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Abstract

In this paper, we use tools from rate-distortion theory to establish new upper
bounds on the generalization error of statistical distributed learning algorithms.
Specifically, there are K clients whose individually chosen models are aggregated
by a central server. The bounds depend on the compressibility of each client’s
algorithm while keeping other clients’ algorithms un-compressed, and leveraging
the fact that small changes in each local model change the aggregated model by a
factor of only 1{K. Adopting a recently proposed approach by Sefidgaran et al.,
and extending it suitably to the distributed setting, enables smaller rate-distortion
terms which are shown to translate into tighter generalization bounds. The bounds
are then applied to the distributed support vector machines (SVM), suggesting
that the generalization error of the distributed setting decays faster than that of the
centralized one with a factor of OpalogpKq{Kq. This finding is validated also
experimentally. A similar conclusion is obtained for a multiple-round federated
learning setup where each client uses stochastic gradient Langevin dynamics
(SGLD).

1 Introduction
A key performance indicator of any stochastic learning algorithm that uses a given finite set of data
points is how well it performs on points that are outside that set, i.e., unseen data. This is often captured
through the so-called generalization error. The questions of what really controls the generalization
error of a given stochastic algorithm, and how to make it sufficiently small, are still not yet well
understood, however. For example, while classic approaches [SSBD14] suggest that algorithms with
over-parameterized models are likely to overfit, it is now known that there exist a few such ones which
do generalize well [ZBH�17]. Common approaches to studying the generalization error of a statistical
learning algorithm often consider the effective hypothesis space induced by the algorithm, rather
than the entire hypothesis space, or the information leakage about the training dataset. Examples
include information-theoretic (mutual information) approaches [RZ16, XR17, HRVSG21, HDMR21,
NHD�20, SZ20], compression-based approaches [AGNZ18, SAN20, HJTW21, BSE�21, KLG�21]
and intrinsic-dimension or fractal based approaches [ŞSDE20, BLGŞ21, HŞKM21]. Recently, a
novel approach [SGRS22] that generalizes the notion of algorithm compressibility by using lossy
covering from source coding concepts was used to show that the compression error rate of an algorithm
is strongly connected to its generalization error both in-expectation and with high probability; and,
consequently, establish new rate-distortion-based bounds on the generalization error. The bounds
of [SGRS22] were shown to possibly improve strictly upon those of [XR17, BZV20] and [SZ20]. The
approach also has the advantage to offer a unifying perspective on mutual information, compressibility,
and fractal-based frameworks.

Another major focus of machine learning research over recent years has been the study of statistical
learning algorithms when applied in distributed (network or graph) settings. In part, this is due to the
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emergence of new applications in which resources are constrained, data is distributed or the need
to preserve privacy [VWK�20, MMR�17, KMY�16, KLN�11]. Reducing the computational com-
plexity by offloading the model training using algorithms such as parallel stochastic gradient descent
is another reason for the popularity of these algorithms. Generally, that results in extra communication
costs, however [ZZ15, AGL�17, CCB�18, LM22, WLC22]. Example such algorithms include the
now popular Federated Learning [YAE�18, KMA�19, LSTS20, RCZ�20, KKM�20, YZR21], the
Split Learning of [GR18], Group Alternating Direction Method of Multipliers [EPB�20], and the
so-called in-network learning of [AZ19, MZ21]. Despite its importance, however, little is known
about the generalization guarantees of distributed statistical learning algorithms. In fact, in the
distributed learning setting the technical challenges are numerous, including the lack of a proper
definition of the generalization error in this case [YMNS22, MSS19]. Notable exception works in this
direction include [YDVP20] and [BDP22]. In [YDVP20], information-theoretic upper bounds on the
generalization error of distributed statistical learning algorithms are obtained merely by viewing the
entire distributed system, from the input data to each (local) algorithm to the output aggregated model,
as a single (centralized) algorithm and applying to it the bounds of [XR17, BZV20]. While somewhat
useful this, however, has left the difference between the bounds for the distributed learning setting
and their counterparts for the centralized learning setting implicit in the involved mutual information
terms. The problem of studying the generalization error of distributed statistical learning algorithms
was further studied in the recent [BDP22]. Therein, using results from [BZV20], the authors establish
bounds on the expectation of the generalization error for two special cases. For the first, linear or
location models with Bregman divergence loss, the proposed bound on the generalization error for
the distributed setup [BDP22, Theorem 4] is shown better (i.e., smaller) than its counter-part for the
centralized learning setting by a factor of Op1{?Kq, where K is the number of clients. This result,
however, relies strongly on the assumed linearity of the loss with respect to the hypothesis. For the
second, Lipschitz continuous loss [BDP22, Theorem 5], similar behavior is shown by reducing the
problem to the centralized case and using the triangle inequality.

In this work, we study the generalization error of distributed statistical learning algorithms. Essentially
we extend suitably the approach of [SGRS22] to establish rate-distortion theoretic upper bounds
on the generalization error. In doing so, we bring the analysis of the distributed architecture of the
learning problem into the bounds. The bounds, which hold with high probability and in-expectation,
allow to only consider the compressibility of each local algorithm – the latter having an effect
with a factor of only 1{K on the aggregated model order-wise. This is shown to result in a more
relaxed distortion criterion for the local algorithm compressibility, smaller rate-distortion terms;
and, in turn, better generalization bounds. Furthermore, we apply our results to the distributed
support vector machines (DSVM). The obtained bounds suggest that for the non-separable data, the
generalization error of the distributed setting decays faster than that of the centralized one with a
factor of

a
logpKq{K. We conducted experiments on DSVM that confirm this finding. We also

consider the related Federated learning setting, and derive bounds on the generalization error in two
setups: when each client applies the stochastic gradient Langevin dynamics (SGLD) method and
locally deterministic algorithms with Lipschitz loss (in Appendix C.1). In all cases, our bounds
suggest a decreasing behavior for the generalization performance as K grows.

Notation. Random variables, their realizations, and their domains are denoted respectively by
upper-case, lower-case, and calligraphy fonts, e.g., X , x, and X . Their distributions and expectations
are denoted by PX and ErXs. The random variable X is called σ-subgaussian if for all t P R,
ErexpptpX � ErXsqqs ¤ exppσ2t2{2q, e.g., if X P ra, bs, then X is b�a

2 -subgaussian. A vector
of m P N numbers (or random variables) px1, . . . , xmq are denoted by either x1:m or txiumi�1, de-
pending on the context, and the vector px1, . . . , xi�1, xi�1, . . . , xmq is denoted by x1:mzi. Similarly
for n,m P N, a vector px1,1, . . . , x1,m, x2,1, . . . , x2,m, xn,1, . . . , xn,mq is denoted by x1:n,1:m or
txi,1:muiPrns, or tx1:n,jujPrms, where rns � t1, . . . , nu. Parts of our results are stated in terms of
information-theoretic quantities: for random variables X and Y , we denote the differential entropy of
X by hpXq, the conditional differential entropy of X given Y by hpX|Y q, and the mutual information
between them by IpX;Y q. Moreover, the Kullback–Leibler (KL) divergence between distributions
Q and P is denoted by DKLpQ}P q. For more details, we refer the reader to [CT06, PW14].

2 Preliminaries and problem setup
For convenience, we start with a brief review of the standard (centralized) statistical learning setup
together with a few definitions and recent results associated with it. Let the input data Z be
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distributed according to an unknown distribution µ over the data space Z . A training dataset
S � pZ1, . . . , Znq � µbn consists of n samples tZiu generated independently each according to µ.
A possibly stochastic learning algorithm A : Zn ÞÑW (e.g., stochastic gradient descent) assigns an
hypothesis ApSq � W chosen from the hypothesis class W � Rd to every S P Zn. The map A
induces a conditional distribution PW |S which together with µ induce the joint dataset-hypothesis
distribution PS,W � µbnPW |S . The quality of the prediction is measured using a loss function
ℓ : Z �W ÞÑ R�. The generalization error of an algorithm A is defined as genps, wq :� Lpwq �
L̂ps, wqwhere Lpwq� EZ�µrℓpz, wqs denotes the population risk and L̂ps, wq� 1

n

°
jPrns ℓpzj , wq

denotes the empirical risk. Note that the generalization error depends on the loss function ℓpz, wq,
underlying distribution µ, the sample size n, and also the learning algorithm PW |S . In the binary
classification context, where Z � X �Y and Y � t�1,�1u, we often consider the 0-1 loss function
ℓ0pz, wq :� 1tyfpx,wq 0u, where the sign of fpx,wq, f : X �W ÞÑ R, is the label prediction by
hypothesis w and 1 is the indicator function. In this setup, it is common to assess the empirical risk
with respect to 0-1 loss function with margin θ P R� defined as ℓθpz, wq :� 1tyfpx,wq θu, while
using 0-1 loss function for the population risk evaluation. We denote the corresponding empirical risk
as L̂θps, wq :� 1

n

°
jPrns ℓθpzj , wq and the generalization error as genθps, wq :� Lpwq � L̂θps, wq.

The exact analysis of the generalization error genpS,W q seems out of reach; and, for this reason,
as already mentioned upper bounds on it were developed using an information-theoretic approach.
Essentially, such an approach connects the generalization error of a statistical learning algorithm A
with the mutual information between the input data sample S and the algorithm output W � ApSq.
For details, the reader may refer to a line of work that was initiated by Russo and Zou [RZ16] and
Xu and Raginsky [XR17] and since then improved by using various conditional versions of mutual
information. Other approaches rely on the observation that the output W can be compressible in
some suitable sense [AGNZ18] or the algorithm might generate a fractal structure [ŞSDE20].

Very recently, an approach [SGRS22] that relies on probabilistic ϵ-covering from source coding
concepts was proposed and shown to possibly improve strictly over the aforementioned, seemingly
unrelated, approaches, while offering a unifying framework to them. The upper bounds of [SGRS22]
are rate-distortion theoretic. Specifically, let Ŵ be the alphabet of the compressed hypothesis and
ℓ̂ : Z�Ŵ ÞÑ R� a loss function (possibly different from ℓ). Accordingly, for ŵ P Ŵ and s P Zn, let
genps, ŵq be defined with respect to ℓ̂. For every distribution Q defined over S�W , the rate-distortion
function with respect to Ŵ is defined as

RDpQ, ϵq� infPŴ |S
IpS; Ŵ q,

s.t. EpS,W q�QrgenpS,W qs�EpS,Ŵ q�QSPŴ |S
rgenpS, Ŵ qs ¤ ϵ. (1)

where QS is the Q-marginal of S, and the infimum is taken over all Markov kernels (conditional
distributions) of a random variable Ŵ P Ŵ given S. Note that PS,W induced by the algorithm A is a
particular case of Q. In the following, we shortly discuss the related intuition and concept behind the
above terms. The reader is referred to Appendix A for more details on this.

This rate-distortion function RDpQ, ϵq is the adaptation of the rate-distortion function emerged in
the lossy source compression context [Ber75, CT06] to stochastic learning algorithms [SGRS22].
In the lossy source compression context [Ber75, CT06], this function quantifies the fundamental
compression rate of a source X � PX to within some desired average distortion level ϵ. To this end,
infinitely many i.i.d. instances of the source (tXiuiPrms, Xi � PX , and m Ñ 8) are compressed
(quantized) simultaneously. The joint compression approach is known as the block-coding technique.
In the learning context, this term quantifies the lossy algorithm compressibility [SGRS22], with
the following intuition for the case where Z and W are finite sets. Each PŴ |S denotes a learning

algorithm and the distortion criterion ErgenpS,W q � genpS, Ŵ qs ¤ ϵ guarantees that in average
the difference between the generalization error of the original algorithm PW |S and that of the
“compressed” algorithm PŴ |S does not exceed ϵ. The rate-distortion term RDpPS,W , ϵq quantifies
the lossy compressibility of the algorithm PW |S in the following sense: for large m P N and every
admissible PŴ |S , a compressed hypothesis space of size Nm � emIpS;Ŵ q can be found such that,
with high probability, for each m i.i.d. instances of the original algorithm PW |S there exists at least
one compressed hypothesis for which the difference between the average generalization error over
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the m i.i.d. instances of PW |S at hand and that of the found hypothesis does not exceed ϵ. Recall the
tail bound on the generalization error of [SGRS22, Theorem 10].
Theorem 1 ([SGRS22, Theorem 10] ). Suppose that the learning algorithm ApSq induces PS,W

and suppose that for all ŵ P Ŵ , ℓ̂pZ, ŵ) is σ-subgaussian. Then, for any fixed ϵ P R and δ ¥ 0,
with probability at least 1� δ, genpS,W q ¤a

2σ2pRppδ, ϵq � logp1{δqq{n� ϵ, where Rppδ, ϵq�
sup

Q : DKLpQ}PS,W q¤logp1{δq
RDpQ, ϵq and the supremum is over all possible distributions over S �W .

The above bound depends not only RDpPS,W , ϵq but also on RDpQ, ϵq terms for all distributions
Q that are close enough to P . In other words, to guarantee a good generalization performance, the
compressibility of the algorithm under every such small perturbation of PS,W needs to be considered.
Remark 1. The reader may notice two (minor) differences between Theorem 1 as stated here
and [SGRS22, Theorem 10]. First, we here express the rate-distortion terms with respect to the
distortion function dpw, ŵ; sq :� genps, wq � genps, ŵq instead of a possibly smaller distortion
function d1pw, ŵ; sq :� infps1,w1qPsupppQq genps1, w1q � genps, ŵq that was considered in [SGRS22],
where supppQq denotes the support of Q. Even though the latter could possibly lead to stronger
results, we do not consider it here because it is less amenable to computations. Second, in Theorem 1
the loss function ℓ̂pz, ŵq is allowed to differ from the original ℓpz, wq; and this possibly leads to
some (rather small) improvement of the result of [SGRS22, Theorem 10]. The mentioned two small
differences, however, do not require any change in the proof of [SGRS22, Theorem 10].
Remark 2. Similar to [SGRS22, Theorem 10], most of our results that will follow in this paper
require the subgaussianity assumption of the loss function to hold. In both cases the assumption
is used to properly bound the moment generating function (MGF) of a specific zero-mean random
variable using the Hoeffding inequality (see [SGRS22, Section E.6.2] for the details) . Alternatively,
this MGF can be upper bounded using approaches similar to [BZV20].

Problem setup. In this work, we consider a homogeneous distributed learning setup
that exploits the participation of K clients, as described in the following. Each client
i P rKs has access to a training dataset Si � tZi,1, . . . , Zi,nu � µbn of size n,

Figure 1: The considered distributed setup.

drawn independently of each other and indepen-
dently of other clients’ training datasets from the
same distribution µ. The local learning algorithm
Ai at each client picks a hypothesis AipSiq �
Wi P Wi � W according to PWi|Si

. The in-
duced joint distribution of pSi,Wiq is denoted by
PSi,Wi

. The server receives the hypotheses W1:K

and picks the hypothesis W as

W � pW1 � � � � �WKq{K.

We denote the distributed learning al-
gorithm as A1:KpS1:Kq. It induces
the joint distribution PS1:K ,W1:K ,W �
PW |W1:K

±
iPrKs PSi,Wi

, where PSi
� µbn

and PW |W1:K
� 1tW�pW1�����WKq{Ku. Similar

to [YDVP20, BDP22], the population and
empirical risks are defined as

Lpwq� EZ�µrℓpZ,wqs, L̂ps1:K , wq� 1

K

¸
iPrKs L̂psi, wq. (2)

The main goal of the paper is to upper bound the generalization error genps1:K , wq � Lpwq �
L̂ps1:K , wq for the described (one-round) distributed learning setting as well as multi-round extension
of it, i.e., Federated Learning. Results for the latter are stated in Section 5.

3 Information-theoretic bounds on the generalization error

In this section, we establish information-theoretic bounds on the generalization error of any stochastic
distributed learning algorithm defined as in the previous section. It is important to note that the
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bounds hold for W being any stochastic function of W1:K . For the ease of the exposition, however,
we only focus on the deterministic average case. The bounds are applied later for the DSVM and
federated SGLD, suggesting a decreasing generalization error behavior as the number of clients
increases.

3.1 Tail bound

A trivial approach that was already considered and used in [YDVP20] to establish in-expectation
bounds for the problem studied therein consists in thinking of a distributed learning algorithm that is
composed of K local algorithms and an aggregator at the server as a single centralized algorithm.
In other words, to consider the end-to-end system from the input at each local algorithm to the
final aggregated model W as PW |S1:K

. The idea also applies to tail bounds. Hence, known tail and
in-expectation bounds on the generalization error of centralized learning algorithms translate trivially
into (generally loose) counter-part bounds for the distributed learning setting. Accordingly, the next
theorem follows easily using the result of the above Theorem 1.
Theorem 2. Suppose that the distributed learning algorithm A1:KpS1:Kq induces PS1:K ,W and

suppose that for all ŵ P Ŵ , ℓ̂pZ, ŵ) is σ-subgaussian. Then, for any fixed ϵ P R and δ ¥ 0, with
probability at least 1�δ, gen

�
S1:K ,W

� ¤a
2σ2pRppδ, ϵq � logp1{δqq{pnKq�ϵ, where Rppδ, ϵq�

sup
Q : DKLpQ}PS1:K,W q¤logp1{δq

RDpQ, ϵq and the supremum is over all possible distributions over

W �±
iPrKs Si.

In the distributed setup, for every i P rKs only the hypothesis Wi depends on the dataset Si, which
has then the effect with a factor of 1{K on W . The result of Theorem 2, however, does not explicitly
take the structure of the distributed learning problem into account and, instead, it considers the joint
compressibility of all local algorithms and PW |S1:K

. Thus, the dependency of the bound on the
structure of the problem is considered only implicitly, via the conditional distribution PW |S1:K

. In
this work, we establish an alternate bound that is tailored specifically for the considered distributed
setup. First, for every i P rKs we let the compressed hypothesis Ŵ i of W to depend on both Si

and W1:Kzi (recall that W1:Kzi is independent from Si). We then establish an upper bound on the
generalization error in terms of the maximum (over all clients i P rKs) of the minimum achievable
compressibility using P

Ŵ i|Si,W1:Kzi
. The advantage can be exemplified as follows. For i P rKs,

consider only compressing the local algorithm PWi|Si
and pick some Ŵi while keeping W1:Kzi

un-compressed. Let Ŵ i be average of Ŵi and W1:Kzi. As Ŵi has the effect with factor 1{K on

Ŵ , in order to meet the distortion constraint ErgenpSi,W q � genpSi, Ŵ iqs ¤ ϵ a more relaxed
distortion criterion would be needed in compressing the local algorithm PWi|Si

. More precisely, for
example when the loss is L-Lipschitz with L2

2-norm, i.e., |ℓpz, wq � ℓpz, w1q| ¤ L}w �w1}2, a local
distortion of K2ϵ results into only ϵ distortion in the aggregated model.1 Hence, this translates into
smaller rate-distortion terms and, in turn, tighter bounds on the generalization error.

Now, to formally state the result, we introduce some definitions. Let genpsi, wq� Lpwq � L̂psi, wq.
Besides, as in the centralized case, let Ŵ be the alphabet of the compressed hypothesis and ℓ̂ : Z �
Ŵ ÞÑ R� a loss function (possibly different from ℓ). Accordingly, for ŵ P Ŵ and s P Zn, let
genps, ŵq and genpsi, ŵq be defined similarly with respect to ℓ̂. For a distribution Q defined over
W �±

iPrKspSi �Wiq, let

RDipQ, ϵq� inf
P

Ŵi|Si,W1:Kzi

IpSi; Ŵ i|W1:Kziq, (3)

s.t. E
�
gen

�
Si,W

�� gen
�
Si, Ŵ i

	�
¤ ϵ, (4)

where the infimum is taken over all Markov kernels (conditional distributions) of a random variable
Ŵ i P Ŵ given pSi,W1:Kziq. Note that the mutual information and expectations are with respect to

1For non-Lipschitz losses, such as 0-1 loss, the analysis is less trivial. An example can be found in
Section D.2.
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QSi,,W1:Kzi
P
Ŵ i|Si,W1:Kzi

and QP
Ŵ i|Si,W1:Kzi

, respectively, where QSi,W1:Kzi
is the Q-marginal of

pSi,W1:Kziq.
Theorem 3. Suppose that the distributed learning algorithm A1:KpS1:Kq induces PS1:K ,W1:K ,W

and suppose that for all ŵ P Ŵ , ℓ̂pZ, ŵ) is σ-subgaussian. Then, for any fixed ϵ P R and δ ¥ 0, with
probability at least 1� δ,

gen
�
S1:K ,W

� ¤b
2σ2

�
maxiPrKsRppδ, ϵ, iq � logp1{δq�{n� ϵ, (5)

Rppδ, ϵ, iq� sup
Q : DKLpQ}PS1:K,W1:K

q¤logp1{δq
RDipQ, ϵq, (6)

where the supremum is over all possible distributions over
±

iPrKspSi �Wiq.
The theorem is proved in Appendix D.1. In the binary classification setup, the result also holds for
the margin generalization error genθpS1:K ,W q by letting genθ

�
Si,W

�
:� LpW q � L̂θpSi,W q.

While the advantage of this result was already stated in part above, it should be noted that the
denominator in the result of Theorem 3 is n, rather than nK in Theorem 2. In fact, none of the two
results of Theorem 2 and Theorem 3 outperforms the other in general. For the case of distributed
SVM which will be considered in the next section, it can be shown that the result of Theorem 3 results
in a bound that decays with K faster than one that uses Theorem 2. Moreover, as it will become
clearer from the sequel the bounds for DSVM require a strict lossy compression, i.e., ϵ � 0, and
do not seem to be obtainable with a lossless compression framework, illustrating the utility of our
rate-distortion based approach in general.
Remark 3. For the ease of the presentation, the results of this work, including Theorem 3, are
stated for the homogeneous case where the underlying data distribution µi is same for all clients.
However, the result can be extended straightforwardly to the heterogeneous case, by considering Si

and RDipQ, ϵq, i P rKs, with respect to µi.

3.2 In expectation bound

Similar to Theorems 2 and 3, we establish upper bounds on the expectation of the generalization error
of any distributed stochastic learning algorithm.
Theorem 4. Suppose that the distributed learning algorithm A1:KpS1:Kq induces PS1:K ,W1:K ,W

and suppose that for all ŵ P Ŵ , ℓ̂pZ, ŵ) is σ-subgaussian. Then, for every fixed ϵ P R we have:

E
�
gen

�
S1:K ,W

��
¤ 1

n
min

$&
% 1

K

¸
jPrns

¸
iPrKs

b
2σ2RDpPZi,j ,W

, ϵq � ϵ,
¸

jPrns

c
2σ2 max

iPrKs
RDipPZi,j ,W1:K ,W , ϵq � ϵ

,.
-

(7)

¤ 1?
n
min

#b
2σ2RDpPS1:K ,W , ϵq{K � ϵ,

c
2σ2 max

iPrKs
RDipPSi,W1:K ,W , ϵq � ϵ

+
. (8)

The first terms of the minimization in (7) and (8) follow easily by an application similar to in
Theorem 2. In particular, setting ϵ � 0 in the first term of the minimization in (7) one recovers
the result of [YDVP20, Thoerem 2] under the assumed subgaussianity. The second terms of the
minimization in (7) and (8) are derived in a manner that is essentially similar to in the proof of
Theorem 3. The details are omitted for brevity.

In Appendix C.2, it is shown that under the assumed subgaussianity, the upper bounds in [BDP22,
Theorems 4 & 5] also can be recovered from Theorem 4. The results of [BDP22] are derived using
the stability approach and by applying the leave-one-out expansion lemma.

4 Distributed support vector machines
In this section, we establish upper bounds on the generalization error of Support Vector Machines
(SVM) [Vap06, CV95] when applied in a distributed learning setting. The algorithm is called hereafter
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as Distributed SVM (DSVM). SVMs are popular and widely used for binary classification problems.
They can be combined with different kernels in a computationally efficient way [BGV92, GKL20].
An easy application of SVM consists in finding a hyperplane based on a training dataset that separates
the data with the smallest possible average margin error. Formally, let Z � X � Y , where X P Rd

and Y � t�1,�1u. The hypotheses are vectors w P Rd, which represent hyperplanes. For the
simplicity of the exposition, we only consider the case with zero bias. The hyperplane predicts a
label of a data x according to the sign of the inner product xx,wy. The 0-1 loss and margin loss
functions are thus defined as ℓ0pz, wq :� 1tyxx,wy 0u and ℓθpz, wq :� 1tyxx,wy θu, respectively. In
the distributed learning setup, each client i P rKs has access to dataset Si and picks the vector Wi;
and the server node computes the aggregated model as W :� pW1 � . . .�WKq{K [Car20]. In this
section, we study the generalization gap, which we denote hereafter as genθpS1:K ,W q, defined as
the difference between the population risk Lpwq calculated using ℓ0 and the margin empirical risk
1
K

°
iPrKs L̂θpSi,W q calculated using ℓθ. It should be noted that the results of [BDP22, Theorems 4

& 5] require the loss function to be either a Bregman divergence or Lipschitz of some order; and, as
such, they are not applicable to the DVSM setup that we consider here. This is because the 0-1 loss
function is neither a Bregman divergence, nor a Lipschitz loss.
Theorem 5. Let d P N� and Pp}X} ¤ Bq � 1 for some B ¡ 0. Consider DSVM with K clients
each using any arbitrary local learning algorithm such that Pp}Wi} ¤ 1q � 1, i P rKs.

i) For any δ ¡ 0, with probability at least 1� δ,

genθ
�
S1:K ,W

� ¤ O

�
� 1

nK
?
K

�
d�

B
Kθ

�2
logpnK?

Kq log�max
�
Kθ
B , 2

��� logp1{δq
n

�

.

ii) Also,

E
�
genθ

�
S1:K ,W

�� ¤ O

�
� 1

nK
?
K

�
d

B2 logpnK?
Kq log�max

�
Kθ
B , 2

��
nK2θ2

�

.

This theorem is proved in Appendix D.2, by bounding the corresponding rate-distortion terms in
Theorem 3 (for the part i.) and in the second term of (8) (for part ii.). To establish such bounds, we
show the existence of a proper P

Ŵ i|Si,W1:Kzi
using techniques and results developed in [GKL20],

and in particular by making use of the Johnson-Lindenstrauss transformation [JL84].

The above bound on the expectation of the generalization error of the DSVM decreases with K with
a rate of logpKq{K. Moreover, it is important to note that the in-expectation bound for K clients
each having n data samples is smaller than that of the counterpart centralized learning algorithm that
has nK input data samples by a factor of order OpalogpKq{Kq. This also holds for the tail bound,
as long as logp1{δq{n is not the dominant term in the square root. Note that in general

a
logp1{δq{n

is very small, corresponding to the generalization error of an dataset-independent algorithm [XR17].
Remark 4. The tail bound in Theorem 5 for K � 1 does not recover the best known upper bound to
the margin generalization error of SVMs. More precisely, for a centralized setup with dataset of size
nK, [GKL20, Theorem 2] states

genθpS,W q ¤ O

�
�B2 logpnKq

nKθ2
�
d�

B
θ

�2
logpnKq � logp1{δq

nK
L̂θpS,W q

�

. (9)

This is particularly important for the separable training dataset, where L̂θps, wq � 0, which makes
the bound of order O

�
B2 lnpnKq{pnKθ2q�. For the non-separable case, this term is asymptotically

lower bounded by L̂θpW�q, where W� is the optimal population risk minimizer when µ is known.
However, in the distributed learning setup, even if L̂θpsi, wiq � 0, L̂θpsi, wq is not necessarily zero.
Remark 5. The proof of Theorem 5 shows how our generalization bounds exploit the particular
topology of the distributed learning setup. In particular, we show that for a fixed non-zero distortion
level ϵ in (4) an upper bound on the rates in (4) scales as O

�plogpKq{Kq2�. When ϵ � 0, a case
for which the rate-distortion approach reduces to the mutual information-based approach (see the
discussion right after Theorem 4), that upper bound scales only as Op1q. In part this explains the
benefits brought up by the rate-distortion approach upon the mutual information-based one.
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5 Federated stochastic gradient Langevin dynamics
In this section, we consider a homogeneous federated learning setup, denoted as FSGLD, where local
learning algorithms use stochastic gradient Langevin dynamics (SGLD) method [WHGC21]. For the
case of the centralized learning algorithm, [WHGC21] has proposed a new tractable upper bound on
the generalization error, that describes well the generalization behavior, by using results of [BZV20]
and by connecting SGLD to the Gaussian channels.

We consider a multiple-round distributed learning algorithm. At beginning of each round t P rT s,
the central server sends the updated hypothesis at the end of the previous round W t�1 P Rd to the
clients, where W 0 is a randomly initialized hypothesis. Then, each client i P rKs performs locally
one iteration of SGLD, as explained later, and outputs Wi,t. The central server upon receiving these
hypotheses choices, let W t :� pW1,t � � � � �WK,tq{K. The final hypothesis W is chosen as a
deterministic function of tW tutPrT s. An example of such choices is Polyak averaging [PJ92], where
W � pW 1 � � � � �WT q{T .

Now, we explain the local SGLD algorithm applied by each client [GM91, WT11, WHGC21]. Each
client i P rKs, partitions its dataset Si into m disjoint mini-batches tSi,1, . . . , Si,mu, each one having
equal size b with elements Si,j � tZi,j,1, . . . , Zi,j,bu. Then, client i at round t, by receiving W t�1

from the central node, let Wi,t be

Wi,t �W t�1 � ηt∇w ℓ̂pSi,jt ,W t�1q �
c

2ηt
βt

V.

Here, ηt is the learning rate, βt the inverse temperature, V a d-dimensional random variable with
distribution N p0, Idq, where Id is the d � d identity matrix, jt P rms is the mini-batch index,
ℓ̂ : Z �W ÞÑ R� is a surrogate loss function, and

∇w ℓ̂pSi,jt ,W t�1q :� 1

b

¸
lPrbs∇w ℓ̂pZi,jt,l,W t�1q.

In the following we use the first term of (7) with ϵ � 0 (which is reduced to the upper bound in
[YDVP20, Thoerem 2]), to derive a bound on the expectation of the generalization error of FSGLD.
Note that the first term of (7) is established by viewing the whole learning algorithm as a black-box,
and hence it applies for the multiple-round federated learning setup as well, by considering S1:K as
the training dataset and W as the chosen hypothesis.

Theorem 6. Suppose that for each w P W , the loss ℓpZ,wq is σ-subgaussian. The expected
generalization error of FSGLD is upper bounded by

E
�
gen

�
S1:K ,W

�� ¤
?
2bσ

2nK
?
K

¸
jPrms

¸
iPrKs

d ¸
tPTi,j

βtηtVar
�
∇w ℓ̂pSi,j ,W t�1q

	
,

where the set Ti,j contains the indices t such that jt � j at client i, and

Var
�
∇w ℓ̂pSi,j ,W t�1q

	
:� E

����∇w ℓ̂pSi,j ,W t�1q � ei

���2�,
where ei :� E

�
∇w ℓ̂pSi,j ,W t�1q

�
.

This result for the case of K � 1 is reduced in [WHGC21, Theorem 1] and it can be proved for any
K P N along the same lines of the proof of [WHGC21, Theorem 1]. Indeed,

W t �W t�1 � ηt
K

�
� ¸

iPrKs
∇w ℓ̂pSi,jt ,W t�1q

�

� 1?

K

c
2ηt
βt

V 1, (10)

where V 1 is a d-dimensional random variable with distribution N p0, Idq. Now, proceeding similar to
the proof of [WHGC21, Theorem 1] concludes the result. The reason behind the extra factor 1{?K
in the bound is that, when K independent Gaussian noises are added, their variances are added up
linearly with K. Thus, while in (10), the gradient is divided by K, the noise term is divided by

?
K,
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(a) n � 100 (b) n � 300

Figure 2: The generalization error for distributed and centralized SVM

which results in an extra
?
K term in the denominator of the upper bound. The proof is omitted for

brevity.

The established bound is decreasing with K, as far as the variance of the gradient with training data
size nK is not smaller than the variance of the gradient with training data size n, divided by K. Note
that the variance of the gradient is correlated with the sharpness of the loss landscape and becomes
small as the algorithm converges [WHGC21].

6 Experiments

This section aims at showing, through simulations, the evolution of the generalization error of the
distributed SVM with the number K of clients and the size n of each individual training dataset. We
will provide also comparison with the centralized setup, having training dataset of size nk, and also
with the bounds on the generalization error as predicted by our analysis. We also provide further
experiments and discussions on the comparison of the empirical and population risks of the distributed
and centralized SVM. The details of the experiments are explained in Appendix B and here, we
discuss our experimental findings.

On the generalization error: Figure 2 shows the evolution of the generalization error (with zero
margin) of the distributed setup (K clients, each having n data samples) as a function of the number
K of used clients for two values of n, n � 100 (Subfigure 2a) and n � 300 (Subfigure 2b). Also
shown for comparison, the generalization performance of the associated centralized setup with a
dataset of nK samples.

The figure also depicts the evolution of the bound of our Theorem 5 (computed using part ii) of
the theorem and with the value of the parameter θ set to 0.2). For the centralized learning setting,
the theoretical bound is obtained by applying the result of Theorem 5 (part ii) with the substitution
Kc � 1 and nc � nK.

Observe that, as predicted by our theoretical analysis of Section4, the system generalizes better in the
distributed setup.

On the empirical and population risks: While considering the empirical risk L̂ps1:K , wq �
1
K

°
iPrKs L̂psi, wq is motivated by previous works [YDVP20, BDP22], it differs from the average

local empirical risks minimized at clients, i.e.,

L̃ps1:K , w1:Kq� 1

K

¸
iPrKs L̂psi, wiq. (11)

Denote the difference of these empirical risks as

∆L̂ps1:K , w1:K , wq :� L̂ps1:K , wq � L̃ps1:K , w1:Kq. (12)

Then, the population risk can be written as

Lpwq � L̃ps1:K , w1:Kq � genps1:K , wq �∆L̂ps1:K , w1:K , wq. (13)

The first term of the RHS of Eq. (13) can be made sufficiently small by minimizing the local empirical
loss at each client. The second term is the generalization term considered in this paper, which is
shown to decrease faster than the corresponding centralized case. In what follows, we study the
evolution of the last term of the RHS of (13) with K.
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(a) n � 100 (b) n � 300

Figure 3: The population risk and empirical risk differences for distributed and centralized SVM

Indeed, as shown in Fig 3, while the considered generalization error decreases with K, the population
risk of the centralized setup is smaller than the distributed setup. Also, the latter decreases more
slowly with K. This is caused by the increase of term ∆L̂pS1:K ,W1:K ,W q with K (note that this
term is zero for the centralized setting). As it will become clearer from the rest of this section, in the
distributed setup the term genpS1:K ,W q decreases with K as specified by our Theorem 5 and the
term ∆L̂pS1:K ,W1:K ,W q increases with K (the term L̃pS1:K ,W1:Kq � genpS1:K ,W q as defined
by (11) can be made negligible for both centralized and distributed settings if local models are trained
well enough, an assumption which will be made throughout hereafter). For the distributed case, the
net effect is a decrease of the population risk with K, but which is slower than in the corresponding
centralized setup. In what follows, we will show that as K becomes large, if the clients use the
same algorithm, i.e., PWi|Si

� PW1|S1
for all i P rKs, and they are trained well enough to minimize

their respective empirical risks L̂pSi,Wiq then the population risk in the distributed case tends to a
constant that depends only on n and the used local algorithms, but not on K.

More formally, fix a training data size n P N and suppose that all clients use the same local learning
algorithm PWi|Si

� PW1|S1
. This empirical risks difference term is zero for K � 1, as W � W1.

By increasing K, W departs further from Wi. In particular, as K Ñ 8, W Ñ EW1
rW1s, where

the expectation is with respect to the marginal distribution PW1
(induced by PW1|S1

µbn) and the
convergence is almost surely due to the strong law of large numbers. Note the for a fixed data
distribution µ, the marginal distribution PW1

is a function of n and local algorithms PW1|S1
. Hence,

lim
KÑ8

∆L̂pS1:K ,W1:K ,W q a.s.� ES1�µbn

�
L̂
�
S1,EW1�PW1

rW1s
��� EpS1,W1q�PS1,W1

�
L̂pS1,W1q

�
�EZ�µ

�
ℓ
�
Z,EW1�PW1

rW1s
��� EpS1,W1q�PS1,W1

�
L̂pS1,W1q

�
�LpEW1rW1sq � EpS1,W1q�PS1,W1

�
L̂pS1,W1q

�
. (14)

The above is illustrated in Fig.3, where as visible from therein the population risk for the distributed
setting (as computed experimentally) approaches the limit given by the RHS of (14) as K gets large.

7 Concluding remarks

In this work, we established rate-distortion theoretic tail and in-expectation bounds on the generaliza-
tion error of the distributed learning algorithms. Unlike previous approaches to this problem, our
bounds, which are more general comparatively, are tailored specifically for the distributed setup. In
particular, when applied to distributed SVM and FSGLD our results suggest a decreasing behavior
of the generalization error with respect to the number of clients. The conducted experiments on
DSVM are in accordance with the analytical results. Also, we partly investigated the evolution of
the population risk with the number of clients and the size of the dataset. The analysis revealed the
presence of a bias term. Possible directions for future works include (i) further investigation of the
effect of the aforementioned bias term, (ii) study of the tightness of the proposed general bounds
(experimentally), (iii) extension of the results to the setting in which the data distribution is not
identical across the clients or when the training data samples are not independent, (iv) multiple-round
scenarios, and (v) study of associated computational and communication costs.
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Heavy tails in SGD and compressibility of overparametrized neural networks. In
Thirty-Fifth Conference on Neural Information Processing Systems, 2021.

[BZV20] Yuheng Bu, Shaofeng Zou, and Venugopal V. Veeravalli. Tightening mutual information-
based bounds on generalization error. IEEE Journal on Selected Areas in Information
Theory, 1(1):121–130, May 2020.

[Car20] Robert Carlsson. Privacy-preserved federated learning: A survey of applicable machine
learning algorithms in a federated environment, 2020.

[CCB�18] Chia-Yu Chen, Jungwook Choi, Daniel Brand, Ankur Agrawal, Wei Zhang, and Kailash
Gopalakrishnan. Adacomp: Adaptive residual gradient compression for data-parallel
distributed training. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018.

[CK11] Imre Csiszàr and Jànos Körner. Information Theory: Coding Theorems for Discrete
Memoryless Systems. Cambridge University Press, 2 edition, 2011.

[CT06] Thomas M. Cover and Joy A. Thomas. Elements of information theory (2. ed.). Wiley,
2006.

[CV95] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning,
20(3):273–297, 1995.

11



[EGK11] Abbas El Gamal and Young-Han Kim. Network Information Theory. Cambridge
University Press, 2011.

[EPB�20] Anis Elgabli, Jihong Park, Amrit S Bedi, Mehdi Bennis, and Vaneet Aggarwal. Gadmm:
Fast and communication efficient framework for distributed machine learning. J. Mach.
Learn. Res., 21(76):1–39, 2020.

[GKL20] Allan Grønlund, Lior Kamma, and Kasper Green Larsen. Near-tight margin-based
generalization bounds for support vector machines. In Hal Daumé III and Aarti Singh,
editors, Proceedings of the 37th International Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research, pages 3779–3788. PMLR, 13–18
Jul 2020.

[GM91] Saul B Gelfand and Sanjoy K Mitter. Recursive stochastic algorithms for global
optimization in rˆd. SIAM Journal on Control and Optimization, 29(5):999–1018, 1991.

[GR18] Otkrist Gupta and Ramesh Raskar. Distributed learning of deep neural network over
multiple agents. Journal of Network and Computer Applications, 116:1–8, 2018.

[Han00] Te Sun Han. The reliability functions of the general source with fixed-length coding.
IEEE Transactions on Information Theory, 46(6):2117–2132, 2000.

[HDMR21] Mahdi Haghifam, Gintare Karolina Dziugaite, Shay Moran, and Daniel M. Roy. To-
wards a unified information-theoretic framework for generalization. In Thirty-Fifth
Conference on Neural Information Processing Systems, 2021.

[HJTW21] Daniel Hsu, Ziwei Ji, Matus Telgarsky, and Lan Wang. Generalization bounds via
distillation. In International Conference on Learning Representations, 2021.

[HRVSG21] Hrayr Harutyunyan, Maxim Raginsky, Greg Ver Steeg, and Aram Galstyan. Information-
theoretic generalization bounds for black-box learning algorithms. Advances in Neural
Information Processing Systems, 34, 2021.
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ii. Did you describe the limitations of your work? [Yes] We establish bounds on the
generalization suggesting a decreasing behavior with number of clients. However, for
a rigorous analytical conclusion, a lower bound is also required, which is notoriously a
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