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ABSTRACT

In the present work, we propose a federated learning protocol with bi-directional
security guarantees. First, our protocol is Byzantine-robust against malicious
clients. Additionally, it is the first federated learning protocol with a per-round
mean estimation error that is independent of the update size (e.g., the size of the
model being trained). Second, our protocol is secure against a semi-honest server,
as it only reveals sums of the updates. The code for evaluation is provided in the
supplementary material.

1 INTRODUCTION

Federated learning (FL) has drawn considerable attention as a novel distributed learning paradigm
in recent years. In FL, users collaborate to train a model using a centralized server, yet all data is
stored locally to protect users’ privacy. The privacy benefit popularizes FL in a variety of sensi-
tive applications, including Google GBoard, healthcare services, and self-driving cars. However,
vanilla FL’s privacy guarantee is specious and has been demonstrated to be vulnerable to a range of
attacks (Bagdasaryan et al., 2020; Bhagoji et al., 2019; Fang et al., 2019; Nasr et al., 2019; Sun et al.,
2020; Luo et al., 2021; Hu et al., 2021).

We consider two mainstream vulnerabilities in FL. First, the centralized server can infer information
about the local data of the clients by inspecting their updates (Nasr et al., 2019; Luo et al., 2021;
Hu et al., 2021). Second, recent research (Bagdasaryan et al., 2020; Bhagoji et al., 2019; Fang
et al., 2019; Sun et al., 2020) has shown that a small number of clients can behave maliciously in a
large-scale FL system and influence the jointly-trained FL model in a stealthy manner. Indeed, for the
majority of today’s SGD-based FL algorithms (McMahan & Ramage, 2017), the centralized server
averages the local updates to obtain the global update, which is vulnerable to even a single malicious
client. Particularly, a malicious client can craft its update in such a way that it prevents the global
model from converging or leads it to a sub-optimal minimum.

Most prior efforts to improve FL security have focused on one of the two vulnerabilities. At one end
of the spectrum, secure aggregation techniques (Bonawitz et al., 2017; Bell et al., 2020) are designed
to conceal individual client’s updates and reveal only the aggregated global update to a semi-honest
server that attempts to infer the clients’ privacy from their updates. At the other end of the spectrum,
Byzantine-robust FL protocols (Blanchard et al., 2017; Yin et al., 2018; Fu et al., 2019; Pillutla et al.,
2019) are proposed to suppress the influence of malicious clients’ updates.

Orchestrating robust FL estimators (to mitigate malicious clients) with secure aggregation
schemes (to mitigate semi-honest servers) is challenging, as robust estimators require access to
local updates, whereas secure aggregation schemes normally hide them from the server. Conse-
quently, most de facto FL protocols cannot protect both the server and the clients simultaneously,
but must repose total trust in one of them. There are two parallel works (So et al., 2020; He et al.,
2020) toward addressing the challenge through the use of secure multi-party computation (MPC). So
et al. (2020) propose to run multi-party distance-based filtering among clients to remove potentially
malicious updates. This, however, needs clients to be online consistently, which is impractical for
cross-device FL and also incurs significant communication cost. He et al. (2020) propose a two-server
protocol to provide bi-directional protection, but in real-world use scenarios, two non-colluding
servers are uncommon. Due to the lack of universal and effective two-way protection, user trust
in FL systems is significantly eroded, preventing them from being employed in a wide variety of
security-related applications such as home monitoring and autonomous driving.
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In the present work, we propose SHARDFL, a federated learning protocol that provides bidirectional
defense against both a semi-honest server and Byzantine-malicious clients. The main challenge is
to address the incompatibility between robust estimator and secure aggregation. Concretely, robust
estimator requires checking individual updates from clients, whereas secure aggregation hides those
updates from the semi-honest server. To this end, we propose a practical and highly effective solution
to split the clients into shards, where SHARDFL securely aggregates each shard’s update and launches
robust aggregation on updates from different shards.

Furthermore, SHARDFL is the first Byzantine-robust federated mean estimation protocol with
dimension-free error. To date, most Byzantine-robust aggregation protocols suffer from estimation
error proportional to the square root of the dimension of the updates. As a concrete instance, a
three-layer MLP on MNIST comprises more than 50,000 parameters and leads to 223× constants
in the estimation error, let alone large language models like BERT. Draco (Chen et al., 2018),
BULYAN (Mhamdi et al., 2018), and ByzatineSGD (Alistarh et al., 2018) are the only three works
that state to provide dimension-free estimation error. However, Draco is incompatible with FL as it
requires redundant updates from each worker. Bulyan and ByzantineSGD are based on much stronger
assumptions than other contemporary works. As will be discussed in Sec. 2, when the assumptions
are relaxed to the common case, Bulyan and ByzantineSGD’s estimation errors still scale up with
the square root of the model size. SHARDFL overcomes limitations of existing Byzantine-robust FL
protocols by employing and calibrating a well-established robust mean estimator FilterL2 (Steinhardt,
2018) in FL scenarios.

We evaluate SHARDFL under five frequently-launched attacks over two datasets and compare
SHARDFL with five robust estimators. Evaluation results show that SHARDFL constantly achieves
optimal or close-to-optimal performance under all the attacks. We also study how different settings
of shards can influence security guarantees. In summary, we make the following contributions:

• We propose SHARDFL, the first FL protocol featuring principled and practical defense simulta-
neously against a semi-honest server and Byzantine malicious clients. We propose the sharding
scheme to reconcile dimension-free robust estimators and secure aggregation. We also rigorously
prove the robustness and security guarantee of SHARDFL.

• We point out the limitations in existing robust estimators with claimed dimension-free errors.
We reuse and calibrate a well-studied robust mean estimation technique, FilterL2, to achieve
dimension-free estimation error in FL.

• Our evaluation shows that SHARDFL can notably outperform existing robust estimators in the
presence of five popular attacks by always achieving optimal or close-to-optimal performance.

2 RELATED WORK & LIMITATIONS IN EXISTING BYZANTINE-ROBUST
PROTOCOLS

We now review the client-side privacy vulnerabilities and Byzantine-malicious attacks in FL. Existing
defenses and their limitations are also discussed to motivate the present work. Other attacks and
defenses in FL are covered in these comprehensive surveys (Kairouz et al., 2019; Lyu et al., 2020).

Client Privacy Leakage and Mitigation. Inference attacks against centralized learning (Shokri et al.,
2017; Fredrikson et al., 2015) aim to infer the private information of the model training data. Wang
et al. (2019) explore the feasibility of recovering user privacy from a malicious server in FL. Nasr
et al. (2019) show that a malicious server can perform highly accurate membership inference attacks
against clients. To protect the privacy of clients, Bonawitz et al. (2017) propose secure aggregation,
which provides security guarantee against a semi-honest server. Also, by utilizing secure multi-party
computation (MPC), Mohassel & Zhang (2017) present a framework for training a global model
on the clients’ encrypted data between two non-colluding servers. However, these existing defense
mechanisms are based on the assumption of benign clients, which is not often the case in practice.

Byzantine Malicious Clients. Byzantine-robust aggregation has drawn enormous attention over the
past few years due to the emergence of various distributed attacks in FL. Fang et al. (2019) formalize
the attack as an optimization problem and successfully migrate the data poisoning attack to FL.
The proposed attacks even work under Byzantine-robust FL. Sun et al. (2020) manage to launch
data poisoning attacks on the multi-task FL framework. Bhagoji et al. (2019) and Bagdasaryan
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et al. (2020) manage to insert backdoors into the model via local model poisoning or local model
replacement. Xie et al. (2019) propose to segment one backdoor into several parts and insert it into
the global model. Chen et al. (2020) and Zizhan et al. (2020) migrate backdoor attacks to federated
meta-learning and federated reinforcement learning, respectively. Meanwhile, Sun et al. (2019) show
that norm clipping and “weak” differential privacy mitigate backdoor attacks in FL without impairing
overall performance. Wang et al. (2020) refute this claim and illustrate that robustness to backdoors
requires model robustness to adversarial examples, an open problem widely regarded to be difficult.

Byzantine-Robust Protocols. A variety of Byzantine-robust FL protocols are proposed to defend
against malicious clients. Krum (Blanchard et al., 2017) selects and averages the subset of updates
that have a sufficient number of close neighbors. Yin et al. (2018) use robust estimators like trimmed
mean or median to achieve order-optimal statistical error rates under strongly convex assumptions.
Fung et al. (2018) propose a similar robust estimator relying on a robust secure aggregation oracle
based on the geometric median. Yin et al. (2019) propose to use robust mean estimators to defend
against saddle point attacks. Fung et al. (2020) study Sybil attacks in FL and propose a defense based
on the diversity of client updates. Ozdayi et al. (2020) design a defense against backdoor attacks in
FL by adjusting the server-side learning rate. Mhamdi et al. (2018) point out that Krum, trimmed
mean, and median all suffer from O(

√
d) (d is the model size) estimation error and propose a general

framework Bulyan for reducing the error to O(1).

Limitations of Existing Robust Estimators. We point out that the improvement of Bulyan (Mhamdi
et al., 2018) actually comes from its stronger assumption. In particular, Bulyan assumes that the
expectation of the distance between two benign updates is bounded by a constant σ1, while Krum
assumes that the distance is bounded by σ2

√
d. We can easily see that if σ1 = σ2

√
d, Bulyan falls

back to the same order of estimation error as Krum. The same loophole exists in the analysis of
ByzantineSGD (Alistarh et al., 2018). As a result, no FL protocol is known to be equipped with
dimension-free estimation error that can be used to mitigate Byzantine adversaries.

3 PROBLEM SETUP

In this section, we review the general pipeline of FL and introduce the threat model and defense goal.
We use bold lower-case letters (e.g. a,b,c) to denote vectors, and [n] to denote 1 · · ·n.

FL Pipeline. In an FL system, there is one server S and n clients Ci, i ∈ [n]. Each client holds
data samples drawn from some unknown distribution D. Let `(w; z) be the loss function on the
model parameter w ∈ Rd and a data sample z. Let L(w) = Ez∼D[`(w; z)] be the population loss
function. Our goal is to learn the model w such that the population loss function is minimized:
w∗ = arg minw∈W L(w). To learn w∗, the whole system runs a T -round FL protocol. Initially, the
server stores a global model w0. In the tth round, S broadcasts the global model wt−1 to them clients.
The clients then run the local optimizers (e.g., SGD, Adam, RMSprop), compute the difference g(i)t
between the optimized model and the global model, and upload the difference to S . In the tth round,
S takes the average of the differences and updates the global model wt = wt−1 + 1

n

∑n
i=1 g(i)

t .

Threat Model & Defense Goal. We assume that the centralized server S is semi-honest: the server
can launch whatever attacks it wishes, including inference attacks, using only legitimate updates
from the clients as inputs. The server, however, cannot deviate from the protocol for regulatory or
reputational pressure. This makes a semi-honest server highly stealthy. The assumption on the semi-
honest server is consistent with the convention in this line of work (Yang et al., 2019; Bonawitz et al.,
2017; Mohassel & Zhang, 2017). Additionally, we assume that clients are ε-Byzantine malicious,
meaning that at most εn clients are malicious: they can deviate arbitrarily from the protocol and
tamper with their own updates for profitable or even mischief purposes. We also clarify that there is
no collusion between the server and the clients. That is, the server cannot disguise as a client or hire
clients to launch colluded attacks.

The defense objective is two-fold. First, we would like to achieve a dimension-free error for the
mean estimation in each round. Let µ be the true mean of the benign distribution, and the output of a
protocol with contaminated inputs be µ̂. The estimation error is defined as the `2 distance between
the true mean and the estimation ‖µ̂− µ‖2. We also would like to minimize the server’s ability to
infer sensitive information of the clients. Formally speaking, to ensure client-side privacy, we would
like to conceal the client’s individual update within the aggregate of multiple updates.
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4 SHARDFL: ROBUST PRIVACY-PRESERVING FL

The full protocol of SHARDFL will be given Alg. 1, and we first summarize its high-level workflow in
Fig. 1(a): SHARDFL provides bidirectional defense, defending against the semi-honest server through
secure aggregation (marked in red) and malicious clients with the robust mean estimator FilterL2
(marked in blue). Fig. 1(b) formulates FilterL2, the details of which are presented in Sec. 4.1. We
now introduce SHARDFL and formally establish the robustness and security guarantees in Sec. 4.2.

Secure Aggregation
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(b) FilterL2: dimension-free robust mean estimation.
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Algorithm: ShardFL (concise version)

1 . {Hj}j2p: n clients are split into p shards.
2 . ShardedSecureAgg: Defend against semi-honest server.
3 . FilterL2: Defend against malicious clients.

4 ({gHj

t }j2[p]) ShardedSecureAgg ({g(i)
t }i2[n])

5 gt = FilterL2({gHj

t }j2[p])
6 Return gt

Figure 1: High-level overview of SHARDFL and algorithm of FilterL2.

4.1 SHARDFL: BYZANTINE-ROBUST PRIVACY-PRESERVING FL

The complete SHARDFL protocol is presented in Algorithm 1. SHARDFL iteratively executes the
following steps: (1) the server broadcasts the global model to the clients; (2) the clients train the
global model using their local data; (3) clients within the same shard use a secure aggregation protocol
to upload the mean of their updates to the server; (4) the server aggregates the received updates
using robust mean estimation; and (5) the server updates the global model with the aggregated global
update. We highlight steps (3) and (4) newly proposed in SHARDFL.

Algorithm 1: SHARDFL: Robust Privacy-Preserving Sharded FL.
1 for t← [T ] do
2 Server:
3 Split n clients into p shards {Hj}j∈[p]
4 Broadcast {Hj}j∈[p] and the global model wt−1 to all the clients
5 Client:
6 foreach client i ∈ [n] do
7 Locate its own shard j and generate random masks u(j)

ik , k ∈ Hj/i
8 foreach k ∈ Hj/i do Send uik to k

9 Train the local model w(i)
t using wt−1 as initialization

10 g(i)
t = QUANTIZE(w(i)

t − wt−1) +
∑

k 6=i,i∈Hj ,k∈Hj
u(j)
ik −

∑
k 6=i,i∈Hj ,k∈Hj

u(j)
ki

11 Send g(i)
t to the server

12 Server:
13 foreach Hj ∈ {Hj}j∈[p] do gHj

t = 1
|Hj |

∑
k∈Hj

g(k)
t

14 gt = FilterL2({gHj
t }j∈[p])

15 wt = wt−1 + gt

Sharded Secure Aggregation (lines 7–8, 10, 13). Secure aggregation is developed by Bonawitz
et al. (2017) to defend a semi-honest server in FL. Secure aggregation allows the server to obtain
the sum of the clients’ updates but cryptographically conceals individual updates. To begin, each
client samples random values and transmits the values to other clients in the same shard (lines 7–8).
Notably, secure aggregation and cryptographic protocols demand that client updates be integers while
transmitting them via modular operation. Because each client’s model update uses float numbers, we
first quantize before secure aggregation (line 10). After receiving all values from other clients, each
client adds the received values together and subtracts its own to produce a random mask (line 10).
Each client blinds its local update with the random mask and sends the blinded update to the server
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(line 11). The server then aggregates all blinded updates and obtains the plaintext of the summed
update (line 13). All masks cancel out during aggregation, and the server receives the plaintext sum.
Secure aggregation ensures client privacy by hiding each client in the aggregation of other clients.

Note that in our threat model, vanilla secure aggregation is insufficient since it provides no protection
for the server. Due to the total concealment of the individual updates, the server is unable to identify
the malicious clients even after detecting the attack. To address the issue, we, therefore, propose that
clients are partitioned into multiple shards (lines 7–8) and secure aggregation be performed within
each shard. The size of the shards is a trade-off between server and client protection. The smaller
the shard size, the more information the server reveals, making it easier to defend against Byzantine
malicious clients and harder to combat the semi-honest server. The trade-off is elaborated in Sec. 4.2.

Robust Mean Estimation (line 14). The fundamental step of Byzantine-robust FL is to estimate the
true mean of the benign updates as accurately as possible, even when some malicious clients are
present. Averaging, the most widely used aggregator, has been shown to be vulnerable to even a
single malicious client. However, existing works in this field (e.g., Krum (Blanchard et al., 2017)
and Bulyan (Mhamdi et al., 2018)) suffer from a dimension-dependent estimation error. Note that
such dimension-dependent error can impose an intolerably high cost even when training a three-layer
MLP on MNIST, let alone more complex tasks and models such as VGG16 or ResNet50.

SHARDFL, in particular, incorporates a well-known robust mean estimator: FilterL2 (Steinhardt,
2018). We formulate FilterL2 in Alg. 2. FilterL2 assigns each client’s update a weight and iteratively
updates the weights until the weights for malicious clients’ updates are sufficiently small. FilterL2
provides a dimension-free error rate that is formally presented as follows.
Theorem 1 (Steinhardt (2018)). Let D be the honest dataset and D∗ be the contaminated version
of D by inserting malicious samples. Suppose that |D∗| < |D|/(1 − ε), and further suppose that
MEAN[D] = µ and ‖COV[D]‖op ≤ σ2. Then, given D∗, Algorithm 2 outputs µ̂ s.t. ‖µ̂ − µ‖2 =
O(σ
√
ε) using POLY(n, d) time, where ε is the fraction of malicious data and ε < 1

2 .

Although Algorithm 2 runs in polynomial time, the per-round time complexity is O(nd2) if imple-
mented with power iteration. Given d is large, the running time is still quite expensive in practice.
To address the problem, we divide the update vectors into k sections and apply the robust estimator
to each section. The acceleration scheme reduces the per-round running time to O(nd2/k), but
increases the estimation error to O(σ

√
εk). For instance, if we take k =

√
d, the per-round running

time becomes O(nd
√
d), while the estimation error increases to O(σ

4
√
ε2d). Despite the tradeoff for

acceleration, FilterL2 maintains the known optimal estimation error and outperforms other robust FL
protocols by several orders of magnitude, as shown in Sec. 5.

4.2 ROBUSTNESS & SECURITY ANALYSIS

In this section, we rigorously prove the security and robustness guarantee of SHARDFL.

Security Guarantee. We first give the security guarantee of SHARDFL as follows. Intuitively, the
centralized server learns nothing more about the clients than the averaged updates from the shards.
Thus, each client’s update is hidden by the rest clients in its shard.
Corollary 1 (Security against semi-honest server). Let Π be an instantiation of SHARDFL, there ex-
ists a PPT (probabilistic polynomial Turing machine) simulator SIM which can only see the averaged
updates from the shards. For all clients C, the output of SIM is computationally indistinguishable
from the view of that real server ΠC in that execution, i.e., ΠC ≈ SIM({gHj

t }j∈[p]).

Proof for Corollary 1. The transcript of the server is the updates from the sharded clients {gHj

t }j∈[p].
Hence, Corollary 1 is equivalent to the following lemma since the SIM can split the aggregated updates
into several random shards which is computationally indistinguishable from the true transcript.

Lemma 1 (Lemma 6.1 in (Bonawitz et al., 2017)). Given any shard Hk formed by a set of clients
Ck, the parameter size d, the group size q, and the updates g(i) where ∀i ∈ Ck, g(i) ∈ Zdq , we have

{{uij
$← Zd

q}i<j , uij := −uji ∀ i, j ∈ Ck, i > j : {g(i) +
∑

j∈Ck/i

uij (mod q)}i∈Ck}

≡{{vi
$← Zd

q}i∈Ck s.t.
∑
i∈Ck

vi =
∑
i∈Ck

g(i) (mod q) : {vi}i∈Ck}
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, where uij is the random mask shared between client i and j, $← donates uniformly sampling from
some field, and ≡ denotes that the distributions are identical.

Lemma 1 illustrates that the distribution of updates with random masks added is identical to uniformly
sampling from Zdq . Thus, individual clients’ updates are securely concealed behind the random masks
added by secure aggregation, and a semi-honest server can infer zero information about individual
clients from the aggregated updates alone. In the following, we prove Lemma 1 via induction on n,
where n is the size of the clients set Ck, n = |Ck|.
Base Case: When n = 2, assume Ck = {i, j}, i < j, and

∑
i∈Ck

g(i) (mod q) = c, c is a constant.
The first elements of two distributions are g(i) + uij (mod q) and vi, respectively, both of which are
uniformly random sampled from Zdq . The second elements are g(j) + uji (mod q) = c− (g(i) + uij)
(mod q) and vj = c− vi (mod q), respectively, which are the sum c minus the corresponding first
elements. As a result, the distributions are identical.

Inductive Hypothesis: When n = k, the lemma holds.

Inductive Step: According to the inductive hypothesis, the left and right distributions of the first
k clients are indistinguishable. We follow the protocol to generate the left transcript when the
(k + 1)th client is added to the shard. To deal with the right-hand-side transcript, we first add the
same randomness as for the left-hand-side to the first k updates and then subtract them from the total
sum to obtain the (k + 1)th update. It’s easy to prove that the first k updates on both sides follow the
same uniformly random distribution, and that the (k + 1)th update is the difference between the total
sum and the sum of the first k updates. Hence, the left and right transcripts are indistinguishable.

In case the readers are not familiar with the simulation proof technique, please refer to Lindell (2017)
for more information about simulation-based security proof.

Robustness Guarantee. We now give the formal robustness guarantee of SHARDFL. The proof
involves a trivial application of Theorem 1 so we omit it here.
Corollary 2 (Robustness against Byzantine adversaries). Given the number of clients n, the number
of shards p, and the fraction of corrupted clients η, SHARDFL provides a mean estimation with
dimension-free error as long as ηn < εp, where ε < 1

2 is the tolerance of FilterL2 given in Theorem 1.

Proof for Corollary 2. In the following analysis, we assume that the updates from the shards follow
an i.i.d. distribution.

The fraction of malicious shards is bounded by the worst case where each malicious client is
exclusively assigned to different shards: ε′ ≤ ηn

p ≤ ε, ε < 1
2 . Given the assumption above, we have

satisfied all the requirements in Theorem 1. Hence, SHARDFL provides a mean estimation with
dimension-free error as long as ηn < εp.

Remark. Given the formal security and robustness guarantees, it is clear that SHARDFL enables
easy calibration of the server’s or clients’ protection. SHARDFL, in particular, can tolerate up to bεpc
malicious clients and conceal each honest client’s update in the mean of bnp c updates. As illustrated
in Fig. 1, SHARDFL employs a novel sharding scheme to overcome the incompatibility between a
robust estimator and secure aggregation. The value of p, denoting the number of shards, primarily
affects the robustness and security provided by SHARDFL. If the number of benign shards is less than
the number of malicious shards (i.e., p ≤ 2ηn), FilterL2’s requirement on the fraction of malicious
shards ε < 1

2 may not hold. That is, SHARDFL may not exclude malicious shards if p is insufficiently
large. However, if p is too large, implying that the number of clients in each shard is small, the
semi-honest server is more likely to infer the clients’ private updates from the aggregations of the
shards. In practice, p should be determined by the total number of clients, the desired level of security
and robustness, and the nature of the FL task. See evaluation in Fig. 4 for various numbers of shards.

Attentive readers might notice that the robustness tolerance is lower than when there is no sharding.
We argue that it is an almost unavoidable cost because if we can have the same robustness tolerance
as the no-sharding case, then we can design a robust estimator for partially aggregated samples with
the same tolerance. As the latter problem is unsolved, we deem it extremely challenging to further
increase the tolerance in our scenario.
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5 EVALUATION

This section empirically explores the following questions: (Q1) Does FilterL2 outperform other
aggregators when used alone? (Q2) Does SHARDFL outperform other robust FL protocols augmented
with sharded secure aggregation? (Q3) How does the shard size affect the performance of SHARDFL?

Attacks. The first and second attacks are the model poisoning attacks (Fang et al., 2019). Model
poisoning attacks aim to raise the error rate of the converged model even facing Byzantine-robust
protocols. In these attacks, malicious clients search for poisoning updates by solving optimization
problems. We employ two of their proposed attacks targeting Krum and Trimmed Mean. These two
attacks are referred to as Krum Attack (KA) and Trimmed Mean Attack (TMA).

The third attack we consider is a backdoor attack from (Bhagoji et al., 2019). The attack aims to
inject a backdoor functionality while preserving high accuracy on the validation set. Similarly, the
search for the attack gradient is formalized as an optimization problem, and the authors modify the
objective function using stealth metrics to make the attack gradient hard to detect. We refer to this
attack as Model Poisoning Attack (MPA).

The fourth attack is also a backdoor attack proposed by (Bagdasaryan et al., 2020). In this attack, the
adversary locally trains a model using a backdoor and then attempts to replace the global model with
the local model by uploading the difference between the target and global models. We refer to the
attack as Model Replacement Attack (MRA).

The fifth attack is a distributed backdoor attack (DBA) (Xie et al., 2019), in which the attacker
manipulates updates of several clients to insert a backdoor into the global model collaboratively.

Clarification on Targeted Attacks for FilterL2. Attentive readers might notice that the first and
second attacks are designed specifically for Krum and TrimmedMean, and wonder whether it is
possible to construct an attack particularly for FilterL2. We argue that designing such an attack using
the same idea from Fang et al. (2019) is not possible, as the optimization problem becomes intractable
when FilterL2 is plugged in. Due to the theoretically stronger robustness, we assume that it is very
challenging to design targeted attacks for FilterL2 like Krum or Trimmed Mean. We leave it as an
important future direction to design such an attack or rigorously prove its impossibility.

Experimental Setup. We selected two datasets, MNIST (LeCun et al., 2010) and FashionM-
NIST (Xiao et al., 2017), to evaluate SHARDFL. We also chose three other Byzantine-robust FL
protocols as baselines: (1) Krum (Blanchard et al., 2017); (2) Trimmed Mean (Yin et al., 2018); and
(3) Bulyan (Mhamdi et al., 2018). Note that Bulyan acts as a wrapper for other robust estimators.
Therefore, in the evaluation, we have two versions of Bulyan: Bulyan Krum and Bulyan Trimmed
Mean. We run all the protocols on the two datasets and present the protocols’ performance under
different attacks. Performance is measured differently according to different attack targets. For KA
and TMA, we use model accuracy to quantify attack performance. Increased model accuracy indi-
cates increased robustness. For MPA, MRA, and DBA, we assess the percentage of the remembered
backdoors to demonstrate the attack performance. The fewer backdoors remembered, the more robust
the estimator is. Please refer to Appendix A for details on model architecture, quantization, and
hyper-parameters.

All the experiments were conducted on a Ubuntu16.04 LTS server with eight Geforce GTX 1080 Ti.
Please refer to the codebase in the supplementary material for further implementation details.

5.1 EVALUATION RESULTS

In this section, we present the evaluation results. We first show that FilterL2 outperforms other robust
aggregators when used alone. Then, we run complete SHARDFL with sharding, and the results show
that SHARDFL consistently achieves optimal or close-to-optimal performance under different attacks.
Last, we discuss the effect of the shard size on performance and privacy.

FilterL2 Performance without Sharding. To answer question Q1, we evaluated six aggregators
using MNIST and FashionMNIST as shown in Fig. 2. We ran the protocols with 20 clients, and 5 of
them were malicious under attacks.

Fig. 2 reports promising results that FilterL2 achieves optimal performance among all 6 aggregators.
For MNIST, under KA and TMA, FilterL2 separately achieves 96.85% and 96.15% accuracy within
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(a) MNIST w/o attack.
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(b) MNIST under KA.

0 5 10 15 20 25 30
0

20

40

60

80

100

# Epoch

M
od

el
A

cc
ur

ac
y

(%
)

(c) MNIST under TMA.

0 5 10 15 20 25 30

0

20

40

60

80

100

# Epoch

A
tta

ck
Su

cc
es

s
R

at
e

(%
)

(d) MNIST under MPA.
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(e) MNIST under MRA.
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(f) MNIST under DBA.
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(g) FashionMNIST w/o attack.
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(h) FashionMNIST under KA.
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(i) FashionMNIST under TMA.

0 5 10 15 20 25 30

20

40

60

80

100

# Epoch

A
tta

ck
Su

cc
es

s
R

at
e

(%
)

(j) FashionMNIST under MPA.
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(k) FashionMNIST under MRA.
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(l) FashionMNIST under DBA.

FILTERL2 AVERAGE KRUM

TRIMMED MEAN BULYAN KRUM BULYAN TRIMMED MEAN

Figure 2: Attack performance under various Byzantine-robust estimators.

30 epochs, respectively, comparable to the non-malicious setting’s 97.48% accuracy. Under MPA,
MRA, and DBA, FilterL2 separately reduces the attack success rate to 0.00%, 17.53%, and 1.62%.
For Fashion-MNIST, under KA and TMA, FilterL2 separately achieves 84.87% and 84.75% accuracy,
slightly better than the non-malicious setting with an accuracy of 84.66%. Under MPA, MRA, and
DBA, FilterL2 successfully suppresses the attack success rates to 20.00%, 14.18%, and 7.38%.
Specifically, FilterL2 is the only aggregator that consistently performs well under all five attacks.

SHARDFL Performance. To answer question Q2, we evaluated six aggregators with sharding on
MNIST and FashionMNIST as shown in Fig. 3. We ran the protocols with 100 clients, and 10 of
them were malicious under attacks. The clients were randomly split into 25 shards. And the clients
inside the same shard performed secure aggregation.

For the experiments without attack, with TMA, or with MPA (Fig. 3a,3c,3d,3g.3i,3j), SHARDFL still
achieves optimal or near-optimal performance. Specifically, SHARDFL achieves 97.19% and 95.79%
accuracy under KA and TMA on MNIST, whereas averaging with sharding achieves 97.28% without
attack. It also suppresses the attack success rates to 10.00%, 10.15%, and 23.32%, respectively, under
MPA, MRA, and DBA. On FashionMNIST, SHARDFL achieves 85.66% and 85.82% under KA and
TMA, respectively, whereas the baseline is 86.59% without attack. Under MPA, MRA, and DBA, the
attack success rates are kept below 10.00%, 11.59%, and 2.91% at the end of training.
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Figure 4: MNIST under TMA with var-
ious number of shards.

Influence of Shard Size. To answer question Q3, we evaluate
the influence of shards number p in Fig. 4, where we launch
the TMA attack against SHARDFL with different ps. When the
number of shards equals the number of clients, the system is
trivially equivalent to FilterL2 without sharding and is capable
of achieving optimal model accuracy. This setting, however,
compromises security, as the semi-honest server has access
to each client’s individual update, and SHARDFL offers no
further security guarantee compared with vanilla FL. Contrarily,
when the number of shards reaches one, the system degrades to
averaging each client’s update. This extreme setup delivers the
highest security but the lowest robustness. When the amount
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(a) MNIST w/o attack.
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(b) MNIST under KA.
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(c) MNIST under TMA.
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(d) MNIST under MPA.

0 5 10 15 20 25 30

20

40

60

80

100

# Epoch

A
tta

ck
Su

cc
es

s
R

at
e

(%
)

(e) MNIST under MRA.
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(f) MNIST under DBA.
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(g) FashionMNIST w/o attack.
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(h) FashionMNIST under KA.
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(i) FashionMNIST under TMA.
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(j) FashionMNIST under MPA.
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(k) FashionMNIST under MRA.
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(l) FashionMNIST under DBA.
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Figure 3: Attack performance under various estimators with sharded secure aggregation.

of shards falls between these two extremes, the model accuracy gradually changes under the TMA
attack, as in Fig. 4. Our empirical finding indicates that p = 25 would be desirable for datasets
like MNIST and FashionMNIST when 10 out of 100 clients are malicious. Holistically, the optimal
choice of p should depend on the total number of clients, the required level of security and robustness,
and also the specific FL task.

6 LIMITATION & CONCLUSION

In this paper, we design and develop SHARDFL, the first robust FL protocol with a dimension-free
per-round mean estimation error. SHARDFL provides bi-directional security guarantees against
both a semi-honest server and Byzantine malicious clients. We propose to use FilterL2 to robustly
aggregate the possibly contaminated updates and to use secure aggregation to protect the client’s
privacy. We reconcile the contradictory components with sharding. The evaluation results show that
SHARDFL consistently achieves the optimal or close-to-optimal performance among five robust FL
protocols. As far as we can see, SHARDFL tackles the two primary privacy concerns in FL systems
simultaneously and shows the potential to further popularize FL in sensitive applications.

We also identify several unsolved challenges in SHARDFL that may motivate future works in
bidirectionally protected FL. For instance, vanilla FilterL2 incurs extra overhead due to its nearly-
quadratic complexity. Although the accelerated FilterL2 partially tackles the issue, it does so at
the expense of the asymptotic estimation error. A promising future direction is to integrate low-
complexity robust mean estimators such as Cheng et al. (2019). However, because Cheng et al.
(2019)’s approach is rather complicated, developing a low-complexity robust mean estimator with
simple intuition is also an intriguing direction. Besides, the number of shards p should be selected
carefully, as discussed in Sec. 4.2. Large p weakens the security guarantee of SHARDFL while small
p degrades its robustness. As shown in our evaluation, p = 25 would be a good choice for the datasets
like MNIST and FashionMNIST with 10 out of 100 malicious clients. However, in practice, it should
depend on the total number of clients, the required level of security and robustness, and the specific
FL task. Another promising future direction is to design a secure FL protocol with higher robustness
threshold. The idea in Diakonikolas et al. (2018) can potentially shed some light on this direction.
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Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances
and open problems in federated learning. arXiv preprint arXiv:1912.04977, 2019.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

Yehuda Lindell. How to Simulate It – A Tutorial on the Simulation Proof Technique, pp. 277–
346. Springer International Publishing, Cham, 2017. ISBN 978-3-319-57048-8. doi: 10.1007/
978-3-319-57048-8 6. URL https://doi.org/10.1007/978-3-319-57048-8_6.

Xinjian Luo, Yuncheng Wu, Xiaokui Xiao, and Beng Chin Ooi. Feature inference attack on model
predictions in vertical federated learning. In 2021 IEEE 37th International Conference on Data
Engineering (ICDE), pp. 181–192. IEEE, 2021.

Lingjuan Lyu, Han Yu, and Qiang Yang. Threats to federated learning: A survey. arXiv preprint
arXiv:2003.02133, 2020.

Brendan McMahan and Daniel Ramage. Federated learning: Collaborative machine learning without
centralized training data. Google Research Blog, 3, 2017.

El Mahdi El Mhamdi, Rachid Guerraoui, and Sébastien Rouault. The hidden vulnerability of
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APPENDIX

A DETAILS OF EVALUATION SETUP

This section reports detailed information regarding model architecture, hyper-parameters, quantiza-
tion, and datasets processing procedures.

The model without attack and under KA, TMA, MPA, and MRA attacks is constructed by two
convolutional layers following two fully connected layers with ReLU as the activation function.
However, the DBA attack cannot be launched successfully in simple models, as simple models are
prone to overfit the injected backdoors. As a result, we use the default model architecture which is
ResNet18 evaluated in the DBA paper Xie et al. (2019). For DBA, we use the default parameters
used in the original paper Xie et al. (2019) and use the multiple-shot attack approach proposed in that
paper to evaluate the attack success rate for all estimators. As for the other experiments, we use a
learning rate 1e− 3 and a batch size 10. We configure the same initial model state. We run 30 epochs
for these experiments. For estimator Trimmed Mean, we set the threshold as 30%, which means that
it can rule out 30% of out-of-distribution updates. For Bulyan that can tolerate f Byzantine workers,
we set f = 4 to satisfy the assumption n ≥ 4f + 3 required by Bulyan, where n is the number
of clients. For FilterL2, we set σ = 1e − 6 and η = 20. All other settings like random seeds are
identical for all attack methods, estimators, and training process to ensure a comparison fair.

The datasets we evaluate are MNIST and FashionMNIST, and we use both training and testing splits
provided by PyTorch. The data is randomly distributed to clients and each client holds the same
number of data samples. We emphasize that for each experiment, we use the same random seed to
split or distribute the dataset for fair comparison. In the experiment evaluating the performance of
FilterL2, we setup 20 clients, and 5 of them are malicious under attacks. In the experiment evaluating
the performance of SHARDFL, we setup 100 clients, and 10 of them are malicious and these clients
are randomly splitted into 25 shards.

As for the quantization, we first set fixed minimum and maximum updates values for clients (e.g.,
r1 and r2), then the clients updates are clipped by the minimum and maximum values r1 and r2.
Then the values in the range of r1 and r2 are discretized into L points. The updates of the clients
are quantized by mapping them to the L points. For attack DBA and MNIST, we set r1 = −1.0,
r2 = 1.0, andL = 1, 000, 000. For attack DBA and FashionMNIST, we set r1 = −1.5, r2 = 1.5, and
L = 1, 000, 000. For other attacks and MNIST, we set r1 = −0.05, r2 = 0.05, and L = 100, 000.
For other attacks and FashionMNIST, we set r1 = −0.5, r2 = 0.5, and L = 100, 000.
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