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Abstract
Memory Editing (ME) has emerged as an ef-001
ficient method to modify erroneous facts or002
inject new facts into Large Language Mod-003
els (LLMs). Two mainstream ME methods004
exist: parameter-modifying ME and parameter-005
preserving ME (integrating extra modules while006
preserving original parameters). Regrettably,007
previous studies on ME evaluation have two crit-008
ical limitations: (i) evaluating LLMs with single009
edit only, neglecting the need for continuous010
editing, and (ii) evaluations focusing solely on011
basic factual triples, overlooking broader LLM012
capabilities like logical reasoning and reading013
understanding. This study addresses these lim-014
itations with contributions threefold: (i) We015
explore how ME affects a wide range of funda-016
mental capabilities of LLMs under sequential017
editing. Experimental results reveal an intrigu-018
ing phenomenon: Most parameter-modifying019
ME consistently degrade performance across020
all tasks after a few sequential edits. In contrast,021
parameter-preserving ME effectively maintains022
LLMs’ fundamental capabilities but struggles023
to accurately recall edited knowledge presented024
in a different format. (ii) We extend our evalu-025
ation to different editing settings, such as lay-026
ers to edit, model size, instruction tuning, etc.027
Experimental findings indicate several strate-028
gies that can potentially mitigate the adverse029
effects of ME. (iii) We further explain why030
parameter-modifying ME damages LLMs from031
three dimensions: parameter changes after edit-032
ing, language modeling capability, and the in-033
context learning capability. Our in-depth study034
advocates more careful use of ME in real-world035
scenarios.036

1 Introduction037

Memory Editing (ME) was introduced as an ef-038

fective method to correct erroneous facts or in-039

ject new knowledge into Large Language Models040

(LLMs). Previous ME methods can be roughly di-041

vided into two categories: (1) parameter-modifying042

ME methods, for example, MEND (Mitchell et al.,043
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Figure 1: A comparison of two main limitations in
previous memory editing evaluations. (a) shows the
conventional method, assessing models after each edit,
focused solely on the modified knowledge triples. (b)
presents our approach, evaluating LLMs after a series of
edits to assess their overall impact on various capabilities
of LLMs, for a deeper insight into the enduring effects
of memory editing.

2022a), ROME (Meng et al., 2022a), and MEMIT 044

(Meng et al., 2022b), which directly modify a 045

small number of parameters within the model, 046

(2) parameter-preserving ME methods, such as 047

GRACE (Hartvigsen et al., 2022) and MELO (Yu 048

et al., 2023), which integrate additional modules 049

into the LLMs architecture without altering the 050

original model parameters. 051

Although ME has shown much promise, previ- 052

ous studies evaluating and analyzing ME methods 053

have two critical limitations, as depicted in Figure 1. 054

First, they only consider the performance of LLMs 055

after every single editing. However, in practice, 056

LLMs usually need to be edited sequentially, i.e., 057

sequential memory editing, which edits the same 058

model multiple times to incorporate new knowl- 059

edge continuously. Sequential memory editing is 060

more important in real-world scenarios because new 061

knowledge always appears over time. Second, prior 062

research has predominantly concentrated on assess- 063

ing ME’s impact on factual knowledge. However, it 064

is crucial to evaluate ME’s influence on the broader 065

capabilities of LLMs, such as logical reasoning, 066
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multilingual proficiency, code generation, and so067

on. Unfortunately, previous studies on evaluating068

and analyzing ME tend to overlook these broader069

aspects, hindering the popularity of ME methods070

in practical applications.071

To address these limitations, our study com-072

prehensively evaluates the general capabilities of073

memory-edited LLMs in sequential editing scenar-074

ios. This evaluation involves four distinct ME meth-075

ods, including three parameter-modifying ME meth-076

ods - MEND (Mitchell et al., 2022a), ROME (Meng077

et al., 2022a) and MEMIT (Meng et al., 2022b), and078

one parameter-preserving ME method - GRACE079

(Hartvigsen et al., 2022). We leverage three differ-080

ent checkpoints of LLaMA-2 (Touvron et al., 2023),081

consisting of LLaMA-2-7B, LLaMA-2-7B-Chat082

and LLaMA-2-13B as base LLMs. The evaluation083

framework spans six core capabilities of LLMs:084

Professional Knowledge, Common Sense Knowl-085

edge, Logical Reasoning, Reading Understanding,086

Multilingual Proficiency, and Code Generation,087

based on eight downstream evaluation benchmarks.088

The experimental findings reveal varied im-089

pacts of the parameter-modifying versus parameter-090

preserving ME methods on LLMs in sequential091

editing scenarios. Specifically, all parameter-092

modifying ME methods systematically damage093

all fundamental capabilities of LLMs after a few094

sequential edits. On the contrary, the parameter-095

preserving ME method, GRACE (Hartvigsen et al.,096

2022), effectively maintains the core capabilities097

of the model even after 100 sequential edits, with-098

out any noticeable degradation in the performance099

across various downstream tasks. However, models100

edited using GRACE exhibit limited generalization,101

suggesting that the edited model struggles to recall102

the newly incorporated knowledge when it is pre-103

sented in a different format. For example, if the104

edited knowledge is “who is the CEO of Apple?105

Tim Cook”, the post-edited model cannot correctly106

answer the same question described differently -107

“Who leads Apple as CEO?”108

We then extend our analysis of parameter-109

modifying ME methods - the ROME and MEMIT,110

to more editing settings, including increasing the111

model size, instruction tuning, editing different112

layers, and the batch size of memory editing. In-113

terestingly, experimental results indicate that larger114

models show more robustness on multilingual and115

code-generation tasks, while instruction tuning can116

alleviate the decline in knowledge QA tasks. Be-117

sides, editing deeper layers and increasing the batch 118

size are also beneficial to maintain the general ca- 119

pabilities of LLMs. However, these strategies can 120

not entirely overcome the observed performance 121

decline. Our findings underscore the inherent com- 122

plexity and challenges of applying ME in the se- 123

quential editing setting. 124

To explain how parameter-modifying ME meth- 125

ods damage the general capabilities of LLMs, we 126

further analyze the post-edited models from three 127

aspects: the changes in the model parameters, the 128

language modeling capability, and the in-context 129

learning capability. Experimental findings reveal 130

that with each sequential edit, there is an increasing 131

deviation in the model’s parameters from those of 132

the original model. This divergence is identified as 133

the primary cause of noted performance damage. 134

As a result of these parameter shifts, the language 135

modeling capability of post-edited LLMs suffers 136

a noticeable degradation after sequential edits. In- 137

terestingly, the post-edited LLMs can maintain the 138

in-context learning capability when editing shal- 139

low and deep layers instead of middle layers. Our 140

analysis provides insights into the understanding of 141

parameter-modifying ME methods and sheds light 142

on proposing new strategies to alleviate the damage 143

or new ME methods in the future. 144

In summary, our study makes several pivotal 145

contributions to the field: 146

• We pioneer a comprehensive evaluation of 147

post-edited LLMs to assess their general capa- 148

bilities in sequential memory editing scenarios. 149

Our study uniquely covers both types of ME 150

methods and examines their impacts across six 151

core capabilities of LLMs, revealing distinct 152

drawbacks. 153

• Our comprehensive experiments suggest that 154

instruction tuning, editing deeper layers, in- 155

creasing model size, and increasing the batch 156

size of memory editing are beneficial to mit- 157

igate the damage caused by the parameter- 158

modifying ME methods, but cannot entirely 159

overcome the adverse effect. 160

• We analyze the damage of ME to LLMs in three 161

dimensions: (1) parameter changes, (2) lan- 162

guage modeling capability, and (3) in-context 163

learning capability, which partially explains 164

how memory editing influences LLMs, provid- 165

ing insights for the development of new ME 166

methods and mitigation strategies. 167
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Figure 2: An overview of two categories of approaches
for memory editing. We adopt GRACE (Hartvigsen
et al., 2022) as an example of the parameter-preserving
ME method.

2 Related Work168

Methods of Memory Editing From the perspec-169

tive of whether the model parameters are modi-170

fied, previous ME methods can be divided into171

two categories: parameter-modifying ME methods172

and parameter-preserving ME methods (Yao et al.,173

2023), as illustrated in Figure 2. KN (Dai et al.,174

2021), an example of the parameter-modifying ME175

method, uses a knowledge attribution approach176

to identify and adjust relevant neurons in a Feed177

Forward Neural Network (FFN) layer. Similarly,178

ROME (Meng et al., 2022a) and MEMIT (Meng179

et al., 2022b) apply a Locate-Then-Edit strategy180

to inject new facts into LLMs. They first conduct181

causal analysis to pinpoint where the knowledge is182

stored in models and then edit the located parame-183

ters. Besides, meta-learning methods, for example,184

KE (De Cao et al., 2021) and MEND (Mitchell185

et al., 2022a), train a hypernetwork to estimate186

alterations or gradients of models’ parameters for187

modification. Regarding the parameter-preserving188

ME methods, T-Patcher (Huang et al., 2023) and189

CaliNET (Dong et al., 2022) introduce additional190

neurons into the FFN layer. GRACE (Hartvigsen191

et al., 2022) and MELO (Yu et al., 2023), on the192

other hand, implement a discrete codebook to incor-193

porate new knowledge. Besides, SERAC (Mitchell194

et al., 2022b) proposes a counterfactual model to195

handle the edited knowledge. Additionally, Mem-196

Prompt (Madaan et al., 2022), and IKE (Zheng et al.,197

2023a) explore prompt-based or in-context learning198

strategies to update the knowledge of LLMs.199

Evaluations and Analysis of Memory Editing200

Recently, in addition to exploring new ME meth-201

ods, evaluation and analysis of ME methods have202

also drawn much attention. Hase et al. (2023) criti- 203

cally examines the limitations of causal tracing in 204

determining the specific layers to be edited in LLMs. 205

Ju and Zhang (2023) contribute a novel benchmark 206

for assessing knowledge localization methods in 207

LLMs. The scope of evaluation also extends to 208

more complex aspects of the robustness of ME. 209

For instance, Li et al. (2023a) introduces a bench- 210

mark dataset, underscoring two significant areas 211

of concern: Knowledge Conflict and Knowledge 212

Distortion. Similarly, Cohen et al. (2023) presents 213

a dataset designed to evaluate ME methods in six 214

challenging scenarios. In a related vein, Li et al. 215

(2023b) proposes the DepEdit framework, which 216

assesses ME methods by considering the interdepen- 217

dencies between a fact and its logical implications. 218

Regrettably, prior studies predominantly evaluate 219

post-edited models per edit rather than sequentially, 220

focusing narrowly on basic factual triples. Despite 221

Pinter and Elhadad (2023)’s caution, there is a 222

lack of experimental evidence, creating a gap in 223

understanding. To address this, our study conducts 224

comprehensive experiments, assessing the impact 225

of ME methods on the general capabilities of LLMs 226

in sequential editing scenarios. We provide de- 227

tailed analyses explaining the performance decline 228

across various tasks, offering insights for mitigating 229

damage or proposing improved ME methods. 230

3 Notation and Backgrounds 231

Following Meng et al. (2022a), we denote a fact 232

as a triple form (𝑠, 𝑟, 𝑜), where 𝑠 represents a sub- 233

ject (e.g., Tim Cook), 𝑟 represents a relation (e.g., 234

the CEO of) and 𝑜 represents an object (e.g., Ap- 235

ple). Given a model 𝑓 with parameter 𝜃, we have 236

𝑓𝜃 (𝑠, 𝑟) = 𝑜. Memory editing aims to directly edit 237

a model’s parameter: 𝑀𝐸 ( 𝑓𝜃 ) = 𝑓𝜃 ′ , to force the 238

model to remember a new knowledge denoted as 239

(𝑠, 𝑟, 𝑜′), such that 𝑓𝜃 ′ (𝑠, 𝑟) = 𝑜′ without chang- 240

ing other irrelevant facts. In the sequential model 241

editing problem, each edit is made to the model 242

after the last edit. We denote 𝑓𝜃0 as the original 243

model, and 𝑓𝜃𝑡−1 as the result model after 𝑡 − 1 244

times edition. The 𝑡-th editing is 𝑀𝐸 ( 𝑓𝜃𝑡−1) = 𝑓𝜃𝑡 , 245

satisfying 𝑓𝜃𝑡 (𝑠𝑡 , 𝑟𝑡 ) = 𝑜𝑡 , where (𝑠𝑡 , 𝑟𝑡 , 𝑜𝑡 ) is the 246

𝑡-th new knowledge. 247

4 Experimental Settings 248

Base LLMs. We perform experiments on one 249

of the most popular open-source large language 250

models, LLaMA-2 (Touvron et al., 2023), in- 251
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Method Edit #. MMLU MBPP MATH BBH TyDiQA C3 ComQA AX-b Avg.
LLaMA 0 46.8 18.2 3.4 38.4 26.8 32.1 49.6 45.9 32.7

parameter-modifying ME methods

MEND
1 47.2 19.2 3.26 38.3 26.4 32.2 50.6 49.0 33.3
10 46.5 0.0 0.1 9.2 18.7 25.2 44.8 45.9 23.8
20 35.2 0.0 0.0 4.2 9.8 14.9 11.0 26.5 12.7
100 25.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.2

ROME
1 46.9 17.6 3.3 38.4 26.8 32.0 49.6 45.5 32.5
10 46.6 17.8 3.3 38.3 27.0 32.6 50.2 45.2 32.6
20 34.3 18.4 2.6 33.8 24.1 28.9 20.6 51.5 26.8
100 25.5 2.8 1.0 28.8 8.0 23.2 19.0 38.4 18.3

MEMIT
1 46.7 18.4 3.4 38.3 26.8 32.0 50.6 45.9 32.8
10 46.7 16.6 3.2 37.8 26.7 32.9 51.1 45.4 32.6
20 25.3 16.6 1.9 32.4 19.5 15.5 19.7 31.2 20.3
100 22.9 0.0 0.0 0.0 0.0 0.0 0.49 1.8 3.1

parameter-preserving ME methods
GRACE 100 46.8 18.2 3.4 38.4 26.8 32.1 49.6 45.9 32.7

Table 1: Evaluation of four ME methods on eight tasks under the sequential editing setting for the LLaMA-2-7B
model. “ComQA” refers to the CommonsenseQA dataset. The scores for the MMLU, BBH, and TyDiQA datasets
are the mean values derived from all respective subsets.

cluding three different checkpoints: LLaMA-2-7B,252

LLaMA-2-7B-Chat, and LLaMA-2-13B.253

ME Methods. In this study, we select ROME254

(Meng et al., 2022a), MEMIT (Meng et al., 2022b),255

and MEND (Mitchell et al., 2022a) as representative256

examples of parameter-modifying ME methods,257

covering both Locate-Then-Edit methods (such as258

ROME and MEMIT) and hypernetwork methods259

(e.g., MEND). Regarding parameter-preserving ME260

methods, we opt for GRACE (Hartvigsen et al.,261

2022), a state-of-the-art method, as our chosen262

method. Considering that MELO (Yu et al., 2023)263

is built upon the same foundational framework and264

employs the same constraint method as GRACE,265

we decide to solely focus on GRACE. Furthermore,266

in-context learning approaches are excluded from267

our study, given that they do not modify parameters268

or even add new modules into LLMs.269

Datasets. We randomly select 100 samples from270

the ZsRE (Levy et al., 2017) as the editing dataset.271

To fully evaluate the fundamental capabilities of272

LLMs, we consider six core aspects: Professional273

Knowledge, Common Sense Knowledge, Logical274

Reasoning, Reading Understanding, Multilingual275

Proficiency, and Code Generation. Our evalua-276

tion framework consists of eight main benchmarks:277

MMLU (Hendrycks et al., 2020), BBH (Ghazal278

et al., 2013), MATH (Hendrycks et al., 2021),279

SuperGLUE-AX-b (Wang et al., 2019), Common-280

senseQA (Talmor et al., 2018), C3 (Sun et al.,281

2020), TydiQA (Clark et al., 2020), and MBPP282

(Austin et al., 2021). Details of the experimental283

settings and metrics corresponding to each dataset284

are shown in Appendix B. 285

Evaluation Metrics. To evaluate whether the 286

post-edited model can successfully answer ques- 287

tions about the new knowledge, we utilize reliability, 288

which checks if the edited model successfully re- 289

members the added knowledge, and generalization, 290

which checks if the edited model recalls the new 291

knowledge described in different formats. In our 292

experiments, we only use one different format for 293

each knowledge to calculate generalization. In se- 294

quential editing scenarios, we define the individual 295

reliability and individual generalization score to 296

specifically assess the model’s accuracy on the latest 297

edit made in the most recent iteration. These scores 298

evaluate how effectively the model integrates new 299

information after each editing cycle. Conversely, 300

sequential reliability and sequential generalization 301

provide broader evaluations of the model’s perfor- 302

mance, considering the knowledge edits from all 303

previous iterations, not just the recent ones. 304

5 Evaluations of ME on LLMs 305

In this section, we explore the impact of the two 306

types of ME methods on LLMs in sequential editing 307

scenarios, aiming to quantify their damage to the 308

general capabilities of LLMs. 309

5.1 Evaluation of Parameter-Modifying ME 310

Methods 311

The evaluation results of the post-edited models 312

on eight datasets are shown in Table 1. Following 313

the initial edit, all the ME methods maintain per- 314

formance levels comparable to the baseline model 315
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on eight benchmarks. However, after 10 sequential316

edits, notable performance degradation is observed317

with the MEND method, particularly in benchmarks318

such as MBPP, MATH, TyDiQA, and C3. This319

decline contrasts with other methods that show320

relatively stable performance. After 20 edits, a321

significant performance drop is evident in all three322

parameter-modifying ME methods across all eval-323

uation datasets. After 100 sequential edits, the324

MEMIT and MEND fail in all tasks with nearly325

zero scores except the MMLU dataset. Note that, as326

described in Appendix B, each data instance in the327

MMLU dataset comprises a question and four pos-328

sible answers, thus a random choice score should329

be around 25% which is similar to the evaluation330

scores of all parameter-modifying ME methods331

after 100 sequential edits, indicating that the post-332

edited LLMs fail to answer all questions in the333

MMLU dataset. All these results highlight the334

systematic hurt of the parameter-modifying ME335

methods on LLMs in sequential editing scenarios.336

We report the individual and sequential scores337

of reliability and generalization in Table 2. The338

decline of the sequential reliability and generaliza-339

tion indicates that in sequential editing scenarios,340

post-edited models, edited by parameter-modifying341

ME methods, forget previously edited knowledge342

after several edits. Besides, the individual reliabil-343

ity and generalization of the ROME and MEMIT344

methods remain similar as the number of edits in-345

creases, while the MEND method has a significant346

decline, indicating that in sequential editing sce-347

narios, the MEND method cannot successfully add348

new knowledge into LLMs after several edits.349

5.2 Evaluation of Parameter-Preserving ME350

Method351

The parameter-preserving ME method, GRACE,352

introduces an additional codebook to store edited353

knowledge. As described in Appendix A.1, it354

applies a threshold to control whether the input355

information uses the stored knowledge. In the ex-356

periments in Table 1 and Table 2, we set 1 as the357

value of the threshold. It is shown that such a358

small threshold helps maintain the broad capabil-359

ities of LLMs with no noticeable decline in the360

performance on all downstream tasks. However, it361

also restricts the post-edited model from correctly362

answering the question about the edited knowledge363

described in a different format. This results in a364

low score of generalization, as illustrated in Table365

Sequential Score Individual Score

Method Edit #. Rel. Gen. Rel. Gen.
parameter-modifying ME methods

MEND

1 80 80 80 80
10 79.3 74.8 86.8 87.7
20 39.1 44.1 67.2 68.1
100 0 0 13.6 13.9

ROME

1 80 80 80 80
10 66.7 69.7 93 87.3
20 53.3 52.4 90.3 85.7
100 52.3 49.5 93.3 90.4

MEMIT

1 80 80 80 80
10 87 87 86.4 83.2
20 22.4 25.3 88.3 88.1
100 0.07 0.06 87.7 85.4

parameter-preserving ME methods

GRACE 100 99.8 30.2 99.8 30.2

Table 2: The individual and sequential scores of relia-
bility, denoted as Rel. and generalization, denoted as
Gen. We evaluate the scores on the editing dataset.

2. We claim that a larger threshold increases the 366

generalization but fails to preserve the core capa- 367

bilities of LLMs. We discuss the influences of the 368

threshold in Appendix C. 369

6 Impact of Different Editing Settings 370

This section is dedicated to analyzing the influences 371

of ME in different editing settings. We focus on 372

four aspects: model size, instruction tuning, layers 373

to edit, and the batch size of memory editing. 374

Model Size. Figure 3 illustrates that all model 375

checkpoints edited by the ROME method, regard- 376

less of their size, show performance degradation 377

that correlates with the number of sequential edits. 378

Interestingly, an increase in model size appears to 379

have a protective effect, particularly in multilingual 380

understanding and code generation domains, as 381

shown in the TyDiQA and MBPP datasets. How- 382

ever, this protection does not extend to all areas. 383

The post-edited LLMs with different sizes of 7B 384

and 13B suffer the same decline trend on knowl- 385

edge question-answering tasks, e.g., the MMLU and 386

CommonsenseQA datasets. We conjecture the rea- 387

son as: edited knowledge triples and the concerned 388

knowledge in the MMLU and CommonsenseQA 389

datasets are stored closer in the model’s param- 390

eters, compared to the concerned knowledge of 391

multi-lingual understanding or code generation. As 392

models scale up, a more precise separation between 393

the edited knowledge and concerned knowledge of 394

code generation and multi-lingual understanding 395
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tasks emerges, potentially allowing for less disrup-396

tive memory editing. We leave the proof of these397

hypotheses as future work.398

Figure 3: Evaluation of three different checkpoints of
LLaMA-2-7B on four datasets. We apply ROME as the
ME method.

Instruction Tuning. Compared with399

LLaMA-2-7B, LLaMA-2-7B-Chat is further400

instruction tuned to generate more natural401

conversational responses. The implementa-402

tion of instruction tuning, particularly in the403

LLaMA-2-7B-Chat model, provides insightful404

observations. As shown in Figure 3, despite the405

overall performance degradation trend, instruction406

tuning appears to impart a degree of robustness,407

as evidenced by the enhanced stability across408

MMLU and CommonsenseQA. This finding409

suggests that instruction tuning might play a role410

in safeguarding model capabilities against the411

detrimental effects of memory editing, especially412

for knowledge question-answering tasks, although413

it does not entirely prevent performance losses.414

However, instruction tuning does not help mitigate415

the damage to code generation and multi-lingual416

understanding tasks. The impact of instruction417

tuning on memory editing suggests an intriguing418

area for further investigation, especially regarding419

how it influences the model’s capability to integrate420

and handle edited information.421

Layers to Edit. Inspired by (Hase et al., 2023),422

we investigate the effects of editing different layers423

in LLMs using the ROME and MEMIT methods.424

Figure 4 shows a noticeable trend: editing layers425

closer to the output (deeper layers) results in a426

marginal decrease in performance while editing427

shallower layers leads to significant performance428

degradation. Specifically, when editing the 20th 429

layer of the LLaMA-2-7B model using ROME, the 430

model’s performance on CommonsenseQA after 431

100 editing iterations stands at 46.27%1. However, 432

editing shallower layers, such as the 5th, 10th, and 433

15th layers, severely impacts the model’s perfor- 434

mance, leading to significant deterioration after just 435

20 edits. Similarly, with MEMIT, editing layers 436

25 through 29 leads to a performance decrease of 437

just 9.6% from the post-first-edit outcomes. These 438

results indicate that the choice of layers for editing 439

in LLMs significantly impacts their general capa- 440

bilities, with deeper layers showing more resilience 441

to the editing process than shallower ones. We also 442

edit different layers using GRACE, whose results 443

are shown in Appendix D.3, suggesting a similar 444

conclusion as both ROME and MEMIT. 445

Figure 4: The performance of the LLaMA-2-7B model
on the CommonsenseQA dataset. LX represents editing
the X-th layer of the model, while LX~Y represents
editing layers between the X-th and the Y-th layer.

Batch Size of ME. In line with Meng et al. 446

(2022b), we conduct experiments to test the in- 447

fluence of varying batch sizes of memory editing. 448

Utilizing MEMIT to edit LLaMA-2-7B, we alter the 449

batch size from 1 to 1000. As shown in Figure 5, 450

with the same number of edit triples, increasing the 451

batch size means reducing the number of editing 452

times, which turns out to be beneficial in mitigating 453

the damage of ME to LLMs. 454

7 Interpreting Disruptions in LLMs 455

Caused by Memory Editing 456

To interpret the damage caused by parameter- 457

modifying ME methods, our investigation is struc- 458

tured around three pivotal aspects: (i) the model 459

parameter changes after being sequential edited, (ii) 460

the impact on the language modeling capability of 461

LLMs, and (iii) the in-context learning capacity. 462

This multifaceted exploration is designed to provide 463

1An intriguing observation emerges when we edit the 30th
layer using ROME, which is explained in Appendix D.2.
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Figure 5: The performance of LLaMA-2-7B on Com-
monsenseQA, utilizing MEMIT as the editing method
with different batch sizes for memory editing. The x-axis
denotes the total number of edit triples. For example,
for the line of batch size 100, the first data point of this
line lies in the total number of edit triples 100, which
only edits the model once. BS denotes batch size.

a holistic understanding of how memory editing464

affects LLMs.465

7.1 Parameter Changes after Memory Editing466

In this section, we investigate the changes between467

the parameters of LLMs before and after sequen-468

tial memory editing. We apply ROME as the ME469

method and LLaMA-2-7B as the base model. We470

use the Pearson product-moment correlation coef-471

ficient (𝑅) to measure the similarities between the472

parameters of the original and edited layers within473

the model. The correlation coefficient matrix, 𝑅,474

ranges from -1 to 1. An 𝑅 value of 1 indicates a475

perfect positive linear correlation, implying that the476

parameters in both the original and edited layers477

are identical. Conversely, a value of -1 indicates478

a perfect negative correlation, while a value of 0479

suggests no similarity between the parameters."480

Figure 6: Similarity score based on the Pearson product-
moment correlation coefficient, calculated between the
parameters of the original and edited model layers.

As illustrated in Figure 6, with fewer than 15481

edits, the correlation coefficient (𝑅) between the482

edited and original layers remains high (e.g. close483

to 1), indicating the significant similarity of the 484

parameters. However, with an increasing number 485

of edits, there is a marked decrease in similarity. 486

Such changes in the parameter lead to a “mismatch” 487

between the edited and original layers, which un- 488

dermines the model’s inherent coherence through 489

layers. Consequently, the model’s general capabili- 490

ties are significantly damaged. 491

One interesting finding is that modifications in 492

deeper layers, especially the 20th, 25th, and 30th 493

layers, maintain relatively higher similarity scores 494

compared to editing the shallower layers. This 495

finding aligns with the experiments of editing differ- 496

ent layers in Section 6, where we find that editing 497

deeper layers results in a less pronounced decrease 498

in performance. This distinction highlights a key 499

architectural characteristic of LLMs: deeper lay- 500

ers, located closer to the output, exhibit greater 501

tolerance to modifications, effectively sustaining 502

the model’s performance. On the other hand, the 503

shallower layers, forming the foundational process- 504

ing stages of the LLMs, are more susceptible to 505

disruptions from edits, leading to more significant 506

performance degradations. This layered sensitiv- 507

ity within LLMs underscores the importance of 508

strategic layer selection in the editing process. 509

We argue that the diminishing similarity between 510

the edited and original layers is a primary factor 511

in the model’s reduced performance, disrupting its 512

internal coherence and substantially impacting its 513

performance in various tasks. 514

7.2 Language Modeling Capability 515

We hypothesize that the significant changes in the 516

edited layers damage the language modeling ca- 517

pability of LLMs. To validate this hypothesis, 518

we use Vicuna-7b-v1.5 (Zheng et al., 2023b) to 519

measure the Perplexity (PPL) of output sequences 520

generated by post-edited models edited by ROME. 521

CommonsenseQA is used as the evaluation dataset. 522

In our setting, we concatenate each question with 523

its corresponding generated answer and calculate 524

the perplexity solely for the first 20 tokens of the 525

answer portion. Answers with less than 20 tokens 526

are excluded to avoid the effect of sequence length 527

on the PPL. Additionally, we observe that in certain 528

instances, the post-edited models tend to produce 529

repetitive token sequences, which, while contribut- 530

ing to lower perplexity scores, are not meaningful 531

in the context of answering CommonsenseQA ques- 532

tions. To address this, we implement a penalty ratio 533

7



Number of Edits

Edit Layer 1 10 14 20 30 50 75 100

5 7.63 7.65 7.61 14.29 14.29 13.89 12.90 14.04
10 7.15 7.32 7.38 28.61 45.23 81.08 / /
15 7.61 7.48 81.24 50.09 21.25 28.48 29 634.93 17 220.91
20 7.61 7.75 7.69 8.12 8.09 9.48 10.67 11.15
25 7.63 7.61 7.73 8.81 15.77 18.35 31.26 9830.27
30 7.65 810.04 2477.53 603.46 49.09 78.39 1018.46 1444.29

Table 3: Perplexity scores when editing different layers with varying numbers of edits. We use LLaMA-2-7B as the
base LLM to edit. The result “/” means that the edited model fails to generate any response.

for repetitive sentences to ensure a more accurate534

reflection of the model’s language modeling capa-535

bility. The details of the formula to calculate the536

adjusted perplexity are shown in Appendix E.1.537

As illustrated in Table 3, after 100 sequential538

edits, editing the 10th and 15th layers results in an539

extremely high perplexity, which leads to a zero540

score for the performance. On the other hand, edit-541

ing the 5th layer results in a relatively low perplexity,542

indicating that the model is not completely dam-543

aged, although there is a significant decline in the544

performance as shown in Table 1. Editing the 20th545

layer maintains a lower perplexity, which guarantees546

a high performance on CommonsenseQA. These547

findings can explain the observations in Figure 4.548

However, although editing the 25th and 30th layers549

severely damages the language modeling capability550

of LLMs, they still maintain very high performance551

on CommonsenseQA, as shown in Figure 4. We552

explain this by examining the in-context learning553

capability in Section 7.3.554

7.3 In-Context Learning Capability555

We further investigate whether, after memory edit-556

ing, LLMs can still maintain the in-context learning557

capabilities. Wang et al. (2023) demonstrates that in558

in-context learning, the shallow layers of LLMs ag-559

gregate information from contexts into label words560

(for example, the CommonsenseQA contains five561

options as label words - A, B, C, D, or E), while562

in deep layers, LLMs extract and use the aggre-563

gated information of label words to perform the564

final prediction. Inspired by this work, we evaluate565

the post-edited LLM on SST2 (Socher et al., 2013)566

where the label words are “positive” and “nega-567

tive”, based on 1-shot in-context learning. We use568

LLaMA-2-7B as the base LLM and edit it using569

ROME and MEMIT on different layers. To save570

space, we describe the experimental setup and de-571

tailed results in Appendix E.2. The experimental572

results indicate that editing shallow (e.g. the 5th573

layer) and deep layers (e.g. 20th, 25th, and 30th lay- 574

ers) does not significantly influence the in-context 575

learning capability of LLMs. 576

These findings also explain the phenomenon 577

mentioned in Section 7.2 – although editing the 578

25th and 30th layers severely damages the language 579

modeling capability of LLMs, they still maintain 580

very high performance on CommonsenseQA as 581

shown in Figure 4. The experiments illustrated 582

in Figure 4 on CommonsenseQA are based on 8- 583

shot in-context setting, and the first token of the 584

generated sequence is treated as the final predic- 585

tion. Given the maintenance of in-context learning 586

capability, the post-edited model is still able to 587

correctly predict the first token of the generated 588

sequence, although it fails to generate a meaning- 589

ful sentence because of the damage to language 590

modeling capability. 591

8 Conclusions 592

We conduct a comprehensive evaluation of two 593

types of memory editing methods for LLMs across 594

eight diverse benchmarks. Our findings indicate 595

that parameter-modifying ME methods tend to sys- 596

tematically degrade the model performance on gen- 597

eral downstream tasks. In contrast, the parameter- 598

preserving ME method, GRACE, successfully main- 599

tains the LLMs’ capabilities but fails to maintain 600

generalization. We also show that increasing model 601

size, instruction tuning, editing deeper layers, and 602

increasing the batch size of memory editing are 603

beneficial to mitigate the damage of parameter- 604

modifying ME methods to LLMs. Finally, we 605

conduct an in-depth analysis of how parameter- 606

modifying ME methods hurt the general capabilities 607

of LLMs. Overall, our research provides compre- 608

hensive insights into the dynamics of how, when, 609

and why memory editing influences LLMs, offering 610

valuable guidance for future research on memory 611

editing. 612
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9 Limitations613

Despite the contributions, our study still has limi-614

tations. Our experiments on parameter-preserving615

ME methods are not exhaustive. As shown in Figure616

4, there is an observed performance decrease after617

100 edits when editing layers 20/25 with ROME.618

Further experiments are needed to understand these619

long-term effects. Besides, we do not completely620

explain why LLMs can maintain in-context learning621

capabilities after being sequentially edited. These622

limitations highlight areas for future research, under-623

scoring the need for more extensive investigations624

to refine our understanding of the intricate balance625

between knowledge editing and model integrity in626

LLMs.627
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A Editing Methods782

We conduct our experiments on four ME methods.783

The summary of each method is shown in Table784

4. We introduce GRACE and ROME in detail in785

the following sections. The MEMIT method is not786

introduced as it is an improved version of ROME.787

A.1 GRACE788

GRACE (Hartvigsen et al., 2022) is a method de-789

signed for sequential memory editing without al-790

tering original model parameters. The GRACE791

adapter, which is wrapped into a chosen layer of an792

LLM, contains two components: (1) a codebook793

that consists of a set of keys, denoted as K, and794

values, denoted asV, and (2) deferral radii, denoted795

as E, to decide whether the input information flow796

uses the codebook. Specifically,K is a set of cached797

activation ℎ𝑙−1 predicted by layer 𝑙 − 1. V is a set798

of values that are randomly initialized and updated799

using the LLMs’ loss for edits. Each key is corre-800

sponding to a single value. The hyperparameter801

𝜖 ∈ E is a threshold for the similarity between the802

new input and previous edited knowledge. GRACE803

adapter is activated at layer 𝑙 only if this similarity804

is smaller than the radius.805

During editing, GRACE adds keys, correspond-806

ing values, and 𝜖 entries. In the inference process,807

at layer 𝑙, if the similarity of the activation at layer808

𝑙 − 1 and keys are smaller than the corresponding809

radius 𝜖 , the activation of the next layer becomes810

the cached corresponding values. Formally, the811

activation of 𝑙th layer is formulated as follows:812

ℎ𝑙 =

{
GRACE

(
ℎ𝑙−1) if min𝑖

(
𝑑
(
ℎ𝑙−1,K𝑖

) )
< 𝜖𝑖∗ ,

𝑓 𝑙
(
ℎ𝑙−1) otherwise

(1)813

where 𝑖∗ = argmin𝑖
(
𝑑
(
ℎ𝑙−1) ,K𝑖

)
and 𝑓 𝑙

(
ℎ𝑙−1)814

denotes the 𝑙-th layer’s activation of the unedited815

model. 𝜖 𝑙
𝑖

andK𝑙
𝑖
are the deferral radius and key 𝑖 in816

layer 𝑙. GRACE(ℎ𝑙−1) retrieves the corresponding817

value associated with the closest key. 𝑑 (.) is a dis-818

tance function. Following Hartvigsen et al. (2022),819

we use Euclidean distance in our experiments.820

As shown in our experiments in Section 5.2, the821

hyperparameter 𝜖 is a trade-off between general-822

ization and maintaining the broader fundamental823

capabilities of LLMs.824

A.2 ROME and MEMIT825

ROME (Meng et al., 2022a) applies a Locate-then-826

Edit strategy, which first utilizes the causal tracing827

method to ensure that MLP layers in LLMs play a 828

role in recalling factual knowledge, and then edits 829

specific MLP layers to integrate new knowledge 830

into LLMs. Following Meng et al. (2022a), we 831

denote the first layer of the 𝑙th MLP layer as𝑊 (𝑙)
𝑓 𝑐

, 832

and the second layer as𝑊 (𝑙)
𝑝𝑟𝑜 𝑗

. ROME treats𝑊 (𝑙)
𝑝𝑟𝑜 𝑗

833

as a linear associative memory, which claims that 834

any linear operation 𝑊 can work as a key-value 835

store for a set of Key-Value vectors denoted as 𝐾 = 836

[𝑘1 |𝑘2 | . . .] and 𝑉 = [𝑣1 |𝑣2 | . . .], respectively. A 837

new key-value pair (𝑘∗, 𝑣∗) can be injected into𝑊 838

by solving the following equation: 839

minimize ∥𝑊̂𝐾 −𝑉 ∥ such that 𝑊̂ 𝑘∗ = 𝑣∗. (2) 840

This can be solved by setting 𝑊̂ = 𝑊 + 841

Λ
(
𝐶−1𝑘∗

)𝑇 , where 𝑊 is the original matrix, 842

𝐶 = 𝐾𝐾𝑇 is a pre-cached constant, and Λ = 843

(𝑣∗ −𝑊𝑘∗) /
(
𝐶−1𝑘∗

)𝑇
𝑘∗. In ROME’s work, 𝐶 844

works as a constraint method to avoid edited pa- 845

rameters forgetting other unrelated knowledge. It 846

is computed using the hidden states 𝑘 of 100,000 847

random samples from Wikipedia text. We eval- 848

uate whether the constraint method is beneficial 849

to mitigating the damage of ROME to the general 850

capabilities of LLMs in the Appendix D.1. 851

MEMIT (Meng et al., 2022b), which can edit 852

multiple knowledge at a time (e.g. batch editing), 853

is a following work of the ROME (Meng et al., 854

2022a). 855

B Evaluation Datasets 856

To rigorously assess the impact of ME methods 857

on LLMs, we employ a diverse set of benchmarks 858

encompassing essential capabilities, including Pro- 859

fessional Knowledge, Common Sense Knowledge, 860

Logical Reasoning, Reading Understanding, and 861

Multilingual Proficiency. Our evaluation consists 862

of eight benchmarks, the specifics of which are de- 863

lineated in Table 5. We leverage the opencompass 864

codebase (Contributors, 2023), a widely recognized 865

open-source repository for LLMs evaluation. In 866

alignment with their established protocols, we adopt 867

the Perplexity (PPL) mode for the evaluation of the 868

MMLU dataset. For instance, in the MMLU dataset, 869

each item comprises a question and four possible 870

answers. We concatenate the question with each an- 871

swer option to create four distinct input sequences. 872

Subsequently, we compute the Perplexity for each 873

sequence using the edited LLMs under examination. 874

A lower Perplexity score indicates higher model 875
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Method Additional
Training Edit Layer Default Edit Parameter

Preserving Parameters GRACE NO FFN 30𝑡ℎ𝑚𝑙𝑝𝑝𝑟𝑜 𝑗

Modifying Parameters
MEND YES FFN 𝑀𝑜𝑑𝑒𝑙ℎ𝑦𝑝𝑒𝑟 + 29/30/31𝑡ℎ𝑚𝑙𝑝
ROME NO FFN 5𝑡ℎ 𝑚𝑙𝑝𝑝𝑟𝑜 𝑗
MEMIT NO FFN 4/5/6/7/8𝑡ℎ 𝑚𝑙𝑝𝑝𝑟𝑜 𝑗

Table 4: The details of memory editing methods. The edit parameter is in default for all checkpoints. We also
conduct the ablation study on edited layers where we specify the exact layers we edit. In the table, 𝑚𝑙𝑝𝑝𝑟𝑜 𝑗 means
the down project layer of the MLP layer, while 𝑚𝑙𝑝 means we edit the gate/up/down project layers of the MLP layer.

confidence in the corresponding sentence, thereby876

guiding our selection of the answer with the low-877

est score as the definitive prediction. Conversely,878

for the remaining benchmarks, we utilize the Gen-879

eration (GEN) mode for evaluation. Specifically,880

for MATH, BBH, and TyDiQA, we ascertain the881

accuracy of the model’s predictions against the882

ground truth following a post-processing procedure.883

Regarding the programming task MBPP, we em-884

ploy Python’s built-in exec() function to verify the885

error-free execution of the generated code.886

C The Trade-off of the Threshold in887

GRACE888

As shown in Table 6, the generalization increases889

rapidly when we increase the threshold from 1890

to 20. However, the capabilities of multi-lingual891

understanding and code generation are completely892

damaged. One counter-intuitive finding is that the893

performance of the MMLU is not hugely influenced.894

We leave the explanation of this phenomenon as895

future work.896

D Additional Impact of Different Editing897

Settings898

D.1 Efficacy of Constraint Method in ROME899

In our examination of ROME’s constraint method-900

ologies, which incorporate 100,000 Wikidata en-901

tries to limit the influence of edits on unrelated902

information, we analyzed a variant of ROME with-903

out constraints (ROME w/o C). Figure 3 illustrates904

that applying constraints significantly enhances the905

model’s performance in all datasets, validating the906

effectiveness of this strategy. In the absence of907

constraints, a marked deterioration in performance908

is observed, notably in benchmarks like TyDiQA,909

CommonsenseQA, and MBPP. This finding indi-910

cates that unconstrained parameter modification911

can severely impair the model’s efficacy, while the912

application of constraints attenuates this negative913

impact. However, it’s noteworthy that the effec- 914

tiveness of these constraints begins to wane after 915

approximately 20 edits. This observation highlights 916

an emerging need for innovative constraint method- 917

ologies in parameter modification, particularly in 918

the context of sequential memory editing. Devel- 919

oping more robust constraint mechanisms could 920

be vital to maintaining model performance and 921

integrity over a broader range of edits. 922

D.2 Explanation of Editing Deeper Layers 923

In this section, we explain the phenomenon when 924

we edit the 30th layer of LLaMA-2-7B using ROME. 925

As shown in Figure 4, after 14 edits to the 30th layer, 926

the model’s performance intriguingly plummeted 927

to zero. However, a notable recovery occurred after 928

20 edits, with performance gradually increasing 929

to approximately 45% following 50 edits. This 930

unusual pattern can be attributed to the methodology 931

used in our evaluation, where we considered the first 932

token of the output generated by the edited model 933

as the final prediction. Initially, after 14 edits, the 934

model’s language modeling capability appeared to 935

be completely compromised. Yet, after 20 edits, the 936

model consistently predicted the first token as one 937

of the candidates - ’A, B, C, D, or E’ - although it 938

still failed to generate a coherent sequence beyond 939

this. This indicates that while the model retained 940

the capacity to predict the first token accurately, 941

its broader language modeling capabilities were 942

significantly diminished. We delve into a more in- 943

depth analysis and explanation of this phenomenon 944

in Section 7, exploring this observation’s underlying 945

mechanisms and implications. 946

D.3 Layers to Edit in GRACE Method 947

We also conduct experiments to edit different layers 948

of LLaMA-2-7B using the GRACE method. Ac- 949

cording to Table 7, with the same threshold, editing 950

the shallower layer results in more damage to LLMs. 951

This is because, in the shallow layer, the activations 952
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Capability Task Datasets #. Items Metrics Language Mode #. Shots

Professional
Knowledge

High School / University
Professional Examination MMLU 15691 Acc. English PPL 5

Logical
Reasoning

Mathematical Reasoning MATH 5000 Acc. English GEN 4
Comprehensive Reasoning BBH 6511 Acc. English GEN 3

Textual Entailment AX-b 1104 Acc. English GEN 0

Common Sense
Knowledge

Knowledge
Question Answering ComQA 1221 Acc. English GEN 8

Reading
Understanding Reading Understanding C3 1825 Acc. Chinese GEN 0

Multilingual
Proficiency

Multi-Language
Question Answering TyDiQA 6322 F1 13 languages GEN 0

Code
Generation Code Generation MBPP 500 Pass. Code GEN 3

Table 5: The details of downstream evaluation benchmarks.

𝜖 MMLU ComQA TyDiQA MBPP Rel. Gen.

1 46.8 44.1 26.8 15.8 99 30.2
5 46.8 44.1 23.0 15.2 98 45.0
10 46.8 39.7 22.8 15.2 99 52.1
20 46.2 12.1 0.3 0 98 97.3

Table 6: The evaluation results across different thresh-
olds of GRACE. We edit the 20th layer in this experiment,
which is different in Table 1 where we edit the 30th layer.
We denote 𝜖 as the threshold. Rel. and Gen. are reliabil-
ity and generalization respectively, which is evaluated
on the editing dataset.

are not much different for different inputs because953

of the less calculation compared to deeper layers.954

We claim that editing deeper layers in GRACE is a955

better choice than that of shallower layers.956

Layer MMLU ComQA TyDiQA MBPP

10 23.1 8.7 0.1 0
20 46.8 39.7 22.8 16.4
30 46.8 46.4 23.42 17.4

Table 7: The evaluation results across different editing
layers of GRACE. The threshold is set by 10.

E Additional Analysis of the Damage to957

LLMs by ME Methods958

E.1 The Language Modeling Capability959

As described in Section 7.2, we proposed adjusted960

perplexity as a measurement for the language mod-961

eling capability of post-edited LLMs to avoid the962

influence of the generated repetitive sequences. We963

employ Vicuna-7b-v1.5 (Zheng et al., 2023b) to964

measure the Perplexity of the output sequences gen-965

erated by post-edited models edited by ROME to966

Figure 7: Evaluation Performance across three dif-
ferent checkpoints of LLaMA-2-7B. We denote the
ROME method without constraint strategy using 100,000
Wikipedia text as ROME w/o C.

answer questions in the CommonsenseQA dataset. 967

Specifically, denote a generated sequence with 𝑛 968

tokens as 𝑌 = (𝑦1, 𝑦2, ..., 𝑦𝑛), we calculate the 969

perplexity using the following equation: 970

PPL(𝑌 ) = exp

{
−1
𝑡

𝑡∑︁
𝑖

log 𝑝𝜃 (𝑦𝑖 | 𝑦<𝑖)
}

(3) 971

where 𝑝𝜃 (𝑦𝑖 |𝑦<𝑖) is the log-likelihood of the 𝑖th 972

token conditioned on the previous tokens 𝑦<𝑖 . How- 973

ever, such a naive approach is not applicable in our 974

situation because post-edited models tend to gen- 975

erate repetitive tokens, which leads to relatively 976

low perplexity. Therefore, we calculate the n-gram 977

repetitive ratio for each sequence. We first slice 978

the sequence into several n-gram fragments, then 979
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we set the ratio of the number of unique fragments980

over the total number of fragments as the repetitive981

ratio 𝜌. Finally, we calculate the adjusted PPL is982

calculated by:983

Adj_PPL(𝑌 ) = PPL(𝑌 ) × 𝑒1−𝜌 (4)984

E.2 The In-Context Learning Capability985

In-context learning, which concatenates several986

demonstration-label pairs and the demonstration to987

be predicted as input context, is one of the most988

important capabilities of LLMs. Wang et al. (2023)989

explain the success of LLMs in in-context learn-990

ing, that in the shallow layers (near to input), the991

model aggregates information from demonstrations992

to label words, while in deep layers, the model993

extracts and uses this information from previous994

label words to form the final prediction. In this995

section, we utilize the same way proposed by Wang996

et al. (2023) to analyze whether the in-context learn-997

ing capability has been influenced after sequential998

edits. Specifically, we calculate the saliency score999

(Simonyan et al., 2013) for each attention matrix:1000

𝐼𝑙 =

�����∑︁
ℎ

𝐴ℎ,𝑙 ⊙
𝜕L(𝑥)
𝜕𝐴ℎ,𝑙

����� (5)1001

where L(𝑥) is the loss function of the task, 𝐴ℎ,𝑙1002

represents the value of attention matrix of the ℎ-th1003

attention head in the 𝑙-layer and 𝑥 represents the1004

input. 𝐼𝑙 (𝑖, 𝑗) is the significance of the information1005

flow from the 𝑖-th token to 𝑗-th token. We denote1006

𝑝𝑖 as the 𝑖-th label words such as "True" or "False",1007

𝑞 as the target position in which the model predicts1008

labels and 𝑤 as the words in demonstrations. 𝐶1009

represents the number of label words. We have1010

three metrics as shown below:1011

𝑆𝑤𝑝: the saliency score of information flow from1012

text part 𝑤 to label words 𝑝:1013

𝑆𝑤𝑝 =

∑
(𝑖, 𝑗 ) ∈𝐶𝑤𝑝

𝐼𝑙 (𝑖, 𝑗)��𝐶𝑤𝑝

�� ,

𝐶𝑤𝑝 = {(𝑝𝑘 , 𝑗) : 𝑘 ∈ [1, 𝐶], 𝑗 < 𝑝𝑘} .
(6)1014

𝑆𝑝𝑞: the saliency score of information flow from1015

label words 𝑝 to target position 𝑞:1016

𝑆𝑝𝑞 =

∑
(𝑖, 𝑗 ) ∈𝐶𝑝𝑞

𝐼𝑙 (𝑖, 𝑗)��𝐶𝑝𝑞

�� ,

𝐶𝑝𝑞 = {(𝑞, 𝑝𝑘) : 𝑘 ∈ [1, 𝐶]} .
(7)1017

𝑆𝑝𝑞: the saliency of information flow except1018

𝑆𝑤𝑝 and 𝑆𝑝𝑞:1019

𝑆𝑤𝑤 =

∑
(𝑖, 𝑗 ) ∈𝐶𝑤𝑤

𝐼𝑙 (𝑖, 𝑗)
|𝐶𝑤𝑤 |

𝐶𝑤𝑤 = {(𝑖, 𝑗) : 𝑗 < 𝑖} − 𝐶𝑤𝑝 − 𝐶𝑝𝑞

(8) 1020

We utilize SST-2 (Socher et al., 2013) as the 1021

experimental datasets and one-shot setting. Ac- 1022

cording to Figure 8, the original Llama-2-7B model 1023

proves the claim proposed by Wang et al. (2023). 1024

Specifically, in the shallow layer (from layer 0 to 1025

layer 5), the line of 𝑆𝑤𝑝 dominates, which shows 1026

that the information is aggregating from text to 1027

labels. While in the deep layer (from layer 6 to the 1028

last layer), the line of 𝑆𝑝𝑞 dominates, indicating that 1029

the label information is aggregating to the target 1030

position. For the ROME method, editing layer 5 has 1031

a slight influence on layers 6 to 10, which promotes 1032

the information aggregating to label words process. 1033

Because the change is not very obvious, the model 1034

can still maintain an average score of 18.3% accu- 1035

racy according to Table 1. While if we edit layer 1036

15, due to the damage stored in layer 15, in the 1037

deeper layer, there are some fluctuate between 𝑆𝑤𝑝 1038

and 𝑆𝑝𝑞, which shows unstable attention across 1039

those layers, resulting in much worse performance 1040

on CommonsenseQA as shown in Figure 4. The 1041

same thing happens when we edit layers from 4th to 1042

8th using the MEMIT method. It is shown that in 1043

the deeper layer, the information fails to aggregate 1044

form label words to target position, which explains 1045

a worse average score of 3.8% according to Table 1046

1. Finally, editing the 30th layer does not have 1047

much influence on such attention mechanism for 1048

information flow. This means that the perplexity 1049

capability is much different from the in-context 1050

learning capability. Besides, this also partly ex- 1051

plains why editing the 30th layer using ROME gives 1052

a high performance after 100 edits. 1053
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Figure 8: In-context learning saliency score
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