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Abstract

In tabular prediction tasks, tree-based models combined with automated feature en-
gineering methods often outperform deep learning approaches that rely on learned
representations. While these feature engineering techniques are effective, they
typically depend on a pre-defined search space and primarily use validation scores
for feature selection, thereby missing valuable insights from previous experiments.
To address these limitations, we propose a novel tabular learning framework that
utilizes large language models (LLMs), termed Optimizing Column feature gen-
erator with decision Tree reasoning (OCTree). Our key idea is to leverage the
reasoning capabilities of LLMs to identify effective feature generation rules with-
out manually specifying the search space and provide language-based reasoning
information highlighting past experiments as feedback for iterative rule improve-
ments. We use decision trees to convey this reasoning information, as they can
be easily represented in natural language, effectively providing knowledge from
prior experiments (i.e., the impact of the generated features on performance) to
the LLMs. Our empirical results demonstrate that OCTree consistently enhances
the performance of various prediction models across diverse benchmarks, outper-
forming competing automated feature engineering methods. Code is available at
https://github.com/jaehyun513/OCTree.

1 Introduction

Learning useful representations from raw data is key to the success of deep learning algorithms,
and their effectiveness has been demonstrated across multiple domains, e.g., vision [1, 2, 3, 4] and
language [5, 6]. However, in the tabular domain, deep learning approaches are often perceived as less
effective [7, 8, 9, 10]. For instance, tree-based approaches utilizing raw column features of tabular
data [11, 12] often outperform deep learning models in tabular prediction tasks such as classification
and regression [13, 14, 15]. As a result, practitioners commonly resort to using tree-based methods
coupled with manual feature engineering, such as computing the product of two column features [16].

Generating suitable column features, even with domain knowledge, can be challenging and costly.
For instance, manual validation to identify useful features is infeasible due to the exponentially
many possible combinations to explore [17]. To address this issue, existing feature engineering
methods [17, 18, 19] use additional filtering schemes [20, 21, 22] to evaluate and select useful
features automatically. While these approaches reduce manual effort and improve feature quality,
they still present several challenges. First, practitioners often rely on manually defined search
spaces to generate candidate features due to the inherent ambiguity of what constitutes informative
features [17, 23]. However, this still requires substantial computation for validating candidate features,
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Figure 1: Overview of OCTree. (Step 0) Prompt the LLM to propose a name for the new column.
(Step 1) Generate a rule by prompting the LLM with feedback on previously generated rules and
relevant information for reasoning about the data. (Step 2) Generate a new column feature based on
the proposed rule. (Step 3) Train a prediction model on the new data and compute the validation
score and tree-based reasoning, provided as feedback for iterative improvements. (Step 4) Repeat
steps 1-3 a fixed number of times and select the rule with the best validation score.

particularly as the number of features and the complexity of the search space grow. Furthermore,
they neglect more effective experimental designs, relying solely on validation scores to select good
features, despite the value of past experiment data for improving selection.

Motivated by this, we propose to approach this problem from a novel perspective: optimization to
discover effective generation rules, leveraging the language understanding and reasoning capabilities
of large language models (LLMs). Recent research has demonstrated that LLMs can optimize
various non-differentiable problems using prompts that describe the optimization task in natural
language [24, 25, 26]. This suggests the potential for LLMs to automatically generate and iteratively
refine feature generators without the need for manually specifying the rule space. For example,
the reasoning capabilities of LLMs allow incorporating feedback on their previous outputs into the
process for iterative refinement. Moreover, linguistic contexts, such as column names (e.g., ‘Gender’
and ‘Age’) and categorical values (e.g., ‘Female’ and ‘Male’), could be naturally integrated into the
optimization [27, 28, 29, 30], which is difficult, if not impossible, with conventional methods.

Contributions. In this work, we leverage LLMs to generate novel column features for tabular
prediction tasks, proposing Optimizing Column feature generator with decision Tree reasoning
(OCTree), a generic framework for automated feature generation using LLMs. Figure 1 illustrates an
overview of our framework. Our approach begins by prompting an LLM to propose a name for a novel
column feature based on the task description, such as ‘Trading Volume’ for stock price prediction.
This initial suggestion guides the LLM in exploring and refining the corresponding feature values.
Then, we further leverage the reasoning capability of LLMs to produce a good rule that generates
values for the newly introduced column feature based on the existing ones. Specifically, starting from
an initial rule r0, we let the LLM iteratively improve the current rule rt by using extracted reasonings
d0, d1, . . . , dt and validation scores s0, s1, . . . , st attained by the prediction model as feedback. Here,
dt denotes the language description of a decision tree fitted to the entire dataset, including the new
feature generated by rt. Specifically, we propose using the decision tree reasoning to provide the
LLM with effective knowledge from the past experiments, i.e., the prediction model trained with the
generated features, providing learned knowledge about the entire dataset. This procedure is iterated
for a fixed number of times, after which we select the rule with the highest validation score.

We assess the effectiveness of OCTree on a wide range of real-world datasets (e.g., stock price
and patient mortality prediction) from various sources, including recent Kaggle competitions. Our
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experimental results demonstrate that OCTree consistently enhances the performance of various
prediction models, including gradient-boosted decision trees [11] and deep neural networks [31, 32],
for both classification and regression tasks. We also assess OCTree on datasets where language
descriptions are unavailable, i.e., all feature values and column names are anonymized during
preprocessing. Even on these datasets, OCTree reduces relative prediction errors by an average of
5.0% compared to the best baseline model, i.e., XGBoost on the 19 classification tasks benchmarked
by Grinsztajn et al. [13]. Here, we use the Llama 2 7B model fine-tuned on high-quality dialogue data
to enhance its ability to understand and generate contextually relevant, coherent rules. We also show
that OCTree outperforms recent automatic feature engineering methods, including CAAFE [19] and
OpenFE [17], often using our 7B LLM, even when these methods are combined with significantly
more advanced models like GPT-4. Lastly, we demonstrate that features generated for one type of
model (e.g., a simpler model like XGBoost) can enhance the performance of other model types (e.g.,
more complex models like neural networks). This illustrates a potential approach to scaling the
method for larger, more complex models.

2 Related work

Tabular learning with LLMs. Recent developments in LLMs have encouraged investigation into
their applications to tabular prediction tasks. Dinh et al. [27] and Hegselmann et al. [28] fine-tune
GPT-3 [33] and T0 [34], respectively, by serializing tabular data into natural language. Nam et al.
[35] utilizes unlabeled data expressed in natural language for few-shot semi-supervised tabular
classification tasks via prompting LLMs. More recently, Yan et al. [36] introduced a tabular-specific
tokenization method to pre-train a single language model capable of performing well across multiple
tabular datasets. Instead of using LLMs as prediction models, we explore whether they can effectively
generate useful column features for tabular prediction tasks. Specifically, we propose enhancing
various prediction models by using LLMs as optimizers to generate novel column features.

LLMs as optimizers. Various prompting techniques have demonstrated the use of LLMs for solving
optimization problems. This is achieved by describing optimization problems in natural language
and instructing LLMs to iteratively generate new solutions based on previously found solutions and
their evaluation. In particular, Yang et al. [25] uses LLMs to optimize linear regression, the traveling
salesman problem, and prompt optimization (i.e., refining instructions to improve LLM outputs).
Building on these insights, we leverage LLMs to optimize feature generators for tabular prediction
tasks. Unlike prior work, we incorporate decision tree reasoning as feedback, providing the model
with learned knowledge about the dataset in natural language for more effective optimization.

Automated feature engineering. Automated feature engineering involves generating features from
raw data without human effort to improve the performance on prediction tasks [19]. Various methods
have been developed for this purpose [37, 38, 39], including iterative feature subsampling with
beam search to select informative features [23] and feature boosting and pruning algorithms for
efficient and accurate filtering [17]. More recently, Hollmann et al. [19] introduced a context-aware
feature engineering approach that leverages LLMs to generate semantically meaningful features
based on the description of a given task. Unlike previous approaches, our method leverages the
optimization and reasoning capabilities of LLMs to discover effective feature generation rules without
the need for manually defining a search space. Furthermore, while methods such as CAAFE [19] rely
on language-based context, our approach is applicable to both context-aware and context-agnostic
settings, enabling it to handle a broader range of prediction tasks.

3 Optimizing feature generator with decision tree reasoning

In this section, we introduce a framework for automated tabular feature engineering by leveraging
the language understanding and reasoning capabilities of LLMs. In a nutshell, our approach utilizes
LLMs as optimizers to propose and refine the rules for generating column features. Specifically, we
iteratively improve the rules by guiding the LLMs using (1) the validation performance of previously
proposed rules and (2) decision tree-based reasoning derived from the training data as inputs, enabling
more effective optimization. We begin by framing the feature engineering problem as an optimization
of the rules for generating column features (Section 3.1) and then introduce the core framework,
termed Optimizing Column feature generator with decision Tree reasoning (OCTree), designed to
solve this optimization task (Section 3.2).
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Problem setup. Formally, the goal of tabular prediction tasks is to train a prediction model f : X →
Y , where X is the input space and x ∈ X is an M -dimensional column feature with corresponding
column names C = {c1, . . . , cM}. For example, ‘x1: Female’ and ‘x2: 36’ are values for the
columns ‘c1: Gender’ and ‘c2: Age’, respectively. In classification tasks, y ∈ Y = {0, 1}K
represents the label space with K classes, while in regression tasks, y ∈ Y ⊂ R. We denote by
ctarget the name of the column corresponding to the label y.

3.1 Tabular feature generation as rule generator optimization

We frame tabular feature engineering as the optimization of feature-generating rules, where the rules
define a mapping from the original set of features to a new feature. Our objective is to generate a
one-dimensional column feature, X ′, by optimizing the rule r : X → X ′. Specifically, we aim to
create a novel column feature that improves the performance of the prediction model when trained
with the new feature, f : X ⊕ X ′ → Y . Our optimization problem can be formalized as follows:

min
r

Lf∗(Dval ⊕ r) subject to f∗ = argmin
f

Lf (Dtrain ⊕ r), (1)

where g is the rule generator (i.e., LLM M in our case), r := g(Dtrain) is the rule generated based
on the training dataset Dtrain, and D⊕ r := {xi⊕ r(xi),yi}Ni=1 denotes the dataset augmented with
the new column feature generated. Lf is the objective function for the given prediction task, such
as mean absolute error for regression tasks, evaluated using the model f . In summary, we optimize
the rule r to achieve the best validation score measured on Dval ⊕ r with the model f∗ trained to
minimize the loss on Dtrain ⊕ r.

However, such bi-level optimization is often non-differentiable or computationally demanding, as
it involves computing gradients through the optimization of f∗. Moreover, the rule itself may
involve non-differentiable operations, such as logical conjunctions between categorical features (e.g.,
‘Is a Smoker = Has Fever ∧ Has Difficulty Breathing’ as in Figure 1). One approach to
addressing the issue is to use black-box optimization methods, such as evolutionary strategies [40]
or reinforcement learning [41]. However, these methods also have limitations, including the need
for a manually defined search space, which is complex, as well as the potentially suboptimal use of
valuable feedback from previously proposed solutions that could enhance the optimization process.

To address this issue, we propose leveraging LLMs as optimizers for the tabular feature engineering
problem. Our approach involves iteratively proposing and refining rules by prompting LLMs with
a trajectory of feedback, which includes the history of previously proposed rules, the validation
scores, and the associated reasoning information. Optimization using LLMs [25] has proven to be an
effective tool, particularly for black-box optimization problems, which we show can also be effective
in tabular feature engineering. Furthermore, LLMs can leverage the semantics of column and feature
values for better optimization and provide the flexibility to operate without a pre-defined search space.

3.2 Generating column features with OCTree

We now present the core algorithm. First, we prompt the LLM to propose a name of a new column,
such as ‘Smoking Status’ in Figure 1, and the corresponding rule based on the task description. We
then compute the validation score of the prediction model and extract decision tree reasoning from
the training dataset, initializing the optimization trajectory. This trajectory provides feedback to the
LLM, with the decision tree reasoning component, which effectively conveys the knowledge of past
experiments and captures the quality of previously suggested features. As the optimization process
continues, the trajectory is updated, enabling the LLM to refine and enhance the rule iteratively.

Column name generation. OCTree begins by generating a name of a new column feature,
cnew, through the LLM M. This is done by prompting M with the prompt pcol (see Ap-
pendix A.1), which asks for a new column name that would be useful for predicting the target:
cnew = M(pcol(C, ctarget)). Leveraging its language understanding capabilities, the LLM is able
to generate semantically coherent and relevant column names. For instance, it might suggest using
trading volume as a new feature for predicting stock prices.

Initialize optimization and extract decision tree reasoning. OCTree then generates an initial rule
r0 for deriving a new column feature from the original set of columns C. This is done by prompting
the LLM M with the prompt pinit (see Appendix A.2) to propose a rule for predicting cnew with
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c1, . . . , cM : r0 = M(pinit(C, cnew)). The score s0 for the initial rule is then evaluated with the
prediction model f∗: s0 = Lf∗(Dval ⊕ r0). Additionally, decision tree reasoning d0 is extracted
using CART [42] fitted to the training dataset:

d0 = CART(Dtrain ⊕ r0).

CART is a binary decision tree that recursively splits the data based on criteria such as Gini impurity
to predict the outcome. We employ CART for two main reasons: (i) tree-based models, often
ensembles of simple decision trees like CART, outperform deep learning on many tabular prediction
tasks, and (ii) CART is easily interpretable and can be expressed in natural language. For example, as
illustrated in Figure 1, CART can be expressed using a simple if-else syntax. Intuitively, the decision
tree reasoning extracted by CART provides valuable insights learned from the entire training dataset.
It explicitly highlights the columns that are considered more significant (as nodes in the tree) and the
corresponding values (as thresholds of the nodes) used for prediction.

Optimization with decision tree reasoning. To optimize the rule, we describe the task in natural
language and provide the trajectory Tt = {(si, di, ri)}ti=0, which includes the history of previously
proposed rules, the corresponding scores, and associated reasoning information. We then generate a
new rule rt+1 using the LLM M with the prompt pgen (see Appendix A.3), which asks M to propose
a new rule that is not present in Tt and that would improve on the scores from the previous iterations:
rt+1 = M(pgen(Tt, C, ctarget)). The elements in the optimization trajectory are ordered by the scores,
as LLMs tend to generate suggestions that appear later in the list [25, 43]. Afterward, we append the
new score st+1 = Lf∗(Dval ⊕ rt+1), the decision tree reasoning dt+1 = CART(Dtrain ⊕ rt+1), and
the rule rt+1 to the trajectory: Tt+1 = Tt ∪ {(st+1, dt+1, rt+1)}. The optimization proceeds for a
fixed number of iterations, with the best rule selected based on the highest validation score.
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Figure 2: Generation of multiple features. The
optimization process is repeated to generate multi-
ple column features in sequence.

Generating multiple features. The optimiza-
tion process can be repeated to generate multiple
useful features. For example, after generating
the column ‘Smoking Status’, an additional
column ‘Physical Activity Level’ can be
generated based on the original features and the
newly created ‘Smoking Status’. Formally,
we first generate a new column X ′ = ropt(X ),
where ropt is the optimized rule for generating
the new feature X ′. This results in an augmented
input space, X new = X ⊕X ′. Using the updated
dataset Dnew ⊆ X new × Y , OCTree iteratively generates additional column features. This process
continues, introducing new features in sequence until the validation score no longer improves.

4 Experiments

In this section, we evaluate the effectiveness of OCTree across a range of tabular classification and
regression tasks using diverse datasets. Our findings demonstrate that OCTree consistently improves
the performance of various types of prediction models (Section 4.1 and Section 4.2). Furthermore,
ablation studies confirm the value of the proposed decision tree reasoning in the optimization and
demonstrate that features generated using one type of prediction model can effectively transfer to
others, suggesting an approach to scaling the framework to more complex models (Section 4.3).

Datasets. First, we select real-world datasets with language descriptions of the column features from
diverse sources, including the Disease, Academic, Enefit, and Tesla Stock datasets, recently released
on Kaggle, and the Clinical Trial dataset from the US National Library of Medicine. These prediction
tasks are highly practical and relevant to domains such as healthcare (e.g., diagnostics), academia
(e.g., student dropout prediction), and finance (e.g., stock price forecasting). In addition, to evaluate
OCTree on datasets without language descriptions of the columns, we include the 19 classification
datasets benchmarked by Grinsztajn et al. [13]. When selecting datasets, it is important to consider
the heterogeneous nature of tabular data [44] and ensure coverage of both categorical and numerical
features, as well as both classification and regression tasks. We conduct experiments on this diverse
selection of datasets to evaluate OCTree’s general applicability across various types of tabular data.
Further details on the datasets are provided in Appendix B.
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Table 1: Performance improvement by OCTree on datasets with language descriptions. We
report test error rates (%) for three classification tasks (∗) and mean absolute error (×10−3) for two
regression tasks (†). The lowest errors are highlighted in bold. Values in parentheses indicate the
relative error rate reduction from the baseline. We report the mean error and standard deviation across
three random splits, except for two regression tasks (time series tabular data), which are split by time
index. N/A indicates that the method is not applicable, as HyperFast is a classification model.

Method LLM Tesla† Enefit† Disease∗ Clinical∗ Academic∗

XGBoost [11]

Baseline - 6.61 8.00 28.09±7.9 46.27±5.0 14.15±0.6

OCTree Llama 2 5.56 (15.9%) 8.00 (0.0%) 26.19±7.2 (6.8%) 45.07±4.1 (2.6%) 14.11±0.5 (0.3%)
OCTree GPT-4o 5.48 (17.1%) 7.82 (2.3%) 25.72±6.6 (8.4%) 43.75±4.4 (5.4%) 13.74±0.1 (2.9%)

MLP [31]

Baseline - 7.41 33.53 38.10±3.6 41.77±1.7 14.41±0.8

OCTree Llama 2 5.23 (29.4%) 29.99 (10.6%) 32.86±5.7 (13.7%) 39.80±2.3 (4.7%) 14.26±0.7 (1.0%)
OCTree GPT-4o 5.01 (32.4%) 21.68 (35.3%) 30.95±5.8 (18.8%) 39.25±0.5 (6.0%) 14.22±0.5 (1.3%)

HyperFast [32]

Baseline - N/A N/A 28.57±10.0 43.64±1.1 14.67±0.7

OCTree Llama 2 N/A N/A 28.10±9.2 (1.6%) 41.45±1.7 (5.0%) 14.49±0.5 (1.2%)
OCTree GPT-4o N/A N/A 27.14±3.8 (5.0%) 42.00±1.5 (3.8%) 14.49±0.5 (1.2%)

Baselines. To validate our method, we evaluate it across three types of prediction models. We
first consider XGBoost [11], a highly competitive tree-based model known for its effectiveness in
the tabular domain. Second, we apply our method to multilayer perceptron (MLP; Gorishniy et al.
[31]), the base architecture for deep learning models. Lastly, we show that OCTree improves the
performance of HyperFast [32], a recently introduced model designed for fast classification of tabular
data. Implementation details, including hyperparameter search space, are provided in Appendix C.

Common setup. For all datasets, 60% of the data is used for training, 20% for validation, and 20%
for testing. Following Gorishniy et al. [31], we use learned embeddings for categorical features when
training MLPs, while HyperFast handles categorical features automatically. For all experiments,
we use CART with a maximum depth of 4 to extract decision tree reasoning, provided to the rule
generating LLM in the prompt. Unless noted otherwise, we use the Llama 2 model [45] at the 7B
scale, fine-tuned on UltraChat [46], a dialogue dataset that has been used to develop strong chat
models such as UltraLM [46]. Our findings indicate that open models, even at moderate scales, can
be highly effective, particularly when equipped with strong chat capabilities. Further comparisons
across different types of LLMs are provided in Section 4.2.

4.1 Main results: Context-aware feature engineering

Datasets with language descriptions. We first experiment with datasets where language descriptions
of the columns and categorical feature values are available. In these cases, the LLM generates a
logical rule in natural language, which is then converted into Python code for use in our experiments.
For this task, we utilize both GPT-4o and our Llama 2 model, as the Llama 2 model can be limited by
its relatively short context length on some datasets. See Appendix A.4 for the prompt used.

As shown in Table 1, OCTree consistently enhances the performance of various baseline models. For
instance, when generating the column ‘Trading Volume’ for the Tesla Stock dataset using Llama 2
for XGBoost, the relative error is reduced by 15.9%. OCTree is compatible with arbitrary LLMs,
allowing more advanced models to enhance the quality of generated features further. Specifically,
with GPT-4o, one of the latest LLMs from OpenAI, our method achieves a relative error reduction of
17.1% on the same dataset for XGBoost. We provide results on additional datasets in Table 13.

Comparison with CAAFE. CAAFE [19] also introduces a feature engineering approach that utilizes
LLMs to construct features based on the linguistic context. However, it is important to note that
CAAFE requires explicit language descriptions of the features, which limits its applicability when
such information is unavailable. For example, feature names and values are often obfuscated for
confidentiality, a common practice in the financial and medical domains. In contrast, our method can
be effectively applied to datasets without linguistic descriptions, as demonstrated in Table 3.
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Table 2: Applicability and comparison of automated feature engineering methods. We report
the mean error (%) and standard deviation across the six datasets with language descriptions used in
Tables 1 and 13. The lowest error is highlighted in bold. Values in parentheses indicate the relative
error rate reduction from the baseline model (i.e., XGBoost [11]), while N/I indicates no gain.

Applicability Comparison

Method w/o descriptions w/ descriptions LLM Avg. Err. (%)

Baseline - - - 25.87±2.2

AutoFeat [23] ✓ ✗ - 25.76±2.1 (0.4%)
OpenFE [17] ✓ ✗ - 26.44±1.7 ( N/I )
CAAFE [19] ✗ ✓ GPT-4o 25.43±2.2 (1.7%)

OCTree (Ours) ✓ ✓
Llama 2 25.12±1.9 (2.9%)
GPT-4o 24.53±1.9 (5.2%)

Thus, to compare CAAFE with OCTree, we evaluate both methods on datasets with contextual
information, particularly all of the six classification datasets used in Tables 1 and 13. The results in
Table 2 show that our method significantly outperforms CAAFE with GPT-4o, even when using our
custom Llama 2 model fine-tuned on open dialogue data. Also, conventional feature engineering
methods, such as OpenFE [17], often struggle to generate meaningful features, particularly due to
the difficulty of applying arithmetic operations to categorical features. A key distinction between
CAAFE and OCTree is that our approach generates more semantically meaningful column names,
which serve as a basis for creating high-quality features. Leveraging the LLM’s reasoning and
in-context learning capabilities, we guide the model in effectively navigating the feature space to
generate coherent, relevant rules, using a history of feedback on candidate features and decision tree
reasoning to enhance its understanding of the data. In contrast, CAAFE primarily relies on language
understanding to suggest simple combinations of existing feature. Moreover, CAAFE tends to adopt
a greedy approach, evaluating the validation score for a candidate feature only once and discarding it
if no improvement is observed. We provide further results with case studies in Appendix E.

4.2 Main result: Context-agnostic feature engineering

Datasets without language descriptions. In practice, datasets do not always include clear language
descriptions of the prediction task. For example, feature names and values in financial datasets are
often obfuscated with arbitrary symbols to protect confidentiality [47]. OCTree adapts easily to such
datasets without language descriptions and can generate features using various arithmetic rules. As
shown in our ablations in Section 4.3, this is due to the more effective use of LLMs’ optimization
capabilities with decision tree reasoning that enhances the model’s understanding of the data.

To evaluate datasets without language descriptions, we apply ordinal encoding to categorical features
and normalize all features using a min-max scaler, transforming the original numeric values. We
also use non-descriptive column names, such as C = {‘x1’, ‘x2’, . . . , ‘x5’} for a dataset with M = 5
columns. To initialize the feedback trajectory, we create an initial rule that is the product of the two
columns with the highest importance weights computed using an XGBoost model, e.g., x6 = x1× x5.
As shown in Table 3, our framework enhances baseline models even in the absence of language
descriptions, achieving an average error reduction of approximately 5.0% for both the XGBoost
classifier and MLP. For HyperFast, OCTree also improves the test error on 16 out of 19 datasets.

Table 4: OCTree with Llama 2 variants. We
report the average test error rates (%) and stan-
dard deviations across three random seeds on
the 19 datasets without language descriptions.

Method LLM Size Avg. Err.

XGBoost - - 16.53±0.1

OCTree Llama 2 Chat 7B 16.32±0.1

OCTree Code Llama 7B 15.83±0.2

OCTree Ours 7B 15.71±0.4

Analysis of experiments with various open LLMs.
To evaluate how our method performs with various
types of LLMs, we assess the performance of sev-
eral open LLMs as rule generators. As shown in
Table 4, while all models yield improvements over
the baseline, we find our own model (i.e., Llama 2
fine-tuned on UltraChat) to be particularly effective.
This shows that our framework can be effectively
implemented even with open models at a moderate
scale, especially those with sufficiently strong chat
capabilities. We suspect that this improvement stems
from the enhanced ability of these models to understand and generate contextually relevant and
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Table 3: Performance improvement by OCTree on datasets without language descriptions. We
report test error rates (%) on the 19 classification tasks from Grinsztajn et al. [13]. The lowest error is
in bold. Values in parentheses indicate the relative error rate reduction from the baseline, while N/I
indicates no gain. We report the mean error and standard deviation across the three random splits.

XGBoost MLP HyperFast

Dataset Baseline OCTree (Ours) Baseline OCTree (Ours) Baseline OCTree (Ours)

electricity 8.32±0.0 6.65±0.1 (20.1%) 15.64±0.3 14.82±0.4 ( 5.2%) 15.25±0.5 14.70±0.5 ( 3.6%)
rl 23.61±0.8 19.32±0.4 (18.2%) 32.03±4.2 28.30±1.7 (11.6%) 33.77±1.3 33.50±1.2 ( 0.8%)
compass 22.91±0.5 18.89±0.4 (17.6%) 27.41±1.0 26.78±0.1 ( 2.3%) 25.74±0.6 24.91±1.1 ( 3.2%)
covertype 9.10±0.2 7.96±0.0 (12.5%) 8.73±0.4 8.25±0.3 ( 5.5%) 9.86±1.6 9.21±1.3 ( 6.6%)
phoneme 10.89±0.5 10.15±0.7 ( 6.8%) 12.06±0.8 10.98±0.6 ( 9.8%) 10.55±0.7 10.57±0.9 ( N/I )
kddCup09 19.86±1.1 19.07±1.4 ( 4.0%) 24.30±0.3 24.30±1.6 ( 0.0%) 25.75±0.7 24.46±1.1 ( 5.0%)
pol 1.69±0.2 1.62±0.2 ( 4.0%) 1.37±0.3 1.27±0.3 ( 7.3%) 1.70±0.4 1.55±0.2 ( 8.8%)
Magic 14.25±0.3 13.75±0.4 ( 3.5%) 14.60±0.2 14.50±0.0 ( 0.7%) 14.95±0.2 14.34±0.5 ( 4.1%)
california 9.45±0.6 9.13±1.0 ( 3.4%) 11.91±0.3 11.37±0.1 ( 4.5%) 11.75±0.7 11.02±0.6 ( 6.2%)
house_16H 11.66±0.5 11.32±0.2 ( 3.0%) 13.07±0.2 12.54±0.6 ( 4.1%) 12.77±0.3 12.29±0.4 ( 3.8%)
eye_movements 35.06±0.7 34.17±2.0 ( 2.6%) 40.03±1.2 39.86±1.9 ( 0.4%) 41.33±1.5 40.29±1.7 ( 2.5%)
road-safety 21.14±0.0 20.65±0.1 ( 2.3%) 22.17±0.4 21.87±0.1 ( 1.4%) 24.54±0.3 24.07±0.4 ( 1.9%)
kdd_ipums_la 10.89±1.0 10.69±1.0 ( 1.8%) 13.13±1.3 11.72±1.5 (10.7%) 16.15±0.3 13.55±1.4 (16.1%)
MiniBooNE 5.48±0.2 5.42±0.1 ( 1.2%) 9.69±0.3 7.35±0.2 (24.1%) 6.61±0.4 6.54±0.2 ( 1.1%)
credit 22.02±0.3 21.78±0.3 ( 1.1%) 24.43±0.6 23.23±0.7 ( 4.9%) 25.06±1.1 24.30±1.8 ( 3.0%)
Higgs 27.95±0.7 27.91±0.2 ( 0.1%) 29.43±0.4 28.80±0.2 ( 2.1%) 30.04±0.2 29.73±0.5 ( 1.0%)
jannis 20.61±0.1 20.64±0.1 ( N/I ) 22.28±0.1 22.51±0.1 ( N/I ) 24.29±0.4 23.65±0.3 ( 2.6%)
wine 19.11±3.3 19.18±3.9 ( N/I ) 21.53±3.1 21.59±1.4 ( N/I ) 19.18±2.7 19.31±2.2 ( N/I )
bank-marketing 20.09±0.3 20.31±0.6 ( N/I ) 21.11±0.4 21.09±0.4 ( 0.1%) 21.25±1.0 21.66±0.8 ( N/I )

Table 5: Comparison with automatic feature engineering methods. We report the mean error (%)
and standard deviation across the 22 datasets used in Tables 1 and 3. The lowest error is highlighted
in bold, and the second lowest is underlined. Values in parentheses indicate the relative error rate
reduction from the baseline model. OCTree† refers to our method integrated with other approaches.

Prediction model Baseline AutoFeat OpenFE OCTree (Ours) OCTree† (Ours)

XGBoost 18.30±0.3 18.24±0.3 (1.3%) 17.79±0.2 (2.8%) 17.45±0.5 (4.6%) 16.85±0.3 (7.9%)
MLP 20.88±0.1 20.60±0.5 (1.3%) 20.12±0.5 (3.6%) 19.91±0.4 (4.6%) 19.41±0.5 (7.0%)

coherent rules, resulting in better optimization outcomes. Specifically, as illustrated by the examples
in Appendix F, our model navigates a broader space of features more effectively than the base Llama
2 chat model and demonstrates the ability to utilize built-in Python functions such as ‘abs()’. Code
Llama also demonstrates strong performance due to its training on code data that includes a variety
of arithmetic rules, which is especially useful for generating rules for datasets lacking language
descriptions. Notably, the model can leverage a range of NumPy operations (e.g., ‘np.sin’), allowing
it to produce more mathematically complex features. This suggests that LLMs trained on high-quality
code and dialogue data could serve as even more effective rule generators within our framework.

4.3 Ablations and analysis

Integrating with other automated feature engineering methods. OCTree is complementary to
existing feature engineering methods, allowing for integration in several natural ways. One simple
approach is to first apply OCTree to generate features, followed by the use of other methods to
further refine and augment the feature set. In Table 5, we first compare the standalone performance of
OCTree, demonstrating that it outperforms competing state-of-the-art automated feature engineering
methods (i.e., AutoFeat [23] and OpenFE [17]) for both XGBoost and MLP models. Moreover,
combining OCTree with OpenFE (denoted as OCTree† in Table 5) further boosts performance,
achieving a 7.9% reduction in relative error for XGBoost.

Ablation study on the proposed components. As shown in Table 6, our framework consists of two
essential components: (i) generating new column features (denoted as Gen. Feat. in Table 6), and (ii)
providing explicit decision tree reasoning as feedback (denoted as DT reasoning in Table 6) during
the optimization process. First, note that the rules are sufficiently well-optimized even without an
explicit decision tree provided as feedback; the LLM improves performance based solely on score
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Table 6: Ablation study of the proposed decision tree reasoning. We report the mean error (%)
and standard deviation across three random splits on two datasets with language descriptions (∗) and
two datasets without language descriptions (†). The lowest error is highlighted in bold. Values in
parentheses indicate the relative error rate reduction from the baseline model.

Gen. Feat. DT Reasoning Disease∗ Clinical∗ electricity† kddCup09†

- - 28.09±7.9 46.27±5.0 8.32±0.0 19.86±1.1

✓ ✗ 27.62±8.4 (1.7%) 45.61±4.1 (1.4%) 6.89±0.6 (17.2%) 19.47±1.6 (2.0%)
✓ ✓ 26.19±7.2 (6.8%) 45.07±4.1 (2.6%) 6.65±0.1 (20.1%) 19.07±1.4 (4.0%)

Table 7: Performance improvement through feature transfer. We optimize the feature generation
rule using XGBoost and transfer the generated features to improve MLP and HyperFast (OCTreetrans).
We report the test error rates (%) and standard deviation across three random seeds for two datasets
with language descriptions (∗) and two datasets without (†). The lowest error is in bold, with values
in parentheses indicating the relative error rate reduction from the baseline model. N/I denotes cases
where no improvement was observed.

MLP HyperFast

Dataset Baseline OCTreetrans (Ours) Baseline OCTreetrans (Ours)

Disease∗ 38.10±3.6 35.24±4.4 (7.5%) 28.57±10.0 27.62±5.8 (5.8%)
Clinical∗ 41.77±1.2 42.32±2.3 ( N/I ) 43.64±1.1 42.76±1.8 (2.0%)
electricity† 15.64±0.3 15.03±0.3 (3.9%) 15.37±0.4 14.88±0.2 (3.2%)
kddCup09† 24.30±0.3 23.47±0.5 (3.4%) 25.62±0.7 25.22±0.9 (1.6%)

feedback. However, providing the decision tree as feedback to the LLM can lead to even better
performance. We believe that decision tree reasoning, which highlights important columns and their
threshold values, enables the LLM to understand the data better, resulting in the generation of more
contextually relevant and useful rules. Moreover, decision trees can be easily represented in natural
language using if-else syntax, effectively conveying the information about the data to the LLM.

Transferring generated rules to other prediction models. While we optimize feature generation
rules to improve the performance of a specific prediction model, the generated features can also be
utilized in other models to achieve similar improvements. For example, it would be more efficient
to generate features using XGBoost, which typically trains and evaluates faster than larger deep
neural networks, and then apply these features to more complex models. To assess whether such
feature transfer is feasible within our framework, we first optimize the column generation rules using
XGBoost and then train MLP and HyperFast models with the generated features. As shown in Table 7,
these features significantly improve the performance of both models, demonstrating the effectiveness
of this approach, especially when only limited computational resources are available.

Evaluating the validity of generated features. The rule generator LLM is asked to recommend a
new column feature that is not already present in the dataset. Here, we evaluate whether the LLM
is capable of generating features that are, in fact, valid and relevant to the target task. We perform
this analysis from two perspectives: (i) whether the LLM can identify the most relevant column
feature when provided with multiple candidate columns, and (ii) whether using real-world data, when
available, for the suggested column leads to improved performance of prediction models.

Our method is based on the assumption that sufficiently capable LLMs can understand the relationship
between the target task and column features, enabling them to generate new, relevant features for the
task. To evaluate this assumption, we first examine whether the LLMs can identify the features that are
more relevant to the prediction task. For this experiment, we begin by removing two existing features
from a dataset and then prompt the LLM to rank the two features according to their importance for the
target task. Specifically, we remove ‘Cholesterol Level’ and ‘Cough’ from the original Disease
dataset and then ask the LLM to identify the attribute more relevant to predicting whether a patient
has a disease. Both the GPT-4o and Llama 2 models indicate that ‘Cough’ is more important than
‘Cholesterol Level’. As shown in Table 8, XGBoost achieves a lower error rate when trained with
the ‘Cough’ feature compared to when trained with ‘Cholesterol Level’, which is consistent with
the LLMs’ assessment that the former is more relevant to the task.
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Table 8: LLM identifies important features. We re-
port the mean error (%) and standard deviation across
three random splits on the Disease dataset. Both GPT-
4o and Llama 2 identify the cough feature as more im-
portant, consistent with the accuracy seen in XGBoost
models trained with and without these features.

Column feature Model

Cough Cholesterol XGBoost

✗ ✗ 34.76±0.8

✗ ✓ 33.34±0.8

✓ ✗ 30.00±4.3

✓ ✓ 28.09±7.9
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w/o Age w/ Age
Figure 3: Imputing features with real
data, i.e., Age. We report the mean ac-
curacy (%) across three random splits on
the Clinical dataset using XGBoost.

Building on the LLM’s ability to identify important features for the target task, we further assess
whether the generated columns can be imputed with real-world data to enhance prediction. In this
experiment, we use the Clinical Trial dataset, where the LLM introduced the column ‘Age’ when
prompted to suggest a new column. We then incorporated real-world age data from the US National
Library of Medicine to augment the original dataset. As shown in Figure 3, training on this augmented
data results in a notable improvement, demonstrating that the LLM-generated columns align well
with real-world data. In conclusion, we recommend that practitioners utilize OCTree to either (i)
identify additional column features and collect the corresponding real-world data or (ii) optimize
feature generation rules in the absence of real-world data.

Analysis of the rule optimization process. We analyze how the output rules evolve throughout the
optimization rounds on the electricity dataset. Due to space constraints, we show the first and last five
output rules in Appendix H. In the early stages of optimization, the LLM generates a diverse range
of outputs, indicating an active exploration of potential rules. In contrast, during the later stages,
the LLM focuses on refining the solution space around previously identified rules, making only
minor adjustments. This again demonstrates that with appropriate guidance through the optimization
process, sufficiently capable LLMs can serve as highly effective optimizers.

Handling hallucinations. While LLMs may occasionally suggest suboptimal or semantically
incoherent rules, our method is designed to address these hallucinations. Specifically, we provide
feedback on previously generated rules to guide the LLMs in iteratively improving the rule generation.
This feedback loop helps the LLMs avoid hallucinations that might lead to low validation scores in
subsequent iterations. Empirically, we find that these issues are more common in the early stages
when the LLMs explore the rule space more broadly and in less capable models, e.g., those without
additional training on dialogue or code generation data.

5 Conclusion

In this paper, we propose OCTree, a generic framework that leverages the power of LLMs (e.g.,
reasoning capability) for automatically generating column features for tabular prediction tasks.
We evaluate the effectiveness of OCTree across various prediction tasks and demonstrate that our
method consistently enhances the performance of diverse prediction models, often significantly more
effectively than competing feature engineering methods. As future work, exploring feedback-based
alignment methods, such as reinforcement learning from human feedback, to further enhance LLMs
as rule generators would be an exciting direction to explore.

Limitation. One potential limitation of our work is that evaluating the generated features involves
computing the validation scores of the prediction model, which can be time-consuming if the model
requires extensive training. However, as demonstrated by the results in Table 7, this issue can be
mitigated by first generating features with a simpler prediction model and then transferring those
features to the target model, reducing the overall runtime and computational requirements.
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Appendix: Optimized Feature Generation for Tabular Data via
LLMs with Decision Tree Reasoning

A Prompt examples

A.1 Generation of a new column

In Listing 1, we present the prompt pcol, which instructs the LLM to generate a new column name
cnew. The prompt includes a detailed explanation of each feature column, specifying its type and
values. For convenience, we restricted cnew to be either binary or categorical.

f'''### Your task ###
Your objective is to predict {Objective}. You have access to the following

attributes:↪→
- {Column 1 Name}: (Numerical value of {Column 1 Min} ~ {Column 1 Max})
- {Column 2 Name}: (Boolean)
- {Column 3 Name}: (Categorical value of {Value 1}, {Value 2})
...

To enhance prediction performance, what additional attributes should be
considered? These attributes should be either binary (e.g., 'Yes' or 'No') or
categorical (e.g. 'high', 'low', or 'moderate'). Please propose a new
attribute that is not listed above.

↪→
↪→
↪→

### Answer ###
'''

Listing 1: Prompt for the generation of a new column cnew.

A.2 Rule initialization

In Listing 2, we present the prompt pinit, which instructs the LLM to create an initial rule for
generating a new column cnew. The LLM generates a new column, cnew, by considering the existing
column features in the dataset and the semantic meaning of the name of cnew.

f'''### Your task ###
You have access to the following attributes:
- {Column 1 Name}: (Numerical value of {Column 1 Min} ~ {Column 1 Max})
- {Column 2 Name}: (Boolean)
- {Column 3 Name}: (Categorical value of {Value 1}, {Value 2}, {Value 3})
...

### Question ###
Give a good rule to predict the '{New Column Name}' ({Output Category 1} or

{Output Category 2}) with the attributes listed above.↪→

### Answer ###
'''

Listing 2: Prompt for the rule initialization.

15



A.3 Generation of a rule

In Listing 3, we present the prompt pgen, which instructs the LLM to generate an improved rule
compared to those previously generated. The prompt includes a list of (rule, tree-based reasoning,
score) tuples. Since the score represents the accuracy of the XGBoost classifier, the trajectory is
sorted in ascending order of score. For regression tasks using mean absolute error, the trajectory is
sorted in descending order.

f'''I have some rules to predict {Objective} with attributes listed below.
- {Column 1 Name} (Numerical value of {Column 1 Min} ~ {Column 1 Max}): {Column 1

Feature Description}↪→
- {Column 2 Name} (Boolean): {Column 2 Feature Description}
- {Column 3 Name} (Categorical value of {Value 1}, {Value 2}, {Value 3}): {Column

3 Feature Description}↪→
...

We also have corresponding decision trees (CART) to predict {Objective} from the
attributes listed above along with predicted {New Column Name}.↪→

The rules are arranged in ascending order based on their scores evaluated with
XGBoost classifier, where higher scores indicate better quality.↪→

Rule to predict {Objective}:
{Rule 1}
Decision tree (CART):
{Decision Tree 1}
Score evaluated with XGBoost classifier:
{Score 1}

Rule to predict {Objective}:
{Rule 2}
Decision tree (CART):
{Decision Tree 2}
Score evaluated with XGBoost classifier:
{Score 2}

...

Give me a new rule to predict {Objective} that is different from the old ones (but
should use the listed attributes above) and has a score as high as possible.↪→

Improved rule:'''

Listing 3: Prompt for the rule generation.
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A.4 Translation of a rule into Python code

In Listing 4, we present the prompt pcode, which instructs the LLM to translate the rule into Python
code. To minimize potential syntactic errors, we impose several restrictions. First, we explicitly
define the variable types wherever possible. We also instruct the LLM to account for the feature value
types before performing calculations, e.g., to avoid the addition of categorical and numerical values.

f'''### Rule ###
{Rule to translate}

### Your Task ###
Change the rule into executable Python code. Consider the type of each feature.
Input data (Numpy array (not a Dict)): [{all_column_names}]
- {Column 1 Name}: (Numerical value of {Column 1 Min} ~ {Column 1 Max})
- {Column 2 Name}: (Boolean)
- {Column 3 Name}: (Categorical value of {Value 1}, {Value 2})
...

Output: {Output Category 1} or {Output Category 2}
Give instantly executable code without example usage. Consider the feature value

types (avoid calculating categorical value and numerical value). Start with
'def {Rule Function Name}(data):'

↪→
↪→

### Only python code ###
'''

Listing 4: Prompt for translating rule in natural language into Python code.
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B Dataset details

In this section, we provide further details on the datasets.

B.1 Datasets with language descriptions

1. Disease1

A classification task to predict a patient’s disease diagnosis based on the following attributes:

• Binary (Yes or No): Fever, Fatigue

• Numerical (Range): Age (25 ∼ 90)

• Categorical: Gender (Female or Male), Blood Pressure (High, Normal, or Low), Cholesterol
Level (High, Normal, or Low)

2. Clinical Trial2

A classification task to predict patient mortality in clinical trials based on the following attributes:

• Binary (Yes or No) - Historical Disease: Deep Vein Thrombosis, Pulmonary Embolism,
Antiandrogen Therapy, Cardiac Failure, Respiratory Failure, Venous Insufficiency, Coronary
Artery Disease, Myocardial Infarction, Hypertension, Peripheral Arterial Occlusive Disease

• Binary (Yes or No) - Medication: Dexamethasone, Ondansetron, Heparin, Fluorouracil,
Ranitidine, Cisplatin, Metoclopramide, Carboplatin, Furosemide

3. Academic3

A classification task to predict whether a student would dropout based on the following attributes:

• Numerical: Marital Status, Daytime/Evening Attendance, Previous Qualification, Nation-
ality, Father’s Qualification, Father’s Occupation, Displaced, Debtor, Tuition Fees up to
Date, Gender, Scholarship Holder, Age at Enrollment, International, Curricular Units 1st
Sem (Approved), Curricular Units 1st Sem (Grade), Curricular Units 2nd Sem (Approved),
Curricular Units 2nd Sem (Grade).

4. Enefit4

A regression task to predict daily energy consumption based on the following attributes:

• Numerical: Prediction Unit Id, Day, Hour, Lowest Price Per MWh, Highest Price Per
MWh, Installed Capacity, Euros Per MWh, Local Forecast Temperature, Local Forecast
Dewpoint, Local Forecast Cloudcover Total, Local Forecast 10 Metre U Wind Component,
Local Forecast 10 Metre V Wind Component, Local Forecast Direct Solar Radiation, Local
Forecast Surface Solar Radiation Downwards, Local Forecast Total Precipitation.

5. Tesla Stock5

A regression task to predict the target day’s highest stock price based on the following attributes:

• Numerical: Open Price of 2 Days Before, Highest Price of 2 Days Before, Lowest Price of
2 Days Before, Close Price of 2 Days Before, Open Price of 1 Day Before, Highest Price of
1 Day Before, Lowest Price of 1 Day Before, Close Price of 1 Day Before, Open Price of
the Target Day, Time Index.

1https://www.kaggle.com/datasets/uom190346a/disease-symptoms-and-patient-profile-dataset
2https://data.projectdatasphere.org/projectdatasphere/html/content/119
3https://www.kaggle.com/datasets/missionjee/students-dropout-and-academic-success-dataset
4https://www.kaggle.com/competitions/predict-energy-behavior-of-prosumers
5https://www.kaggle.com/datasets/guillemservera/tsla-stock-data
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B.2 Datasets without language descriptions

For our main results on datasets without language descriptions (see Table 3), we evaluate the 19
classification datasets from the tabular benchmark proposed by Grinsztajn et al. [13]. Following
the curation approach from Grinsztajn et al. [13]), we uniformly subsample to 50,000 instances for
datasets exceeding this size. We provide brief dataset statistics below.

Table 9: Dataset statistics. 19 classification datasets benchmarked by Grinsztajn et al. [13].

Dataset OpenML ID # Samples # Features

rl 44160 4970 12
electricity 44156 38474 8
compass 44162 16644 17
wine 44091 2554 11
house_16H 44123 13488 16
MagicTelescope (Magic) 44125 13376 10
Higgs 44129 940160 24
jannis 44131 57580 54
credit 44089 16714 10
eye_movements 44157 7608 23
kddCup09_upselling (kddCup09) 44158 5032 45
road-safety 44161 111762 32
bank-marketing 44126 10578 7
phoneme 44127 3172 5
covertype 44159 423680 54
california 44090 20634 8
kdd_ipums_la_97-small (kdd_ipums_la) 44124 5188 20
MiniBooNE 44128 72998 50
pol 44122 10082 26

C Baseline details

In this section, we describe the hyperparameter search space for the baseline models. For each
random split of every dataset, we find the optimal set of hyperparameters using a random sampler run
for 400 trials. We utilize the Optuna library [48] for the hyperparamter tuning.

C.1 XGBoost

For XGBoost, we adopt the hyperparameter search space used in Grinsztajn et al. [13].

Table 10: XGBoost [11] hyperparameters space.

Parameter Distribution

Max depth UniformInt [1, 11]
Num estimators UniformInt [100, 6100, 200]
Min child weight LogUniformInt [1, 1e2]
Subsample Uniform [0.5, 1]
Learning rate LogUniform [1e-5, 0.7]
Col sample by level Uniform [0.5, 1]
Col sample by tree Uniform [0.5, 1]
Gamma LogUniform [1e-8, 7]
Lambda LogUniform [1, 4]
Alpha LogUniform [1e-8, 1e2]
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C.2 Multilayer perception (MLP)

For MLP, we adopt the hyperparameter search space from Grinsztajn et al. [13] and the architecture
from Gorishniy et al. [31], which includes learning embeddings for categorical features. The models
are trained for up to 300 epochs with early stopping, with the model that achieves the best validation
score selected for evaluation. If validation scores do not improve for 40 epochs, training is stopped
early. For learning rate scheduling, we use PyTorch’s ReduceOnPlateau implementation.

Table 11: MLP [31] hyperparameters space.

Parameter Distribution

Num layers UniformInt [1, 8]
Layer size UniformInt [16, 1024]
Dropout Uniform [0, 0.5]
Learning rate LogUniform [1e-5, 1e-2]
Category embedding size UniformInt [64, 512]
Learning rate scheduler [True, False]
Batch size [256, 512, 1024]

C.3 HyperFast

For HyperFast [32], we adopt the hyperparameter space from the original paper.

Table 12: HyperFast [32] hyperparameters space.

Parameter Distribution

N ensemble [1, 4, 8, 16, 32]
Batch size [1024, 2048]
NN bias [True, False]
Stratify sampling [True, False]
Optimization [None, ‘optimize’, ‘ensemble_optimize’]
Optimize steps [1, 4, 8, 16, 32, 64, 128]
Seed UniformInt [0, 9]

D Compute resources

We conducted our experiments on a variety of machines, including

• CPU: Intel(R) Xeon(R) Gold 6226R, GPU: RTX 3090
• CPU: Intel(R) Xeon(R) Gold 6426Y, GPU: RTX 4090
• CPU: Intel(R) Xeon(R) Gold 6426Y, GPU: RTX A6000
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E Comparison with CAAFE

E.1 Main results

Table 13: Performance improvements by OCTree on datasets with language descriptions. We
report test error rates (%) on six classification tasks (∗) and mean absolute errors (×10−3) for two
regression tasks (†). The lowest error is in bold. Values in parentheses indicate the relative error rate
reduction from the baseline. We report the mean error and standard deviation across three random
splits, except for the two regression tasks (time series tabular data), which are split by time index.
GPT-4o was used for both CAAFE and OCTree.

Dataset Baseline CAAFE [19] OCTree (Ours)

Tesla† 6.61 6.36 (3.8%) 5.48 (17.1%)
Enefit† 8.00 7.97 (0.4%) 7.82 ( 2.3%)
Disease∗ 28.09±7.9 27.46±7.6 (2.2%) 25.72±6.6 ( 8.4%)
Clinical∗ 46.27±5.0 45.39±4.9 (1.9%) 43.75±4.4 ( 5.4%)
Academic∗ 14.15±0.6 14.13±0.3 (0.1%) 13.74±0.1 ( 2.9%)
BTC∗ 25.11±3.7 24.67±2.9 (1.8%) 24.00±3.1 ( 4.4%)
Diabetes∗ 5.45±3.6 4.92±3.8 (9.8%) 4.16±3.9 (23.6%)
Student∗ 36.17±2.0 36.00±2.0 (0.5%) 35.83±2.3 ( 0.9%)

We conduct a comparative evaluation using all datasets (along with additional ones) with contextual
information from the experiments summarized in Table 1. First, CAAFE [19] exhibited high variance,
even on the same dataset split, partly due to the randomness associated with GPT-4o’s temperature-
based sampling. At times, it failed to improve upon the baseline. To address this, we average the
performance over three trials per random split and report the mean and variance. As shown in
Table 13, our method consistently outperforms CAAFE. Note the official implementation of CAAFE
has been slightly modified to accommodate regression tasks.

E.2 Case study

f'''
df['Age Category'] = pd.cut(df['Age'], bins=[0, 30, 60, 100], labels=['Young',

'Adult', 'Senior'])↪→
df['Fever_Cough_Interaction'] = df['Fever'] * df['Cough']
'''

Listing 5: New columns introduced by CAAFE [19].

f'''
If the individual has “Fever” and “Fatigue” and “Difficulty Breathing” with “Age”

between 60 and 90, then predict “Exposure to Infected Individuals” as “Yes”.
Otherwise, predict “Exposure to Infected Individuals” as “No”.

↪→
↪→
'''

Listing 6: New columns introduced by OCTree (Ours).

As illustrated in Listings 5 and 6, CAAFE struggles to introduce meaningful columns for the disease
dataset, whereas our method proposes more relevant and coherent rules.
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F Case studies on different types of LLMs

In Section 4.2, we evaluate three different LLMs and provide additional comparisons in this section.
As shown in Table 4, our custom model (the Llama 2 model trained fine-tuned on a high-quality
open dialogue dataset) achieves the lowest error rate, followed by Code Llama and the Llama 2 chat
base model, both of which still outperform the baseline XGBoost. We also observed several notable
differences in feature generation patterns among the models.

First of all, Code Llama utilizes various NumPy operations (e.g., ‘np.sin’) to generate mathematically
sophisticated features:

• x9 = ((x4+ 0.24) ∗ x1) + ((x5+ 0.27) ∗ x2)
• x9 = np.sin(x1) ∗ np.cos(x4)
• x9 = x4 ∗ np.tan(x8)

Secondly, Llama 2 chat base favors simple polynomial combinations:

• x9 = x4 ∗ x1 ∗ (x2+ x6) ∗ ∗2
• x9 = x4 ∗ x1 ∗ ∗3 ∗ (x2+ x6) ∗ ∗4 ∗ (x7+ x8)

• x9 = x4 ∗ x1 ∗ ∗2 ∗ (x2+ x6) ∗ ∗3 ∗ (x7+ x8) ∗ (1+ x5 ∗ ∗4)

Finally, our custom model tends to explore a polynomial space of features while also utilizing built-in
Python functions such as ‘abs()’. Compared to the Llama 2 chat base model, it more effectively
navigates a broader space of features:

• x9 = x1 ∗ ∗2 ∗ (x2− x3)

• x9 = abs(x1) ∗ ∗x1+ x2− x3− x4− x5− x6− x7− x8

• x9 = x1 ∗ (x1+ 2)− x2 ∗ (x2− 0.5) ∗ (x2− 0.5)

These observations suggest that, while all three models can generate useful features, our custom model
more effectively navigates a broader feature space, leading to the generation of even more valuable
features. We suspect that further training on code data, particularly to enhance the ability to leverage
scientific computing libraries like NumPy, could lead to additional performance improvements.

G Scalability of OCTree

Table 14: OCTree on datasets with hundreds
of features. We report the mean error (%) and
the lowest error is highlighted in bold. Values in
parentheses indicate the relative error reduction
from the baseline model (i.e., XGBoost [11]).

Dataset # features Baseline OCTree (Ours)

madelon 501 21.54 20.19 (6.3%)
nomao 119 3.08 2.84 (7.8%)

Here, we evaluate the scalability of our method
on datasets with hundreds of features (e.g., 501)
from the OpenML repository [49]. We choose
XGBoost [11] as the baseline model, because
it is the most competitive baseline in our main
experiments (see Table 3). Additionally, we
use GPT-3.5-Turbo as the rule generator, as
the Llama 2-based model we primarily use is
constrained by a relatively short context length,
which becomes limiting as the prompt size in-
creases with the number of features. As shown in Table 14, our method scales effectively to datasets
with a larger number of features. For example, on the madelon dataset, which contains 501 columns,
our method reduces the relative error by 6.3% compared to the XGBoost baseline.
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H Examples of rule optimization

To identify an effective feature generation rule, we conduct 50 rounds of optimization with the
LLM. In each round, the LLM is provided with an optimization trajectory that includes reasoning
information from previous experiments. Consequently, the input prompt evolves throughout the
optimization process, with later rounds incorporating more accumulated information. Below, we
show the first and last five output rules generated during the optimization on the electricity dataset.

First five:

• x12 = x3+ (x5 ∗ x8) ∗ x2− x6

• x12 = x5 ∗ x2+ (x3 ∗ x4− x6)− x1

• x12 = x11+ (x7 ∗ x10) ∗ x2− x8

• x12 = x3+ (x6 ∗ x8 ∗ x2)− x1

• x12 = (x1 ∗ x6+ x2 ∗ x8) ∗ x3− x7

Last five:

• x12 = ((x2− x1) ∗ (x11− x4)) ∗ ∗2− (0.5 ∗ (x1− 0.3))

• x12 = ((x2− x1) ∗ (x11− x4)) ∗ ∗6
• x12 = ((x2− x1) ∗ (x11− x4)) ∗ ∗14− (0.02 ∗ (x5− x7))− 0.5

• x12 = (x11− x1) + (x11 ∗ (x6− x7))

• x12 = ((x2− x1) ∗ (x11− x4)) ∗ ∗3+ (0.1 ∗ (x5− x6)) ∗ ∗2

Note that in the early stages of optimization, the LLM tends to explore a wider variety of rules,
allowing for greater exploration. In contrast, during the later stages, the model narrows its focus to
refine features within a more constrained space.

I Broader impacts

Our method is particularly effective in scenarios where collecting real data is costly or restricted,
such as in the finance or medical domains, where data availability is often limited due to privacy
concerns. However, since the features generated by OCTree are artificial, it is crucial to carefully
inspect these features for their relevance and reliability.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: All claims in the introduction and abstract accurately reflect the contribution
and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: We do not have a theory in this paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide implementation details including hyperparameter search space of
prediction models in Appendix C. We also provide where the datasets are from in Appendix
B. Additionally, we provide all prompts we use in Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the URL of the code in the Abstract.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide the detail of data splits in Section 4, hyperparameters (including
how they chosen, and optimizers) in Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All experiments are conducted with the same and commonly used random
seed, and we report standard deviation across random splits.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

26

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide compute resources we used in Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We do not have any ethical concerns.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have discussed the societal impact in Appendix I.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our framework does not introduce risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited all papers and datasets in Reference and Appendix B.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not have human subject.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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