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ABSTRACT

Human decision-making in cognitive tasks and daily life exhibits considerable
variability, shaped by factors such as task difficulty, individual preferences, and
personal experiences. Understanding this variability across individuals is essen-
tial for uncovering the perceptual and decision-making mechanisms that humans
rely on when faced with uncertainty and ambiguity. In this study, we present a
counterfactual-based approach to investigate the subject-level decision-making
behaviors and reveal the underlying perceptual mechanisms by synthesizing vi-
sual stimuli. First, we developed an efficient generative model that samples
along an artificial neural network (ANN)’s perceptual boundary, generating im-
age samples designed to induce high variability in human perception. Using these
generated samples, combined with behavioral data from 246 human participants
across 116,715 trials, we constructed the varMNIST dataset. Then, we presented
a subject-specific fine-tuning approach to align the perceptual variability of ANNs
with that of humans. It allows us to successfully predict human decision-making
behaviors on varMNIST. Finally, we verified the ability to selectively manipu-
late individual behaviors by generating tailored controversial stimuli, which high-
lighted significant inter-subject perceptual variability. Together, our work illu-
minated key distinctions between human and machine perceptual variability and
established an effective strategy for manipulating individual decision-making be-
haviors. This study paves the way for artificial intelligence models with personal-
ized perceptual capabilities.

1 INTRODUCTION

A core goal of cognitive science is to establish models that reflect the relationship between external
stimuli and human internal experiences. The development of ANNs has significantly contributed to
this goal, particularly through the latent representations of ANNs that have shown a strong corre-
lation with human psychological representations (Wei et al. (2024a;b); Muttenthaler et al. (2022a);
Mahner et al. (2024); Zheng et al. (2019); Hebart et al. (2020); Muttenthaler et al. (2022b)). How-
ever, individuals may have markedly different internal experiences when presented with the same
external stimulus (Snyder et al. (2015); Partos et al. (2016); Floridou et al. (2022). For instance,
when different people observe the same handwritten digit, they may recognize it as different num-
bers (see Figure 1 (left)). This variability in human percepts has been inadequately explored within
both cognitive science and computer science. We hypothesize that there is a correspondence be-
tween the perceptual boundaries of ANNs and human perceptual classification boundaries and im-
ages generated along these boundaries would evoke different internal experiences in humans. This
hypothesis can be tested by human experiments with visual stimuli sampled along the perceptual
boundaries of ANNs.

In recent years, counterfactual generation methods have made significant progress in revealing the
differences between human and machine perception. Veerabadran et al. (2023); Zhou & Firestone
(2019); Elsayed et al. (2018) highlighted that while ANNs exhibit brittleness in response to small
perturbations, these perturbations can also bias human perceptual choices under specific conditions.
Similarly, Gaziv et al. (2024) found that by enhancing ANN models, low-norm image perturbations
could be generated that significantly disrupt human percepts, demonstrating their potential as pre-
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Figure 1: Overview of our paradigm. Our approach consists of three main components: 1. Gen-
erating & labeling: Sampling images from ANN decision boundaries and using them in human
behavioral experiments to construct the high-variability dataset varMNIST; 2. Predicting: Fine-
tuning models with human behavioral data to align them with human perceptual variability at the
group and individual levels, enhancing behavior prediction accuracy; 3. Manipulating: Employing
individually fine-tuned models to generate images that elicit high perceptual differences between
individuals, with the manipulations validated through human experiments.

cise tools for altering human category perception. However, Feather et al. (2023; 2019) discovered
that existing neural networks often produce “model metamers” that are unrecognizable to humans,
further emphasizing the misalignment between models and human perception. Additionally, Golan
et al. (2020; 2023) introduced the concept of “controversial stimuli” to compare different models,
revealing not only discrepancies among models but also substantial divergences from human percep-
tion in vision and language. Together, these studies suggest that counterfactually generated visual
stimuli can offer valuable insights into the variability of human percepts.

In this study, we present a paradigm for studying human perceptual variability through image gen-
eration. As shown in Figure 1, our approach includes three main components: 1. Generating &
labeling. We sample images from the decision boundaries of ANNs and use these synthetic images
in human behavioral experiments to construct a high-variability dataset, varMNIST, which captures
perceptual variability across individuals. 2. Predicting. Human behavioral data are used to finetune
models, aligning them with human perceptual variability at both the group level and individual level.
This allows us to evaluate how well neural networks can predict human perception. 3. Manipulat-
ing. Individual finetuned models are leveraged as adversarial classifiers to generate new images
that amplify perceptual differences between individuals. These images are validated through human
experiments to assess their ability to enhance and decode individual perceptual variability. This
paradigm provides a systematic framework for investigating and manipulating human perceptual
variability, bridging the gap between neural networks and human perception.

We have three main contributions.

(1) A novel generative approach to probe human perception: We developed an efficient genera-
tive method that samples along ANN perceptual boundaries to generate naturalistic images, forming
the varMNIST dataset (Figures 2, A.1). Our human experiments demonstrated that the varMNIST
dataset successfully evoked high variability in human perception (Figure 3).

(2) Aligning human and ANN perceptual variability: Through subject-specific fine-tuning, we
aligned the perceptual variability of ANNs with that of humans, enabling better predictions of human
decision-making behaviors (Figure 4).

(3) Revealing and manipulating individual decisions: We verified that controversial stimuli can
selectively manipulate individual decision-making behaviors by human experiments. These stimuli
unveil significant inter-individual differences in perceptual variability (Figure A.16) and successfully
manipulate individual behaviors (Figures 5, A.17, A.18, A.19).
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2 RELATED WORKS

Researchers have extensively used synthetic images generated by ANNs to study human percep-
tual space, uncovering differences between model and human perception while refining generation
techniques to enhance their influence on human cognition. For instance, Golan et al. (2020; 2023)
utilized controversial stimuli to highlight classification discrepancies between neural networks. Sim-
ilarly, Veerabadran et al. (2023) demonstrated that adversarial perturbations could simultaneously
influence ANN classifications and human perceptual choices, revealing shared sensitivities. How-
ever, Gaziv et al. (2024) found that while standard ANN perturbations fail to impact human percep-
tion, robustified ANN models can generate low-norm perturbations that significantly disrupt human
percepts.

Other studies have approached this problem from different angles. For example, works like Feather
et al. (2023; 2019); Nanda et al. (2022; 2023) investigated model metamers, revealing fundamental
mismatches between model activations and human recognition. Extending beyond perceptual dis-
crepancies, Fu et al. (2023) introduced DreamSim, a perceptual metric leveraging synthetic data and
human experimental data to better reflect human similarity judgments and address shortcomings in
conventional perceptual metrics. Building on such synthetic data and behavioral insights, recent
efforts have sought to align vision models with human perceptual representations by incorporat-
ing human-like conceptual structures, resulting in improved alignment and enhanced performance
across diverse tasks Muttenthaler et al. (2024); Sundaram et al. (2024).

To study the variability of human perception, it is essential that generated images significantly influ-
ence human cognition. Given that we sample from the perceptual boundaries of ANNs, which often
contain high noise levels, better methods are needed to ensure that the generated images appear
natural. Recently, the fields of adversarial examples and counterfactual explanations in machine
learning have adopted effective techniques to help deal with this problem, such as Jeanneret et al.
(2023), Wei et al. (2024b), Chen et al. (2023), Jeanneret et al. (2022), Vaeth et al. (2023), and
Atakan Bedel & Çukur (2023). These studies use diffusion models with training-free guidanceYu
et al. (2023); Ma et al. (2023); Yang et al. (2024) as regularizers to introduce prior distributions,
thereby enhancing the naturalness of generated images and their impact on human perception.

3 COLLECTING HUMAN PERCEPTUAL VARIABILITY

In this section, we introduce the method for constructing varMNIST: a digit dataset with high per-
ceptual variability. Our goal is to generate images that evoke significant human perceptual variability
and collect this variability by recording human perceptual judgments on the generated images.

3.1 GENERATING IMAGES BY SAMPLING FROM THE PERCEPTUAL BOUNDARY OF ANNS

The image perturbations that significantly affect ANN perception also influence human perception
( Gaziv et al. (2024); Veerabadran et al. (2023); Wei et al. (2024a); Muttenthaler et al. (2022a)),
suggesting that ANNs and humans may share similar perceptual boundaries. Based on this, we
hypothesize that samples on these boundaries (which exhibit high perceptual variability for ANNs)
may also lead to ambiguous perception in humans, resulting in different internal experiences for the
same stimuli.

We adopted two guidance strategies: uncertainty guidance and controversial guidance. Uncertainty
guidance aims to generate images that lie near the decision boundaries of classifiers. Its loss function
is defined as:

L = H(p1(y|x), q1(y))
where H(p, q) is the cross-entropy function that measures the discrepancy between the predicted
distribution p(y) and the target distribution q(y). The target distribution ensures equal probabilities
for two categories (e.g., “3” and “5”), resulting in high-uncertainty images. Controversial guidance
generates images that cause conflicting predictions between two classifiers. Its loss function is
defined as:

L = H(p1(y|x), q1(y)) +H(p2(y|x), q2(y)),
where p1(y|x) and p2(y|x) are the predicted probability distributions of classifiers 1 and 2, and
q1(y) and q2(y) are their corresponding target distributions. The target distributions ensure that
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Figure 2: Generating images to elicit human perceptual variability. (a) The example illustrates
two guidance methods for sampling from the perceptual boundary between “3” and “5” in ANN:
uncertainty guidance and controversial guidance. Specifically, Uncertainty guidance aims to make
the ANN model f assign equal probabilities to “3” and “5,” while controversial guidance generates
images classified as “3” by f1 but as “5” by f2. One of these guidance methods is incorporated into
the image generation process. (b) The synthetic images were used in a digit judgment experiment
where participants answered, “Is this picture a digit?” We trained a digit judgment surrogate based
on human responses and used it as a classifier to guide the image generation process. (c) We used the
images synthesized using the two guidance methods, ANN perceptual boundary sampling and digit
judgment surrogate, for the digit recognition human experiment. Participants were asked "What
digit is this picture?" A total of 19,952 images were used, with 123,000 trials conducted across 246
participants, resulting in the high perceptual variability dataset varMNIST.

classifier 1 predicts one category (e.g., “3”) with high confidence, while classifier 2 predicts another
category (e.g., “5”) with high confidence, generating controversial images. Figure A.1 illustrates
the guidance methods. Details of additional analyses and comparisons of guidance methods can be
found in Appendix A.2.

Previous studies have shown that when using generated images to investigate models and human
perception (e.g., Golan et al. (2020); Gaziv et al. (2024); Veerabadran et al. (2023); Feather et al.
(2023)), a common issue is the lack of naturalness in the generated images. This often makes the
images difficult for participants to recognize, thereby weakening their impact on human cognition
(see Figure A.2). Recent research has demonstrated that diffusion models, when used as regularizers,
can introduce prior information and help generate more natural images Jeanneret et al. (2023); Wei
et al. (2024b); Chen et al. (2023); Jeanneret et al. (2022); Vaeth et al. (2023); Atakan Bedel &
Çukur (2023). Building on these findings, we employ a classifier-guided diffusion model for image
generation. This method produces images that are closer to the true distribution of handwritten
digits, thereby significantly enhancing their impact on human perception (see Appendix A.1).

3.2 IMPROVING GENERATIVE QUALITY BY DIGIT JUDGMENT SURROGATE

Digit judgment experiment. We used the synthetic images as experimental stimuli to measure
human behavior in a digit judgment task. The purpose of this experiment was to collect human
judgments on whether a given image qualifies as a digit, thereby establishing a human criterion for
handwritten digit. For each image, participants were asked the question, "Is this image a digit?" with
responses limited to "True" or "False." More experimental details can be found in Appendix A.4.1.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

VIT
VGG
CORNet
MLP
LRM

Classifier

Success
Bias
Failure

Guidance Outcome
Legend

ba

4

9

7

2

0

1

Success

Bias

Failure

Figure 3: Quantitative analysis of varMNIST. (a) Examples of three types of guidance outcome:
success, bias, and failure. (b) Guidance outcomes across strategies and classifiers. The average sum
of overall success and bias rates approaches 80%. Controversial guidance achieves a higher success
rate than uncertainty guidance, with similar bias rates. CORNet performs best in uncertainty guid-
ance, while LRM performs worst. In controversial guidance, combinations of VGG and CORNet
achieve the highest success rates and lowest bias rates, but exhibit relatively high bias rates when
paired with other classifiers.

The experiment collected behavioral data from 400 participants, comprising 200,000 trials and
20,000 stimuli. During the data cleaning process, 124 participants were excluded based on Sen-
tinel trials, leaving data from 276 participants (138,000 trials and 19,878 valid stimuli). This dataset
provides a robust foundation for analyzing perceptual standards for handwritten digits.

Guiding generative process by digit judgment surrogate. For any given image, we use the
frequency of participants responding "True" as the probability of the image being a digit. The
initial image dataset, along with the corresponding probabilities, was used to train a digit judgment
surrogate. As the previous works of image generation by human preferences (Liang et al. (2024);
Bansal et al. (2023)), this surrogate, functioning as a image quality predictor, was then employed to
guide the image generation process (see Appendix A.3.3). The guidance formula can be expressed
as:

Ltotal = L+max((1− fsurr(x))
2, 0.5)

In this formula, Ltotal represents the total loss. fsurr(x) represents the probability give by the digit
judge model. The probability of the digit judge is combined to the formula to ensure the generated
image is considered as a digit by humans. The max function is used so that when the score is above
a certain threshold, the gradient of the digit judge will not effect generation.

3.3 MEASURING HUMAN PERCEPTUAL VARIABILITY BY RECOGNITION EXPERIMENT

3.3.1 DIGIT RECOGNITION EXPERIMENT.

We used the image dataset generated through uncertainty or controversial guidance and digit judg-
ment surrogate guidance as experimental samples to measure human behavior in a digit recognition
task. For each test image, participants were asked, "What number is this image?" with responses
restricted to one of the digits from 0 to 9. We collected the probability distributions of human
responses and calculated the average response time and entropy distribution for all test images (Fig-
ure A.10). The experiment collected behavioral data from 400 participants, each completing 500
trials, resulting in a total of 200,000 trials across 20,000 stimuli. During data preprocessing, 154
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participants were excluded based on Sentinel trials, leaving data from 246 participants (116,715 tri-
als and 19,943 valid stimuli). Using this cleaned dataset, we constructed a high perceptual variability
dataset, varMNIST, which serves as a foundation for subsequent analysis and modeling.

3.3.2 QUANTITATIVE ANALYSIS OF VARMNIST

Evaluation metrics. To comprehensively evaluate the guiding effectiveness of the generation
method, we define three types of guidance outcome, as illustrated in Figure 3a: success, bias,
and failure. For the guidance targets o1 and o2, let p1 and p2 represent the probabilities of par-
ticipants choosing o1 and o2, respectively.A result is considered success if p1 + p2 ≥ 80% and
min(p1, p2) ≥ 10%, indicating the generated stimuli guide participants to make a balanced choice
between the two targets. A result is labeled as bias if p1 + p2 ≥ 80% but min(p1, p2) < 10%, in-
dicating a strong bias toward one target. A result is classified as failure if p1 + p2 < 80%, meaning
the stimuli fail to guide participants effectively. These definitions allow us to evaluate and compare
the performance of different guidance strategies and classifiers.

ANN variability can arouse human variability. To evaluate whether the images generated by
sampling on the perceptual boundaries of ANNs can arouse human perceptual variability, we first
calculated the entropy of participants’ choice probabilities in the digit recognition experiment. As
shown in Figure. A.10 (bottom left), the entropy values for more than half of the generated images
were significantly greater than zero, indicating substantial variability in human choices. This sug-
gests that the generated images successfully elicited human perceptual variability. Furthermore, as
illustrated in Figure. 3b, the average sum of success rate and bias rate across all generated images
was close to 80%. This indicates that, in the majority of cases, human choices aligned with either
both or one of the guidance targets. This demonstrates that the generation method effectively guided
human digit recognition behavior.

Guidance strategy, classifier and target influence the guidance outcome. We further analyzed
the influence of different guidance strategies, classifiers used for guidance, and guidance targets
on the guidance outcome. First, for the two guidance strategies, uncertainty guidance and contro-
versial guidance, the success rate of controversial guidance is higher, while the bias rates of both
methods are similar (Figure. 3b). This indicates that controversial guidance is more effective in
guiding participants. Second, for the five classifiers used in uncertainty guidance, CORNet achieved
the highest success rate and the lowest failure rate, indicating that CORNet is the most effective
guidance classifier (Figure. 3b). This result aligns with the fact that CORNet incorporates more
human visual priors. For the ten adversarial classifier combinations used in controversial guidance,
the combination of VGG and CORNet achieved the highest success rate and the lowest bias rate,
demonstrating that VGG and CORNet have strong guiding capabilities, with comparable guidance
strength. Additionally, when VGG and CORNet were combined with other classifiers, their bias
rates were relatively high, with the combination with LRM exhibiting the highest bias rate. This
suggests that other classifiers are less effective compared to VGG and CORNet, with LRM being
the least effective in guidance strength. Finally, for the ten guidance targets (digits 0-9), the results
showed significant variability in guidance outcomes (Figure. A.12). For example, digit pairs (1, 7),
(1, 2), and (4, 9) achieved the highest success rates, exceeding 0.35. In contrast, digit pairs (1, 8),
(2, 9), and (7, 8) exhibited the lowest success rates, below 0.03. These findings highlight that the
guidance outcome is strongly influenced by the specific digit pairs being guided.

4 PREDICTING HUMAN PERCEPTUAL VARIABILITY

4.1 MODEL FINE-TUNING FOR HUMAN ALIGNMENT

To align models with both group-level and individual-level performance, we adopted a mixed
training approach with an 80:20 split for training and validation. For individual-level datasets
(varMNIST-i), the validation set was designed to avoid overlap with the group validation set. For
group-level training, we combined the MNIST and varMNIST datasets in a 1:1 ratio, ensuring per-
formance on MNIST while fine-tuning for perceptual variability. For individual-level training, we
mixed varMNIST-i, varMNIST, and MNIST datasets in a 2:1:1 ratio, ensuring the models performed
effectively on individual-specific, group, and original datasets. See Appendix B.2 for more details.
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Figure 4: Human alignment results. (a) Accuracy of BaseNet, GroupNet, and IndivNet on MNIST,
varMNIST, and varMNIST-i. All models performed similarly on MNIST. On varMNIST, GroupNet
and IndivNet improved accuracy by 2̃0% over BaseNet, with IndivNet outperforming GroupNet by
5% on varMNIST-i. Accuracy improved for 241 participants and decreased for 5 after inividual
fine-tuning. (b) Fine-tuning results for five classifiers. On MNIST, group fine-tuning improved VIT
and VGG, while others remained unchanged or declined. On varMNIST, all classifiers improved,
with VIT and MLP showing the largest gains and LRM the smallest. Individual fine-tuning further
improved all classifiers with the same trend. (c) For VGG, Spearman rank correlation between model
and human entropy increased from ρ = 0.08 to ρ = 0.74 after group fine-tuning. (d) Performance of
BaseNet, GroupNet, and IndivNet of varying entropy levels. The choices from selected subject for
the example images are 8, 6, 9, 6, with increasing entropy levels. GroupNet and IndivNet improved
over BaseNet on all entropy levels, while IndivNet’s gains over GroupNet were focused on high-
entropy images.

4.2 ALIGNMENT ANALYSIS ON VALIDATION DATASETS

Fine-tuning improves both group-level and individual-level prediction performance. As
shown in Figure 4a, BaseNet, GroupNet, and IndivNet achieve nearly identical prediction accuracy
on the MNIST dataset, indicating no significant loss of baseline performance after fine-tuning. On
the varMNIST dataset, both GroupNet and IndivNet outperform BaseNet by approximately 20%.
Furthermore, IndivNet achieves an additional 5̃% accuracy improvement over GroupNet on the
varMNIST-i dataset, demonstrating its superior adaptability to individual differences. After indi-
vidual fine-tuning, accuracy improved for 241 participants, while only 5 participants experienced a
slight decrease, highlighting the effectiveness of individual fine-tuning in adapting to unique partic-
ipant behavior and capturing human perceptual variability more accurately.

Different classifiers exhibit inconsistent performance. Figure 4b and A.13 compares the fine-
tuning performance of five classifiers. On the MNIST dataset, group fine-tuning improved the pre-
diction accuracy of VIT and VGG, while CORNet and MLP remained unchanged, and LRM showed
a significant decrease in accuracy. On the varMNIST dataset, all classifiers exhibited improvements,
with VIT and MLP achieving the largest gains and LRM the smallest. Individual fine-tuning fur-
ther improved all classifiers, with VIT and MLP showing the greatest adaptability to fine-tuning,
while LRM demonstrated weaker generalization ability. These results highlight that both group-
and individual-level fine-tuning can significantly enhance classifier performance, but the degree of
improvement depends on the classifier architecture.

Human variability can be predicted by models. To evaluate the alignment between model and
human perceptual variability, we analyzed the correlation between model and human entropy, as
shown in Figure 4c and A.14. Taking VGG as an example, group fine-tuning increased the Spear-
man rank correlation between model and human entropy from ρ = 0.08 to ρ = 0.74. This signifi-
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cant improvement indicates that fine-tuning enables the model to better capture human uncertainty,
aligning model predictions more closely with human perceptual behavior.

Performance of behavior prediction across images with varying entropy levels. Image entropy
reflects task difficulty, with higher entropy indicating more challenging samples. To examine the
impact of entropy levels on prediction accuracy, we analyzed model performance across varying
entropy levels, as shown in Figure 4d and A.15. Both GroupNet and IndivNet outperform BaseNet
across all entropy levels, demonstrating that fine-tuning enhances prediction accuracy regardless
of task difficulty. Notably, IndivNet’s performance gains over GroupNet are most pronounced for
high-entropy images, suggesting that individual fine-tuning primarily improves prediction accuracy
for difficult samples. These findings highlight the ability of fine-tuned models to better handle
challenging stimuli, capturing subtle variations in human perceptual behavior more effectively.

5 MANIPULATING HUMAN PERCEPTUAL VARIABLITY

5.1 EXPERIMENTAL PARADIGM

Building on varMNIST and alignment experiments, we designed a paradigm to test whether individ-
ually fine-tuned models can amplify perceptual differences and guide decision-making (Figure 5a).
This experiment evaluates the ability of targeted stimuli to reveal individual variability and achieve
precise manipulation of perceptual outcomes, highlighting the potential of personalized modeling in
understanding human perception. For the first round of experiments, we initially selected around 500
balanced samples from the varMNIST dataset as stimuli. After collecting behavioral data from pairs
of participants, we fine-tuned their individual models using the method described in Section 4.1.
Controversial stimuli were then generated using the updated models as described in Section 3, aim-
ing to elicit distinct choices between the two participants, with each choosing their respective guid-
ance targets.

In the second round of experiments, these controversial stimuli were presented to participants in
pairs, with each pair completing trials designed to test whether the fine-tuned models could effec-
tively guide their decisions in opposite directions. The goal was to evaluate whether the generated
stimuli amplified perceptual differences and aligned participants’ responses with their respective
guidance targets. For each subject pair, approximately 180 controversial samples were generated,
ensuring the sample distribution remained as balanced as possible. A total of 18 participants were
recruited for in-lab experiments, grouped into six sets of three participants each. Within each group,
participants were paired in all possible combinations, resulting in three pairs per group and 18 pairs
overall. Each participant completed 500 trials in the first round and approximately 360 trials (180
per pair, across two pairs) in the second round.

5.2 MANIPULATING RESULTS

Evaluation metrics. To analyze the effects of individual manipulation, we employed two key
metrics. The first metric, referred to as the guidance outcome (Figure 5b), was adapted from Sec-
tion 3.3.2. It categorizes outcomes for two participants, s1 and s2, with respective guidance targets
o1 and o2, and choices c1 and c2. A result is labeled as success if both participants’ choices fall
within their respective guidance targets and are distinct, i.e., c1, c2 ∈ {o1, o2} and c1 ̸= c2. If both
choices are biased toward the same target, such as c1 = c2 = o1 or o2, it is categorized as bias.
Finally, if at least one choice is outside the targets (c1, c2 /∈ {o1, o2}), the outcome is labeled as
failure. The second metric, called the targeted ratio (Figure 5c), quantifies the directionality of
successful guidance. Within successful trials, participant choices are classified as either positive,
where c1 = o1 and c2 = o2, meaning both choices align with their respective targets, or negative,
where c1 = o2 and c2 = o1, indicating swapped choices. The targeted ratio is defined as the propor-
tion of positive trials among all success trials, providing a measure of the effectiveness of directional
guidance. We present examples of stimuli demonstrating various guidance outcomes and directions
in Figure A.20.

Improvement in guidance outcome. We first analyzed the improvements in the guidance out-
come achieved through individual manipulation. As shown in Figure. 5, A.17, A.18, A.19, com-
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Figure 5: Manipulation analysis. (a) Individual manipulation experiment process. Participants first
completed the first round, and these behavioral data were used to finetune their individual models.
Based on the finetuned models, pairwise targeted controversial guidance was used to generate stim-
uli, which were used in the second round. The left panel showcases examples of success (positive,
negative), bias, and failure cases, illustrating the choices made by individual models and human par-
ticipants. (b) The middle two bars show the guidance outcomes for varMNIST and the individually
customized dataset, with the latter achieving a higher success rate. The left and right bars further
analyze the successful samples, where the dark blue indicates the participant’s choices aligned with
the guidance direction, and the light blue indicates the opposite. Compared to varMNIST, IndivNets
also improves the directionality of guiding perceptual changes. (c) The left panel shows the guid-
ance success rates for the first-round stimuli and the second-round stimuli generated by the finetuned
models, with an improvement of ∼3% (p < 0.001). The right panel shows the targeted ratios (i.e.,
the proportion of participant choices aligned with the guidance direction) for these two groups of
stimuli, with an increase of ∼12% (p < 0.001).

pared to varMNIST, the success rate in the individually customized dataset increased by 3%, the bias
rate increased by 1%, and the failure rate decreased by 4%. Considering that each participant com-
pleted only around 200 samples in the experiment, compared to 20,000 samples in varMNIST, this
represents a very small sample size. Therefore, these results indicate that even with a limited sample
size, we successfully captured the perceptual differences among individual participants. These find-
ings validate the feasibility and effectiveness of individual manipulation using small, customized
datasets, demonstrating that precise modeling and manipulation of human perceptual behavior can
be achieved even at low cost.

Improvement in guiding directionality. We further evaluated the guiding directionality in suc-
cessful trials. As shown in Figure. 5, A.17, A.18, A.19„ compared to varMNIST, the target ratio
of IndivNets improved by 12%, indicating a significant enhancement in the directional guidance
achieved with individually customized datasets. This result suggests that individual fine-tuning not
only improves the model’s guiding capability but also enables more precise directional guidance,
leading participants to make choices aligned with the intended targets. This finding further validates
the effectiveness of the individual manipulation experiment, demonstrating that small, customized
datasets can achieve more efficient and precise human behavior manipulation.

6 DISCUSSION

Using recently developed counterfactual-based approach that generates synthetic visual stimuli
along the perceptual boundaries of neural networks, our work provides new insight into variabil-
ity of human percepts. First, we demonstrated that sampling along the perceptual boundaries of
ANNs allows for the generation of stimuli that evoke diverse internal experiences among human
observers. Second, through human experiments, we validated the effectiveness of our model in
capturing the nuances of human perception. Third, by utilizing carefully designed controversial
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stimuli, we selectively manipulated individual behavior, unveiling significant inter-individual differ-
ences in perceptual variability. Our study not only uncovers specific differences between humans
and machines in the variability of their perceptual experiences but also offers effective tools for
manipulating and predicting individual category judgments.

From the perspectives of cognitive science and neuroscience, our method significantly enhances the
utility and flexibility of generated images in the study of human perception. Unlike the methods em-
ployed by Golan et al. (2020) and Feather et al. (2023), which reveal the disparities between model
and human perception by generating images that strongly affect ANNs while having minimal impact
on human cognition, our method is capable of influencing both models and human perception simul-
taneously. This dual impact allows for a nuanced counterfactual examination of the subtle differ-
ences in perceptual variability between the two. In contrast to the approaches taken by Veerabadran
et al. (2023) and Gaziv et al. (2024), which focus on improving ANNs to produce images that can
influence human perception, our use of diffusion models with prior distributions allows for broader
applicability across various ANN models and perturbation methods. This also expands the range of
image sampling, enabling sampling from high-noise areas like perceptual boundaries. Moreover, the
incorporation of prior distributions ensures that our generated images more closely resemble natural
images, enhancing their effectiveness in influencing human perception. With this significant im-
provement in the usability and flexibility of generated images, we successfully explored individual
differences in human perception and opened the door for personalized manipulation, increasing the
efficiency and scope of human perception studies.

From the perspective of computer science methodology, we have made significant improvements
upon existing methods, opening new avenues for fields of AI for science and AI-human alignment.
Drawing on the controversial stimuli from Golan et al. (2020) and adversarial perturbations from
Veerabadran et al. (2023), we integrated these concepts with diffusion model priors to create two
new loss-guiding methods: controversial guidance and uncertainty guidance. This enhancement
increases the naturalness of the generated images and their influence on human perception. Addi-
tionally, inspired by works such as Jeanneret et al. (2023), Wei et al. (2024a), Wei et al. (2024b),
Chen et al. (2023), Jeanneret et al. (2022), Vaeth et al. (2023), Atakan Bedel & Çukur (2023), we
introduced counterfactual methodologies into the study of human perceptual variability, allowing us
to explore this relatively under-researched area in greater depth. Our experiments demonstrate that
the varMNIST dataset we generated significantly evokes human perceptual variability, providing
a novel approach for aligning AI and human by harmonizing their perceptual variabilities. Fur-
thermore, varMNIST can reveal individual differences among humans, enabling the generation of
customized images that reflect these differences through ANNs aligned with individual participants.

Despite our progress in exploring human perceptual variability, several limitations remain. Our
varMNIST dataset, generated by sampling along ANN perceptual boundaries, cannot fully capture
human variability, especially influences like culture, as some ANNs are trained on data from spe-
cific groups. To address this, we plan to include participants from diverse cultural backgrounds for
a more comprehensive understanding. Furthermore, the dataset’s focus on handwritten digits, while
effective for evoking perceptual variability, limits the exploration of broader visual phenomena. Ex-
panding beyond object recognition to tasks like similarity judgments, emotion recognition, visual
attention, and scene memory could offer deeper insights. However, exploring such complex tasks re-
mains challenging given the limited number of trials available in individual behavioral experiments.
Future work will incorporate natural images to better capture the complexity of human perceptual
variability in more diverse and ecologically valid contexts.

In terms of aligning AI with humans, although ANNs finetuned with individual behavioral data
showed a notable improvement in predicting perceptual variability, there remains a significant gap
when compared to their performance in standard classification tasks. This indicates that percep-
tual variability is a promising but underexplored method for AI-human alignment, with ample room
for improvement. To address this, we propose incorporating optimal experimental design Rainforth
et al. (2024); Foster et al. (2019; 2021) into human experiments, using ANNs finetuned with individ-
ual behavioral data to generate customized images that maximize individual variability. These new
behavioral data could then be fed back into the training of ANNs, dramatically improving AI-human
alignment with fewer experimental trials. This approach would significantly increase the efficiency
of human behavior data collection, reduce the cost of AI-human alignment, and accelerate the ad-
vancement of both cognitive science and artificial intelligence.
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reveal divergent invariances between biological and artificial neural networks. Nature Neuro-
science, 26(11):2017–2034, 2023.

Georgia A Floridou, Kaya J Peerdeman, and Rebecca S Schaefer. Individual differences in mental
imagery in different modalities and levels of intentionality. Memory & cognition, 50(1):29–44,
2022.

Adam Foster, Martin Jankowiak, Elias Bingham, Paul Horsfall, Yee Whye Teh, Thomas Rainforth,
and Noah Goodman. Variational bayesian optimal experimental design. Advances in Neural
Information Processing Systems, 32, 2019.

Adam Foster, Desi R Ivanova, Ilyas Malik, and Tom Rainforth. Deep adaptive design: Amortizing
sequential bayesian experimental design. In International conference on machine learning, pp.
3384–3395. PMLR, 2021.

Stephanie Fu, Netanel Tamir, Shobhita Sundaram, Lucy Chai, Richard Zhang, Tali Dekel, and
Phillip Isola. Dreamsim: Learning new dimensions of human visual similarity using synthetic
data. arXiv preprint arXiv:2306.09344, 2023.

Guy Gaziv, Michael Lee, and James J DiCarlo. Strong and precise modulation of human percepts
via robustified anns. Advances in Neural Information Processing Systems, 36, 2024.

Tal Golan, Prashant C Raju, and Nikolaus Kriegeskorte. Controversial stimuli: Pitting neural net-
works against each other as models of human cognition. Proceedings of the National Academy of
Sciences, 117(47):29330–29337, 2020.

Tal Golan, Matthew Siegelman, Nikolaus Kriegeskorte, and Christopher Baldassano. Testing the
limits of natural language models for predicting human language judgements. Nature Machine
Intelligence, 5(9):952–964, 2023.

Martin N Hebart, Charles Y Zheng, Francisco Pereira, and Chris I Baker. Revealing the multidimen-
sional mental representations of natural objects underlying human similarity judgements. Nature
human behaviour, 4(11):1173–1185, 2020.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Guillaume Jeanneret, Loïc Simon, and Frédéric Jurie. Diffusion models for counterfactual explana-
tions. In Proceedings of the Asian Conference on Computer Vision, pp. 858–876, 2022.

Guillaume Jeanneret, Loïc Simon, and Frédéric Jurie. Adversarial counterfactual visual explana-
tions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 16425–16435, 2023.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in Neural Information Processing Systems, 35:26565–26577,
2022.

Youwei Liang, Junfeng He, Gang Li, Peizhao Li, Arseniy Klimovskiy, Nicholas Carolan, Jiao Sun,
Jordi Pont-Tuset, Sarah Young, Feng Yang, et al. Rich human feedback for text-to-image genera-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 19401–19411, 2024.

Jiajun Ma, Tianyang Hu, Wenjia Wang, and Jiacheng Sun. Elucidating the design space of classifier-
guided diffusion generation. arXiv preprint arXiv:2310.11311, 2023.

Florian P Mahner, Lukas Muttenthaler, Umut Güçlü, and Martin N Hebart. Dimensions un-
derlying the representational alignment of deep neural networks with humans. arXiv preprint
arXiv:2406.19087, 2024.

Lukas Muttenthaler, Jonas Dippel, Lorenz Linhardt, Robert A Vandermeulen, and Simon Kornblith.
Human alignment of neural network representations. arXiv preprint arXiv:2211.01201, 2022a.

Lukas Muttenthaler, Charles Y Zheng, Patrick McClure, Robert A Vandermeulen, Martin N Hebart,
and Francisco Pereira. Vice: Variational interpretable concept embeddings. Advances in Neural
Information Processing Systems, 35:33661–33675, 2022b.

Lukas Muttenthaler, Klaus Greff, Frieda Born, Bernhard Spitzer, Simon Kornblith, Michael C
Mozer, Klaus-Robert Müller, Thomas Unterthiner, and Andrew K Lampinen. Aligning machine
and human visual representations across abstraction levels. arXiv preprint arXiv:2409.06509,
2024.

Vedant Nanda, Till Speicher, Camila Kolling, John P Dickerson, Krishna Gummadi, and Adrian
Weller. Measuring representational robustness of neural networks through shared invariances. In
International Conference on Machine Learning, pp. 16368–16382. PMLR, 2022.

Vedant Nanda, Ayan Majumdar, Camila Kolling, John P Dickerson, Krishna P Gummadi, Bradley C
Love, and Adrian Weller. Do invariances in deep neural networks align with human perception?
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 9277–9285,
2023.

Timea R Partos, Simon J Cropper, and David Rawlings. You don’t see what i see: Individual
differences in the perception of meaning from visual stimuli. PloS one, 11(3):e0150615, 2016.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Tom Rainforth, Adam Foster, Desi R Ivanova, and Freddie Bickford Smith. Modern bayesian ex-
perimental design. Statistical Science, 39(1):100–114, 2024.

Joel S Snyder, Caspar M Schwiedrzik, A Davi Vitela, and Lucia Melloni. How previous experience
shapes perception in different sensory modalities. Frontiers in human neuroscience, 9:594, 2015.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2020.

Shobhita Sundaram, Stephanie Fu, Lukas Muttenthaler, Netanel Y Tamir, Lucy Chai, Simon Korn-
blith, Trevor Darrell, and Phillip Isola. When does perceptual alignment benefit vision represen-
tations? arXiv preprint arXiv:2410.10817, 2024.

Philipp Vaeth, Alexander M Fruehwald, Benjamin Paassen, and Magda Gregorova. Diffusion-based
visual counterfactual explanations–towards systematic quantitative evaluation. arXiv preprint
arXiv:2308.06100, 2023.

Vijay Veerabadran, Josh Goldman, Shreya Shankar, Brian Cheung, Nicolas Papernot, Alexey Ku-
rakin, Ian Goodfellow, Jonathon Shlens, Jascha Sohl-Dickstein, Michael C Mozer, et al. Subtle
adversarial image manipulations influence both human and machine perception. Nature Commu-
nications, 14(1):4933, 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Chen Wei, Jiachen Zou, Dietmar Heinke, and Quanying Liu. Cocog: Controllable visual stimuli
generation based on human concept representations. In Proceedings of the Thirty-Third Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-24, 2024a.

Chen Wei, Jiachen Zou, Dietmar Heinke, and Quanying Liu. Cocog-2: Controllable generation of
visual stimuli for understanding human concept representation. arXiv preprint arXiv:2407.14949,
2024b.

Lingxiao Yang, Shutong Ding, Yifan Cai, Jingyi Yu, Jingya Wang, and Ye Shi. Guidance with
spherical gaussian constraint for conditional diffusion. arXiv preprint arXiv:2402.03201, 2024.

Jiwen Yu, Yinhuai Wang, Chen Zhao, Bernard Ghanem, and Jian Zhang. Freedom: Training-free
energy-guided conditional diffusion model. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pp. 23174–23184, 2023.

Charles Y Zheng, Francisco Pereira, Chris I Baker, and Martin N Hebart. Revealing interpretable
object representations from human behavior. arXiv preprint arXiv:1901.02915, 2019.

Zhenglong Zhou and Chaz Firestone. Humans can decipher adversarial images. Nature communi-
cations, 10(1):1334, 2019.

A DETAILS OF COLLECTING HUMAN PERCEPTUAL VARIABILITY

A.1 CLASSIFIER GUIDANCE DIFFUSION MODEL

A.1.1 DIFFUSION MODELS.

Diffusion models Song et al. (2020); Karras et al. (2022) consist of two main phases: forward and
reverse. The forward phase transforms an image into Gaussian noise over time t ∈ [0, T ], while the
reverse phase reconstructs the image from noise by reversing this process. At any time t, the state
xt is defined as:

xt = atx0 + btϵt, (1)

where at =
√
αt, bt =

√
1− αt, αt increases with t, and ϵt ∼ N (0, I). A neural network is trained

to predict the added noise:

min
θ

Ext,ϵt

[
∥ϵθ(xt, t)− ϵt∥22

]
, (2)

where the loss depends on the noise and the probability distribution pt(xt). The reverse process
follows an ordinary differential equation (ODE):

dxt

dt
= f(t)xt −

g2(t)

2
∇x log pt(xt), (3)

with f(t) = −d log at

dt and g2(t) =
db2t
dt − 2

d log
√
αt

dt b2t . This ODE enables the reconstruction of the
image by reversing the noise-adding process.

The specific steps for both phases are determined by the sampling algorithm. We use the DDPM
algorithm Ho et al. (2020), where the forward and reverse steps are represented as:

xt = DDPM+(xt−1) and xt−1 = DDPM−(xt).
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A.1.2 CLASSIFIER GUIDANCE

Classifier guidance is also known as Training-free guidance. Using a diffusion model and the con-
ditional information y, we define the conditional probability of the generative process as:

p(xt|y) =
p(y|xt)p(xt)

p(y)

where xt is the generated stimuli at time step t.

The gradient of this probability is calculated as follows:

∇xt log pt(xt|y) = ∇xt log pt(xt) +∇xt log pt(y|xt)

In the training-free approach, we utilize a network fϕ and define a loss function ℓ(fϕ(xt)), y) for
conditional generation. Thus, we obtain:

∇xt log pt(y|xt) = ∇xtℓ(fϕ(xt), y)

In the reverse sampling process, we introduce a correction step:

xt−1 = DDPM−(xt)− γ∇xtℓ(fϕ(xt), y)

Therefore we can generate certain stimuli by designing the loss function ℓ. To obtain stimuli that can
disrupt human perception, we explored four potentially suitable approaches: uncertainty sampling
and controversial sampling. High uncertainty sampling aims to generate stimuli that challenge the
model’s judgment, while controversial sampling seeks to produce stimuli that maximize the differ-
ence in probability distributions between two models.

A.2 DETAILS OF GUIDANCE ALGORITHMS

A.2.1 DETAILS OF TARGETED GUIDANCE

In targeted guidance, we specify directions for the guidance. For instance, at position (3, 5), uncer-
tainty guidance directs towards both categories 3 and 5. For controversial guidance, classifier 1 is
directed towards category 3, while classifier 2 is directed towards category 5. Similarly, at position
(5, 3), uncertainty guidance directs towards both categories 5 and 3. For controversial guidance di-
rects classifier 1 towards category 5 and classifier 2 towards category 3. To ensure balanced targeted
guidance, we generate samples in multiples of 100 for each targeted guidance. This ensures that all
stimuli corresponding to positions from 0 to 9 × 0 to 9 (i.e., covering all guidance directions) are
included, thereby maximizing sampling uniformity. In the generation the guidance scale is set to
0.1, resampling steps is set to 5, and the inference steps is set to 50.

When generating stimuli using this guidance strategy, we ensure that each term in the loss func-
tion is effectively utilized. While this approach guarantees category-balanced sampling during the
generation process, the final retained stimuli may not necessarily exhibit category balance. For the
stimuli intended for human digit recognition experiments, we apply additional filtering to the gen-
erated images. Specifically, for uncertainty sampling, we require that the top two p-values exceed
0.4 and the digit surrogate score is above 0.5. For controversial sampling, we ensure that the clas-
sification outputs of both classifiers correspond to the intended guidance direction, with the highest
p-value exceeding 0.9 and the digit surrogate score above 0.5. A detailed analysis of the filtered
dataset derived from uniform sampling was performed, and the distribution of category counts is
presented in Figure A.6. By comparing this distribution with the cognitive data shown in Figure
A.12, a correlation can be observed.

A.2.2 THE ROLE OF DIFFUSION PRIOR

In previous studies that employed generated images to investigate model and human perception
( Golan et al. (2020); Gaziv et al. (2024); Veerabadran et al. (2023); Feather et al. (2023)), a common
issue was that the generated images lacked sufficient naturalness and failed to significantly influence
human perception. This issue is particularly crucial within the context of our research objectives.
Using previous methods often resulted in images that were unrecognizable to human participants,
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leading to nearly random classification results (see Figure. A.2). Recent advances in adversarial
examples and counterfactual explanations in machine learning (Jeanneret et al. (2023); Wei et al.
(2024b); Chen et al. (2023); Jeanneret et al. (2022); Vaeth et al. (2023); Atakan Bedel & Çukur
(2023)) have addressed this issue by employing diffusion models as regularizers to introduce prior
information. This technique allows for the generation of natural images capable of influencing
human perception.

Inspired by these advances, we utilize a classifier-free diffusion model as the core of image gen-
eration process. By sampling noise from the target dataset (MNIST) distribution and feeding it
into the diffusion model for denoising, we effectively incorporate prior information. This approach
enhances the naturalness of the generated images, making them more reflective of the real distri-
bution of handwritten digits and thereby increasing their impact on human perception, as shown in
Figure. A.2.

A.2.3 EDITING EXISTING DATASETS VS. GENERATING DATA FROM SCRATCH

The process of adding MSE loss to the loss function can be seen as editing existing datasets. The
MSE loss is used to constrain the pixel space of the stimuli. Without the MSE loss, the model is
more likely to sample from distributions of stimuli that are very similar in pixel space within a certain
class. We aim to enforce a constraint in the pixel space that encourages the stimuli to be closer to
the original distribution of randomly sampled samples from the MNIST dataset. This approach is
intended to enhance the diversity of the generated stimuli. We define α as the pixel-level restraint
scale.

For uncertainty guidance with MSE constraint, we have:
ℓ(f(xt), y) = H(y|xt) + α||xt − xref ||2,

where H represents the entropy, α represents the strength of the MSE loss. For controversial guid-
ance with MSE constraint, we have:

ℓ(f(xt), y) = DKL(p(y1|xt), p(y2|xt)) + α||xt − xref ||2,
where DKL represents the KL divergence between two distributions. We conducted experiments on
five models. For uncertainty sampling, we generated stimuli for each model, resulting in five groups
of stimuli. In the controversial sampling experiments, we pitted the models against each other in
pairs, creating ten groups of stimuli. However, this approach can be perceived as manipulating one
class into another, which is similar to our goal of sampling along the decision boundaries of ANNs,
but not exactly the same. In generation, the guidance scale is set to 0.1, resampling steps is set to 5,
the inference steps is set to 50, and α is set to 50.

A.2.4 TARGETED GUIDANCE VS. UNTARGETED GUIDANCE

Untargeted guidance focuses solely on increasing the variability of the generated images, without
considering the overall distribution of the images. We adopted an untargeted guidance method to
generate stimuli for the digit recognition experiment. To sample at the decision boundary of the
model, we drew on previous research and proposed two guidance methods: uncertainty guidance
and controversial guidance. Uncertainty guidance ensures that the generated images are as close as
possible to the model’s perceptual boundary by maximizing the entropy of the classification proba-
bility distribution of a single ANN model for the generated images, thereby obtaining images with
high perceptual variability for the model. For uncertainty guidance, this can be represented as:

ℓ(f(xt), y) = H(y|xt),

Where H is the entropy, y is the output probability of the neural network. Controversial guidance,
on the other hand, utilizes two different ANN models and generates images that maximize the KL
divergence between their classification probability distributions, thereby maximizing perceptual dif-
ferences between the models. For controversial guidance, this can be represented as:

ℓ(f(xt), y) = DKL(p(y1|xt), p(y2|xt)),

Where DKL is the KL divergence, p(y1|xt) is the output probability of the first neural network,
p(y2|xt) is the output probability of the second neural network. In generation the guidance scale is
set to 0.1, resampling steps is set to 5, and the inference steps is set to 50. Targeted and untargeted
guidances are compared in Figure.A.4. Losses with and without MSE are also compared in Fig-
ure. A.3. The formula for the targeted guidance can be found at section 3.1 . The losses compared
in this figure are untargeted losses.
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A.3 MODEL CONFIGURARATION AND TRAINING

A.3.1 DIFFUSION MODEL

Configuration of DiT. The Diffusion Transformer (DiT) (Peebles & Xie (2023)) is a Transformer-
based diffusion model tailored for generative tasks. In our configuration, the model processes 28 ×
28 grayscale images using a patch size of 2 × 2, resulting in patch embeddings transformed into
sequences of hidden size 128, with 1 input channel and 10 output classes. The architecture includes
4 Transformer layers with 8 attention heads per layer and an MLP ratio of 4.0.

DiT incorporates Patch Embedding, Timestep Embedding, and Label Embedding modules. These
embeddings are combined with fixed sinusoidal positional encodings to provide spatial and temporal
context. AdaLN (Adaptive Layer Normalization) layers condition the model on timestep and label
embeddings, with zero-initialized manipulation for training stability.

The model outputs spatial predictions through a final linear layer followed by an unpatching op-
eration, restoring the input image dimensions. Classifier-free guidance is supported by computing
conditional and unconditional outputs, enabling control over generated samples.

Training of Diffusion Model. For prior diffusion model, we use the MNIST dataset as the training
dataset. The dataset consists of grayscale images of size 28 × 28, which are directly used without
further resizing. The training process is conducted using a single GPU (NVIDIA GeForce RTX
4090) with the Adam optimizer.

The data is loaded into the training pipeline using a PyTorch DataLoader with a batch size of 128,
andthe number of worker threads for data loading is set to 128. The model is trained for 150 epochs,
with a learning rate of 1e− 4 and an unconditional training rate of 0.1, and the weight decay is not
applied. Dropout is applied to the class embedding with a probability of 0.1, while the model does
not learn the variance (sigma).

A.3.2 CLASSIFIERS

Table 1: Configurations and MNIST Accuracy of Classifiers

Model Name Model Type MNIST Accuracy (%)
ViT Vision Transformer 97.2
VGG Small VGG 98.2
CORNet CORnet-Z 98.9
MLP Multi-Layer Perceptron 98.3
LRM Logistic Regression Model 92.7

The classifier models were trained on the MNIST dataset using 28×28 grayscale images, normalized
with the ‘ToTensor‘ transformation. Training and testing sets were loaded with a batch size of 100,
and the models were implemented with 5 different configurations (see Table. 1) to map input images
to 10 output classes. Training was performed on an NVIDIA GPU using the AdamW optimizer (lr =
1×10−3) for 16 epochs, and CrossEntropyLoss function was used to compute the classification loss.

A.3.3 DIGIT JUDGMENT SURROGATE

Training of digit judgment surrogate. For the training of the digit judgment surrogate model,
we constructed a dataset based on the results of the human digit judgment experiment. Specifically,
for any given image, the frequency of participants responding "True" was taken as the probability
of the image being judged as a digit. These images and their corresponding probabilities were then
used to train the digit judgment surrogate. The dataset was split into a training set and a test set in a
ratio of 8:2.

The surrogate model is based on the SmallVGG architecture, with a final output layer designed for
regression tasks. The model was trained using the AdamW optimizer with a learning rate of 0.001,
and the mean squared error (MSE) was used as the loss function. The training process lasted for 8
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epochs with a batch size of 128. After each epoch, the validation loss was monitored, and the model
with the best validation performance was saved for further evaluation.

Performance of digit judgment surrogate. To ensure the validity of the digit judgment surro-
gate’s predictions, we computed the correlation between the predicted scores and human scores. For
any given image, the human score was defined as the frequency of participants responding "True,"
indicating the image is a digit, while the predicted score was the probability assigned by the model
classifying the image as a digit.

As shown in Figure. A.8a, the Spearman rank correlation coefficient between the predicted scores
and human scores is 0.8035. This indicates that the model’s digit judgment is highly consistent with
human. Additionally, Figure. A.8b presents image examples corresponding to different predicted
scores. For scores of 0.10, 0.25, 0.50, 0.75, and 0.90, eight samples were randomly selected for each
score. The examples reveal that as the predicted score increases, the images progressively resemble
digits more closely. These results demonstrate that the digit judgment surrogate effectively simulates
human digit judgment behavior.

A.4 ONLINE HUMAN BEHAVIROAL MEASUREMENT

A.4.1 DIGIT JUDGMENT

We use the initial synthetic dataset as experimental stimuli to measure human behavior in the judg-
ment task (see Figure 2b (left)). The purpose of the experiment is to collect human judgments on
whether any given image test is a digit, in order to filter out images that do not meet the standards of
handwritten digits.

Task paradigm Before the formal experiment, participants will first complete a pre-experiment.
Each round of the pre-experiment consists of two stages. (1) Selection Stage: A test image appears at
the center of the screen, with two buttons labeled "True" and "False" displayed below it. Participants
are required to judge whether the image represents a number. (2) Feedback Stage: After making their
choice, participants will receive feedback below the image indicating whether it is a number. The
pre-experiment includes a total of 10 rounds, after which participants will proceed to the formal
experiment. In formal experiment, participants performed multiple rounds of a choice task (see
Figure. A.7). Each trial consisted of two phases: (1) Fixation Phase: A black cross was displayed
at the center of the screen for 300 ms to direct participants’ attention to the center. (2) Selection
Phase: A test image appears at the center of the screen, with two buttons labeled "True" and "False"
displayed below it. The positions of the buttons were fixed and remained unchanged throughout
the trials. Participants were asked to judge whether the image represents a figure by selecting the
corresponding button with the mouse or pressing the key on the keyboard (A represents True and
D represents False). There was no time limit for responding. Each session of formal experiment
comprised 500 trials, divided into two types: (1) Sentinel trials (n = 10), in which participants
are shown a set of 10 pre-selected MNIST images, i.e., the correct response should be True. We
screened participants based on their accuracy in the sentinel trials to ensure high-quality responses.
(2) Random Trials (n=490), where images were randomly selected from the dataset, excluding the
fixed images. The two trial types were presented in a random alternating order. No feedback was
provided after participants made their selection. The experiment was programmed using JSPsych,
with stimuli presented via the JSPsych-Psychophysics component.

Human data collection The experiment got ethics approval from the local University. We re-
cruited participants (N=400) and collected data through the NAODAO platform. Prior to the ex-
periment, participants read an informed consent form detailing any potential risks associated with
participation. Participants were allowed to withdraw from the experiment at any time. No personal
identification information was collected. We only included data from participants with sentinel trial
accuracy greater than 70%, resulting in data from 276 participants and 135240 trials involved in the
following analyses.
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A.4.2 DIGIT RECOGNITION EXPERIMENT

We used the filtered synthetic dataset as experimental stimuli to measure human behavior in a digit
recognition task (see Figure. 2). The goal of the experiment was to collect the probability distribution
of human choices for any given test image. In this task, participants were presented with ten possible
choices, represented by the digits 0 to 9.

Task paradigm Participants performed multiple rounds of a category comparison task. Each trial
consisted of two phases (see Figure. A.9): (1) Fixation Phase: A black cross was displayed at the
center of the screen for 300 ms to direct participants’ attention to the center. (2) Selection Phase:
A test image appeared at the center of the screen, accompanied by ten labeled buttons below it,
with labels ranging from 0 to 9. The positions of the buttons were fixed and remained unchanged
throughout the trials. Participants were asked to identify the digit in the image by selecting the
corresponding button with the mouse or pressing the number key on the keyboard. There was no
time limit for responding.

Each session comprised 500 trials, where images were randomly selected from the dataset. No
feedback was provided after participants made their selection. The experiment was programmed
using JSPsych, with stimuli presented via the JSPsych-Psychophysics component.

Human data collection The experiment got ethics approval from the local University. The exper-
iment collected behavioral data from 400 participants through the NAODAO platform, comprising
200,000 trials and 20,000 stimuli. Prior to the experiment, participants read an informed consent
form detailing any potential risks associated with participation. Participants were allowed to with-
draw from the experiment at any time. No personal identification information was collected. Dur-
ing data preprocessing, 154 participants were excluded based on Sentinel trials (accuracy < 0.7),
leaving data from 246 participants (123,000 trials and 19,952 valid stimuli). Table 2 and Table 3
shows the stimuli distribution across guidance strategies and classifier. Using this cleaned dataset,
we constructed a high perceptual variability dataset, varMNIST, which serves as a foundation for
subsequent analysis and modeling.

A.5 ADDITIONAL DATASET DETAILS

A.5.1 EVALUATION METRICS

Judgment distribution. As shown in Figure. A.10 (top left), we evaluated the distribution of
human judgments across the ten digit classes (0–9). The results indicate that the probabilities are
relatively uniform, with all categories exhibiting values close to 0.1. Notably, digits 0, 6, and 9
were judged with slightly higher probabilities (around 0.15) compared to other digits, while digits 1
through 5 demonstrated lower probabilities (around 0.06).

RT and entropy. We further examined the relationship between response time (RT) and entropy
to gain insights into the cognitive process underlying human judgments. RTs were predominantly
distributed between 500 and 1500 ms, following a long-tail distribution, indicating that most deci-
sions were made quickly, with a few requiring significantly more time (Figure. A.10 (top right)).
The entropy of human judgments primarily concentrated near 0, reflecting high confidence in about
half of the trials. Values between 0.5 and 2 also appeared, indicating uncertainty or ambiguity (Fig-
ure. A.10 (bottom left)). A positive correlation (Spearman rank correlation coefficient = 0.55) was
observed between entropy and RT, suggesting that higher uncertainty in judgment often corresponds
to longer decision times (Figure. A.10 (bottom right)).

Classifier configurations influence the guidance outcome. We evaluated how different classifier
configurations affected the guidance outcome under controversial guidance conditions. The over-
all guidance success was determined by measuring the probability that participants selected digit x
when the model guided the judgment toward x. As shown in Figure. A.11 (left), the results show
that CORNet and VGG achieved the highest success rates, both nearing 0.6, indicating their strong
ability to influence human judgments. VIT and MLP followed with moderate success rates of ap-
proximately 0.3, while LRM had the lowest success rate at around 0.2, reflecting its weaker guidance
capability.
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Further analysis compared the guidance outcome differences between classifiers when used as ad-
versarial pairs in controversial guidance (see Figure. A.11 (right)). CORNet and VGG consistently
outperformed other classifiers, showing significantly higher success rates. In contrast, LRM exhib-
ited the lowest success rates compared to other classifiers. These findings suggest that the choice
of classifiers significantly impacts the effectiveness of controversial guidance, with certain architec-
tures like CORNet and VGG being more effective at aligning human responses with their intended
guidance.

Guidance targets influence the guidance outcome. We analyzed how different guidance targets
influenced the guidance outcome, defined as the proportion of successful stimuli generated for each
target pair. As shown in Figure. A.12, the results revealed significant variability across guidance
targets. Target pairs such as (1, 7), (1, 2), and (4, 9) demonstrated the highest success rates, each
exceeding 0.35. This suggests that these pairs may align better with human perceptual biases or
model representations, leading to more effective guidance. Conversely, pairs such as (1, 8), (2, 9),
and (7, 8) exhibited the lowest success rates, with values below 0.03, indicating greater difficulty
in guiding these pairs. These findings highlight the importance of selecting appropriate guidance
targets to maximize the effectiveness of the generated stimuli.

A.5.2 ADDITIONAL VISUALIZATION RESULTS

We generated 900 images using both targeted and untargeted approaches under the guidance of
uncertainty and controversial methods. A t-SNE analysis was conducted on the targeted and untar-
geted methods for both the controversial and uncertainty approaches. To ensure fairness, the t-SNE
analysis was performed directly on the raw pixel space for dimensionality reduction. The results
are shown in Figure A.5. It can be observed that the distribution is more uniform when targeted
guidances are adopted.

B ADDITIONAL RESULTS OF PREDICTING HUMAN PERCEPTUAL
VARIABILITY

B.1 EFFECTS OF FINE-TUNING ACROSS CLASSIFIERS

Prediction accuracy. As shown in Figure. A.13, on MNIST, group/individual fine-tuning resulted
in slight accuracy improvements for ViT and VGG, while CORNet and MLP showed no significant
changes. LRM’s accuracy decreased after fine-tuning, indicating limited generalization. On varM-
NIST, all classifiers exhibited significant accuracy gains after fine-tuning, highlighting the benefits
of group and individual fine-tuning for datasets with high perceptual variability.

Model and human entropy. Figure. A.14 highlights the changes in correlation between model-
predicted entropy and human behavioral entropy before and after fine-tuning. A positive correlation
was observed across all baseline classifiers, indicating that even in the baseline condition, models
capture human perceptual variability. Fine-tuning on varMNIST significantly enhanced this corre-
lation, demonstrating improved alignment with human perceptual variability.

Impact of Image Difficulty. As shown in Figure. A.15, fine-tuned models outperformed baseline
models across all entropy levels, confirming the general effectiveness of fine-tuning. For classi-
fiers other than LRM, individual fine-tuned models achieved greater accuracy improvements on
high-entropy images compared to group-tuned models, indicating that individual fine-tuning is par-
ticularly effective for challenging stimuli.

B.2 MODEL FINE-TUNING

For group-level fine-tuning, The original classifier models were trained on the mixed (ratio = 1:1)
MNIST , varMNIST datasets using 28×28 grayscale images, normalized with the ‘ToTensor‘ trans-
formation. For individual-level fine-tuning, the dataset is a mixture of varMNIST-i, varMNIST and
MNIST at a ratio of 2:1:1 and the initial model is the group model. Training and testing sets were
loaded with a batch size of 128, and the models were implemented with 5 different configurations
(see Table. 1) to map input images to 10 output classes. Training was performed on an NVIDIA
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GPU using the AdamW optimizer (lr = 1 × 10−3) for 16 epochs, and CrossEntropyLoss function
was used to compute the classification loss.

B.3 CLUSTERING ANALYSIS

There is a large variability in the subject’s digit recognition behaviors, since participants differ in
high-level factors such as culture, ethnicity, educational background, regional customs, and psycho-
logical states. We hypothesize that participants could be grouped into several clusters, with partici-
pants within the same cluster likely to exhibit similar perceptual variability. To test this hypothesis,
we used each participant’s subject-finetuned model to predict the behavior of all participants, and
we calculated inter-subject similarity matrix based on the prediction results. The better the predic-
tion performance, the higher the inter-subject similarity. As shown in Figure. A.16a, the similarity
matrix between participants revealed the existence of eight distinct clusters. Furthermore, we ob-
served that the subject-finetuned models performed better in predicting the behavior of participants
within the same cluster (in-cluster) compared to those outside the cluster (out-cluster), as shown in
Figure. A.16b. Our results indicate that the clustering is valid and that there are indeed high-level
percept differences between participants.

C DETAILS OF MANIPULATING HUMAN PERCEPTUAL VARIABILITY
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Figure A.1: Guidance methods. (a) The uncertainty guidance. It utilizes the classification un-
certainty of the generated images from model f to guide the diffusion model in generating stimuli
toward specific directions. Model f ensures the image is a digit. (b) The controversial guidance. It
employs the classification differences between the generated images from model f1 and model f2 to
guide the diffusion model in generating stimuli toward specific directions.
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Table 2: Stimuli Counts before Experiment

Guidance Strategy Classifier Stimuli Count

Controversial CORNet_LRM 1000
CORNet_MLP 1000
MLP_LRM 1000
VGG_CORNet 1000
VGG_LRM 1000
VGG_MLP 1000
ViT_CORNet 1000
ViT_LRM 1000
ViT_MLP 1000
ViT_VGG 1000

Uncertainty CORNet 2000
LRM 2000
MLP 2000
VGG 2000
ViT 2000

Sum 20000

Table 3: Stimuli and Trial Counts after Experiment

Guidance Strategy Classifier Stimuli Count Trial Count

Controversial CORNet_LRM 997 5766
CORNet_MLP 996 5688
MLP_LRM 997 5684
VGG_CORNet 995 5806
VGG_LRM 994 5767
VGG_MLP 999 5823
ViT_CORNet 997 5865
ViT_LRM 995 5949
ViT_MLP 999 5811
ViT_VGG 999 5881

Uncertainty CORNet 1994 11631
LRM 1992 11668
MLP 1997 11849
VGG 1996 11710
ViT 1996 11817

Sum 19943 116715
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VAEGuidance without prior Guidance with prior

Figure A.2: Comparison of our method with other approaches. Images generated by a diffusion
model without prior distribution exhibit severe noise. Images produced by a Variational Autoencoder
(VAE) show minimal differences and are generally blurry. Our method (with prior), however, yields
images that are not only clear and noise-free but also exhibit substantial diversity.

Uncertainty without MSE Uncertainty with MSE

Controversial without MSE Controversial with MSE

Figure A.3: Comparison of generated images with/without MSE loss. The losses here are all
untargeted.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Untargeted uncertainty Targeted uncertainty

Untargeted controversial Targeted controversial

Figure A.4: Examples of generated stimuli.

Untargeted guidance
Targeted guidanceControversial Uncertainty

Figure A.5: t-SNE analysis on the pixel space for the generated images of different guidance
methods. From the figure it is obvious that stimuli from targeted sampling are distributed more
uniformly.
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Uncertainty sampling Controversial sampling

Figure A.6: Category distribution in uncertainty sampling and controversial sampling. Certain
target pairs yield a higher number of stimuli that successfully pass the filtering criteria. For instance,
target pairs such as (4, 9) and (8, 9) consistently produce more valid stimuli under both uncertainty
and controversial sampling. In contrast, pairs like (1, 5) and (1, 3) result in significantly fewer
stimuli meeting the filtering requirements.

Figure A.7: Human digit judgment experiment procedure. In each trial, participants first ob-
serve a fixation cross ("+") for 300 milliseconds. Following the fixation, a stimulus image is pre-
sented along with 2 clickable buttons labeled "True" and "False". Participants are instructed to judge
whether the image represents a digit and either click the corresponding button or pressing the key
on the keyboard (A represents True and D represents False). The images shown to participants are
generated by our model. After each selection, no feedback is provided, and the next trial begins im-
mediately. Each participant first performed 10 rounds of pre-experiments with feedback, followed
by 500 formal trials without feedback, including 10 sentinel trials and 490 random trials.
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Figure A.8: Performance of digit judgment surrogate. (a) The predicted scores and human scores
show a strong correlation. For any given image, the human score is defined as the frequency of
participants answering "True" for the image being a digit, while the predicted score is the model’s
probability of classifying the image as a digit. The Spearman rank correlation coefficient between
the two scores is 0.8035. (b) Examples of images with different scores. For predicted scores of 0.10,
0.25, 0.50, 0.75, and 0.90, 8 samples are randomly displayed for each score. As the score increases,
the images increasingly resemble digits.

Figure A.9: Human digit recognition experiment procedure. In each trial, participants first ob-
serve a fixation cross ("+") for 300 milliseconds. Following the fixation, a stimulus image is pre-
sented along with 10 clickable buttons representing the digits 0 to 9. Participants are instructed to
identify the most likely digit represented by the image and either click the corresponding button or
press the corresponding number on the keyboard. The images shown to participants are generated
by our model. After each selection, no feedback is provided, and the next trial begins immediately.
Each participant completes a total of 500 trials, consisting of 10 sentinel trials and 490 random trials.
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Figure A.10: Behavioral results of the Digit recognition task. Top right: In the digit recognition
task on the varMNIST dataset, human judgment probabilities are relatively uniform, with values
close to 0.1 for each category. Among these, digits 0, 6, and 9 have relatively higher probabilities,
while digits 1 to 5 have lower probabilities. Top left: Human response times for the digit recognition
task are concentrated between 500 and 1500 ms, showing a long-tail distribution. Bottom right: The
entropy of human judgment results is primarily distributed around 0, with additional values observed
between 0.5 and 2. Bottom left: Entropy and response time exhibit a positive correlation, with a
Spearman rank correlation coefficient of 0.55.
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Figure A.11: Guidance outcome under different classifiers configurations. Left: Overall con-
troversial guidance outcomes for different classifiers. Under controversial guidance conditions, the
success rate is measured as the probability that participants chose digit x when the model guided the
judgment to x. CORNet and VGG achieved the highest success rates, nearing 0.6, followed by VIT
and MLP with success rates of approximately 0.3. LRM had the lowest success rate at around 0.2.
Right: Differences in guidance outcomes among classifiers during controversial guidance (when us-
ing two classifiers as adversarial classifiers, the difference in the guidance outcome of one classifier
and the other). CORNet and VGG exhibited significantly higher success rates compared to other
classifiers, while LRM showed notably lower success rates than the rest.

Figure A.12: The success rate (proportion of successful stimuli) varies significantly across dif-
ferent guidance targets. Pairs such as (1, 7), (1, 2), and (4, 9) achieve the highest success rates,
exceeding 0.35. In contrast, pairs such as (1, 8), (2, 9), and (7, 8) have the lowest success rates,
falling below 0.03.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Figure A.13: Correlation between model entropy and human behavior. (a) Prediction accuracy
on MNIST before and after fine-tuning for different classifiers. ViT and VGG show slight im-
provements in accuracy after group/individual fine-tuning, CORNet and MLP exhibit no significant
changes, while LRM experiences a decrease in accuracy post-fine-tuning. (b) Prediction accuracy
on varMNIST before and after fine-tuning. All five classifiers demonstrate substantial improvements
in accuracy after group/individual fine-tuning. (c) Prediction accuracy on varMNIST-i before and
after fine-tuning. All five classifiers show moderate improvements in accuracy after group/individual
fine-tuning.

Figure A.14: Correlation between model entropy and human behavior. (a) Positive correlation
between the entropy calculated from participants’ behavior and the entropy predicted by the model
for visual stimuli across five models. Each blue dot represents an image stimulus, and the red line
shows the fitted result. (b) Significant improvement in the correlation between behavioral entropy
and model-predicted entropy after fine-tuning on varMNIST, across five models.

Figure A.15: Correlation between model entropy of different classifiers and human behavior.
Prediction accuracy of different classifiers on images with varying entropy levels before and after
fine-tuning. For all five classifiers, fine-tuned models show significant improvements in accuracy
across all entropy levels compared to the baseline models. For the four classifiers other than LRM,
the improvements of individual fine-tuned models over group-fine-tuned models are primarily ob-
served on high-entropy images.
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Figure A.16: Subject clustering analysis. (a) Subject similarity matrix and clustering results. The
subject-finetuned model was used to predict the entire varMNIST dataset, and similarity between
subjects was computed based on their prediction results. The left axis and gray boxes indicate
subjects belonging to the same cluster, with a total of eight clusters. (b) Performance of the subject-
finetuned model in predicting data from different groups: out-cluster, in-cluster, and in-subject cor-
respond to different clusters, the same cluster, and the subject itself, respectively. Each point rep-
resents the average prediction performance of a subject on data from the corresponding group, and
The black line represents the average of all subjects.

Figure A.17: Examples of manipulation stimuli for subject 1 and subject 2. The left part of the
figure shows the actual numbers of each category of stimuli. The real stimuli used to manipulate
the subjects are shown on the right. The choices of the subjects are in the middle, with the guidance
label marked in parentheses. All positive and negative examples are presented, along with 10 typical
bias and failure cases.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Figure A.18: Examples of manipulation stimuli for subject 1 and subject 3. The structure is the
same as Figure A.17.

Figure A.19: Examples of manipulation stimuli for subject 2 and subject 3. The structure is the
same as Figure A.17.
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Figure A.20: Detailed analysis of each subject pair. (a) Prediction accuracy of individual models
trained on in-lab participants, showing consistent improvement after fine-tuning. The original mod-
els are group models fine-tuned on varMNIST. (b) Comparison of guidance success rates between
varMNIST and customized stimuli, indicating notable improvement for the majority of subject pairs.
(c) Target ratio comparisons on varMNIST and customized stimuli, demonstrating an increase across
nearly all subject pairs.
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