
Thermodynamic Equilibrium of UI Layouts: A
Non-Autoregressive Graph Diffusion Approach to

Frontend Synthesis
Han Li, Rui Zhang, Fen Huang, Yanan Cai, Bin Wang, Ya Xiong

Abstract—While contemporary frontend code generation relies
heavily on autoregressive large language models (LLMs) that lin-
earize the inherently hierarchical and spatial nature of Document
Object Models (DOM), we propose a paradigm shift towards
“Cognitive-Isomorphic UI Diffusion” (CI-Diff). This framework
treats interface synthesis not as sequence prediction, but as
a thermodynamic equilibrium problem within a constrained
semantic manifold. Departing from the standard token-next-
prediction objective, CI-Diff utilizes a discrete, graph-based
diffusion process that iteratively denoises random structural noise
into valid, framework-agnostic component trees. We introduce a
novel “User Experience Energy” function (EUX), which mathe-
matically quantifies the dissonance between visual specifications
and interactive logic, effectively guiding the generation process
via Langevin dynamics. By encoding design mocks and state
management requirements into a unified hyper-graph embedding,
our model ensures that generated event handlers are causally
entangled with the UI topology. Extensive experiments on the
UI-DiffBench dataset demonstrate that CI-Diff achieves state-of-
the-art performance in structural integrity (96.4% valid DOMs)
and accessibility compliance. Furthermore, it exhibits emergent
capabilities in zero-shot cross-framework migration (e.g., React
to Svelte), suggesting that the future of software generation lies
in modeling the topological evolution of interfaces rather than
mere syntactic translation.

Index Terms—Graph Diffusion, Frontend Synthesis, Non-
Autoregressive Generation, Energy-Based Models, Discrete Dif-
fusion, UI/UX Signal Processing.

I. INTRODUCTION

The rapid evolution of Large Language Models (LLMs) has
revolutionized software engineering, with tools like GitHub
Copilot and ChatGPT automating significant portions of code
writing [1], [2]. However, in the domain of Frontend En-
gineering, these autoregressive models face a fundamental
“signal mismatch.” A User Interface (UI) is inherently a
high-dimensional, hierarchical structure (the Document Object
Model or DOM) governed by spatial constraints and asyn-
chronous state logic. In contrast, LLMs perceive code as a
flat, 1D sequence of tokens.

This linearization leads to two critical failure modes in
generated frontend code:

1) Topological Hallucination: The model generates valid
syntax but invalid structures, such as closing tags for
elements that were never opened, or nesting block-
level elements inside inline elements, violating HTML5
specifications.

2) The “Orphaned Component” Problem: Interactive
elements (e.g., a ”Submit” button) are generated with-

out the corresponding event handlers or state bindings,
creating a visual shell with no functional substance.

We argue that generating a UI should be modeled as a
physical process of finding a stable configuration—a ther-
modynamic equilibrium—rather than a linguistic translation
task. Just as atoms settle into a crystal lattice to minimize
potential energy, UI components should settle into a layout
that minimizes the conflict between visual design and logical
requirements.

In this paper, we introduce Cognitive-Isomorphic UI Dif-
fusion (CI-Diff), a non-autoregressive generative framework.
CI-Diff models the UI as a hyper-graph and employs a discrete
diffusion process to generate the entire component tree in
parallel. By defining a User Experience Energy Function, we
guide the diffusion process to minimize the ”dissonance” in
the interface.

Our contributions are:

• A formulation of frontend synthesis as a discrete graph
diffusion problem, enabling O(T) generation complexity
independent of code length.

• The proposal of the EUX energy function, integrating
structural, visual, and logical constraints into a unified
differentiable metric.

• Empirical evidence showing CI-Diff outperforms GPT-4o
and CodeLlama in structural validity and enables zero-
shot transpilation between React, Vue, and Svelte.

II. RELATED WORK

A. LLMs for Code Generation

State-of-the-art code generation relies on Transformer-based
decoders trained on massive corpora like The Stack [3]. While
effective for algorithmic logic (e.g., Python scripts), they
struggle with markup languages and long-range dependencies
in nested DOM trees due to the vanishing gradient of structural
context in linear attention mechanisms.

B. Graph Neural Networks in SE

Graph Neural Networks (GNNs) have been applied to
code analysis, bug detection, and code completion by treating
the Abstract Syntax Tree (AST) as a graph [6]. However,
most existing GNN approaches are discriminative (classifica-
tion/regression) rather than generative. CI-Diff extends this by
using GNNs within a generative diffusion framework.

C. Discrete Diffusion Models

While Gaussian diffusion models [4] excel in continuous
domains (images, audio), code is discrete. CI-Diff builds upon
Discrete Denoising Diffusion Probabilistic Models (D3PM)
[5], adapting them for the specific constraints of hyper-graph
topology where nodes (components) and edges (relationships)
are discrete categorical variables.

III. METHODOLOGY

A. Hyper-Graph Representation

We represent a UI screen as a heterogeneous hyper-graph
G = (V, E ,X).

• V: Set of nodes representing UI components (e.g., div,
button, input).

• E : Set of directed edges representing the DOM hierarchy
(parent-child) and logical dependencies (event-handler
bindings).

• X: Node feature matrix containing categorical attributes
(tag type, styling classes) and continuous attributes (lay-
out coordinates).

B. Discrete Graph Diffusion Process

1) Forward Process (Corruption): Unlike continuous diffu-
sion which adds Gaussian noise, we employ a transition matrix
Qt to corrupt the discrete graph structure. For a node with
category k ∈ {1, . . . ,K}, the probability of transitioning to
category j at step t is given by:

q(xt|xt−1) = C(xt;Qtxt−1) (1)

where C is the categorical distribution. We define Qt to
gradually shift the distribution towards a uniform distribution
(pure noise) and an absorbing state (mask token). Similarly,
the adjacency matrix At is corrupted by randomly flipping
edges with probability βt.

As t → T , the graph GT becomes an Erdős-Rényi random
graph with random node attributes, representing maximum
thermodynamic entropy.

2) Reverse Process (Denoising): The generative process
learns to reverse this corruption. We train a neural network
ϕθ(Gt, t, C) to predict the clean graph G0 (or the posterior
q(Gt−1|Gt)) given the noisy graph Gt and context C (design
mock/text).

pθ(Gt−1|Gt) ∝ pθ(G0|Gt)q(Gt−1|Gt,G0) (2)

C. Network Architecture: Relational Graph Transformer

The denoising network ϕθ is a Relational Graph Trans-
former. It consists of:

1) Node Embeddings: Mapping component types to latent
vectors.

2) Edge Encoding: Distinct embeddings for structural
edges (DOM tree) and causal edges (Event logic).

3) Self-Attention Layers: Standard multi-head attention
modified with graph bias terms to respect the local
topology.

D. The User Experience (UX) Energy Function

To guide the generation towards valid UIs, we formulate the
denoising objective as minimizing an energy function EUX.
The loss function is:

L = Lrecon + λ∇GEUX(G) (3)

where Lrecon is the standard cross-entropy reconstruction loss,
and EUX is defined as:

EUX = αEstruct + βEvisual + γElogic (4)

1) Structural Energy (Estruct): Ensures the graph forms a
valid tree (single root, no cycles).

Estruct =
∑
v∈V

max(0, indegree(v)− 1) + I(cycles) (5)

2) Visual Energy (Evisual): Measures the alignment between
the predicted layout and the input design constraints. If the
input is a wireframe, we project the graph nodes to 2D boxes
and compute the Intersection over Union (IoU) loss against
the ground truth boxes.

3) Logical Energy (Elogic): This is the novel contribution.
It penalizes ”orphaned” interactive components. Let I ⊂ V be
the set of interactive nodes (buttons, inputs).

Elogic =
∑
v∈I

(
1−max

u∈V
Sim(hv, hu) · I(is handler(u))

)
(6)

This term forces every interactive element v to have high
attention similarity with at least one event handler node u.

IV. EXPERIMENTS

A. Dataset: UI-DiffBench

We constructed a dataset, UI-DiffBench, comprising 50,000
pairs of (Design Mockup, Frontend Code). The code covers
three major frameworks: React, Vue, and Svelte. The data was
parsed into ASTs and converted into the hyper-graph format
described in Section III.

B. Baselines

We compare CI-Diff against:
• GPT-4o: Prompted with ”Generate React code for this

design.”
• CodeLlama-34B-Instruct: Fine-tuned on web develop-

ment data.
• Graph2Code: A GNN-based encoder-decoder (without

diffusion).

C. Metrics

• Tree Edit Distance (TED): Normalized distance between
generated and ground-truth DOM trees.

• Orphan Rate (OR): Percentage of <button> or
<input> tags lacking onClick or onChange at-
tributes.

• Compile Rate (CR): Percentage of generated code that
compiles without syntax errors.

• Inference Latency: Time taken to generate a full page.

D. Quantitative Results

Table I presents the main comparison. CI-Diff significantly
outperforms autoregressive models in structural metrics.

TABLE I
QUANTITATIVE COMPARISON ON UI-DIFFBENCH

Model TED ↓ Orphan Rate ↓ Compile Rate ↑ Latency

GPT-4o 0.18 12.4% 92.0% 4.5s
CodeLlama-34B 0.24 18.9% 85.3% 3.2s
Graph2Code 0.21 15.1% 88.1% 0.8s

CI-Diff (Ours) 0.09 1.2% 98.5% 1.2s

While Graph2Code is faster (single pass), it lacks the
iterative refinement capability of diffusion, leading to lower
quality. CI-Diff offers a balanced trade-off, being 3× faster
than GPT-4o due to parallel decoding while achieving superior
accuracy.

E. Ablation Study

To validate the EUX components, we trained variants of CI-
Diff removing specific energy terms.

TABLE II
ABLATION STUDY OF ENERGY TERMS

Configuration Valid DOM % Orphan Rate

Full CI-Diff 99.1% 1.2%
w/o Elogic 98.8% 14.5%
w/o Estruct 82.3% 2.1%
w/o Evisual 99.0% 1.5%

Removing Elogic causes the Orphan Rate to spike to 14.5%,
confirming that the model relies on this energy term to
entangle UI components with logic. Removing Estruct leads
to many invalid graphs (cycles), proving its necessity for
topological validity.

F. Zero-Shot Cross-Framework Migration

A unique property of CI-Diff is that the denoised graph G0

is an abstract representation. By swapping the deterministic
compiler (AST Transformer), we can generate code for differ-
ent frameworks from the same latent graph.

We tested this by generating a graph for a ”Login Compo-
nent” and compiling it to React, Svelte, and Vue. We measured
the Functional Equivalence (passing the same unit tests).

• React → Svelte: 98% success rate.
• React → Vue: 96% success rate.

In contrast, GPT-4o often fails to translate the state man-
agement paradigm (e.g., React’s ‘useState‘ vs Svelte’s stores)
correctly when prompted to translate code directly.

V. DISCUSSION

The thermodynamic perspective offers a robust theoretical
grounding for UI generation. The diffusion process can be
interpreted as ”annealing” the interface. At high temperatures
(early steps), the layout is fluid and chaotic. As the temperature
drops (later steps), the constraints of EUX force the compo-
nents to lock into a valid, logical configuration.

One limitation is the handling of complex custom anima-
tions, which are hard to encode in a static graph. Future work
will explore dynamic graph diffusion to model temporal UI
transitions.

VI. CONCLUSION

This paper presented CI-Diff, a framework that reimagines
frontend synthesis as a graph diffusion process governed by
thermodynamic principles. By minimizing the User Experi-
ence Energy, we achieve a harmonious balance between visual
structure and interactive logic. Our results demonstrate that
this non-autoregressive approach not only surpasses current
LLMs in code integrity but also paves the way for a universal,
framework-agnostic UI representation. As software interfaces
become increasingly complex, such physics-inspired genera-
tive models offer a scalable path forward.

REFERENCES

[1] T. Brown et al., “Language models are few-shot learners,” in NeurIPS,
2020.

[2] M. Chen et al., “Evaluating large language models trained on code,”
arXiv:2107.03374, 2021.

[3] R. Li et al., “StarCoder: may the source be with you!,”
arXiv:2305.06161, 2023.

[4] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,”
in NeurIPS, 2020.

[5] J. Austin et al., “Structured denoising diffusion models in discrete state-
spaces,” in NeurIPS, 2021.

[6] M. Allamanis et al., “A survey of machine learning for big code and
naturalness,” ACM Computing Surveys, 2018.

