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Abstract

The multiple-try Metropolis (MTM) algorithm is an extension of the Metropolis-
Hastings (MH) algorithm by selecting the proposed state among multiple trials
according to some weight function. Although MTM has gained great popularity
owing to its faster empirical convergence and mixing than the standard MH al-
gorithm, its theoretical mixing property is rarely studied in the literature due to
its complex proposal scheme. We prove that MTM can achieve a mixing time
bound smaller than that of MH by a factor of the number of trials under a general
setting applicable to high-dimensional model selection problems with discrete state
spaces. Our theoretical results motivate a new class of weight functions called
locally balanced weight functions and guide the choice of the number of trials,
which leads to improved performance over standard MTM algorithms. We support
our theoretical results by extensive simulation studies and real data applications
with several Bayesian model selection problems.

1 Introduction

The Markov chain Monte Carlo (MCMC) method has become a powerful and standard tool for
Bayesian posterior computation. In particular, the Metropolis-Hastings (MH) algorithm is widely
employed in many statistical and machine learning models to sample from posterior distributions
with intractable normalizing constants. A prominent usage example of MH is the vast class of
Bayesian model selection problems with discrete-valued high-dimensional parameters, whose pos-
terior probabilities are infeasible to evaluate because the size of model space potentially grows
(super-)exponentially with the number of parameters. Examples of Bayesian model selection prob-
lems and their applications are ubiquitous, including Bayesian variable selection (BVS) [45, and
references therein], stochastic block model (SBM) [20, 34], Bayesian structure learning [10, 15, 29],
change-point detection model [5, 11], spatial clustering models [23, 26, 28], and many others.

Despite the popularity of MCMC algorithms, their convergence rate analysis is often challenging.
Mixing time is a key concept of interest when analyzing the convergence of MCMC, which defines
the number of iterations needed to converge to a stationary distribution within a small total variation
distance [25]. We say a chain is rapidly mixing if the mixing time grows at most polynomially in
some complexity parameters. Mixing time bound has been studied extensively for problems such as
card shuffling [3], random walks on groups [2], graph colorings [21], and the Ising model [14], across
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the fields of probability, physics, and computer science [40]. Although there is a rich literature on
discrete-state-space mixing time analysis in many areas, the focus has been primarily on approximate
counting and random generation, but only recently has research on the MCMC convergence in
the context of statistical model selection begun to emerge. [47] proved rapid mixing of an MH
algorithm in a high-dimensional BVS problem, and [38] improved the bound when a “warm start” is
available. Rapid mixing results of MH algorithms are established for Bayesian community detection
problem with SBM [55] and for learning equivalence class in a high-dimensional Bayesian structure
learning [52]. Recently, locally informed MH algorithms have been developed to incorporate local
information about the target distribution. [48] proposed a locally balanced proposal and proved their
optimality in terms of Peskun ordering [37] for discrete space models without providing mixing time
rate analysis. [54] also proposed an informed MCMC and proved a dimension-free mixing time
bound but only for a BVS problem.

The multiple-try Metropolis (MTM) algorithm [27] is an extension of the MH algorithm, which
uses a weight function to choose the proposed state among randomly sampled trials from a proposal
distribution. The variety of weight functions and the number of trials enrich the algorithm class
but result in a much more complex transition probability than standard MH algorithms, hampering
the theoretical development on the mixing time of MTM. As a result, there is a lack of theoretical
guidance for practitioners on the choices of weight functions and number of trials in MTM and also
the choice between MTM and other MCMC algorithms. Only very recently, [46] considered the
MTM independence sampler (MTM-IS), a special case of MTM where the proposal does not depend
on the current state. They conducted the convergence rate analysis of MTM-IS, which shows it is
less efficient than the simpler approach of repeated Metropolised independent sampling at the same
computational cost, but they did not discuss the choices of weight functions and the number of trials.
As acknowledged in [46], MTM is significantly different from MTM-IS, and its convergence rate is
more challenging to analyze. In this paper, we establish the mixing time bound of MTM for general
model selection problems. Our main contributions are the following:

1) We show that MTM with existing popular choices of weight functions can have mixing issues and
propose a new class of weight functions called locally balanced weight functions.

2) With locally balanced weight functions, we prove that the mixing time bound of the MTM
algorithm is smaller than that of the MH algorithm by a factor of the number of trials N in a
general model selection setting, under some regularity conditions including a rate condition on N .

3) We provide theoretical justification for the counterintuitive phenomenon that an increase in the
number of trials N may not always lead to a proportionate improvement in mixing, and suggest a
theoretically guided algorithm to choose N for practical use.

4) We validate our theoretical findings via extensive simulation studies and real data applications
with various model selection problems: Bayesian variable selection, stochastic block models,
spatial clustering models, and structure learning models.

2 Preliminary

2.1 Notation

For a positive integer m 2 N, let [m] = {1, . . . ,m} and bmc be the largest integer no greater than
m. Let | · | denote the cardinality of a set. Let X = Xp denote a finite state space where |X | grows
in a complexity parameter p 2 N. We use P : X ⇥ X ! [0, 1] to denote the transition probability
matrix of an irreducible, aperiodic and reversible Markov chain. We denote by I an identity matrix.
We call a probability distribution ⇡ on X a stationary distribution or a target distribution of a chain
P if it satisfies

P
z2X ⇡(z)P(z, x) = ⇡(x) for all x 2 X . In Bayesian inference, ⇡ is a posterior

distribution. Let N : X ! 2
X be a set-valued map called a neighborhood relation, which maps a

state to a set of states. We say the neighborhood relation N is symmetric if x0 2 N (x) iff x 2 N (x0
)

for all x 6= x0. We define the random walk proposal matrix as KRW(x, y) = N (x)(y)/|N (x)|
where N (x) denotes the indicator function of N (x). We say K is symmetric if K(x, y) = K(y, x).
We denote a graph by (V,E) where V is the vertex set and E ⇢ V ⇥ V is the set of edges. We say
�(x, y) = (v0, . . . , vm) is an E-path (with length m) from x to y if ei = (vi�1, vi) 2 E for i 2 [m],
v0 = x, vm = y, and all vertices are distinct.
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Algorithm 1: Multiple-try Metropolis (MTM) algorithm with proposal KRW

Input: An initial state x0, a neighborhood relation N , the number of trials N , a weight function
w defined in (1), the number of Markov chain iterations T .

1 for t = 0, . . . , T � 1 do
2 Step 1. Draw y1, . . . , yN uniformly at random from N (xt), and compute w(yj |xt) for

j = 1 . . . , N .
3 Step 2. Select j 2 [N ] with probability proportional to w(yj |xt) and define y = yj .
4 Step 3. Sample x?

1
, . . . , x?

N�1
uniformly at random from N (y) and define

↵ = min

(
1,

w(y |xt) +
P

l2[N ]\{j} w(yl |xt)

w(xt | y) +
P

l2[N�1]
w(x?

l
| y)

)
. (2)

5 Step 4. With probability ↵, accept y and let xt+1 = y; otherwise, let xt+1 = xt.
Output: A set of Markov chain samples {xt}Tt=1

.

2.2 Multiple-try Metropolis algorithm

We present the MTM algorithm [27] on a discrete state space in Algorithm 1. Here N trial states
y1, . . . , yN are first sampled from the proposal KRW(x, ·), and then the proposed state y is selected
among the trials using the weight function

w(y |x) = ⇡(y)KRW(y, x)�(y, x), (1)

where �(y, x) can be any symmetric function that is positive whenever KRW(y, x) > 0. Note that
Algorithm 1 becomes the standard random walk MH algorithm when the number of trials N is one.

There have been efforts to generalize the MTM algorithm [9, 12, 30]. [35] extends the weight
function class by proposing a general form of acceptance probability to achieve the reversibility
of a chain when the weight function does not belong to (1). While one can easily find a weight
function satisfying (1), there is little research on the most appropriate form of weight functions. [27]
investigated some particular class of weight functions and claimed the performance is insensitive
to the choice of weight functions within this class; w(y |x) = ⇡(y) (when KRW is symmetric) and
w(y |x) = ⇡(y)/KRW(x, y) are popular choices in this class [6, 33].

Another important component of the MTM method is the number of trials N . It has been reported
with empirical evidence that increasing N does not necessarily result in a corresponding improvement
in mixing under the random walk proposal [32]. They illustrate a counterintuitive phenomenon that
the acceptance probability for a proposal move to higher probability regions can be extremely low.
As a solution, they suggest randomly selecting N at each iteration. Despite the anecdotal observation
that certain choices of N make the algorithm less efficient, the principled way to choose N is rarely
discussed in the literature.

2.3 Analysis on mixing time via geometric tools

A theoretical foundation for employing MCMC methods to sample from a posterior distribution
on a finite state space is the well-known convergence theorem, which states that an irreducible
and aperiodic Markov chain with a stationary distribution converges to the stationary distribution
regardless of the initial distribution [25, Theorem 4.9]. However, since it is impossible to sim-
ulate a chain infinitely long, our main interest is to analyze how well the chain approximates
the target distribution after a certain number of steps. To this end, we introduce ✏-mixing time
tmix(✏) = maxx2X min

n
t 2 N : kPt

lazy
(x, ·)� ⇡(·)kTV  ✏

o
, where k·kTV is the total variation

(TV) distance, ✏ is a small positive constant, and Plazy = (P+ I)/2 denotes the lazy version of P,
which is introduced merely for theoretical convenience since all eigenvalues of Plazy are non-negative
(the use of lazy Markov chains is standard in mixing time analysis). In words, tmix quantifies the
necessary number of steps for the chain to have a small TV distance from the stationary distribution.
Among several techniques for characterizing the mixing property [8, 18, 25, 42], a path method is
employed to derive our main result [13, 43]. We also refer readers to [25, Section 13.4] and [42,
Section 3] for more details about the path method. Intuitively, the mixing time depends on how
well the states “communicate”, especially among those which have high values of ⇡. In contrast to
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samplers defined on a continuous state space with a Euclidean topology, posterior landscape and
modality on a finite state space are more difficult to envision since it highly depends on how one
defines the neighborhood relation. Given a transition probability matrix P, we define the neighbor-
hood of a state x by N (x) = {x0 2 X \ {x} : P(x, x0

) > 0}, the set of reachable states by one-step
transition from x, and we say x is a mode if ⇡(x) > maxx02N (x) ⇡(x

0
). This specification of the

neighborhood enables us to define a graph (X , E) where E = {(x, x0
) 2 X ⇥X : x0 2 N (x)} is an

(undirected since we have a symmetric neighborhood relation by the reversibility of P) edge set. For
each (x, y) 2 X ⇥ X with x 6= y, we choose only one E-path from x to y and denote it as �(x, y).
A path ensemble is defined as a collection of the paths � = {�(x, y) : x, y 2 X , x 6= y}. A path
ensemble is a “configuration of path network” that helps quantify the quality of the communication
within the state space X . The following proposition, which serves as a base of our main result, gives
a mixing time bound by means of a path ensemble.
Proposition 1 ([43]). For any path ensemble �,

tmix(✏)  2⇢(�)`(�)

"
log(1/✏) + log

⇢
min
x2X

⇡(x)

��1
#
,

where `(�) = maxx,y |�(x, y)| and

⇢(�) = max
(u,v)2E

1

⇡(u)P(u, v)

X

x,y:�(x,y)3(u,v)

⇡(x)⇡(y). (3)

For completeness, we provide a proof of Proposition 1 with a detailed discussion in Appendix A.1.
The quantity ⇢(�) is called the congestion parameter, and `(�) is the length of the longest path in
�. To interpret ⇢(�) and `(�), some terminologies from transportation networks in graph theory are
often useful. Consider ⇡(u)P(u, v) as the capacity of an edge (u, v), and ⇡(x)⇡(y) as the unit flow
of a path �(x, y). Then ⇢(�) quantifies the maximum loading of an edge under the configuration �.
If one edge with a small capacity is traversed by a huge number of paths with a high unit flow, it
results in a constriction. Consider `(�) as the diameter of the configuration �. If the diameter is
extremely large, it causes inefficient communication, especially among the states lying on the margin
of the configuration. If it is possible to design the path system in a way that no edge is overloaded by
paths and no two states are too far apart, then the chain can have a good mixing behavior. One of the
key steps in the proof of the main result is to identify a good path ensemble �

⇤ (see Appendix A.3).

3 Main result

In this section, we prove the rapid mixing of the MTM algorithm for general model selection problems
on a finite model space X , where we assume that there is only one state with the highest posterior
mass, denoted by x⇤. Throughout the section, we may assume that |X | grows with the complexity
parameter p (e.g., the number of variables in BVS), and the posterior distribution ⇡ and other related
objects are implicitly parameterized by p.

3.1 A mixing time bound with locally balanced weight functions

While extending the possible form of weight functions has been the main focus in the literature [33,
35], the choice of weight function is rarely discussed. We introduce a class of weight functions by
using a function h : R>0 ! R>0 that satisfies h(u) = uh(1/u) for all u > 0; such a function h is
called a balancing function [31, 48]. The class of balancing functions is very broad: we can choose an
arbitrary non-negative function h on (0, 1], and then h(u) on u 2 (1,1) is defined by the “balancing
rule”, h(u) = uh(1/u). Typical choices of balancing functions include

p
u, min{1, u}, max{1, u},

u/(u+ 1), and u+ 1. The following proposition states that Algorithm 1 with the proposed weight
function induces a reversible Markov chain with ⇡ as its stationary distribution.
Proposition 2 (Locally balanced weight functions). Suppose that a weight function is defined as

w(y |x) = h

✓
⇡(y)KRW(y, x)

⇡(x)KRW(x, y)

◆
, (4)

where h is a balancing function. Then, a Markov chain PMTM induced by Algorithm 1 has a
stationary distribution ⇡.
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The proof is deferred to Appendix A.2. We call weight functions of the form (4) locally balanced
weight functions; though we only consider random walk proposals in this paper, KRW in Proposition 2
can be replaced by any other proposal matrix. Compared with the popular choice of weight function
in the existing MTM literature such as w(y |x) = ⇡(y), the locally balanced weight function can be
viewed as a transformed and scaled version with respect to the posterior probability at current state x.
For example, if h(u) =

p
u and KRW is symmetric, then w(y |x) =

p
⇡(y)/⇡(x).

Before providing a rigorous mixing time bound of MTM under our new choice of w(y |x), we give an
intuitive explanation for why the existing unscaled weight function may have poor mixing properties.
First, it is reasonable to assume that the true data-generating model, x⇤, will have the largest posterior
probability when the posterior contraction or the model selection consistency holds asymptotically.
Indeed, such results have been established for a variety of model selection problems [47, 52, 55].
On the other hand, a model space X is often endowed with a natural neighborhood relation such
that the degree of “model fit” (measured by goodness of fit and penalization on model size) between
neighboring models tends to have a small difference. This implies that a small modification of a
model may lead to a marginal change in the posterior probability. For example, in a Bayesian variable
selection problem with the number of variables p, the model space can be represented as a set of binary
vectors � 2 {0, 1}p where �j = 1 (resp. �j = 0) indicates j-th variable is included (resp. excluded)
in the model. Let us assume that �⇤ is the true data generating model and has the highest posterior
probability, and define a Hamming distance dH(�, �0) =

P
p

j=1
{�j 6= �0

j
} for �, �0 2 {0, 1}p.

Figure 1: An illustration of the
reason that the weight func-
tion w(y |x) = ⇡(y) may fail.
Each vertical bar represents
the posterior probability on
the corresponding state, and
thin lines connect neighboring
states. The expected value of
the posterior probability of the
neighborhood of �0 (red) is
typically greater than that of
� (blue).

One often defines the neighborhood N (�) as the set of states with
a small Hamming distance to � [19, 47, 54], and models in the
neighborhood tend to have similar posterior probabilities. A state
with a large Hamming distance from �⇤ usually has a small poste-
rior probability because its structure is largely different from the
true data-generating model. Figure 1 depicts such a relationship
between posterior probabilities and structural similarities among the
models. Given that � is the current state, Step 2 of Algorithm 1
tends to propose a neighboring state �0 with a higher posterior prob-
ability, so �0 tends to be closer to �⇤ in Hamming distance, i.e.
dH(�0, �⇤) < dH(�, �⇤). On average, the Hamming distance be-
tween a neighboring state of �0 and �⇤ will be smaller than that
between a neighboring state of � with �⇤. Therefore, the expected
value of posterior probability of a neighboring state of �0 (in the
denominator part in (2), shown in red in Figure 1) will be typically
larger than that of a neighboring state of � (in the numerator part
in (2), shown in blue in Figure 1). If we resort to the unscaled
weight function w(�0 | �) = ⇡(�0), this can cause a significantly
low acceptance probability, especially when the number of trials
N is large (due to the law of large numbers, the acceptance ratio
converges to the ratio of average posterior probabilities of the two
neighborhoods); see also Appendix A.4 for a concrete example. A
locally balanced weight function (4), however, is able to mitigate this
counterintuitive phenomenon by “scaling" the weight function with
respect to the current state. We shall demonstrate the effectiveness
of locally balanced weight functions in the simulation studies. Although the scope of our study is
limited to finite state spaces, employing (4) also improves the algorithm on continuous state spaces.
We provide the relevant discussion in Appendix D.2.

In order for the MTM procedure to efficiently sample states from a high posterior region, it is sensible
to assign a larger weight to those states with a higher posterior probability in the proposal, i.e. Step 2
of Algorithm 1. To this end, we only require h to be non-decreasing. Now we introduce the main
result, which states that the mixing time bound can be improved linearly in the number of trials N for
our locally balanced weighting scheme.
Theorem 1. Let PMTM denote a Markov chain induced by Algorithm 1 with a locally balanced
weight function (4) with some non-decreasing balancing function h. Define

S(x) = {x0 2 N (x) : ⇡(x0
)/⇡(x) > pt1}, (5)

for some constant t1 and s0 = maxx2X |S(x)|. Suppose that the following conditions hold with
p � 2 and t2, t3, t4 � 0 being some constants that satisfy t1 < t2, t3  t4 < t2.
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(i) There exists x0 2 N (x) such that ⇡(x0
)/⇡(x) � pt2 for every x 6= x⇤.

(ii) For any x 2 X , pt3  |N (x)|  pt4 .

(iii) N = o
⇣
min

n
h(p

t2+t3�t4 )

h(pt1+t4�t3 )
, p

t3

s0

o⌘
.

Then, we have the ✏-mixing time of PMTM

tmix(✏) = O

 
1

N
(p�t4 � p�t2)

�1`(�⇤
) log

✓
min
x2X

⇡(x)

◆�1
!
, (6)

where �
⇤ is a path ensemble defined in Appendix A.3.

Remark 1. By the recent result of [53, Lemma 3] based on a refined path argument, we can remove
the term `(�⇤

) from (6) without changing the order of the bound.

Sketch of the proof. The complete proof is deferred to Appendix A.3. The first key step of our proof
is to identify a suitable path ensemble �

⇤ by defining a function g : X ! X such that g(x) has the
highest posterior probability in the neighborhood of the state x. With ⇡ being unimodal and X being
finite, repeated composition of g for any x will always lead to the mode x⇤, that is gm(x) = x⇤ for
some m 2 N, which we utilize to construct �⇤(x, y) for any x, y 2 X , x 6= y. See Appendix A.5 for
an toy example. The other key step is to bound the congestion parameter ⇢(�⇤

) defined in (3). To
this end, we prove that the lower bound of the transition probability P(x, g(x)) gets closer to Np�t4

asymptotically, for any state x 2 X\{x⇤}.

Condition (i) implies that the posterior distribution is unimodal with the peak at the model x⇤. We
emphasize that the unimodality is with respect to the neighborhood relation N and is usually satisfied
with some appropriate choice of a large enough neighborhood. For example, for Bayesian variable
selection, it is shown in [47] that their proposed posterior may not be unimodal if a neighborhood is
defined as a set of models within 1-Hamming distance, but expanding to the 2-Hamming distance
neighborhood satisfies Condition (i) with t2 = 2. Similarly, the community detection problem
considered in [55] and the structure learning problem in [52] satisfy (i) with some positive constant t2
by choosing an appropriate N . Next, Condition (ii) states that the neighborhood size |N (x)| should
neither be too huge nor vary much from state to state. The purpose of this condition is to control
the ratio KRW(y, x)/KRW(x, y) in (4) so that the posterior ratio ⇡(y)/⇡(x) dominates the term.
Last but not least, Condition (iii) implies that the number of trials N should not be arbitrarily large.
This is consistent with the empirical observation of [32] that additional trials do not always result in
better mixing. Condition (iii) also implies that s0 = o(pt3) since N � 1. This seems to be a strong
condition, since the number of neighboring states with a relatively large posterior probability with
respect to the current state can be very large if we consider a state with the smallest posterior that is
surrounded by states with greater posterior. Yet, it is a common practice to restrict the support of
the prior to rule out unrealistic models by imposing some high-dimensional regularity assumptions,
such as sparsity. For example, [47] introduced the parameter of the maximum number of important
covariates in variable selection, and [52] considered the maximum in-degree and out-degree in
structure learning to restrict the model space. In the same context, [55] suggested the use of a feasible
set for the initial partition in the community detection problem. In this regard, we may consider X as
the restricted space so that s0 can be controlled. Most importantly, Condition (iii) provides a key idea
on how to select the number of trials N , which will be discussed in Section 3.2.
Remark 2 (Problem-specific applications). Theorem 1 can be used to prove rapid mixing of the MTM
algorithm for Bayesian variable selection [47] and structure learning [52] with order N improvement
of the mixing bound, given that the choice of N satisfies the condition (iii).
Remark 3 (Computational benefits). Since MTM with N trials requires calculating 2N � 1 weight
functions at each iteration, improving the mixing time bound by the factor of N leads to the same
overall computational complexity as the single-try MH algorithm until the convergence of the Markov
chain. However, compared to the single-try MH with N times longer sequential iterations, the
calculation of N weight functions can be efficiently done in parallel. For example, calculating
multiple weight functions can often be converted into a series of matrix multiplication problems,
and optimized linear algebra libraries such as BLAS [7] can be used to exploit multiple execution
units and pipe-lining. As examples, we outline parallelization strategies for the Bayesian variable
selection (Section 4.1) and stochastic block model (Section 4.2) in Appendix D.1. Indeed, Table 1 in
our simulation study results shows that MTM with moderate choice of N significantly reduces the
wall-clock time until the convergence of the Markov chain.
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3.2 Choice of the number of trials

Motivated by Condition (iii) in Theorem 1, we propose an algorithm to choose the number of trials N
under a general setting applicable to high-dimensional model selection problems. For conciseness, we
shall only focus on illustrating the case when we have balancing function h(u) =

p
u and symmetric

proposals (known t3 = t4) so that Condition (iii) becomes N = o
�
min{p(t2�t1)/2, pt3/s0}

�
,

although the algorithm can be easily generalized to other choices of h and non-symmetric proposals.

Algorithm 2: The choice of the number of trials, when h(u) =
p
u and known t3 = t4.

Input: An initial state x0, neighborhood N , constant  2 (0, 1).
1 Step 1. Calculate log

p
(⇡(yj)/⇡(x0)) for all yj 2 N (x0), j = 1, . . . , |N (x0)|.

2 Step 2. Run k-means algorithm with k=2 on log-ratios {log
p
(⇡(yj)/⇡(x0))} to obtain a

partition, C1 (set of small log-ratios) and C2 (set of big log-ratios).
3 Step 3. Let t̂2 = min C2, t̂1 = max C1 and ŝ0 = |C2|. †

4 while p(t̂2�t̂1)/2 < pt3/ŝ0 do
5 Update C1  C1\{t̂1}, t̂1  max C1 and ŝ0  ŝ0 + 1.

Output: The number of trials N = b(pt3/ŝ0) c.
† If t̂2 < t4, redefine C1, C2 such that t̂1 = max C1  t4 < min C2 = t̂2. If no such C2 exists, set
t̂2 = t4, ŝ0 = 1 and t̂1 = max C1.

Figure 2: An illustration of Algorithm 2.

Algorithm 2 is depicted in Figure 2. In Step 1, the log
probability ratio is calculated for all neighboring states
of the initial state x0. Step 2 identifies two subsets C1
and C2, corresponding to “bad moves” and “good moves”
respectively. In Step 3, motivated by Condition (i), we
set t̂2 = min C2, a lower bound of log probability ra-
tios among good moves. After t2 is fixed, we first set
t̂1 = max C1, ŝ0 = |C2| and gradually decrease t̂1 (so that
ŝ0 increases) until the “crossing” p(t̂2�t̂1)/2 � pt3/ŝ0 hap-
pens. The choice of N = b(pt3/ŝ0) c immediately after
the crossing point approximates the worst-case scenario of
min{p(t2�t1)/2, pt3/s0}, hence providing a conservative
estimate of N . We set  = 0.9 to match with the asymptotic dominance condition (iii).

We run Algorithm 2 only once for an initial state x0. It is based on the insight that for model
selection problems, log probability ratios can often be partitioned into “bad moves” and “good
moves”. Although we considered any x 2 X\{x⇤} in Condition (i), analyzing the initial state x0

is not only computationally simple but also gives a good guess of t2 since as chain proceeds to
the highest posterior state x⇤, the number of good moves and the magnitude of ratios generally
decreases, for example in the Bayesian variable selection problem [54]. Another possible way of
using Algorithm 2 is to re-evaluate N after a certain number of MCMC iterations. We note that
another clustering algorithm can be substituted for the k-means algorithm in Step 2.

4 Simulation studies

In this section, we present the results for two Bayesian model selection problems, BVS and SBM.
We defer the result for spatial clustering models to Appendix B.3 due to the page limit. Throughout
the simulation studies, we use symmetric proposal schemes. We run single-try MH and MTM
with different choices of N 2 {5, 10, 50, 100, 500, 1000, 2000, 5000} and four different choices
of weight functions, one with (unscaled) ordinary weight function word(y |x) = ⇡(y), and three
with the proposed locally balanced weight functions wsqrt(y |x) =

p
⇡(y)/⇡(x), wmin(y |x) =

min{1,⇡(y)/⇡(x)}, and wmax(y |x) = max{1,⇡(y)/⇡(x)}. We consider the scenarios where the
data-generating model x⇤ receives the highest posterior probability to verify our main theoretical
results. Similarly to [54], two performance measures are considered: 1) H = min{t : xt = x⇤}
(hitting iteration): the number of MCMC iterations until the Markov chain (x0, x1, . . . ) hits x⇤, 2)
TH (wall-clock hitting time): the wall-clock time taken until the chain hits x⇤.

7



4.1 Bayesian variable selection (BVS)

Consider a high-dimensional linear model with response vector y 2 Rn and design matrix X 2 Rn⇥p,
where the number of predictors p is much larger than the sample size n. BVS seeks to find the
best subset of predictors, denoted as a binary vector � 2 {0, 1}p described in Section 3.1, using the
sparsity-inducing prior. We adopt the prior introduced by [47]:

Linear model: y = X��� + ✏, ✏ ⇠ N
�
0,��1In

�

Prior on �� and �: �� | �, � ⇠ N
�
0,G��1

(X>
�
X�)

�1
�
, ⇡(�) / 1/�

Sparsity prior: ⇡(�) / p�|�| [|�|  smax] ,

where X� is a submatrix of X consisting of all j-th columns with �j = 1, �� 2 R|�| is the
subvector of � 2 Rp with nonzero coefficients, where |�| =

P
p

j=1
�j . The hyperparameters G ,

 and smax control the weight of prior effect [50], sparsity strength and the maximum model size,
respectively. We sample � from the posterior distribution ⇡(� |y) where other parameters �� and �
are marginalized out; see Appendix B.1 for details. We consider the following random walk proposal:

KRW(�, �0) =

(
1

p N1(�)
(�0) (single flip) if |�| < smax,

1

2p N1(�)
(�0) + 1

2|�|(p�|�|) N2(�)
(�0) (single or double flip) if |�| = smax,

where N1(�) = {�0 : dH(�, �0) = 1} and N2(�) = {�0 = (� [ {j})\{`} : j 62 �, ` 2 �}. With
n = 1000 and p = 5000, we consider different settings of design matrix where each row xi is i.i.d.
sampled from xi ⇠ N(0, Ip) (independent) or xi ⇠ N(0,⌃), ⌃jj0 = exp(�|j � j0|) (dependent).
The response vector y is generated from y ⇠ N(X�, In), with � having only 10 nonzero entries at
the first 10 coordinates: � = SNR

p
(log p)/n(2,�3, 2, 2,�3, 3,�2, 3,�2, 3) where SNR 2 {2, 4}

is a signal-to-noise ratio. For each of the four settings, we simulate 50 replicate datasets. Per each
replicate, algorithms are randomly initialized with state �0 such that �0\�⇤ = ; and dH(�0, �⇤) = 20

which implies H = 20 is the minimum required hitting iteration. All hyperparameter setups, the
number of MCMC iterations, and other details are deferred to Appendix B.1.
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Figure 3: BVS simulation results for independent design and SNR = 4. (Left) Trace plots of
unnormalized log-posterior probability using single-try MH and MTM (N = 10) with square root
weighting function. (Right) Boxplot of H , the number of iterations until hit, against different choices
of weight function and N based on 50 replicates.

Results under independent design with SNR = 4 are summarized in Figure 3. The trace plot shows
that single-try MH reaches the true state �⇤ at around 20,000 iterations, whereas the MTM with
N = 10 reaches the true state �⇤ at around 2,000 iterations, smaller by a factor of 10. The boxplot
confirms our findings that a larger number of trials N is not always desirable, especially when using
the ordinary weight function word. The proposed locally balanced weight functions using three
different choices of h perform much better than word for large N . Especially, the performance of
wmin seems to be robust to the choice of large N in the high SNR case. This can be explained by the
fact that the denominator in (2) is often larger in high SNR data, and the choice of min{1,⇡(y)/⇡(x)}
limits its growth; see also Section 3.1. The choice of N suggested from Algorithm 2 with  = 0.9 is
overall reasonable, which has a median of 349 over 50 datasets. The detailed results for other settings
are available in Appendix B.1.
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4.2 Stochastic block model (SBM)

SBM [20] is a popular generative model of an undirected graph which assumes a block structure of
edge connection probabilities Q to describe community structure. We consider Bayesian SBM [34]
by assigning prior on Q and partition z = (z1, . . . , zp) 2 {1, . . . ,K}p with fixed number of blocks
K, where zi indicates membership label of i-th node. The main goal is to find partition z (up to a
label permutation) that best describes the graph, denoted as an adjacency matrix A 2 {0, 1}p⇥p. We
follow the prior of [55]:

Edge appearance: Aij | Q, z
ind⇠ Bernoulli(Qzizj ), 1  i < j  p

Prior on blockwise probabilities: Quv

iid⇠ Beta(1,2), 1  u  v  K

Prior on partition: ⇡(z) / (z 2 S↵),

with restricted partition space S↵ = {z :
P

p

i=1
(zi = u) 2

⇥
p

↵K
, ↵p
K

⇤
for all u = 1, . . . ,K} for

some ↵ > 0, which excludes partitions whose block sizes differ too much. We sample z from the
posterior ⇡(z |A) where Q is marginalized out; see Appendix B.2 for details. We consider the
following proposal where d̃H is a permutation-invariant Hamming distance [51]:

KRW(z, z0) = 1/(p(K � 1)) N (z)(z
0
), N (z) = {z0 : d̃H(z, z0) = 1} (single flip).

With the number of nodes p = 1000, we consider two different settings of the blocks K 2 {2, 5}
with true partition z⇤ = (1, . . . , 1, · · · ,K, . . . ,K) being balanced (p/K times each) which ensures
z⇤ 2 S↵. In each setting of K, we generate a graph from the homogeneous SBM [16, 55], where
Quv = a if u = v and Quv = b otherwise. We choose probability pairs (a, b) based on the Chernoff-
Hellinger divergence (CH) [1], defined as CH := p(

p
a�
p
b)2/(K log p) for a, b ⇣ (log p)/p, which

can be interpreted as a signal-to-noise ratio. Our choices are CH ⇡ 2 (weak signal) and CH ⇡ 10

(high signal), both being greater than 1 which is necessary to satisfy posterior consistency [1, 51, 55].
For each of the the four combinations of (K,CH), we simulate 50 replicate datasets. For each
replicate, algorithms are randomly initialized with state z0 such that d̃H(z0, z⇤) = 400 which implies
H = 400 is the minimum required hitting iteration. All hyperparameter setups, the number of
MCMC iterations, and other details are deferred to Appendix B.2.
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Figure 4: (Left) An example graph generated from SBM with p = 100, K = 2, a = 0.32, and
b = 0.02 so that CH ⇡ 2. Node shape (square, circle) denotes the true partition. Node color (blue,
yellow) represents the initial state z0 satisfying d̃H(z0, z⇤) = 40. (Right) Boxplot of H against
different weight functions and N based on 50 replicates when p = 1000,K = 2, and CH ⇡ 2.

Results for K = 2 and CH ⇡ 2 are summarized in Figure 4. The boxplot of H is similar to that of
Figure 3: word quickly deteriorates as N increases, but the locally balanced weight functions mostly
converge with a larger choice of N , although some Markov chains fail to converge due to the low
CH. Especially, now the performance of wmax or wsqrt is slightly better than wmin when N is large.
This can be explained by the fact that in low signal case (CH ⇡ 2), there are few neighboring states
that have high probability ratios. It is important to catch such states to increase the acceptance ratio
(2), and the wmin cannot do this efficiently as it is upper bounded by 1. The choice of N suggested
from Algorithm 2 with  = 0.9 has a median of 15 over 50 datasets. The detailed simulation results
for other settings are available at Appendix B.2.
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Table 1: Summary of TH , median wall-clock time (in seconds) until the Markov chain hit the highest
posterior state, for the previous two examples using the square root weight function over 50 replicates.

N 1 5 10 50 100 500 1000 2000 5000

TH

BVS, indep, SNR= 4 1.30 0.81 0.46 0.11 0.07 0.04 0.05 0.09 0.30

SBM, K = 2, CH ⇡ 2 0.82 0.40 0.35 0.48 0.75 1.49 2.15 3.78 9.30

Finally, Table 1 provides the summary of wall-clock hitting time TH for the previous two examples,
which shows the clear computational benefit of MTM over the single-try MH thanks to the parallelism.
As N increases, computation becomes more demanding compared to the decreasing rate of H , so the
optimal choice of N with respect to TH is often less than the minimizer of H .

Spatial clustering models and additional information. In Appendix B.3, we present simulation
study results with spatial clustering models where the key findings align with those from BVS and
SBM. In Appendix B.4, we also analyze the behavior of MTM algorithms on multimodal target
distributions. The code is available at https://github.com/changwoo-lee/rapidMTM.

5 Real data applications and discussion

Real data applications. We carry out two real data application analyses to corroborate our findings
beyond the scope of the simulation settings. The performance measures suggested in Section 4, the
hitting iteration H and the corresponding wall-clock hitting time TH , are no longer available for real
data analysis since we cannot identify the true data generating state x⇤. Instead, we evaluate the
performance based on the acceptance rate and the number of unique states visited. Both real data
analyses confirm our theory: the performance deteriorates significantly as the number of trials N
grows when using word, but it does not when using wsqrt, wmin, or wmax.

The first real data application is to find a subset of genetic variants from a genome-wide association
study (GWAS) dataset that best explains the cup-to-disk ratio averaged over two eyes, which is used
to assess the risk of glaucoma. We employ BVS model described in Section 4.1, with the number of
samples n = 5418 and the number of gene variants p = 7255 which are selected after the preliminary
screening procedure described in [54, Section 6]. We tabulate the acceptance rate and the number of
unique states visited along the different number of trials N , and also report the posterior inclusion
probabilities of the top 10 genetic variants in Appendix C.1 and E with discussion.

The other application is to learn the underlying directed acyclic graph (DAG) model for the single-cell
RNA dataset on Alzheimer’s disease [22]. We preprocess the dataset as [10, Section 6], which yields
the sample size n = 1666 and 73 genes, and we utilize the DAG model described in [10, Section 2.2],
whose model size is equal to 73! ⇡ 4.5⇥ 10

105. We defer the performance result and other details
(including the log-posterior trace plots for 4 different weight functions) to Appendix C.2.

Discussion and future work. We prove that, under some assumptions, the mixing time bound of
the MTM algorithm is smaller than that of the MH algorithm by a factor of the number of trials.
Motivated by the observation that popular choices of weight function can cause mixing problems, we
propose locally balanced weight functions for which a mixing time bound is proven. We also suggest
a theoretically guided choice of N for practical use. Future research may investigate the mixing time
of other generalizations of MTM such as the case with correlated weight functions. It will also be of
interest to extend MTM and analyze its mixing time to better handle the potential multimodality in
the target distribution, by combining it with techniques such as annealing or tempering [9].
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