chen, Eric 712
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, 713
Jack Clark, Christopher Berner, Sam McCandlish, 714
Alec Radford, Ilya Sutskever, and Dario Amodei. 715
2020. Language models are few-shot learners. In Ad- 716
vances in Neural Information Processing Systems 33: 717
Annual Conference on Neural Information Process- 718
ing Systems 2020, NeurIPS 2020, December 6-12, 719
2020, virtual. 720

Nathanael Chambers, Taylor Cassidy, Bill McDowell, 721
and Steven Bethard. 2014. Dense event ordering 722
with a multi-pass architecture. Transactions of the 723
Association for Computational Linguistics, 2:273– 724
284. 725

9

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://doi.org/10.1016/J.JBI.2020.103488
https://doi.org/10.1016/J.JBI.2020.103488
https://doi.org/10.1016/J.JBI.2020.103488
https://doi.org/10.1145/182.358434
https://doi.org/10.1145/182.358434
https://doi.org/10.1145/182.358434
https://doi.org/10.48550/ARXIV.2305.10403
https://doi.org/10.48550/ARXIV.2204.05862
https://doi.org/10.48550/ARXIV.2204.05862
https://doi.org/10.48550/ARXIV.2204.05862
https://doi.org/10.48550/ARXIV.2204.05862
https://doi.org/10.48550/ARXIV.2204.05862
https://doi.org/10.48550/ARXIV.2308.13449
https://doi.org/10.1162/tacl_a_00182
https://doi.org/10.1162/tacl_a_00182
https://doi.org/10.1162/tacl_a_00182


Chunkit Chan, Cheng Jiayang, Weiqi Wang, Yuxin726
Jiang, Tianqing Fang, Xin Liu, and Yangqiu Song.727
2024. Exploring the potential of ChatGPT on sen-728
tence level relations: A focus on temporal, causal,729
and discourse relations. In Findings of the Associ-730
ation for Computational Linguistics: EACL 2024,731
pages 684–721, St. Julian’s, Malta. Association for732
Computational Linguistics.733

Hailin Chen, Fangkai Jiao, Xingxuan Li, Chengwei Qin,734
Mathieu Ravaut, Ruochen Zhao, Caiming Xiong, and735
Shafiq Joty. 2023. Chatgpt’s one-year anniversary:736
Are open-source large language models catching up?737
CoRR, abs/2311.16989.738

Wenhu Chen, Xueguang Ma, Xinyi Wang, and739
William W. Cohen. 2022. Program of thoughts740
prompting: Disentangling computation from rea-741
soning for numerical reasoning tasks. CoRR,742
abs/2211.12588.743

Zheng Chu, Jingchang Chen, Qianglong Chen, Weijiang744
Yu, Haotian Wang, Ming Liu, and Bing Qin. 2023.745
Timebench: A comprehensive evaluation of temporal746
reasoning abilities in large language models. CoRR,747
abs/2311.17667.748

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,749
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias750
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro751
Nakano, Christopher Hesse, and John Schulman.752
2021. Training verifiers to solve math word prob-753
lems. CoRR, abs/2110.14168.754

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and755
Kristina Toutanova. 2019. BERT: Pre-training of756
deep bidirectional transformers for language under-757
standing. In Proceedings of the 2019 Conference of758
the North American Chapter of the Association for759
Computational Linguistics: Human Language Tech-760
nologies, Volume 1 (Long and Short Papers), pages761
4171–4186, Minneapolis, Minnesota. Association for762
Computational Linguistics.763

Dmitriy Dligach, Timothy Miller, Chen Lin, Steven764
Bethard, and Guergana Savova. 2017. Neural tem-765
poral relation extraction. In Proceedings of the 15th766
Conference of the European Chapter of the Associa-767
tion for Computational Linguistics: Volume 2, Short768
Papers, pages 746–751, Valencia, Spain. Association769
for Computational Linguistics.770

Rotem Dror, Haoyu Wang, and Dan Roth. 2023. Zero-771
shot on-the-fly event schema induction. In Findings772
of the Association for Computational Linguistics:773
EACL 2023, pages 705–725, Dubrovnik, Croatia. As-774
sociation for Computational Linguistics.775

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,776
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-777
ham Neubig. 2023. PAL: program-aided language778
models. In International Conference on Machine779
Learning, ICML 2023, 23-29 July 2023, Honolulu,780
Hawaii, USA, volume 202 of Proceedings of Machine781
Learning Research, pages 10764–10799. PMLR.782

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul 783
Arora, Steven Basart, Eric Tang, Dawn Song, and 784
Jacob Steinhardt. 2021. Measuring mathematical 785
problem solving with the math dataset. In Proceed- 786
ings of the Neural Information Processing Systems 787
Track on Datasets and Benchmarks, volume 1. 788

Jie Huang and Kevin Chen-Chuan Chang. 2023. To- 789
wards reasoning in large language models: A survey. 790
In Findings of the Association for Computational 791
Linguistics: ACL 2023, pages 1049–1065, Toronto, 792
Canada. Association for Computational Linguistics. 793

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men- 794
sch, Chris Bamford, Devendra Singh Chaplot, Diego 795
de Las Casas, Florian Bressand, Gianna Lengyel, 796
Guillaume Lample, Lucile Saulnier, Lélio Re- 797
nard Lavaud, Marie-Anne Lachaux, Pierre Stock, 798
Teven Le Scao, Thibaut Lavril, Thomas Wang, Timo- 799
thée Lacroix, and William El Sayed. 2023. Mistral 800
7b. CoRR, abs/2310.06825. 801

Xiaomeng Jin, Manling Li, and Heng Ji. 2022. Event 802
schema induction with double graph autoencoders. 803
In Proceedings of the 2022 Conference of the North 804
American Chapter of the Association for Computa- 805
tional Linguistics: Human Language Technologies, 806
pages 2013–2025, Seattle, United States. Association 807
for Computational Linguistics. 808

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu- 809
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan- 810
guage models are zero-shot reasoners. In Advances 811
in Neural Information Processing Systems 35: An- 812
nual Conference on Neural Information Processing 813
Systems 2022, NeurIPS 2022, New Orleans, LA, USA, 814
November 28 - December 9, 2022. 815

Manling Li, Sha Li, Zhenhailong Wang, Lifu Huang, 816
Kyunghyun Cho, Heng Ji, Jiawei Han, and Clare 817
Voss. 2021. The future is not one-dimensional: Com- 818
plex event schema induction by graph modeling for 819
event prediction. In Proceedings of the 2021 Confer- 820
ence on Empirical Methods in Natural Language Pro- 821
cessing, pages 5203–5215, Online and Punta Cana, 822
Dominican Republic. Association for Computational 823
Linguistics. 824

Rui Li, Guoyin Wang, and Jiwei Li. 2023. Are human- 825
generated demonstrations necessary for in-context 826
learning? CoRR, abs/2309.14681. 827

Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and 828
Wenhu Chen. 2024. Long-context llms struggle with 829
long in-context learning. CoRR, abs/2404.02060. 830

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, 831
Yile Wang, and Yue Zhang. 2020. Logiqa: A chal- 832
lenge dataset for machine reading comprehension 833
with logical reasoning. In Proceedings of the Twenty- 834
Ninth International Joint Conference on Artificial 835
Intelligence, IJCAI 2020, pages 3622–3628. ijcai.org. 836

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran- 837
jape, Michele Bevilacqua, Fabio Petroni, and Percy 838
Liang. 2023. Lost in the middle: How language 839
models use long contexts. CoRR, abs/2307.03172. 840

10

https://aclanthology.org/2024.findings-eacl.47
https://aclanthology.org/2024.findings-eacl.47
https://aclanthology.org/2024.findings-eacl.47
https://aclanthology.org/2024.findings-eacl.47
https://aclanthology.org/2024.findings-eacl.47
https://doi.org/10.48550/ARXIV.2311.16989
https://doi.org/10.48550/ARXIV.2311.16989
https://doi.org/10.48550/ARXIV.2311.16989
https://doi.org/10.48550/ARXIV.2211.12588
https://doi.org/10.48550/ARXIV.2211.12588
https://doi.org/10.48550/ARXIV.2211.12588
https://doi.org/10.48550/ARXIV.2211.12588
https://doi.org/10.48550/ARXIV.2211.12588
https://doi.org/10.48550/ARXIV.2311.17667
https://doi.org/10.48550/ARXIV.2311.17667
https://doi.org/10.48550/ARXIV.2311.17667
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/E17-2118
https://aclanthology.org/E17-2118
https://aclanthology.org/E17-2118
https://doi.org/10.18653/v1/2023.findings-eacl.53
https://doi.org/10.18653/v1/2023.findings-eacl.53
https://doi.org/10.18653/v1/2023.findings-eacl.53
https://proceedings.mlr.press/v202/gao23f.html
https://proceedings.mlr.press/v202/gao23f.html
https://proceedings.mlr.press/v202/gao23f.html
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/be83ab3ecd0db773eb2dc1b0a17836a1-Paper-round2.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/be83ab3ecd0db773eb2dc1b0a17836a1-Paper-round2.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/be83ab3ecd0db773eb2dc1b0a17836a1-Paper-round2.pdf
https://doi.org/10.18653/v1/2023.findings-acl.67
https://doi.org/10.18653/v1/2023.findings-acl.67
https://doi.org/10.18653/v1/2023.findings-acl.67
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.18653/v1/2022.naacl-main.147
https://doi.org/10.18653/v1/2022.naacl-main.147
https://doi.org/10.18653/v1/2022.naacl-main.147
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
https://doi.org/10.18653/v1/2021.emnlp-main.422
https://doi.org/10.18653/v1/2021.emnlp-main.422
https://doi.org/10.18653/v1/2021.emnlp-main.422
https://doi.org/10.18653/v1/2021.emnlp-main.422
https://doi.org/10.18653/v1/2021.emnlp-main.422
https://doi.org/10.48550/ARXIV.2309.14681
https://doi.org/10.48550/ARXIV.2309.14681
https://doi.org/10.48550/ARXIV.2309.14681
https://doi.org/10.48550/ARXIV.2309.14681
https://doi.org/10.48550/ARXIV.2309.14681
https://doi.org/10.48550/ARXIV.2404.02060
https://doi.org/10.48550/ARXIV.2404.02060
https://doi.org/10.48550/ARXIV.2404.02060
https://doi.org/10.24963/IJCAI.2020/501
https://doi.org/10.24963/IJCAI.2020/501
https://doi.org/10.24963/IJCAI.2020/501
https://doi.org/10.24963/IJCAI.2020/501
https://doi.org/10.24963/IJCAI.2020/501
https://doi.org/10.48550/ARXIV.2307.03172
https://doi.org/10.48550/ARXIV.2307.03172
https://doi.org/10.48550/ARXIV.2307.03172


Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang,841
Delip Rao, Eric Wong, Marianna Apidianaki, and842
Chris Callison-Burch. 2023. Faithful chain-of-843
thought reasoning. In Proceedings of the 13th In-844
ternational Joint Conference on Natural Language845
Processing and the 3rd Conference of the Asia-Pacific846
Chapter of the Association for Computational Lin-847
guistics (Volume 1: Long Papers), pages 305–329,848
Nusa Dua, Bali. Association for Computational Lin-849
guistics.850

Qing Lyu, Li Zhang, and Chris Callison-Burch. 2021.851
Goal-oriented script construction. In Proceedings of852
the 14th International Conference on Natural Lan-853
guage Generation, pages 184–200, Aberdeen, Scot-854
land, UK. Association for Computational Linguistics.855

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler856
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,857
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,858
Shashank Gupta, Bodhisattwa Prasad Majumder,859
Katherine Hermann, Sean Welleck, Amir Yazdan-860
bakhsh, and Peter Clark. 2023. Self-refine: Itera-861
tive refinement with self-feedback. In Advances in862
Neural Information Processing Systems 36: Annual863
Conference on Neural Information Processing Sys-864
tems 2023, NeurIPS 2023, New Orleans, LA, USA,865
December 10 - 16, 2023.866

Aman Madaan and Yiming Yang. 2021. Neural lan-867
guage modeling for contextualized temporal graph868
generation. In Proceedings of the 2021 Conference869
of the North American Chapter of the Association870
for Computational Linguistics: Human Language871
Technologies, pages 864–881, Online. Association872
for Computational Linguistics.873

Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang,874
and Graham Neubig. 2022. Language models of code875
are few-shot commonsense learners. In Proceedings876
of the 2022 Conference on Empirical Methods in Nat-877
ural Language Processing, pages 1384–1403, Abu878
Dhabi, United Arab Emirates. Association for Com-879
putational Linguistics.880

Inderjeet Mani, George Wilson, Lisa Ferro, and Beth881
Sundheim. 2001. Guidelines for annotating temporal882
information. In Proceedings of the First Interna-883
tional Conference on Human Language Technology884
Research.885

Puneet Mathur, Rajiv Jain, Franck Dernoncourt, Vlad886
Morariu, Quan Hung Tran, and Dinesh Manocha.887
2021. TIMERS: Document-level temporal relation888
extraction. In Proceedings of the 59th Annual Meet-889
ing of the Association for Computational Linguistics890
and the 11th International Joint Conference on Natu-891
ral Language Processing (Volume 2: Short Papers),892
pages 524–533, Online. Association for Computa-893
tional Linguistics.894

Thomas Mesnard, Cassidy Hardin, Robert Dadashi,895
Surya Bhupatiraju, Shreya Pathak, Laurent Sifre,896
Morgane Rivière, Mihir Sanjay Kale, Juliette Love,897
Pouya Tafti, Léonard Hussenot, Aakanksha Chowdh-898
ery, Adam Roberts, Aditya Barua, Alex Botev, Alex899

Castro-Ros, Ambrose Slone, Amélie Héliou, Andrea 900
Tacchetti, Anna Bulanova, Antonia Paterson, Beth 901
Tsai, Bobak Shahriari, Charline Le Lan, Christo- 902
pher A. Choquette-Choo, Clément Crepy, Daniel Cer, 903
Daphne Ippolito, David Reid, Elena Buchatskaya, 904
Eric Ni, Eric Noland, Geng Yan, George Tucker, 905
George-Cristian Muraru, Grigory Rozhdestvenskiy, 906
Henryk Michalewski, Ian Tenney, Ivan Grishchenko, 907
Jacob Austin, James Keeling, Jane Labanowski, 908
Jean-Baptiste Lespiau, Jeff Stanway, Jenny Brennan, 909
Jeremy Chen, Johan Ferret, Justin Chiu, and et al. 910
2024. Gemma: Open models based on gemini re- 911
search and technology. CoRR, abs/2403.08295. 912

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish 913
Sabharwal. 2018. Can a suit of armor conduct elec- 914
tricity? a new dataset for open book question an- 915
swering. In Proceedings of the 2018 Conference on 916
Empirical Methods in Natural Language Processing, 917
pages 2381–2391, Brussels, Belgium. Association 918
for Computational Linguistics. 919

Ashutosh Modi, Tatjana Anikina, Simon Ostermann, 920
and Manfred Pinkal. 2016. InScript: Narrative texts 921
annotated with script information. In Proceedings 922
of the Tenth International Conference on Language 923
Resources and Evaluation (LREC’16), pages 3485– 924
3493, Portorož, Slovenia. European Language Re- 925
sources Association (ELRA). 926

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong 927
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende, 928
Pushmeet Kohli, and James Allen. 2016. A corpus 929
and cloze evaluation for deeper understanding of 930
commonsense stories. In Proceedings of the 2016 931
Conference of the North American Chapter of the 932
Association for Computational Linguistics: Human 933
Language Technologies, pages 839–849, San Diego, 934
California. Association for Computational Linguis- 935
tics. 936

Bernhard Nebel and Hans-Jürgen Bürckert. 1995. Rea- 937
soning about temporal relations: A maximal tractable 938
subclass of allen’s interval algebra. J. ACM, 42(1):43– 939
66. 940

Qiang Ning, Hao Wu, and Dan Roth. 2018. A multi- 941
axis annotation scheme for event temporal relations. 942
In Proceedings of the 56th Annual Meeting of the 943
Association for Computational Linguistics (Volume 944
1: Long Papers), pages 1318–1328, Melbourne, Aus- 945
tralia. Association for Computational Linguistics. 946

OpenAI. 2023. GPT-4 technical report. CoRR, 947
abs/2303.08774. 948

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. 949
2021. Are NLP models really able to solve simple 950
math word problems? In Proceedings of the 2021 951
Conference of the North American Chapter of the 952
Association for Computational Linguistics: Human 953
Language Technologies, pages 2080–2094, Online. 954
Association for Computational Linguistics. 955

Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, 956
Tingwu Wang, Sanja Fidler, and Antonio Torralba. 957

11

https://doi.org/10.18653/v1/2023.ijcnlp-main.20
https://doi.org/10.18653/v1/2023.ijcnlp-main.20
https://doi.org/10.18653/v1/2023.ijcnlp-main.20
https://doi.org/10.18653/v1/2021.inlg-1.19
http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
https://doi.org/10.18653/v1/2021.naacl-main.67
https://doi.org/10.18653/v1/2021.naacl-main.67
https://doi.org/10.18653/v1/2021.naacl-main.67
https://doi.org/10.18653/v1/2021.naacl-main.67
https://doi.org/10.18653/v1/2021.naacl-main.67
https://doi.org/10.18653/v1/2022.emnlp-main.90
https://doi.org/10.18653/v1/2022.emnlp-main.90
https://doi.org/10.18653/v1/2022.emnlp-main.90
https://aclanthology.org/H01-1031
https://aclanthology.org/H01-1031
https://aclanthology.org/H01-1031
https://doi.org/10.18653/v1/2021.acl-short.67
https://doi.org/10.18653/v1/2021.acl-short.67
https://doi.org/10.18653/v1/2021.acl-short.67
https://doi.org/10.48550/ARXIV.2403.08295
https://doi.org/10.48550/ARXIV.2403.08295
https://doi.org/10.48550/ARXIV.2403.08295
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://aclanthology.org/L16-1555
https://aclanthology.org/L16-1555
https://aclanthology.org/L16-1555
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.1145/200836.200848
https://doi.org/10.1145/200836.200848
https://doi.org/10.1145/200836.200848
https://doi.org/10.1145/200836.200848
https://doi.org/10.1145/200836.200848
https://doi.org/10.18653/v1/P18-1122
https://doi.org/10.18653/v1/P18-1122
https://doi.org/10.18653/v1/P18-1122
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168


2018. Virtualhome: Simulating household activities958
via programs. In 2018 IEEE Conference on Com-959
puter Vision and Pattern Recognition, CVPR 2018,960
Salt Lake City, UT, USA, June 18-22, 2018, pages961
8494–8502. Computer Vision Foundation / IEEE962
Computer Society.963

James Pustejovsky, José M. Castaño, Robert Ingria,964
Roser Saurí, Robert J. Gaizauskas, Andrea Set-965
zer, Graham Katz, and Dragomir R. Radev. 2003.966
Timeml: Robust specification of event and temporal967
expressions in text. In New Directions in Question968
Answering, Papers from 2003 AAAI Spring Sympo-969
sium, Stanford University, Stanford, CA, USA, pages970
28–34. AAAI Press.971

Michaela Regneri, Alexander Koller, and Manfred972
Pinkal. 2010. Learning script knowledge with web973
experiments. In Proceedings of the 48th Annual974
Meeting of the Association for Computational Lin-975
guistics, pages 979–988, Uppsala, Sweden. Associa-976
tion for Computational Linguistics.977

Keisuke Sakaguchi, Chandra Bhagavatula, Ronan978
Le Bras, Niket Tandon, Peter Clark, and Yejin Choi.979
2021. proScript: Partially ordered scripts generation.980
In Findings of the Association for Computational981
Linguistics: EMNLP 2021, pages 2138–2149, Punta982
Cana, Dominican Republic. Association for Compu-983
tational Linguistics.984

Suresh Kumar Sanampudi and G. Vijaya Kumari. 2010.985
Temporal reasoning in natural language processing:986
A survey. International Journal of Computer Appli-987
cations, 1:68–72.988

Roger C. Schank and Robert P. Abelson. 1975. Scripts,989
plans and knowledge. In Advance Papers of the990
Fourth International Joint Conference on Artificial991
Intelligence, Tbilisi, Georgia, USSR, September 3-8,992
1975, pages 151–157.993

Andrea Setzer. 2001. Temporal information in newswire994
articles : an annotation scheme and corpus study.995
Ph.D. thesis, University of Sheffield, UK.996

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and997
Jonathan Berant. 2019. CommonsenseQA: A ques-998
tion answering challenge targeting commonsense999
knowledge. In Proceedings of the 2019 Conference1000
of the North American Chapter of the Association for1001
Computational Linguistics: Human Language Tech-1002
nologies, Volume 1 (Long and Short Papers), pages1003
4149–4158, Minneapolis, Minnesota. Association for1004
Computational Linguistics.1005

Alon Talmor, Ori Yoran, Ronan Le Bras, Chandra Bha-1006
gavatula, Yoav Goldberg, Yejin Choi, and Jonathan1007
Berant. 2021a. Commonsenseqa 2.0: Exposing the1008
limits of AI through gamification. In Proceedings of1009
the Neural Information Processing Systems Track on1010
Datasets and Benchmarks 1, NeurIPS Datasets and1011
Benchmarks 2021, December 2021, virtual.1012

Alon Talmor, Ori Yoran, Ronan Le Bras, Chandra Bha-1013
gavatula, Yoav Goldberg, Yejin Choi, and Jonathan1014

Berant. 2021b. Commonsenseqa 2.0: Exposing the 1015
limits of ai through gamification. In Proceedings of 1016
the Neural Information Processing Systems Track on 1017
Datasets and Benchmarks, volume 1. 1018

Qingyu Tan, Hwee Tou Ng, and Lidong Bing. 2023. 1019
Towards benchmarking and improving the temporal 1020
reasoning capability of large language models. In 1021
Proceedings of the 61st Annual Meeting of the As- 1022
sociation for Computational Linguistics (Volume 1: 1023
Long Papers), pages 14820–14835, Toronto, Canada. 1024
Association for Computational Linguistics. 1025

Naushad UzZaman, Hector Llorens, Leon Derczynski, 1026
James Allen, Marc Verhagen, and James Pustejovsky. 1027
2013. SemEval-2013 task 1: TempEval-3: Evaluat- 1028
ing time expressions, events, and temporal relations. 1029
In Second Joint Conference on Lexical and Compu- 1030
tational Semantics (*SEM), Volume 2: Proceedings 1031
of the Seventh International Workshop on Seman- 1032
tic Evaluation (SemEval 2013), pages 1–9, Atlanta, 1033
Georgia, USA. Association for Computational Lin- 1034
guistics. 1035

Marc Verhagen, Robert J. Gaizauskas, Frank Schilder, 1036
Mark Hepple, Jessica L. Moszkowicz, and James 1037
Pustejovsky. 2009. The tempeval challenge: identify- 1038
ing temporal relations in text. Language Resources 1039
and Evaluation, 43:161–179. 1040

Marc Verhagen, Roser Saurí, Tommaso Caselli, and 1041
James Pustejovsky. 2010. SemEval-2010 task 13: 1042
TempEval-2. In Proceedings of the 5th International 1043
Workshop on Semantic Evaluation, pages 57–62, Up- 1044
psala, Sweden. Association for Computational Lin- 1045
guistics. 1046

Liang Wang, Peifeng Li, and Sheng Xu. 2022. DCT- 1047
centered temporal relation extraction. In Proceed- 1048
ings of the 29th International Conference on Com- 1049
putational Linguistics, pages 2087–2097, Gyeongju, 1050
Republic of Korea. International Committee on Com- 1051
putational Linguistics. 1052

Xingyao Wang, Sha Li, and Heng Ji. 2023a. 1053
Code4Struct: Code generation for few-shot event 1054
structure prediction. In Proceedings of the 61st An- 1055
nual Meeting of the Association for Computational 1056
Linguistics (Volume 1: Long Papers), pages 3640– 1057
3663, Toronto, Canada. Association for Computa- 1058
tional Linguistics. 1059

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. 1060
Le, Ed H. Chi, Sharan Narang, Aakanksha Chowd- 1061
hery, and Denny Zhou. 2023b. Self-consistency 1062
improves chain of thought reasoning in language 1063
models. In The Eleventh International Conference 1064
on Learning Representations, ICLR 2023, Kigali, 1065
Rwanda, May 1-5, 2023. OpenReview.net. 1066

Yuqing Wang and Yun Zhao. 2023. TRAM: benchmark- 1067
ing temporal reasoning for large language models. 1068
CoRR, abs/2310.00835. 1069

Lilian D. A. Wanzare, Alessandra Zarcone, Stefan 1070
Thater, and Manfred Pinkal. 2016. A crowdsourced 1071

12

https://doi.org/10.1109/CVPR.2018.00886
https://doi.org/10.1109/CVPR.2018.00886
https://doi.org/10.1109/CVPR.2018.00886
https://aclanthology.org/P10-1100
https://aclanthology.org/P10-1100
https://aclanthology.org/P10-1100
https://doi.org/10.18653/v1/2021.findings-emnlp.184
http://ijcai.org/Proceedings/75/Papers/021.pdf
http://ijcai.org/Proceedings/75/Papers/021.pdf
http://ijcai.org/Proceedings/75/Papers/021.pdf
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.247243
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.247243
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.247243
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/3ef815416f775098fe977004015c6193-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/3ef815416f775098fe977004015c6193-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/3ef815416f775098fe977004015c6193-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/3ef815416f775098fe977004015c6193-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/3ef815416f775098fe977004015c6193-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/3ef815416f775098fe977004015c6193-Paper-round1.pdf
https://doi.org/10.18653/v1/2023.acl-long.828
https://doi.org/10.18653/v1/2023.acl-long.828
https://doi.org/10.18653/v1/2023.acl-long.828
https://aclanthology.org/S13-2001
https://aclanthology.org/S13-2001
https://aclanthology.org/S13-2001
https://aclanthology.org/S10-1010
https://aclanthology.org/S10-1010
https://aclanthology.org/S10-1010
https://aclanthology.org/2022.coling-1.182
https://aclanthology.org/2022.coling-1.182
https://aclanthology.org/2022.coling-1.182
https://doi.org/10.18653/v1/2023.acl-long.202
https://doi.org/10.18653/v1/2023.acl-long.202
https://doi.org/10.18653/v1/2023.acl-long.202
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://doi.org/10.48550/ARXIV.2310.00835
https://doi.org/10.48550/ARXIV.2310.00835
https://doi.org/10.48550/ARXIV.2310.00835
https://aclanthology.org/L16-1556
https://aclanthology.org/L16-1556


database of event sequence descriptions for the acqui-1072
sition of high-quality script knowledge. In Proceed-1073
ings of the Tenth International Conference on Lan-1074
guage Resources and Evaluation (LREC’16), pages1075
3494–3501, Portorož, Slovenia. European Language1076
Resources Association (ELRA).1077

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,1078
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,1079
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H.1080
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy1081
Liang, Jeff Dean, and William Fedus. 2022a. Emer-1082
gent abilities of large language models. Trans. Mach.1083
Learn. Res., 2022.1084

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten1085
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,1086
and Denny Zhou. 2022b. Chain-of-thought prompt-1087
ing elicits reasoning in large language models. In1088
Advances in Neural Information Processing Systems1089
35: Annual Conference on Neural Information Pro-1090
cessing Systems 2022, NeurIPS 2022, New Orleans,1091
LA, USA, November 28 - December 9, 2022.1092

Georg Wenzel and Adam Jatowt. 2023. An overview1093
of temporal commonsense reasoning and acquisition.1094
CoRR, abs/2308.00002.1095

Siheng Xiong, Ali Payani, Ramana Kompella, and Fara-1096
marz Fekri. 2024. Large language models can learn1097
temporal reasoning. CoRR, abs/2401.06853.1098

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,1099
Thomas L. Griffiths, Yuan Cao, and Karthik R1100
Narasimhan. 2023. Tree of thoughts: Deliberate1101
problem solving with large language models. In1102
Thirty-seventh Conference on Neural Information1103
Processing Systems.1104

Wenhao Yu, Dan Iter, Shuohang Wang, Yichong Xu,1105
Mingxuan Ju, Soumya Sanyal, Chenguang Zhu,1106
Michael Zeng, and Meng Jiang. 2023. Generate1107
rather than retrieve: Large language models are1108
strong context generators. In The Eleventh Inter-1109
national Conference on Learning Representations,1110
ICLR 2023, Kigali, Rwanda, May 1-5, 2023. Open-1111
Review.net.1112

Chenhan Yuan, Qianqian Xie, and Sophia Ananiadou.1113
2023. Zero-shot temporal relation extraction with1114
ChatGPT. In The 22nd Workshop on Biomedical1115
Natural Language Processing and BioNLP Shared1116
Tasks, pages 92–102, Toronto, Canada. Association1117
for Computational Linguistics.1118

Weizhe Yuan and Pengfei Liu. 2022. restructured pre-1119
training. CoRR, abs/2206.11147.1120

Xinliang Frederick Zhang, Carter Blum, Temma Choji,1121
Shalin Shah, and Alakananda Vempala. 2024. UL-1122
TRA: Unleash LLMs’ potential for event argument1123
extraction through hierarchical modeling and pair-1124
wise refinement. ArXiv, abs/2401.13218.1125

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan1126
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,1127

Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, 1128
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging 1129
llm-as-a-judge with mt-bench and chatbot arena. In 1130
Advances in Neural Information Processing Systems 1131
36: Annual Conference on Neural Information Pro- 1132
cessing Systems 2023, NeurIPS 2023, New Orleans, 1133
LA, USA, December 10 - 16, 2023. 1134

Qihuang Zhong, Kang Wang, Ziyang Xu, Juhua Liu, 1135
Liang Ding, Bo Du, and Dacheng Tao. 2024. Achiev- 1136
ing >97arXiv preprint arXiv:2404.14963. 1137

Jianlong Zhou, Heimo Müller, Andreas Holzinger, and 1138
Fang Chen. 2023. Ethical chatgpt: Concerns, chal- 1139
lenges, and commandments. CoRR, abs/2305.10646. 1140

13

https://aclanthology.org/L16-1556
https://aclanthology.org/L16-1556
https://aclanthology.org/L16-1556
https://openreview.net/forum?id=yzkSU5zdwD
https://openreview.net/forum?id=yzkSU5zdwD
https://openreview.net/forum?id=yzkSU5zdwD
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2308.00002
https://doi.org/10.48550/ARXIV.2308.00002
https://doi.org/10.48550/ARXIV.2308.00002
https://doi.org/10.48550/ARXIV.2401.06853
https://doi.org/10.48550/ARXIV.2401.06853
https://doi.org/10.48550/ARXIV.2401.06853
https://openreview.net/pdf?id=fB0hRu9GZUS
https://openreview.net/pdf?id=fB0hRu9GZUS
https://openreview.net/pdf?id=fB0hRu9GZUS
https://openreview.net/pdf?id=fB0hRu9GZUS
https://openreview.net/pdf?id=fB0hRu9GZUS
https://doi.org/10.18653/v1/2023.bionlp-1.7
https://doi.org/10.18653/v1/2023.bionlp-1.7
https://doi.org/10.18653/v1/2023.bionlp-1.7
https://doi.org/10.48550/ARXIV.2206.11147
https://doi.org/10.48550/ARXIV.2206.11147
https://doi.org/10.48550/ARXIV.2206.11147
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
https://doi.org/10.48550/ARXIV.2305.10646
https://doi.org/10.48550/ARXIV.2305.10646
https://doi.org/10.48550/ARXIV.2305.10646


M
et

ho
d

Pr
os

cr
ip

t
Sc

he
m

a-
11

W
ik

iH
ow

Sc
ri

pt
A

vg

P
R

F1
G

E
D

|Ê
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A Additional Implementation Details1141

Few-shot Demonstration Selection. To con-1142

struct the demonstration bank, we select 15 exam-1143

ples from the training set of ProScript, following1144

Madaan et al. (2023). We do so because we expect1145

to include non-linear temporal graph examples in1146

our demonstrations, for which only ProScript can1147

fulfill the requirement. Then, we use the same1148

demonstrations as few-shot examples for experi-1149

ments, regardless of the evaluation benchmark.1150

Model Cards. In this work, we have experi-1151

mented with 3 base LMs. Below lists the exact1152

Huggingface model cards used in this work.1153

• GEMMA-7B: google/gemma-7b-it1154

• MISTRAL-7B:1155

mistralai/Mistral-7B-Instruct-v0.21156

• LLAMA3-8B:1157

meta-llama/Meta-Llama-3-8B-Instruct1158

B Dataset Processing1159

This section documents the processing steps per-1160

formed on Schema-11 and WikiHow Script to cater1161

for the temporal reasoning task of our interest. We1162

do not use any Python packages for dataset pro-1163

cessing. Meanwhile, based on our inspection, we1164

do not spot any offensive content in these three1165

datasets.1166

Schema-11. In their original annotations, an1167

event node is marked in arg0-trigger-arg1 for-1168

mat, and we manually convert it to a natural sen-1169

tence. We specifically adopt annotations under1170

schemas_dan_d directory.1171

WikiHow Script corpus. The original dataset1172

features multilingualism, while we only take their1173

English portion for this study. Then, We only keep1174

ordered how-to articles where steps are presented in1175

chronological order. Lastly, we cap the maximum1176

number of steps at 20, which reduces the corpus1177

size from 3, 3035 to 2, 077.1178

C Complete Examples1179

Using the same example as in fig. 1 and fig. 2,1180

we show the complete examples (including genera-1181

tions by one base LM, LLAMA3-8B) of Standard1182

Prompting, CoT and GENSORT. We first show1183

the input part of Standard Prompting and CoT in1184

fig. A3, and the input of GENSORT in fig. A4. Out-1185

puts by Standard Prompting, CoT and GENSORT1186

are displayed in fig. A5, fig. A6 and fig. A7, respec- 1187

tively. As we can easily see, the output of Standard 1188

Prompting is completely wrong and fails to capture 1189

any correct temporal relation. Worse still, it even 1190

forms a loop. For the output of CoT, at least, it gets 1191

one temporal relation correct. However, the gen- 1192

erated rationales are verbose, not to-the-point, and 1193

the mixture of natural language and programming 1194

language in the output might confuse the gener- 1195

ation process as well. In contrast, the generated 1196

temporal graph by GENSORT captures most of the 1197

right temporal relations, yielding a high F1 score 1198

of 80 points, and a very low GED, which is just 1. 1199

D Meta Prompt 1200

This section discusses the major components of a 1201

meta prompt, used to generate reference narratives. 1202

As shown in fig. A8 and fig. A9, a meta prompt 1203

consists of two parts: input (in Python program- 1204

ming language) and instruction (above and below 1205

the input). The input contains both V (event set) 1206

and E (temporal relation set), and the goal is to 1207

prompt LMs to generate a high-quality reference 1208

narrative. The input has two formats: alphabeti- 1209

cal (fig. A8) format where the function header is 1210

represented in the same fashion as in fig. 2, and 1211

descriptive (fig. A9) where the function header is 1212

the camel-cased version of the complete event de- 1213

scription. The instruction part specifies how LMs 1214

are supposed to carry out the narrative generation, 1215

reflecting different types and genres. Specifically, 1216

we designed four different instructions, listed in 1217

Table A3. They are News Report, Simple English, 1218

Role Play and Simple Report, which is essentially a 1219

seamless combination of News Report and Simple 1220

English. 1221

E Faithfulness Checking Details 1222

Table A4 shows the template being used to prompt 1223

GPT-4 to produce a judgment. GPT-4 performs 1224

a 5-way assessment: yes, largely yes, ambivalent, 1225

largely no, and no, where yes means exact align- 1226

ment while no means no alignment at all. With 1227

the counting puzzle as a sanity check, we find that 1228

GPT-4 does not count the number of temporal links 1229

wrong at all. We thus rely on the returned value 1230

of correct temporal links as a means to determine 1231

the failure mode. Before human inspection, the 1232

distribution among yes/largely yes/largely no/no 1233

is 243/190/32/135, where GPT-4 does not output 1234

“ambivalent”. 1235
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#scenarios #events Max #events #temporal links Event length %Non-linear Domain License

ProScrpt (Sakaguchi et al.) 2,077 7.46 9 6.95 4.64 39% Daily N/A
Schema-11 (Dror et al.) 11 7.91 11 7.18 3.48 27% News N/A
WikiHow Script (Lyu et al.) 291 8.37 20 7.37 9.63 0% Daily MIT

Table A2: Basic statistics of evaluation benchmarks. Max #events indicate the maximum number of events for a
scenario. Event length is defined as the number of words in the event description. %Non-linear tells the proportion
of temporal graphs that contain at least one branch. Two domains are considered, Daily activity and News journalism.
“N/A” in the License column indicates that the datasets are released without a license attached.

Instruction Type Detailed Instruction

News Report

You are provided with a set of unordered event descriptions.
You are also provided with a set of event relations which instructs you how to temporally link a pair of events.
They are displayed as functions defined within a python class. \n
Your goal is to write a *news report* based on the provided event descriptions and event relations set.
The generated *news report* should adhere to the non-fiction genre.
Meanwhile, the generated *news report* should honor the provided temporal information. \n

Simple English

You are provided with a set of unordered event descriptions.
You are also provided with a set of event relations which instructs you how to temporally link a pair of events.
They are displayed as functions defined within a python class. \n
Your goal is to write a *simple and concise story* based on the provided event descriptions and event relations set.
The generated *story* should be simple such that it can be understood by a 10-year-old child,
and it should be concise such that it can be written within a short paragraph.
Meanwhile, the generated *story* should honor the provided temporal information. \n

Role Play

You are provided with a set of unordered event descriptions.
You are also provided with a set of event relations which instructs you how to temporally link a pair of events.
They are displayed as functions defined within a python class. \n
Your goal is to write a *simple and concise story* based on the provided event descriptions and event relations set.
The generated *story* should honor the provided temporal information. \n
Now, imagine you are a character in the *story*.
Let’s write a *story* that clearly depicts how you, as a character, experience the events, and how you react to them.

Simple Report

You are provided with a set of unordered event descriptions.
You are also provided with a set of event relations which instructs you how to temporally link a pair of events.
They are displayed as functions defined within a python class. \n
Your goal is to write a *simple and concise report* based on the provided event descriptions and event relations set.
The generated *report* should be simple such that it can be understood by a 10-year-old child,
and it should be concise such that it can be written within a short paragraph.
Meanwhile, the generated *report* should honor the provided temporal information. \n

Table A3: Detailed instruction for different meta prompt type, a.k.a., instruction type.

Faithfulness Checking Manual Inspection We1236

notice that there are 39 cases where the value of1237

correct temporal links is 0, and 5 cases where GPT-1238

4 refuses to produce a value. Thus, we manually1239

look into these 44 cases. Among these 44 cases, we1240

correct 4 of them. In one case, GPT-4’s rationale1241

is “Additionally, all other links, despite being in1242

the correct order, are rendered incorrect due to the1243

initial incorrect link.” and GPT-4 marks 0 correct1244

temporal links. However, as GPT-4 has discovered,1245

all except for one link are actually correct, so we1246

change the label from “no” to “yes”. There are1247

three cases where GPT-4 is not judging the faithful-1248

ness but instead the correctness. As we have noted1249

in the main content, faithfulness is not the same as1250

correctness. For example, one rationale is “Given1251

the fundamental logical error in the sequence of1252

dialing and answering, all links are considered in- 1253

correct in the context of real-world logic, despite 1254

matching the narrative’s order” where the narra- 1255

tive mistakenly says “dialing the phone” happens 1256

after “answer the phone”, so GPT-4 marks “no”. 1257

Yet, as GPT-4 has also discovered that the temporal 1258

graph actually perfectly matches the generated nar- 1259

rative, we thus correct the label from “no” to yes. 1260

The aforementioned two cases are the ones where 1261

GPT-4 got stuck in this assessment task. 1262

After human inspection, the final adjudicated 1263

distribution is 247/190/32/131. This leads to an 1264

alignment level of 72.8% where we consider both 1265

“yes” and “largely yes” as entailing alignment. 1266
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The temporal graph is represented as a list of tuples, where each tuple contains two events. The first event happens before the second event, connected with ’->’.\n
Your task is to determine whether the narrative is faithful to the temporal graph.
The faithfulness is solely determined by whether the temporal relations in the temporal graph *honor* the chronological order among events in the narrative.\n
How to make an assessment: If the temporal graph is completely faithful to the narrative, type ’yes’. If largely faithful with minor mistakes, type ’largely yes’.
If largely not faithful with only a few temporal relations captured, type ’largely no’. If completely not faithful, type ’no’. For other cases, type ’ambivalent’.\n
Your response should be in the following format:\n\n

”’
Answer: yes/largely yes/ambivalent/largely no/no
Rationale: <your rationale>
Temporal links: <count the number of temporal links in the graph>
Correct temporal links: <determine the number of *correct* temporal links>
”’

Let’s start!

Scenario: [SCENARIO]
Events: [EVENTS]
Narrative: [NARRATIVE]
Temporal Graph: [TEMPORAL GRAPH]

Table A4: Template used to prompt GPT-4 for self-faithfulness checking. [·] are placeholders that will be replaced
with real contents to be examined when prompted. <·> are also placeholders but are used to instruct GPT-4 what the
output format should look like.
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Figure A1: GED scores on ProScript (top) and Schema-
11 (bottom) in relation to the number of shots in demon-
strations. We identify the instability in the standard
prompting, and the performance plateau after 5 shots,
along with a slight decline with even more shots.
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Figure A2: GED scores on ProScript (top) and Schema-
11 (bottom) with different meta prompts. Notably, a
Simple Report-style, GPT-4 generated narrative leads to
the best performance due to its conciseness, simplicity
and factuality, which are essential qualities of a high-
quality reference narrative.
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# *** Complete the class "BusinessChange" by 
implementing "get_relations()" function 
marked by #TODO. You should *ONLY* implement 
the function "get_relations()" and not 
generate anything else. Don't generate the 
entire class "BusinessChange". Don't 
generate comments. Your response must end in 
"# END".
# *** You are first given a set of 
demonstrations of how to implement the 
"get_relations()" function for different 
classes.
class WalkIntoStore:
  title = "walk into store"
  steps = 9
  def stepE(self):
    return "stop for red lights and stop 
signs"
  def stepC(self):
    return "shut car door and press lock 
button"
  def stepH(self):
    return "get in car and go to store"
  def stepG(self):
    return "pull into store driveway"
  def stepA(self):
    return "park the car"
  def stepB(self):
    return "take the key out of the 
ignition"
  def stepD(self):
    return "get out of the car"
  def stepI(self):
    return "walk into store"
  def stepF(self):
    return "push gas pedal to move 
vehicle"
  def get_relations(self):
    return [
      "stepF -> stepE",
      "stepE -> stepG",
      "stepG -> stepA",
      "stepB -> stepD",
      "stepA -> stepB",
      "stepD -> stepC",
      "stepC -> stepI",
      "stepH -> stepF",
    ]
# END
# *** Complete the class "BusinessChange" by 
implementing "get_relations()" function 
marked by #TODO. You should *ONLY* implement 
the function "get_relations()" and not 
generate anything else. Don't generate the 
entire class "BusinessChange". Don't 
generate comments. Your response must end in 
"# END".

class BusinessChange:
  title = "business change"
  steps = 6
  def stepC(self):
    return "offer acquisition deal"
  def stepF(self):
    return "companies reach a deal"
  def stepE(self):
    return "companies merge"
  def stepD(self):
    return "companies negotiate"
  def stepA(self):
    return "government approve the deal"
  def stepB(self):
    return "company plans on 
acquisition"
  def get_relations(self):
    #TODO
# END

Figure A3: Input for Standard Prompting with 1-shot
demonstration. The input for CoT is almost identical to
this one, except for an additional comment “Let’s think
step by step” added right above get_relations(self)

# *** Complete the class "BusinessChange" by 
implementing "get_relations()" function 
marked by #TODO. You should *ONLY* implement 
the function "get_relations()" and not 
generate anything else. Don't generate the 
entire class "BusinessChange". Don't 
generate comments. Your response must end in 
"# END".
# *** You are first given a set of 
demonstrations of how to implement the 
"get_relations()" function for different 
classes.
class WalkIntoStore:
  title = "walk into store"
  steps = 9
  def stepE(self):
    return "stop for red lights and stop 
signs"
  def stepC(self):
    return "shut car door and press lock 
button"
  def stepH(self):
    return "get in car and go to store"
  def stepG(self):
    return "pull into store driveway"
  def stepA(self):
    return "park the car"
  def stepB(self):
    return "take the key out of the 
ignition"
  def stepD(self):
    return "get out of the car"
  def stepI(self):
    return "walk into store"
  def stepF(self):
    return "push gas pedal to move 
vehicle"
  #Let's think about a narrative to link 
aforementioned events in the correct 
temporal order.
  def get_narrative(self):
    return "This is a report about 
walking into a store. First, someone gets in 
the car and starts to go to the store. While 
driving, they push the gas pedal to move the 
vehicle but stop for red lights and stop 
signs along the way. After safely navigating 
the roads, they pull into the store's 
driveway and then park the car. Once the car 
is parked, the key is taken out of the 
ignition. Next, the person gets out of the 
car and shuts the car door, pressing the 
lock button to ensure the car is locked. 
Finally, they walk into the store. By 
adhering to the provided temporal 
information, the desired goal is achieved."
  def get_relations(self):
    return [
      "stepF -> stepE",
      "stepE -> stepG",
      "stepG -> stepA",
      "stepB -> stepD",
      "stepA -> stepB",
      "stepD -> stepC",
      "stepC -> stepI",
      "stepH -> stepF",
    ]
# END

# *** Complete the class "BusinessChange" by 
implementing "get_narrative()" and 
"get_relations()" functions marked by #TODO. 
"get_narrative()" serves as an auxiliary 
function facilitating the temporal cohesion 
of events. Essentially, it helps ensure the 
temporal accuracy of the predicted temporal 
graph produced in "get_relations()", by 
explicitly constructing a coherent, 
temporally correct story involving all 
provided events.
# You should *ONLY* implement the function 
"get_narrative()" and "get_relations()", but 
not generate anything else. Don't generate 
the entire class "BusinessChange". Don't 
generate comments. Your response must end in 
"# END".
class BusinessChange:
  title = "business change"
  steps = 6
  def stepC(self):
    return "offer acquisition deal"
  def stepF(self):
    return "companies reach a deal"
  def stepE(self):
    return "companies merge"
  def stepD(self):
    return "companies negotiate"
  def stepA(self):
    return "government approve the deal"
  def stepB(self):
    return "company plans on 
acquisition"
  #Let's think of a narrative to link 
aforementioned events in the correct 
temporal order.
  def get_narrative(self):
    #TODO

  def get_relations(self):
    #TODO
# END

Figure A4: Input for GENSORT with 1-shot demonstra-
tion including a high-quality reference narrative.
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[
    "stepA -> stepB",
    "stepB -> stepD",
    "stepD -> stepE",
    "stepE -> stepF",
    "stepF -> stepC",
    "stepC -> stepA",
]# END

Figure A5: Output by Standard Prompting.

Here is the implementation of the 
"get_relations()" function for the 
"BusinessChange" class:

  def get_relations(self):
    return [
      "stepA -> stepB",
      "stepB -> stepD",
      "stepD -> stepC",
      "stepC -> stepF",
      "stepF -> stepE",
      "stepE -> stepA",
    ]

Rationale: 

The "BusinessChange" class represents the 
steps involved in a business acquisition. 
The steps are: 
1. Company plans on acquisition (stepA)
2. Company plans on acquisition (stepB)
3. Companies negotiate (stepD)
4. Offer acquisition deal (stepC)
5. Companies reach a deal (stepF)
6. Companies merge (stepE)

The relations between these steps are as 
follows:
- StepA leads to stepB, as the company plans 
on acquisition and then decides on the 
acquisition.
- StepB leads to stepD, as the company plans 
on acquisition and then starts negotiating 
with the target company.
- StepD leads to stepC, as the companies 
negotiate and then offer an acquisition 
deal.
- StepC leads to stepF, as the companies 
offer an acquisition deal and then reach a 
deal.
- StepF leads to stepE, as the companies 
reach a deal and then merge.
- StepE leads to stepA, as the companies 
merge and then the government approves the 
deal.

These relations represent the logical flow 
of events in a business acquisition process.

Figure A6: Output by CoT.

def get_narrative(self):
  return "This is a report about 'business 
change'. First, companies plan on an 
acquisition. Then, they offer an acquisition 
deal to the other company. The other company 
accepts the deal and the two companies start 
negotiating the terms of the deal. After 
they reach an agreement, they submit the 
deal to the government for approval. Once 
the government approves the deal, the 
companies can merge. By adhering to the 
provided temporal information, the desired 
goal is achieved."

def get_relations(self):
  return [
    "stepB -> stepC",
    "stepC -> stepD",
    "stepD -> stepF",
    "stepF -> stepA",
    "stepA -> stepE",
  ]
# END

Figure A7: Output by GENSORT.
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You are provided with a set of unordered 
event descriptions. 
You are also provided with a set of event 
relations which instructs you how to 
temporally link a pair of events. 
They are displayed as functions defined 
within a python class. 
                       
Your goal is to write a *simple and concise 
report* based on the provided event 
descriptions and event relations set.  
The generated *report* should be simple such 
that it can be understood by a 10-year-old 
child, and it should be concise such that it 
can be written within a short paragraph.
Meanwhile, the generated *report* should 
honor the provided temporal information. 

''' 
class WalkIntoStore:

  title = "walk into store"
  steps = 9

  def stepE(self):
    return "stop for red lights and stop 
signs"

  def stepC(self):
    return "shut car door and press lock 
button"

  def stepH(self):
    return "get in car and go to store"

  def stepG(self):
    return "pull into store driveway"

  def stepA(self):
    return "park the car"

  def stepB(self):
    return "take the key out of the 
ignition"

  def stepD(self):
    return "get out of the car"

  def stepI(self):
    return "walk into store"

  def stepF(self):
    return "push gas pedal to move 
vehicle"

  def get_relations(self):
    return [
      "stepF -> stepE",
      "stepE -> stepG",
      "stepG -> stepA",
      "stepB -> stepD",
      "stepA -> stepB",
      "stepD -> stepC",
      "stepC -> stepI",
      "stepH -> stepF",
    ]
'''
Start your generation with "This is a report 
about walk into store". 
End your generation with this sentence: By 
adhering to the provided temporal 
information, the desired goal is achieved.

Figure A8: Meta prompt used to generate reference
narrative, where the input format alphabetical and the
meta prompt type is Simple Report.

You are provided with a set of unordered 
event descriptions. 
You are also provided with a set of event 
relations which instructs you how to 
temporally link a pair of events. Note, for 
example, "turnOffLight -> leaveClassroom" 
indicates that turnOffLight *must* happen 
before leaveClassroom. Observing the 
provided temporal relations is imporant! 
They are displayed as functions defined 
within a python class. 
                       
Your goal is to write a *news report* based 
on the provided event descriptions and event 
relations set.  
The generated *news report* should adhere to 
the non-fiction genre. 
Meanwhile, the generated *news report* 
should honor the provided temporal 
information.
''' 
class WalkIntoStore:

  title = "walk into store"
  steps = 9

  def stopForRedLightsAndStopSigns(self):
    return "stop for red lights and stop 
signs"

  def shutCarDoorAndPressLockButton(self):
    return "shut car door and press lock 
button"

  def getInCarAndGoToStore(self):
    return "get in car and go to store"

  def pullIntoStoreDriveway(self):
    return "pull into store driveway"

  def parkTheCar(self):
    return "park the car"

  def takeTheKeyOutOfTheIgnition(self):
    return "take the key out of the 
ignition"

  def getOutOfTheCar(self):
    return "get out of the car"

  def walkIntoStore(self):
    return "walk into store"

  def pushGasPedalToMoveVehicle(self):
    return "push gas pedal to move 
vehicle"

  def get_relations(self):
    return [
      "pushGasPedalToMoveVehicle -> 
stopForRedLightsAndStopSigns",
      "stopForRedLightsAndStopSigns -> 
pullIntoStoreDriveway",
      "pullIntoStoreDriveway -> 
parkTheCar",
      "takeTheKeyOutOfTheIgnition -> 
getOutOfTheCar",
      "parkTheCar -> 
takeTheKeyOutOfTheIgnition",
      "getOutOfTheCar -> 
shutCarDoorAndPressLockButton",
      "shutCarDoorAndPressLockButton -
> walkIntoStore",
      "getInCarAndGoToStore -> 
pushGasPedalToMoveVehicle",
    ]
'''
Start your generation with "This is a report 
about walk into store". 
End your generation with this sentence: By 
adhering to the provided temporal 
information, the desired goal is achieved.

Figure A9: Meta prompt used to generate reference
narrative, where the input format descriptive and the
meta prompt type is News Report.
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