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Abstract

We present a bag of tricks framework for few-shot class-incremental learning (FSCIL), which
is a challenging form of continual learning that involves continuous adaptation to new tasks
with limited samples. FSCIL requires both stability and adaptability, i.e., preserving pro-
ficiency in previously learned tasks while learning new ones. Our proposed bag of tricks
brings together eight key and highly influential techniques that improve stability, adapt-
ability, and overall performance under a unified framework for FSCIL. We organize these
tricks into three categories: stability tricks, adaptability tricks, and training tricks. Sta-
bility tricks aim to mitigate the forgetting of previously learned classes by enhancing the
separation between the embeddings of learned classes and minimizing interference when
learning new ones. On the other hand, adaptability tricks focus on the effective learning of
new classes. Finally, training tricks improve the overall performance without compromising
stability or adaptability. We perform extensive experiments on three benchmark datasets,
CIFAR-100, CUB-200, and miniIMageNet, to evaluate the impact of our proposed frame-
work. Our detailed analysis shows that our approach substantially improves both stability
and adaptability, establishing a new state-of-the-art by outperforming prior works in the
area. We believe our method provides a go-to solution and establishes a robust baseline for
future research in this area.

1 Introduction

Continual learning is a machine learning paradigm that focuses on the ability of a model to learn new
knowledge, without forgetting what it previously learned. In real-world applications, machine learning
models often encounter scenarios where they must adapt to novel classes with only a limited number of
samples available for learning. This scenario has inspired the introduction of an exciting paradigm called
Few-Shot Class Incremental Learning (FSCIL) (Tao et al., 2020). Existing literature (Tao et al., 2020; Zhou
et al., 2022a) has demonstrated that traditional continual learning approaches are ineffective in FSCIL,
primarily due to the scarcity of labelled data during incremental learning sessions. This data limitation
often leads to overfitting on the novel classes, resulting in a well-known catastrophic forgetting issue.

Some prior works have linked the problem of catastrophic forgetting with high adaptability (or plasticity)
during incremental training (Chi et al., 2022; Zhao et al., 2021). Consequently, these approaches reduce
the adaptability by utilizing an incremental-frozen framework, where the encoder is trained only in the base
session and remains frozen during the incremental sessions (Zhao et al., 2021; Tao et al., 2020; Chi et al., 2022;
Cheraghian et al., 2021a). The resulting methods provide very high stability, but very little adaptability.
This phenomenon is often referred to as the stability-adaptability dilemma (Peng et al., 2022b; Zhao et al.,
2023) in the FSCIL, where high stability causes reduced adaptability and vice-versa.

In this work, we combine a collection of techniques under a bag of tricks framework with the goal of con-
currently enhancing both the stability and adaptability of FSCIL. These tricks have never been explored
together, and their impact on stability, adaptability, and overall performance has not been studied under
the same framework. We categorize the techniques into three main groups: (i) stability, (ii) adaptability,
and (iii) training. Stability tricks improve the separation among ‘base’ classes within the learned embedding
space, which minimizes interference with previously learned classes when introducing novel classes during
the incremental session. This results in greater stability and reduced forgetting of already learned classes.
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These approaches include incorporating supervised contrastive loss (Khosla et al., 2020), pre-assigning pro-
totypes (Yang et al., 2022), and including pseudo-classes (Lee et al., 2020) during training. On the other
hand, adaptability tricks enhance the model’s ability to learn novel classes in the incremental session with
careful tuning of the encoder through incremental fine-tuning (Song et al., 2023) and SubNet tuning (Kang
et al., 2023). Finally, training tricks include training a larger encoder, including a pre-training step (Chen
et al., 2020), and adding a pre-text task (Gidaris et al., 2018) in order to help boost the overall performance
without compromising either stability or adaptability.

Extensive experiments on three popular benchmark datasets, namely CIFAR100 (Krizhevsky et al., 2009),
miniImageNet (Russakovsky et al., 2015) and CUB200 (Wah et al., 2011), demonstrate the effectiveness of
our framework. Overall, the proposed framework improves the performance by 3.42%, 1.25%, and 2.46% on
CIFAR-100, CUB-200, and miniImageNet, respectively. Incorporating these tricks not only surpasses the
overall accuracy of existing FSCIL methods but also demonstrates improved stability (reduced forgetting),
higher adaptability (improvements on novel classes), and better separation in the embedding space. Study
on the representations learned under stability tricks demonstrates lower intra-class variance and higher
inter-class distance between the learned classes, which ensures lower forgetting and thus higher training
stability and overall accuracy. Further study on adaptability tricks shows substantial improvement in the
performance on new classes while retaining performance for the learned ones. We also present an ablation
study to understand the impact of stability, adaptability, and training tricks on overall performance. This
study highlights that stability tricks have the most significant impact, followed by adaptability tricks. Since
one of our training tricks involves utilizing a larger encoder, we report the performance of previous state-
of-the-art methods on the larger encoder and also report the performance of our method on the smaller
encoder to ensure fair comparisons. Following prior works, we report the main results with 5-shot setting
experiments on commonly used benchmark datasets. Moreover, to study the behaviour of our method under
data-scarce scenarios, we also experiment with 1-shot and 2-shot settings. Finally, to evaluate scalability
with respect to a number of classes, we also report our results on the large-scale ImageNet-1K (Russakovsky
et al., 2009) dataset with 1000 classes.

Overall, we make the following contributions:

• We present a new framework for FSCIL that combines a bag of tricks to simultaneously improve the
stability, adaptability and overall performance of the model.

• We conduct a thorough analysis of the behaviour and effectiveness of all tricks towards stability and
adaptability in the context of FSCIL.

• We significantly improve upon the state-of-the-art methods on FSCIL and establish a robust baseline
for future research in this area, including new evaluations on low-shots and with a large number of
classes.

2 Related Works

2.1 Class Incremental Learning

Class-incremental learning (CIL) is a continual learning paradigm that involves continuously learning novel
classes while preserving the knowledge of previously learned ones (Masana et al., 2022). Existing literature on
CIL can be broadly categorized into three main groups. The first group, commonly referred to as the replay-
based method, stores past samples in a memory bank for rehearsal during incremental sessions to ensure
retention of old knowledge (Rebuffi et al., 2017; Rolnick et al., 2019). The second group is regularization-
based, focusing on preventing significant changes in the parameters to prevent forgetting (Li & Hoiem, 2017;
Liu et al., 2018). In contrast, the third group dynamically expands the network architecture to accommodate
the learning of novel classes (Zhu et al., 2021a; Shi et al., 2022). In practice, the model is trained over several
sessions, with each session introducing novel classes to learn. In traditional CIL, each session includes an
adequate number of labelled samples for every novel class, as well as the option to store some of the previous
samples for rehearsal in future incremental sessions. However, as per the definition and problem setup of
FSCIL, neither of these assumptions holds.
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2.2 Few-Shot Class-Incremental Learning

In real-world applications, assuming that an incremental session contains a large number of samples for
each novel class is impractical (Tao et al., 2020). FSCIL (Tao et al., 2020; Hersche et al., 2022; Cheraghian
et al., 2021b; Liu et al., 2022) tackles this challenging scenario where the model needs to incrementally learn
novel classes with only a few samples per class. It also assumes that no samples from previous sessions
are available, which causes privacy concerns in many domains. Consequently, none of the traditional CIL
methods, mentioned in the previous section, perform well in the FSCIL setting (Zhou et al., 2022a; Tao
et al., 2020). However, there have been developments in FSCIL literature, which can be discussed in two
broad categories. The first category trains the model only on the base session, keeping the model frozen in
the incremental session (Zhu et al., 2021b; Shi et al., 2021; Zhang et al., 2021); while the second group tunes
the model in the incremental sessions (Tao et al., 2020; Cheraghian et al., 2021a; Dong et al., 2021; Zhao
et al., 2021).

The main idea of the first category (frozen encoder-based methods) is to ensure greater separability of base
classes in the embedding space so that novel classes in the incremental step can easily fit in this space with
minimal interference (Zhu et al., 2021b; Shi et al., 2021; Zhang et al., 2021). This is often referred to as
forward compatibility (Song et al., 2023). Prior works in the literature proposed different techniques aiming
to enable forward compatibility. For instance, FACT (Zhou et al., 2022a) proposed to use virtual prototypes
to force the embedding of different classes to be maximally separated while respecting the relative positioning
of classes in the embedding space. SAVC (Song et al., 2023) created virtual classes during the base session,
and (Yang et al., 2022) assigned random prototypes that are maximally separated from one another. These
methods offer relatively high stability, but little adaptability for incremental training.

The second group of methods tunes the encoder in the incremental session to provide better flexibility for
learning new tasks, thus providing better adaptability. For example, MgSvF (Zhao et al., 2021) strategically
updated different components at different rates, effectively balancing the adaptation to new knowledge and
the preservation of old ones. The exemplar relation distillation framework (Dong et al., 2021) constructed
and updated an exemplar relation graph to facilitate the learning of novel classes. SoftNet (Kang et al.,
2023) proposed to utilize the concept of the lottery-ticket hypothesis to find a sub-network of important
parameters from the previous session, which is left frozen during incremental tuning with the rest of the
parameters. A common problem of this second group of methods is that adaptability comes at the cost of
stability. That is, the model’s performance in the old classes deteriorates as it learns novel classes. Overall,
there is a lack of balance between the stability and adaptability in existing FSCIL methods, which we aim
to improve with our bag of tricks.

3 Method

3.1 Preliminaries

In FSCIL, a model is trained across T consecutive sessions, with each session introducing novel classes for
the model to learn. Training data for each session t ∈ T is labelled, Dt

train = {(xi, yi)}Nt
i=0, where xi and

yi are the i-th sample and the corresponding label. In FSCIL, only the base session (first session) contains
a sufficient amount of samples for effective training. Subsequent incremental sessions contain only a few
samples per class, typically organized in an N -way K-shot format, containing K training samples for each of
the N classes. By definition, each session exclusively contains samples from novel classes, meaning that the
label space for each session (Ct) is mutually exclusive with others. The performance of a method is evaluated
after each session on the test set Dt

test, which contains samples from all classes encountered so far.

3.2 Baseline

We consider the incremental frozen framework as our baseline due to its proven effectiveness (Zhang et al.,
2021; Shi et al., 2021; Song et al., 2023) in addressing the data-scarce incremental learning scenario of FSCIL.
In this framework, the model ϕ(x) is trained only on the base session (D0

train) using a standard cross-entropy
loss. The model ϕ(x) consists of an encoder, fθ(x) ∈ Rd×1 and a classifier head W ∈ Rd×|C0|. The prediction
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can therefore be expressed as ϕ(x) = W T fθ(x). After training on the base session, the encoder f(x) remains
frozen during the incremental sessions. To classify novel classes, the classifier W is expanded with the
classifier weight for novel classes parameterized by the prototype of each class. A prototype is the average
of the embeddings of all samples belonging to that class, wt

c = 1
nt

c

∑nt
c

i=1 fθ(xc,i).

3.3 Stability Tricks

Incremental 
classesBase classes

Training without stability tricks Training with stability tricks

Figure 1: The intuition behind stability tricks. Better separation of
base classes ensures stability in incremental learning.

Stability tricks in our framework re-
volve around the idea that better
separation of ‘base’ classes ensures
improved stability in learning new
classes in the incremental sessions
(Song et al., 2023). As illustrated in
Figure 1, better separation of base
classes in the embedding space al-
lows the novel classes to be placed
in the embedding space without in-
terfering with existing classes. This
involves increasing the distance be-
tween classes (inter-class distance)
while reducing the distance between
samples within the same class (intra-class distance). This approach is also known as forward compatibility in
FSCIL literature. Accordingly, we incorporate three techniques that can effectively promote better stability:
training with a supervised contrastive loss, pre-assigning prototypes, and including pseudo-classes.

Supervised Contrastive Loss. While most of the existing literature on FSCIL use the standard cross-
entropy loss for learning during the base session, some prior works (Song et al., 2023) have demonstrated
that cross-entropy does not effectively separate classes in the embedding space. Some studies have indicated
that the supervised contrastive loss (SupCon) (Khosla et al., 2020) exhibits better separability in the em-
bedding space. SupCon is a variation of the popular contrastive loss (Chen et al., 2020), which additionally
includes class labels to guide representation learning in a supervised manner. Specifically, SupCon learns
representations by pulling the samples (and their augmentations) of the same class closer in the embedding
space while pushing the samples of different classes apart, resulting in a more separable embedding space
than cross-entropy. In other words, SupCon forces the representation of each sample to be close to its corre-
sponding class prototype (center of embedding), while pushing the prototypes away from one another. For
a batch of labelled samples {(xi, yi)}N

i=0, the SupCon loss can be represented as:

Lsup =
N∑

i=1

(
−1

Nyi − 1

N∑
j=1

1i̸=j · 1yi=yj · log
exp(zi · zj/τ)∑N

k=1 1[k ̸=i]exp(zi · zk/τ)

)
, (1)

where z = fθ(x), N is the batch-size, and Nyi is the number of positive samples from class yi. The indicator
function denoted by 1yi = yj yields a value of 1 when indices i and j correspond to instances of the same
class.

Pre-assigning Prototypes. In SupCon, prototypes are learned along with the optimization of the model.
However, it was shown in (Yang et al., 2022) that ‘pre-assigning’ prototypes that are maximally separated
from one another ensures improved separation in the embedding space. In (Yang et al., 2022), the maximally
separated prototypes were defined as simplex Equiangular Tight Frame (ETF) (Papyan et al., 2020), a
geometric arrangement of K vectors in d-dimensional Euclidean space (Yang et al., 2022). Each vector
in this space has an Euclidean norm of 1, with any pair of distinct vectors yielding an inner product of
−1/(K − 1). This specific inner product value corresponds to the largest possible angle between any two
vectors in this space. Our implementation of the prototype pre-assignment slightly differs from (Yang et al.,
2022) in two ways. First, we do not rely solely on the cross-entropy loss but instead incorporate the SupCon
loss introduced earlier. Second, we do not assign the ETF prototypes randomly at the very beginning
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of training. Instead, we train the encoder with the SupCon for a few epochs and take advantage of the
prototypes naturally formed by SupCon. Then, for each class, we assign the ETF prototype that is most
closely aligned with its naturally formed prototype.

Including Pseudo-classes. Previous studies such as FACT (Zhou et al., 2022a) and SAVC (Song et al.,
2023) introduced the concept of integrating pseudo-classes during the base session to serve as placeholders
in the embedding space for novel classes. In SAVC, the pseudo-classes were generated by a pre-defined
transformation, which was considered a more fine-grained variant of the original classes. In our work,
we take a similar approach of including pseudo-classes. More specifically, we incorporate the pseudo-class
generation concept of (Lee et al., 2020), which employs hard augmentations to transform the semantics of
the sample and consider it as a pseudo-class.

3.4 Adaptability Tricks

While stability tricks help the model retain the knowledge of base classes, they offer limited adaptability for
the model to learn novel classes effectively. Independent performance evaluation of base and novel classes at
the end of training demonstrates that the performance of novel classes is substantially inferior to that of base
classes (Song et al., 2023). Consequently, the overall performance at the end of training is predominantly
influenced by the performance on the base classes. This underscores the need for FSCIL methods to enhance
the model’s adaptability on incremental sessions to improve the model’s performance on novel classes. In
this section, we discuss two tricks that provide more adaptability for the model: incremental fine-tuning and
SubNet tuning.

Incremental Fine-tuning. Fine-tuning is a common practice in machine learning literature to tune a
pre-trained model for a new task or setting. It is also a widely used technique across conventional continual
learning literature, predominantly with rehearsal-based techniques. However, fine-tuning in the context of
FSCIL requires careful consideration of the training setup, since no data from the previous session is available
for rehearsal during the current session. Consequently, tuning can cause catastrophic forgetting of already
learned knowledge. In our framework, we adopt the fine-tuning concept of (Song et al., 2023), which utilizes
a small learning rate to tune certain portions of the pre-trained encoder, while keeping the rest of the encoder
frozen. Specifically, we freeze the shallow layers of the network since shallower layers are known to capture
domain-invariant features, whereas the deeper layers learn more fine-grained features.

SubNet Tuning While the incremental fine-tuning approach (previous trick) provides more adaptability
for learning novel classes, it may result in decreased stability. To deal with this issue, we introduce our next
adaptability trick called SubNet tuning, which maintains the adaptability of incremental fine-tuning without
a substantial drop in stability. The concept is inspired by the Lottery-ticket hypothesis (Frankle & Carbin,
2018), which states that there exists a subnetwork of a dense network that performs as well as the whole
network. In (Kang et al., 2023), this concept is utilized in the context of FSCIL to find a sub-network of
the trained encoder that performs on par with the whole network on the base classes. Adopting this into
our framework, we freeze the sub-network during incremental training and allow the remaining parameters
to be tuned for learning the novel classes. Following (Kang et al., 2023), we extract a SubNet (subnetwork)
mask m∗ as:

m∗ = min
m∈[0,1]|θ|

1
n

n∑
i=1

L
(
f(θ⊙m)(xi), yi

)
− L

(
fθ(xi), yi

)
. (2)

Here, L is the loss function for training the model on the base session, and m∗ is the optimal binary mask
with the same size as the network, for which the performance of the masked SubNet is comparable to that
of the original network.

3.5 Training Tricks

Building upon the principles of stability and adaptability tricks discussed earlier, we introduce a set of
training techniques that can further enhance overall performance without compromising either stability or

5



Under review as submission to TMLR

flexibility. These tricks include training a larger encoder, adding a pre-training step, and including an
additional learning signal.

Larger Encoder. Most existing works on FSCIL use relatively shallow encoders like ResNet-18 and ResNet-
20 as the backbone (Song et al., 2023; Tao et al., 2020). Since the amount of training data is exceedingly scarce
in FSCIL, even for the base session, larger encoders face overfitting and loss of stability. In our framework, we
explicitly deal with the stability problem by incorporating the three aforementioned stability tricks (Sections
3.3) that enable us to train larger encoders. As a result, we train an encoder with approximately twice the
parameters compared to prior works.

Additional Pre-training Step. Existing research in this field indicates that self-supervised pre-training,
followed by supervised fine-tuning, consistently outperforms fully supervised training, particularly in sce-
narios with limited training data. In the context of FSCIL where data scarcity is a significant challenge,
leveraging a self-supervised pre-training step has the potential to provide substantial benefits. As a result,
we introduce a contrastive self-supervised pre-training step before the training of the base session. The
contrastive self-supervised loss is similar to the SupCon loss introduced earlier, except no label information
is utilized. Accordingly, the contrastive pre-training loss can be represented as:

Lcon = − 1
2b

2b∑
i=1

log
exp(zi, zκ(i)/τ)∑2b

k=1 1[k ̸=i]exp(zi, zk/τ)
, (3)

where, κ(i) is the index of the second augmented sample, and 1[k ̸=i] is an indicator function that returns 1
when k is not equal to i, and 0 otherwise. τ is a temperature parameter, and b is the batch size.

Including Additional Learning Signal. Following the intuition from the previous trick, we include
another self-supervised learning signal, but this time while training on the base session rather than as a
separate step. Existing literature on other data-scarce scenarios, such as semi-supervised learning, has shown
that adding a pre-text task along with the supervised learning helps the model learn better representation
without overfitting to the small labelled set (Berthelot et al., 2019; Roy & Etemad, 2023). To this end,
we include a rotation prediction task (Gidaris et al., 2018) that is shown to perform well with supervised
learning (Berthelot et al., 2019). Here, the basic idea is to apply a rotation operation on the input image,
and the task is to predict the amount of rotation applied to the image. In practice, a rotation module
randomly samples one of the following rotations and applies it to the image: 0◦, 90◦, 180◦, 270◦. As a result,
the rotation prediction task can be viewed as a four-way classification task, represented as:

Lrot = H(r, Pθr (r|Rotate(x)). (4)

Here, x is the input image, Pθr
is the encoder that predicts the rotation, and H is the cross-entropy loss.

4 Experiments and Results

4.1 Datasets and Implementation Details

Following the established protocol in the FSCIL literature, we conduct our experiments on three popular
datasets: CIFAR100 (Krizhevsky et al., 2009), miniImageNet (Russakovsky et al., 2015) and CUB200 (Wah
et al., 2011). To ensure a fair comparison with prior works on FSCIL, we use the same encoder (ResNet-
18), and data split across the training sessions as in (Tao et al., 2020; Chi et al., 2022). Specifically, for
CIFAR-100 and miniImageNet, we use 60 classes for the base session and 40 classes for the incremental
sessions. The incremental learning experiments are conducted on a 5-way, 5-shot setting. In the case of
CUB-200, we allocate 100 classes for the base session and another 100 classes for the incremental sessions,
each containing ten classes (10-way, 5-shot). Further details on implementation and hyper-parameters are
presented in Appendix S1.
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4.2 Evaluation Protocols

Following the standard evaluation protocol in FSCIL literature (Tao et al., 2020; Song et al., 2023; Kang
et al., 2023), we report the model’s accuracy after each incremental session. To further understand the
properties of the learned representations, we investigate inter-class distance, intra-class distance, and class
separation. Following, we define these properties.

Inter-class distance is the distance between the prototypes of any two classes in the embedding space.
Given, two class prototypes wi and wj for classes i and j, we compute their inter-class distance as:

di,j
inter = 1 − cosine(wi, wj), (5)

where cosine() is the cosine similarity between two vectors.

Intra-class distance indicates the average distance from a prototype to the samples belonging to that class.
For class k, we compute the intra-class distance as:

dk
intra = 1 − 1

nk

nk∑
i=1

cosine(zi, wk), (6)

where nk is the number of samples belonging to class k, and zi is the embedding of the ith sample.

Class-separation determines how well the samples from one class are separated from other classes in the
embedding space. For a dataset with C classes, class separation can be represented as: 1 − dwithin/dtotal.
Here, dwithin is the average distance between samples of the same classes, while dtotal is the average distance
between samples in the embedding space. Accordingly, they are formulated as:

dwithin =
C∑

c=1

nc∑
i=1

nc∑
j=1

1 − cosine(zc,i, zc,j)
C · n2

c

, (7)

and

dtotal =
C∑

c=1

C∑
d=1

nc∑
i=1

nd∑
j=1

1 − cosine(zc,i, zd,j)
C2 · nc · nd

. (8)

4.3 Main Results

Baselines. As outlined in Section 3.2, we adopt the incremental-frozen framework as the baseline for our
study. As shown in Table 1, the accuracy of this baseline for CIFAR-100, CUB-200, and miniImageNet
datasets are 43.77%, 59.88%, and 45.08%, respectively. To ensure the best performance for the baseline, we
perform an extensive hyper-parameter study presented in Appendix S3.1. As we later compare our results
with prior works (Section 4.5), we observe that this baseline outperforms many of the prior studies, showing
the robustness of our baseline.

Table 1: Impact of different tricks on the baseline
for all datasets.

Setting CIFAR-100 CUB-200 miniIN
Baseline 43.77 59.88 45.08
+ SupCon 50.16 60.38 48.90
+ ETF vector 51.10 60.74 49.73
+ Pseudo-classes 51.65 62.18 54.79
+ Finetuning 52.51 62.27 55.82
+ SubNet tuning 58.12 63.10 57.85
+ Larger encoder 58.52 63.55 57.99
+ Pre-training 58.62 63.59 58.10
+ Additional signal 58.75 63.75 59.57

Stability Tricks. Next, we discuss the results of
including stability tricks into the baseline, beginning
with the addition of SupCon loss. The results from this
study show substantial improvement for all datasets
(Table 1), obtaining accuracies of 50.16%, 60.38%, and
48.90%, for CIFAR-100, CUB-200, and miniImageNet
respectively. As discussed earlier, a key element for
ensuring high stability in FSCIL is to ensure increased
separability in the embedding space (increased inter-
class distance and reduced intra-class dispersion). In
Figures 2a and 2b, we plot the cumulative probabil-
ity of inter-class and intra-class distances (defined in
Appendix 4.2 for different tricks. As we observe from
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Figure 2: Properties of stability tricks on CIFAR-100. (a) Presents inter-class distance (the distance between
class prototypes), which we aim to maximize for better stability during incremental training; (b) depicts the
intra-class distance (the average distance of samples from the corresponding prototypes), which we aim to
minimize for better stability; (c) presents the class separation degree (the overall separability of classes
ranging between 0 and 1), which we aim to maximize; (d) presents the accuracy of Base, Novel, and Total
classes.

Figure 2a, adding SupCon provides a large increase in the inter-class distance compared to training with
cross-entropy loss in the baseline. At the same time, SupCon greatly reduces the intra-class distance com-
pared to the cross-entropy-based baseline (illustrated in Figure 2b. However, our findings diverge from those
of (Song et al., 2023), which indicated that while supervised contrastive loss effectively reduces intra-class
distances, it unexpectedly leads to a reduction in inter-class distances as well. The divergence in our find-
ings may be attributed to implementation specifics. For example, SAVC utilized multi-crop augmentation,
which we do not use. Also, we adopted a different set of hyper-parameters determined through our study
(Appendix S3.2).

We also show the overall class separation degree for different tricks in Figure 2c. Class separation degree
refers to the degree of distinctiveness or separability between different categories within the embedding space,
which can be measured as defined in Appendix 4.2. It typically ranges between 0 and 1, with higher values
indicating clearer boundaries and better separability between classes. As we observe, adding SupCon provides
better class separation for both base and novel classes. Overall, the higher separation in the embedding space
contributes to the large improvement in the overall accuracy. Analyzing the performance of both base and
novel classes in Figure 2d, we find improvements for both, with a 5.4% boost in base class accuracy and a
7.8% increase in novel class accuracy.

Next, we include our second stability trick of pre-assigning ETF vectors as prototypes. As we see in Figure
2a, this trick further increases inter-class distance (Figure 2a) over the previous trick. Although this trick
does not further reduce the intra-class distance (Figure 2b), it increases the class separation of novel classes
(Figure 2c), resulting in a 2.1% improvement in novel classes. Overall, including this trick increases the final
performance to 51.10%, 60.74%, and 49.73%, respectively.

Finally, adding pseudo-classes causes a further reduction in the intra-class distance since it requires fitting
twice the number of classes in the same amount of space. Although this trick reduces the inter-class distance,
it provides an increase in the novel class separation. This results in a 1.20% improvement in novel classes
and 0.6% in the final performance. Overall, we find an improved accuracy of 51.21%, 62.27%, and 55.82%
for CIFAR-100, CUB-200, and miniImageNet, respectively. Here, we find the largest improvement of 5.06%
on the miniImageNet dataset.

Adaptability Tricks As discussed earlier, stability tricks do not provide sufficient adaptability for the
model to perform well on novel classes. This is evident from the accuracy on base and novel classes in
Figure 2d, where we see a 49.6% difference in the performance on base and novel classes. Specifically, the
performance on base and novel classes are 71.5% and 21.9%, respectively. This indicates that the model
struggles to effectively learn the novel classes, demonstrating the need for adaptability tricks.

Our first adaptability trick, incremental fine-tuning, provides adaptability by means of fine-tuning the en-
coder in the incremental sessions. As shown in Figure 3a, this trick improves accuracy on novel classes by
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9.2%. We also show the accuracy after each session in Figure 3b. From this figure, we observe comparable
accuracies to that of stability tricks in the earlier sessions. However, fine-tuning shows better performance in
later sessions when the number of novel classes increases. This again shows the importance of the fine-tuning
trick for learning novel classes. Overall, this trick provides an improved accuracy of 52.51%, 62.37% and
55.82% on the CIFAR-100, CUB-200, and miniImageNet, respectively.
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Figure 3: Properties of adaptability tricks on CIFAR-
100. (a) Presents accuracy of Base, Novel, and To-
tal classes; (b) presents the total accuracies after each
session, which we aim to maximize; (c) and (d) de-
pict t-SNE visualizations for stability and adaptability
tricks, where incorporating adaptability tricks shows
more separation. Here, 0-4 are base classes, and 5-6
are novel classes.

While the fine-tuning trick improves the overall per-
formance, it causes the model to forget some of its
already-learned knowledge, which is evident from
the performance of base classes in Figure 3a. Here,
the performance on the base classes drops by 4.7%
when we include the fine-tuning trick. We resolve
this issue with our next adaptability trick, SubNet
tuning. As we see from Figure 3a, SubNet tuning
achieves comparable accuracy to that of the fine-
tuning trick on novel classes. However, unlike the
fine-tuning trick, the improvements on novel classes
do not come at the cost of a drop in base classes. In
fact, we get an improved accuracy of 76.19% on the
novel classes, and 58.1% on total classes.

Analyzing the performance over the incremental ses-
sions in Figure 3b, we observe that the accuracy for
SubNet tuning is constantly higher than the previ-
ous tricks by a large margin. In terms of overall per-
formance, we find an improved accuracy of 58.12%,
63.1%, and 57.85% for the CIFAR-100, CUB-200,
and miniImageNet datasets. In Figure 3c, we vi-
sualize a t-SNE representation of the learned em-
beddings (for a randomly selected subset of classes)
for the stability tricks and the adaptability tricks.
As observed in these figures, stability tricks alone
provide sufficient space for the integration of novel
classes (5 and 6), although it results in a slight over-
lap with base classes. In contrast, the incorporation
of adaptability tricks creates a more separable em-
bedding space.

Table 2: Performance of prior works and our framework for different
encoder sizes.

Method CIFAR-100 CUB-200 MiniIN
SAVC (Song et al., 2023) w/ ResNet-18/20∗ 53.12 62.50 57.11
SAVC (Song et al., 2023) w/ ResNet-50 49.30 56.92 56.92
SoftNet (Kang et al., 2023) w/ ResNet-18 55.33 56.75 54.68
SoftNet (Kang et al., 2023) w/ ResNet-50 55.65 56.15 54.25
Ours w/ ResNet-18 58.55 63.60 59.11
Ours w/ ResNet-50 58.75 63.75 59.57

*SAVC employed ResNet-20 for CIFAR-100 and ResNet-18 for CUB-200 and
miniImageNet.

Training Tricks. Finally, we dis-
cuss the results of adding the train-
ing tricks. First, we investigate
the impact of training a larger en-
coder by increasing the encoder size
from 11.2M (ResNet-18) to 25.6M
(ResNet-50). With the larger en-
coder, the overall accuracy increases
to 58.52%, 63.55% and 57.99%, re-
spectively, on the three datasets.
Since prior works SAVC (Song et al.,
2023) and SoftNet (Kang et al., 2023)
originally reported their final perfor-
mances with ResNet-18 or ResNet-20 backbones, we also report their performance using ResNet-50 for a
fair comparison to our approach. For this experiment, we follow the exact implementation details reported
in the original papers (Song et al., 2023; Kang et al., 2023). As seen in Table 2, SAVC with ResNet-50
exhibits significant drops in performance on all datasets. SoftNet performs slightly better with ResNet-50
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on CIFAR-100 but shows drops in performance for the other two datasets. Overall, the performance of these
methods is significantly lower than that of our proposed framework when using the same encoder. We also
report the performance of our framework using the ResNet-18 backbone, demonstrating considerably better
results compared to other methods, irrespective of the encoder size.
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Figure 4: Confusion matrices for the baseline and our bag of
tricks. The baseline performs well on the base session, but
performance drops for novel classes. Our framework shows
improved performance for both base and novel classes.

Next, adding the pre-training trick yields ad-
ditional improvements. With this trick, the
performance on the three datasets is increased
to 58.52%, 63.55%, and 57.99%, respectively.
Finally, we observe relatively large improve-
ments with our last training trick of incorpo-
rating the additional learning signal, resulting
in accuracies of 58.75%, 63.75%, and 59.57%,
on CIFAR-100, CUB-200, and miniImageNet,
respectively. To provide an overall evaluation,
we present the confusion matrices for both the
baseline and the complete bag of tricks in Fig-
ure 4. For the baseline, noticeable dark points
(correct predictions) are observed along the di-
agonal for the base classes (first 60 classes), but
these become less prominent for the incremen-
tal classes. With the bag of tricks, we observe
significant improvements for all classes, including novel ones.

4.4 Ablation Study

Table 3: Ablation study.

Stab. Adap. Train. Acc
✓ ✓ ✓ 58.75
✓ ✓ ✗ 57.85
✓ ✗ ✓ 55.56
✗ ✓ ✓ 46.25
✓ ✗ ✗ 54.79
✗ ✓ ✗ 37.34
✗ ✗ ✓ 38.15
✗ ✗ ✗ 43.77

In this section, we present an ablation study on the stability, adaptability and
training tricks on the CIFAR-100 dataset. The results of this study are presented
in Table 3. It is evident from the table that stability tricks have the highest
individual impact on the performance of the model, removing which results
in a 12.5% drop in performance. Furthermore, removing stability tricks with
any of the other tricks drastically drops the performance, resulting in a final
accuracy worse than the baseline. This is caused by the fact that without
stability tricks, adaptability tricks alone overfit the new classes, and training
tricks alone (with a larger encoder) do not learn generalized features. We find
the second important component to be the adaptability tricks, which results in
a 3.19% drop in performance when removed. Finally, removing training tricks
shows a 0.9% drop in performance.

4.5 Comparison to Prior Works

Finally, we compare the results of our bag of tricks with the prior works on CIFAR-100 in Table 4, and
present the results for CUB-200 and miniImageNet in Appendix Tables S1 and S2. The tables present the
results for the base session and the overall performance across incremental sessions. The first row in this
table presents the results for our baseline. Among prior works, SoftNet held the previous state-of-the-art for
CIFAR-100 with a final accuracy of 55.33%. Our framework achieves a performance of 58.75%, marking a
3.42% improvement over the current state-of-the-art. In Figure 5, we plot the accuracy over the incremental
sessions for CIFAR-100, CUB-200, and miniImageNet. For CUB-200, the previous state-of-the-art was held
by SAVC with an accuracy of 62.50%, which our framework outperforms with an accuracy of 63.75%. Finally,
the state-of-the-art on miniImageNet was also held by SAVC, with an accuracy of 57.11%, which our method
outperforms by 2.46%, achieving an accuracy of 59.57%.

Performance Across Different Shots. Following prior works in FSCIL (Zhou et al., 2022a; Tao et al.,
2020), we report the main results in a 5-shot setting. Nonetheless, We also investigate the performance
on 1-shot and 2-shot settings to evaluate how the model performs in data-scarce settings and compare the
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Table 4: Comparison to prior works across the base and incremental sessions on CIFAR-100 for 5-way, 5-shot
setting. The results for CUB-200 and miniImageNet are presented in the Appendix.

Method Acc. in each session (%) ↑
0 1 2 3 4 5 6 7 8

Baseline 70.05 65.37 60.59 56.72 53.38 50.53 48.07 45.87 43.77
Rebalancing (Hou et al., 2019) 61.31 47.80 39.31 31.91 25.68 21.35 18.67 17.24 14.17
iCaRL (Rebuffi et al., 2017) 61.31 46.32 42.94 37.63 30.49 24.00 20.89 18.80 17.21
TOPIC (Tao et al., 2020) 61.31 50.09 45.17 41.16 37.48 35.52 32.19 29.46 24.42
IDLVQ-C (Chen & Lee, 2020) 64.77 59.87 55.93 52.62 49.88 47.55 44.83 43.14 41.84
FSLL (Mazumder et al., 2021) 66.48 61.75 58.16 54.16 51.10 48.53 46.54 44.20 42.28
FSLL+SS (Mazumder et al., 2021) 68.85 63.14 59.24 55.23 52.24 49.65 47.74 45.23 43.92
F2M (Shi et al., 2021) 67.28 63.80 60.38 57.06 54.08 51.39 48.82 46.58 44.65
CEC (Zhang et al., 2021) 73.07 68.88 65.26 61.19 58.09 55.57 53.22 51.34 49.14
MetaFSCIL (Chi et al., 2022) 74.50 70.10 66.84 62.77 59.48 56.52 54.36 52.56 49.97
CLOM (Zou et al., 2022) 74.20 69.83 66.17 62.39 59.26 56.48 54.36 52.16 50.25
C-FSCIL (Hersche et al., 2022) 77.47 72.40 67.47 63.25 59.84 56.95 54.42 52.47 50.47
LIMIT (Zhou et al., 2022b) 73.81 72.09 67.87 63.89 60.70 57.77 55.67 53.52 51.23
FACT (Zhou et al., 2022a) 74.60 72.09 67.56 63.52 61.38 58.36 56.28 54.24 52.10
SAVC (Song et al., 2023) 79.85 73.70 69.37 65.28 61.91 59.27 57.24 54.97 53.12
ALICE (Peng et al., 2022a) 79.00 70.50 67.10 63.40 61.20 59.20 58.10 56.30 54.10
SoftNet (Kang et al., 2023) 79.88 75.54 71.64 67.47 64.45 61.09 59.07 57.29 55.33
Ours 80.25 77.20 75.09 70.82 67.83 64.86 62.73 60.52 58.75
*We reproduced the results for SAVC as the original paper does not provide the exact values for each session.

**We do not compare with NC-FSCIL (Yang et al., 2022) since it deviates (uses a memory bank) from the standard training protocol for FSCIL.
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Figure 5: Comparison to prior works across CIFAR-100, CUB-200, and miniImageNet datasets, demonstrat-
ing that our solution outperforms prior works.

Table 5: Performance on the ImageNet-1K dataset. We use 500 classes as base sessions and perform 50-way,
10-shot incremental learning.

Method Acc. in each session (%) ↑
0 1 2 3 4 5 6 7 8 9 10

SAVC (Song et al., 2023) 37.74 35.94 34.45 33.16 31.88 30.93 29.80 28.83 28.1 27.37 26.12
SoftNet (Kang et al., 2023) 36.21 34.23 32.35 30.53 28.71 27.15 25.68 24.31 23.16 22.19 21.21
Ours 39.34 37.86 36.49 35.23 34.30 33.83 32.29 31.21 30.77 29.34 28.25

performance with two of the previous state-of-the-art methods, SAVC and SoftNet. We also investigate the
10-shot setting to determine how an increase in data impacts performance. As seen from Figure 6, in 1-shot
learning, our proposed framework outperforms prior works by a larger margin than the 5-shot setting. This
further shows the effectiveness of the bag of tricks in data-scarce settings. More experiments on 1-, 2-, 5-
and 10-shot settings are discussed in Appendix S3.5.
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Figure 6: Performance for different
shots. Solid and dotted lines repre-
sent 5- and 1-shot performances.

Performance on ImageNet-1K. So far we have report the main
results of our approach on, CIFAR-100, CUB-200, and miniIma-
geNet, which are commonly used by prior works in this area. How-
ever, these datasets are relatively small in terms of the number of
classes. To better understand the scalability of FSCIL in terms of
the number of classes, we conduct an experiment on the ImageNet-
1K (Russakovsky et al., 2009) dataset, which contains 1000 classes.
For this study, we consider 500 randomly selected classes as the
base classes and report the results for a 50-way, 10-shot incremental
learning setting. The results of this study with our method and its
comparison to prior methods are presented in Table 5. As seen from
the results, our proposed framework outperforms prior works on the
ImageNet-1K dataset by a considerable margin. More specifically,
our framework achieves 7.04% and 2.13% improvement over SoftNet
and SAVC, respectively.

4.6 Time Complexity

Table 6: Comparison of computational complexity
with a batch-size of 64.

Method Acc. Train Infer.base inc.
SAVC 53.12 810 950 2150
Ours (ResNet-18) 58.55 630 935 2150
Ours (ResNet-50) 58.75 450 710 1800

In Table 6, we discuss the time complexity of our
framework using a single Nvidia RTX 2080 GPU in
comparison to SAVC (Song et al., 2023). To this end,
we report throughput in frames per second (FPS),
which is a common metric for indicating computa-
tional complexity. During the training phase on
the base session (with the ResNet-50 backbone), the
throughputs for SAVC and our framework are 810
FPS and 450 FPS, respectively. In this phase, our
framework is relatively slower than SAVC. However,
we observe a 1.4 times faster training speed when we use the ResNet-18 backbone in our framework, which
comes at a 0.2% drop in performance. Nonetheless, during incremental training and inference, our framework
with ResNet-18 is as fast as SAVC. Consequently, once trained, our framework can be reliably deployed in
real-world applications with the same inference time as previous state-of-the-art while achieving enhanced
performance.

5 Conclusion

We present a bag of tricks framework that combines eight effective tricks in three distinct categories to
improve the stability, adaptability, and overall performance of FSCIL. Stability tricks improve the separation
among learned classes to facilitate the learning of new ones, resulting in large improvements on both the
base and total classes. Adaptability tricks improve the performance on novel classes by providing more
learning capability during incremental sessions. Finally, training tricks provide an additional boost to the
final performance. Our detailed analysis of each of these tricks shows the effectiveness of each technique,
while our framework sets new state-of-the-art on three benchmark datasets.

Limitations. Our framework has a few limitations. Though our framework provides adequate adaptability,
the performance of the novel classes is still relatively lower compared to the base classes. Additionally, our
proposed framework demands a relatively higher computational budget, primarily due to the training tricks,
such as the pre-training step and a larger encoder. Another limitation of our work is that we only included
tricks that can be combined with all other tricks into a single framework. Some other tricks, such as the
notion of meta-learning, or weight-space manipulation, could not easily be integrated into our framework.
Future work can explore certain adaptations or modifications of these techniques that could facilitate their
inclusion in the bag of tracks framework.
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Supplementary Material

In this section, we present more details on the implementation and discuss additional experimental results.
Following is an overview of the organization of the supplementary material.

S1: Datasets and Implementation Details

S2: Comparison to SOTA

S3: Additional Results

S3.1: Baseline
S3.2: Stability Tricks
S3.3: Adaptability Tricks
S3.4: Training Tricks
S3.5: Performance on Different Shots

S1 Datasets and Implementation Details

Following previous works (Tao et al., 2020; Song et al., 2023), we evaluate our framework on three popular
datasets: CIFAR100 (Krizhevsky et al., 2009), miniImageNet (Russakovsky et al., 2015), and CUB200 (Wah
et al., 2011). CIFAR-100 is a dataset of 100 classes, where we use 60 classes (following (Tao et al., 2020))
in the base session and the remaining 40 classes in the incremental sessions. Each incremental session is
formulated as a 5-way, 5-shot problem. CUB-200 is a dataset with 200 fine-grained categories. For this
dataset, we use 100 classes (following (Tao et al., 2020)) in the base session and the remaining 100 classes
in the incremental sessions, with 10 classes in each session. Finally, miniImageNet is a subset of the popular
ImageNet dataset that contains 100 classes. For this dataset, we use 60 classes (following (Tao et al., 2020))
for the base session and 5 classes per incremental session over 8 sessions.

For the encoder, we use ResNet-18 by default for all datasets, similar to (Tao et al., 2020; Kang et al., 2023).
We train the model with an SGD optimizer, a momentum of 0.9, and a batch size of 64. The learning rate
is set to 0.1 for CIFAR-100 and miniImageNet and 0.001 for CUB-200. For all experiments, the model is
trained on an Nvidia RTX 2080 GPU.

S2 Comparison to State-of-the-art

In this section, we present the results for CUB-200 and miniImageNet datasets and their comparison to prior
works. As we observe from Table S1, our framework outperforms all existing works on CUB-200 and sets a
state-of-the-art of 63.75%. Similarly, for miniImageNet in Table S2, our framework performs better than all
prior works, showing a new best accuracy of 59.57%.

S3 Additional Results

S3.1 Baseline

In this section we discuss sensitivity studies on some of the key hyper-parameters of the baseline method,
including the number of training epochs and learning rate. The sensitivity study on the training epochs is
presented in Figure S1. Our findings from this study show that the best results for CIFAR-100, CUB-200 and
miniImageNet datasets are obtained for training 400, 80, and 80 epochs, respectively. The study on learning
rate in Table S3 shows that the best performances are achieved for a learning rate of 0.1 for CIFAR-100,
and miniImageNet datasets, and 0.001 for the CUB-200 dataset.
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Table S1: Comparison to prior works across the base and incremental sessions on CUB-200.

Method Acc. in each session (%) ↑
0 1 2 3 4 5 6 7 8 9 10

Baseline 79.57 75.59 72.23 67.53 67.49 64.73 64.41 62.69 60.54 60.85 59.88
iCaRL (Rebuffi et al., 2017) 68.68 52.65 48.61 44.16 36.62 29.52 27.83 26.26 24.01 23.89 21.16
EEIL (Castro et al., 2018) 68.68 53.63 47.91 44.20 36.30 27.46 25.93 24.70 23.95 24.13 22.11
TOPIC (Tao et al., 2020) 68.68 62.49 54.81 49.99 45.25 41.40 38.35 35.36 32.22 28.31 26.28
Rebalancing (Hou et al., 2019) 68.68 57.12 44.21 28.78 26.71 25.66 24.62 21.52 20.12 20.06 19.87
SPPR (Zhu et al., 2021b) 68.68 61.85 57.43 52.68 50.19 46.88 44.65 43.07 40.17 39.63 37.33
MetaFSCIL(Chi et al., 2022) 75.90 72.41 68.78 64.78 62.96 59.99 58.30 56.85 54.78 53.82 52.64
F2M (Shi et al., 2021) 81.07 78.16 75.57 72.89 70.86 68.17 67.01 65.26 63.36 61.76 60.26
CEC (Zhang et al., 2021) 75.85 71.94 68.50 63.50 62.43 58.27 57.73 55.81 54.83 53.52 52.28
FACT (Zhou et al., 2022a) 75.90 73.23 70.84 66.13 65.56 62.15 61.74 59.83 58.41 57.89 56.94
LIMIT (Zhou et al., 2022b) 75.89 73.55 71.99 68.14 67.42 63.61 62.40 61.35 59.91 58.66 57.41
SoftNet (Kang et al., 2023) 78.07 74.58 71.37 67.54 65.37 62.60 61.07 59.37 57.53 57.21 56.75
ALICE (Peng et al., 2022a) 77.40 72.70 70.60 67.20 65.90 63.40 62.90 61.90 60.50 60.60 60.10
SAVC (Song et al., 2023) 81.85 77.92 74.95 70.21 69.96 67.02 66.16 65.30 63.84 63.15 62.50
Ours 82.31 78.03 75.45 70.99 71.06 67.85 67.44 66.05 64.95 64.31 63.75

Table S2: Comparison to prior works across the base and incremental sessions on miniImageNet.

Method Acc. in each session (%) ↑
0 1 2 3 4 5 6 7 8

Baseline 69.08 64.4 60.22 57.08 53.8 50.88 48.42 46.54 45.08
iCaRL (Rebuffi et al., 2017) 71.77 61.85 58.12 54.60 51.49 48.47 45.90 44.19 42.71
Rebalancing (Hou et al., 2019) 72.30 66.37 61.00 56.93 53.31 49.93 46.47 44.13 42.19
TOPIC (Tao et al., 2020) 61.31 50.09 45.17 41.16 37.48 35.52 32.19 29.46 24.42
EEIL (Castro et al., 2018) 61.31 46.58 44.00 37.29 33.14 27.12 24.10 21.57 19.58
FSLL (Mazumder et al., 2021) 66.48 61.75 58.16 54.16 51.10 48.53 46.54 44.20 42.28
FSLL+SS (Mazumder et al., 2021) 68.85 63.14 59.24 55.23 52.24 49.65 47.74 45.23 43.92
F2M (Shi et al., 2021) 72.05 67.47 63.16 59.70 56.71 53.77 51.11 49.21 47.84
CEC (Zhang et al., 2021) 72.00 66.83 62.97 59.43 56.70 53.73 51.19 49.24 47.63
MetaFSCIL (Chi et al., 2022) 72.04 67.94 63.77 60.29 57.58 55.16 52.90 50.79 49.19
C-FSCIL (Hersche et al., 2022) 76.40 71.14 66.46 63.29 60.42 57.46 54.78 53.11 51.41
FACT (Zhou et al., 2022a) 72.56 69.63 66.38 62.77 60.60 57.33 54.34 52.16 50.49
CLOM (Zou et al., 2022) 73.08 68.09 64.16 60.41 57.41 54.29 51.54 49.37 48.00
LIMIT (Zhou et al., 2022b) 72.32 68.47 64.30 60.78 57.95 55.07 52.70 50.72 49.19
SoftNet (Kang et al., 2023) 79.77 75.08 70.59 66.93 64.00 61.00 57.81 55.81 54.68
ALICE (Peng et al., 2022a) 80.60 70.60 67.40 64.50 62.50 60.00 57.80 56.80 55.70
SAVC (Song et al., 2023) 81.12 76.14 72.43 68.92 66.48 62.95 59.92 58.39 57.11
Ours 84.3 79.59 75.49 71.4 68.45 65.129 62.2 60.52 59.57

S3.2 Stability Tricks

In this section, we discuss additional results on the stability tricks. In Figure S2, we study the sensitivity
towards the number of epochs when training with the SupCon loss. This study shows that optimal per-
formance with the SupCon loss is observed for a relatively larger number of epochs in comparison to the
baseline. More specifically, the best results for CIFAR-100, CUB-200, and miniImageNet are observed when
trained for 500, 100, and 120 epochs, respectively.

Next, we discuss the experiments on pre-assigning prototypes. As discussed in Section 3.3, we assign the
prototype after training for a pre-defined number of epochs. In Table S4, we study the optimal epoch before
assigning the prototype, defined as a factor of total epochs. For instance, a value of 0.1 means the prototypes
are assigned after training for 10% of the total number of epochs. As we find from this table, assigning a
prototype at the beginning of the training does not yield the best performance for any dataset. The best
results for the CIFAR-100, CUB-200, and miniImageNet are obtained for the epoch factor of 0.1, 0.5, and
0.5, respectively.
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Figure S1: Sensitivity study on the number of training epochs for the baseline method.

Table S3: Sensitivity study on the learning rate for the baseline method.
LR CIFAR-100 CUB-200 miniIN
0.5 29.36 55.02 34.74
0.1 43.77 57.75 45.08
0.01 42.73 58.33 43.42
0.001 39.47 59.88 32.54
0.0001 19.63 50.17 16.01
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Figure S2: Sensitivity study on the number of training epochs for SupCon.

S3.3 Adaptability Tricks

In this section, we discuss the experiments on the adaptability tricks. As discussed in Section 3.5, we only
tune a few layers of the encoder during the incremental fine-tuning, keeping the remaining layers frozen.
Table S5 presents the results for fine-tuning different portions of the pre-trained encoder. As seen in this
table, the best results are observed when only the last ResNet block is turned, while the worst results are
consistently observed for tuning the full encoder.

S3.4 Training Tricks

Finally, we discuss the experiments on the training tricks. In Table S6, we show the results for training
different encoders on all the datasets. As we observe in this table, increasing the model size in our framework
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Table S4: Sensitivity study on the epoch factor for prototypes.
Epoch factor CIFAR-100 CUB-200 MiniIN

0 49.66 60.50 51.01
0.1 49.45 60.74 51.10
0.5 49.73 60.24 50.87
0.75 49.35 60.11 50.75

Table S5: Sensitivity study on tuning different portions of the encoder.
Tunable parameters CIFAR-100 CUB-200 MiniIN

Full encoder 49.11 59.16 51.19
Last ResNet block 52.51 62.27 55.82

Last 2 ResNet blocks 52.02 61.50 55.18

Table S6: Sensitivity study on tuning different portions of the encoder.
Encoder CIFAR-100 CUB-200 MiniIN
ResNet-18 58.12 63.10 57.85
ResNet-34 58.44 63.17 57.90
ResNet-50 58.52 63.55 57.99
ResNet-101 57.95 63.19 57.55

Table S7: Comparison to prior works with different shots of data.

Method Acc. in each session (%) ↑
0 1 2 3 4 5 6 7 8

1-shots
SAVC (Song et al., 2023) 79.85 71.29 64.11 57.08 53.45 50.45 48.74 46.54 44.45
SoftNet (Kang et al., 2023) 79.88 72.01 65.01 59.01 55.01 52.01 50.01 48.01 46.01
Ours 80.25 76.01 71.87 67.24 63.56 59.82 56.62 54.11 52.84

2-shots
SAVC (Song et al., 2023) 79.85 72.00 65.45 59.17 55.25 52.2 50.16 48.11 46.94
SoftNet (Kang et al., 2023) 79.88 73.02 66.01 60.01 56.01 53.01 51.01 49.01 47.01
Ours 80.25 77.63 73.071 68.53 64.51 60.67 58.41 55.98 54.15

5-shots
SAVC (Song et al., 2023) 79.85 73.70 69.37 65.28 61.91 59.27 57.24 54.97 53.12
SoftNet (Kang et al., 2023) 79.88 75.54 71.64 67.47 64.45 61.09 59.07 57.29 55.33
Ours 80.25 77.20 75.09 70.82 67.83 64.86 62.73 60.52 58.75

10-shots
SAVC (Song et al., 2023) 79.85 75.45 72.18 68.26 65.66 62.15 60.27 58.19 56.01
SoftNet (Kang et al., 2023) 79.88 77.28 73.15 69.34 66.14 63.38 61.27 59.33 57.14
Ours 80.25 78.10 76.39 72.02 69.03 65.96 64.00 61.92 60.25

improves the performance up to a certain model size. Notably, we observe that the best performance for all
the datasets is obtained with ResNet-50.

S3.5 Performance on Different Shots

In this section, we present additional results on different shots. More specifically, we present the results for
1-, 2-, 5-, and 10-shots on the CIFAR-100 dataset. The results of this study are presented in Table S7. As we
see from this table, our framework outperforms prior works in data-scarce settings. Specifically, in a 1-shot
setting, our framework outperforms the previous state-of-the-art by a significant margin of 6.83%. In the
2-shot setting, the difference increases slightly to 7.14%. In a 5-shot setting, the improvement over existing
methods decreases to 3.42%. Finally, we find a boost in performance for all the methods when we increase
the labelled samples to a 10-shot setting, with our framework showing 3.11% improvement over the SoftNet.

19


	Introduction
	Related Works
	Class Incremental Learning
	Few-Shot Class-Incremental Learning

	Method
	Preliminaries
	Baseline
	Stability Tricks
	Adaptability Tricks
	Training Tricks

	Experiments and Results
	Datasets and Implementation Details
	Evaluation Protocols
	Main Results
	Ablation Study
	Comparison to Prior Works
	Time Complexity

	Conclusion
	Datasets and Implementation Details
	Comparison to State-of-the-art
	Additional Results
	Baseline
	Stability Tricks
	Adaptability Tricks
	Training Tricks
	Performance on Different Shots


