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Abstract

Large language models (LLMs) are known to001
struggle with complicated reasoning tasks such002
as math word problems (MWPs). In this paper,003
we present how analogy from similarly struc-004
tured questions can improve LLMs’ problem-005
solving capabilities for MWPs. Specifically,006
we rely on the retrieval of problems with simi-007
lar computational graphs to the given question008
to serve as exemplars in the prompt, providing009
the correct reasoning path for the generation010
model to refer to. Empirical results across six011
math word problem datasets demonstrate the012
effectiveness of our proposed method, which013
achieves a significant improvement of up to 6.7014
percent on average in absolute value, compared015
to baseline methods. These results highlight016
our method’s potential in addressing the rea-017
soning challenges in current LLMs.018

1 Introduction019

Large Language Models (LLMs) have demon-020

strated remarkable success across a wide range021

of tasks (Achiam et al., 2023; Dubey et al., 2024;022

Jiang et al., 2023; Labrak et al., 2024; Lin et al.,023

2024). However, solving math word problems024

(MWPs) remains a significant challenge for LLMs025

(Ahn et al., 2024; Srivatsa and Kochmar, 2024).026

Unlike tasks that primarily rely on linguistic or027

general knowledge, MWPs demand a nuanced in-028

tegration of language comprehension and mathe-029

matical reasoning, posing unique difficulties for030

LLMs. Overcoming this challenge is critical, as031

proficiency in solving MWPs could expand the032

applications of LLMs to education, automated tu-033

toring, and complex reasoning tasks.034

Human problem-solving for MWPs offers an in-035

sightful source of inspiration. People often solve036

new problems by analogy, leveraging prior exam-037

ples to adapt solutions to novel scenarios. Inspired038

by this analogy-driven learning process, recent039

research has employed few-shot prompting tech-040

niques to enhance MWP performance in LLMs 041

(Jiang et al., 2023; Melz, 2023; Henkel et al., 2024). 042

Most existing approaches for selecting few-shot ex- 043

amples rely either on random selection (Jiang et al., 044

2023; Dubey et al., 2024) or retrieval based solely 045

on semantic similarity (Huang et al., 2023; Melz, 046

2023; Henkel et al., 2024). Although providing 047

examples can improve LLM performance, these 048

methods often fail to ensure that the selected exam- 049

ples align with the mathematical structure of the 050

target problem. Specifically, randomly selected ex- 051

amples lack relevance to the target problem, while 052

semantic retrieval tends to prioritize superficial lin- 053

guistic similarity over deep structural alignment. 054

This mismatch between the provided examples and 055

the target problem ultimately constrains the effec- 056

tiveness of LLMs in solving MWPs. 057

To address this limitation, we propose a novel 058

computational graph-based retrieval method for 059

selecting examples that align more closely with 060

the underlying structure of the target math word 061

problem. Our approach identifies examples with 062

computational graphs that are structurally simi- 063

lar to the target problem and incorporates these 064

examples into few-shot prompting, providing the 065

LLM with more relevant problem-solving guid- 066

ance. Specifically, we design a lightweight retriever 067

model trained using contrastive learning to identify 068

structurally analogous examples. Examples with 069

similar graphs are treated as positive pairs, while 070

those with dissimilar graphs are treated as negative 071

pairs. Once trained, the retriever can be seamlessly 072

integrated into the LLM inference workflow with- 073

out requiring updates to the LLM’s parameters, 074

making our approach modular and easily adapt- 075

able. We evaluate our method on six math word 076

problem datasets, demonstrating that our compu- 077

tational graph-based retrieval approach achieves 078

significant performance improvements over both 079

semantic-based retrieval and random selection base- 080

lines. Furthermore, we conduct case studies and 081
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Apprentice processes 48 parts per hour and 5 hours for 
the apprentice to process the parts that can be 

completed by the master in 4 hours, how many parts will 
the master process per hour?

x=num_a*num_b/num_c=48*5/4

Question

Comp. Graph

Figure 1: An example of a math word problem with its
computational graph.

detailed analyses to highlight the effectiveness of082

our method.083

Our contributions are summarized as follows:084

• Proposing Computational Graph-Based085

Retrieval for Few-Shot Prompting. We in-086

troduce a computational graph-based retrieval087

method specifically tailored for math word088

problem-solving. This approach selects ex-089

amples with structural similarity to the tar-090

get problem, enhancing few-shot prompting091

by providing LLMs with examples that align092

with the underlying mathematical structure of093

the problem.094

• Training a Structural Similarity Retriever.095

We develop a retriever model trained with con-096

trastive learning to identify structural similar-097

ity in math word problems. This lightweight098

and modular retriever integrates seamlessly099

into the LLM inference workflow without re-100

quiring parameter updates to the LLM itself.101

• Conducting Extensive Evaluation and Anal-102

ysis. We conduct comprehensive experiments103

on six math word problem datasets, demon-104

strating that our approach significantly outper-105

forms both semantic-based and random selec-106

tion baselines, with average exact matching107

(EM) score improvements of up to 6.7% and108

19.5% respectively. Additionally, we present109

in-depth case studies and analyses to validate110

the effectiveness of our method in capturing111

structural nuances essential for MWP-solving.112

We also provide an automated approach to113

construct the training data without any human114

labors.115

2 Methodology116

2.1 Overview of the Proposed Framework117

When solving a new reasoning problem, humans118

often draw upon known problems with similar rea-119

soning paths and address them by analogy. In the120

context of math word problems, the reasoning path 121

corresponds to its computational graph, as illus- 122

trated in Figure 1. Large language models (LLMs) 123

are observed to fail to conduct genuine logical rea- 124

soning (Mirzadeh et al., 2024) and exhibit strong 125

token biases (Li et al., 2024) when addressing rea- 126

soning tasks. Therefore, providing LLMs with the 127

correct reasoning path from analogous problems 128

can guide them to mimic the problem-solving pro- 129

cess. This paper aims to develop a math word 130

problem-solving system comprising a retriever and 131

a generator. The retriever identifies problems and 132

solutions with computational graphs similar to the 133

query problem from a corpus, while the genera- 134

tor leverages these retrieved exemplars through in- 135

context learning to enhance problem-solving per- 136

formance. 137

2.2 Retriever Model Training 138

Figure 2 shows the training process of the re- 139

triever. Given a batch of questions {qi}ni=1 and 140

their corresponding computational graphs {Gi}ni=1, 141

we search in the training dataset for positive ex- 142

amples {q+i }ni=1 where their computational graphs 143

are the same as those of the query questions: 144

G+
i = Gi, i = 1, 2, ...n where n is the batch 145

size.1 Then we forward the {qi, q+i }ni=1 with the 146

retriever (an encoder model) fθr to get the em- 147

beddings {fθr(qi), fθr(q+i )}ni=1. By applying in- 148

foNCE loss (Oord et al., 2018) with the in-batch 149

negative strategy, the training loss objective L of 150

the retriever becomes: 151

L =
1

n

n∑
i=1

− log(esim(fθr(qi),fθr(q
+
i ))/τ/ 152

(
n∑

j=1,j ̸=i

esim(fθr(qi),fθr(qj))/τ+ 153

n∑
j=1

esim(fθr(qi),fθr(q
+
j ))/τ )) (1) 154

where sim indicates a similarity function and τ is 155

the temperature. Note that we do not need to train 156

the generator. 157

2.3 Inference 158

Given a trained retriever fθr∗ , a question-solution 159

pair corpus C and a given question q, the re- 160

triever select the top-k similar question-solution 161

1We discard the examples if there’s no positive samples
matched in the training dataset.
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“Certain number divided by 
6 equals 7 remainder 3.”

“A 22.4-meter-long 
electrical wire ...... were 

used in total for both times?”
x=num_a*num_b+num_c 

“A 10-meter long copper 
wire is used for 6 meters, 
what percentage is left?”

x=(num_a-num_b)/num_a

Encoder

“A 36-kilometer road is 
under repair ...... has not 

been repaired yet?”

Encoder

...

Encoder Encoder

e1 e1+ en en+

Positive Pairs Positive Pairs

Negative Pairs

...

x=(num_a-num_b)/num_a x=num_a*num_b+num_c 

Question

Comp. Graph

Figure 2: Flowchart of Retriver Training. This figure illustrates the process of training a retriever model (encoder)
with contrastive learning to identify structurally similar math word problems. Each question is encoded into an
embedding based on its text. Positive pairs are formed by pairing examples with matching computational graph
structures, while in-batch negatives serve as contrasting examples with different structures.

pairs {qi, ai}ki=1 based on the similarity score:162

{qi, ai}ki=1 = topk(sim(fθr∗(q), fθr∗(qj))) (2)163

where qj ∈ C. Then we concatenate the retrieved164

question-answer pairs and the given question as165

the prompt to the generator fθg to get the output166

answer a:167

a = fθg(concat(q1, a1, ..., qk, ak, q)) (3)168

where concat denotes the concatenation operation.169

3 Experiment170

3.1 Setup171

Implementation Details. In our experiments, we172

use BGE-large-en-v1.5 (Xiao et al., 2023) as re-173

triever and LLaMA-3 model series (Dubey et al.,174

2024) as generator for English datasets (except for175

0.5B size experiments, where we use Qwen2.5-176

0.5B-Instruct as the generator since no similar177

sized LLaMA-3 model is available), and BGE-178

large-zh-v1.5 as retriever and Qwen2.5 model se-179

ries (Team, 2024) as generator for Chinese datasets,180

with bfloat16 precision for all models. We add an181

extra pooler (a two-layer MLP module) to the re-182

triever, following the practice in (Chen et al., 2020).183

We train the retriever on 25% randomly selected184

data from Math23k training set2 (Wang et al., 2017)185

where the computational graphs are provided, us-186

ing AdamW (Loshchilov and Hutter, 2019) with a 187

2Math23k dataset is provided in Chinese, and we use
LLaMA-3.1-70B-Instruct to translate it into English for the
training of English model.

learning rate of 3e-5 for 5 epochs, a temperature 188

τ of 0.05, and cosine similarity as the similarity 189

function. We set the batch size equal to 16 for the 190

training process. 191

Datasets. We evaluate our retrieval-generation 192

system on the following six math word prob- 193

lem datasets: Math23k (Wang et al., 2017), 194

ape210k (Zhao et al., 2020), gsm8k (Cobbe et al., 195

2021), math_qa (Amini et al., 2019), Calc-ape210k 196

(Kadlčík et al., 2023) and aqua_rat (Ling et al., 197

2017), as shown in Table 1. For all datasets, we 198

use the corresponding training set as the retrieval 199

corpus and evaluate on the test set, and use k = 8 200

for top-k example retrieval. 201

Metrics. We report exact match (EM) accuracy 202

for all datasets. During inference, we require the 203

generator to generate answers following the same 204

format of the given exemplars to facilitate the pars- 205

ing of the solution to obtain the final answer, and 206

consider the generated solution correct if the parsed 207

final answer matches the golden answer. We use 208

string matching for the datasets where the solutions 209

are provided in text format, and use float number 210

matching if the solutions are provided in equation 211

format. 212

3.2 Main Results 213

Table 2 presents a detailed summary of our experi- 214

mental results, highlighting the superiority of our 215

method across various datasets and model sizes. 216

Specifically, for the Chinese datasets Math23k and 217
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# Samples (train/val/test) Language Solution type Comp. Graph Options
Math23k 21.2k/1k/1k ZH Equation ✓ ✗

ape210k 200.5k/5k/5k ZH Equation ✗ ✗

gsm8k 7.5k/-/1.3k EN Text ✗ ✗

math_qa 29.8k/4.5k/3.0k EN Text ✗ ✓

Calc-ape210k 195k/1.8k/1.8k EN Equation ✗ ✗

aqua_rat 97.5k/254/254 EN Text ✗ ✓

Table 1: Details of datasets evaluated.“ZH” and “EN” refers to Chinese and English. An example of equation
solution is “x=(5*1000)-2000” where x is the final answer, and an example of text solution is “Natalia sold 48/2
= «48/2=24»24 clips in May. Natalia sold 48+24 = «48+24=72»72 clips altogether in April and May. ####
72.”Options refer to if the candidate answers are provided in the question.

Math23k ape210k gsm8k math_qa Calc-ape210k aqua_rat Avg.
RandomQwen-0.5B 28.9 19.2 17.1 16.5 12.0 18.1 18.6
BGEQwen-0.5B 43.1 39.7 21.2 27.3 17.6 16.9 27.6
OursQwen-0.5B 57.6 49.2 22.7 26.6 30.5 18.9 34.3
RandomLLaMA-1B/Qwen-1.5B 50.3 32.7 38.6 17.2 22.8 14.2 27.6
BGELLaMA-1B/Qwen-1.5B 58.7 50.4 38.7 45.9 20.4 29.9 40.7
OursLLaMA-1B/Qwen-1.5B 66.6 59.2 40.7 47.3 31.3 37.4 47.1
RandomLLaMA-3B/Qwen-3B 68.0 44.3 71.4 52.9 32.6 46.9 52.7
BGELLaMA-3B/Qwen-3B 73.1 54.6 71.5 64.9 31.5 50.0 57.6
OursLLaMA-3B/Qwen-3B 78.3 59.9 71.9 64.3 39.8 50.6 60.8
RandomLLaMA-8B/Qwen-7B 83.9 62.8 80.1 51.3 30.6 49.6 59.7
BGELLaMA-8B/Qwen-7B 87.6 73.8 80.4 66.4 39.5 49.6 66.2
OursLLaMA-8B/Qwen-7B 90.4 76.7 79.2 66.8 46.5 53.1 68.8
RandomLLaMA-70B/Qwen-72B 84.7 68.9 84.7 60.6 39.3 59.8 66.3
BGELLaMA-70B/Qwen-72B 90.9 79.5 86.0 68.5 47.9 64.2 72.8
OursLLaMA-70B/Qwen-72B 92.4 80.9 87.3 68.0 53.5 64.2 74.4

Table 2: Main results of our system. We report exact match (EM) for all tasks. Our approach outperforms the
baselines on most tasks except for math_qa, which is because the semantic similarity and computational graph
similarity are overlapped in this dataset. While our method is effective for generators of all sizes, the performance
gain is larger for smaller models.

ape210k, our approach consistently and signifi-218

cantly outperforms both the random and BGE base-219

lines. Similarly, strong performance gains are ob-220

served across four English datasets, further demon-221

strating the effectiveness of our method. The only222

exception is the math_qa dataset, where our method223

performs comparably to the BGE baseline. This224

anomaly arises because, in math_qa, the seman-225

tic similarity often coincides with computational226

graph similarity. Many example pairs in this dataset227

differ only in the numerical values while main-228

taining identical semantic structures and compu-229

tational graphs (e.g., “The banker’s gain of a cer-230

tain sum due 3 years hence at 10% per annum is231

Rs. 36. What is the present worth?” and “The232

banker’s gain of a certain sum due 2 years hence 233

at 10% per annum is Rs. 24. What is the present 234

worth?”). Since these pairs exhibit similar seman- 235

tics and identical computational graphs at the same 236

time, the BGE model can effectively retrieve them 237

by focusing solely on semantic similarity, leaving 238

little room for improvement through retriever train- 239

ing. Furthermore, our method demonstrates larger 240

performance gains when the generator model is 241

smaller in size. This could be attributed to the 242

enhanced reasoning capabilities of larger LLMs, 243

which allow them to solve problems more indepen- 244

dently, reducing their reliance on retrieving similar 245

examples. 246
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3.3 Ablation Study247

In this section we conduct ablation study to prove248

that the performance gain in Table 2 is due to the249

utilization of computational graph structures, in-250

stead of additional training on the Math23k dataset.251

We compare the performance of retriever trained252

with computational graphs and retriever trained253

on semantic similarity, both on Math23k dataset.254

Since there are no explicit labels on this dataset for255

contrastive training, in our main experiments we256

constructed positive pairs based on the similarity of257

computational graphs, and similarly, we construct258

positive pairs based on the semantic similarity cri-259

teria for this ablation study. Specifically, we use a260

strong embedding model to calculate the semantic261

similarity of samples on Math23k to get pseudo262

labels. We utilize gte-Qwen2-7B-Instruct (Li et al.,263

2023), the best open-source multilingual embed-264

ding model on the MTEB benchmark to calculate265

the semantic similarity of each sample with all266

other samples, and choose the most similar sample267

as the positive. Then we use these pseudo-labeled268

data to train our retriever. We denote this retriever269

as semantic retriever. As shown in Table 3, we270

find that the semantic retriever results in a similar271

performance to the BGE baseline, which indicates272

that the performance gain of our approach does273

come from the utilization of computational graphs274

instead of training on Math23k dataset alone.275

3.4 Analysis276

3.4.1 The Performance Upper Bound277

In this work, we hypothesize that problems with278

similar computational graphs can facilitate answer-279

ing the given question. Under this assumption,280

the upper bound of our method’s performance is281

achieved by using computational graphs directly282

for retrieval. Since computational graphs are avail-283

able only on Math23k dataset, we focus on this284

dataset to compare the upper bound performance285

with performance of our trained retriever, thereby286

evaluating the quality of the retriever training pro-287

cess. To measure similarity between computa-288

tional graphs for retrieval, we utilize the normalized289

Levenshtein Distance, which quantifies the string-290

based similarity of computational graph represen-291

tations. Table 4 compares the performance of our292

method against the hypothesized upper bound. The293

results indicate that, compared to the original BGE294

model, our trained retriever achieves performance295

significantly closer to the upper bound. This high-296

lights the effectiveness of our training approach in 297

improving retrieval quality. 298

3.4.2 Case Study on Retrieved Data 299

Next, we present a case study on the retrieved data 300

from Calc-ape210k using both our trained model 301

and the BGE model. As shown in Figure 3, for 302

the query question, “The ‘Scientist’ series is 2.5 303

yuan/book, and the ‘Inventor’ series is 4 yuan/book. 304

It costs a total of 22 yuan to buy two sets of books. 305

There are 4 ‘Scientists’, how many books are there 306

in the ‘Inventor’ series?”, our trained retriever suc- 307

cessfully retrieves examples with similar computa- 308

tional graphs, even though the semantics of these 309

examples are quite different. In contrast, the origi- 310

nal BGE model relies primarily on semantic sim- 311

ilarity for retrieval. As illustrated in the figure, 312

while all the retrieved questions in the BGE model 313

relate to “books”, their computational graphs are 314

entirely different from the query’s graph. Addi- 315

tionally, we include a scatter plot on the Math23k 316

dataset, where we analyze the correlation between 317

computational graph similarity and embedding sim- 318

ilarity for the top-8 retrieved data points from 100 319

random samples, as depicted in Figure 4. The re- 320

sults show that the Pearson correlation coefficient 321

for our trained model is significantly higher than 322

that for the BGE model, indicating that our ap- 323

proach is more effective in retrieving examples 324

with similar computational graphs based on ques- 325

tion embeddings. 326

3.4.3 Effect of Corpus Choice 327

Finally, we investigate whether the choice of re- 328

trieval corpus affects performance. Specifically, 329

we explore the case where data with the same dis- 330

tribution as the query are not available to serve 331

as the corpus, a scenario that is common in real- 332

world applications. In this experiment, we use the 333

SuperCLUE-Math6 dataset (Xu et al., 2024), where 334

only the test set is available, and select the training 335

set from ape210k dataset as the retrieval corpus. 336

The results, shown in Table 5, demonstrate that our 337

approach remains effective even when the corpus 338

and the query data do not share the same distri- 339

bution. This suggests that, despite the different 340

data distributions, our trained retriever can still find 341

problems with similar computational graphs in the 342

large ape210k corpus. This capability indicates that 343

our method can be applied in a broad and flexible 344

manner, making it suitable for various real-world 345

scenarios. 346
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The "Scientist" series is 2.5 yuan/book, and the "Inventor" series is 4 yuan/book. It costs a total of 
22 yuan to buy two sets of books. There are 4 "Scientists", how many books are there in the 

"Inventor" series?

Comp. Graph: x=(num_c-num_a*num_d)/num_b

Query 
question

Retrieved 
questions

French fries are 6.5 yuan per pack, and 
hamburgers are 13.5 yuan each. We bought 

hamburgers and French fries and spent a 
total of 106 yuan. Q: There are 4 hamburgers, 

how many packs of French fries are there?

Ours with BGE

Comp. Graph: x=(num_c-num_b*num_d)/num_a

Weekly newspaper is 1.5 yuan each, and 
evening newspaper is 0.5 yuan each. Uncle 
Tian sold 85 points of weekly newspapers 

and some evening papers yesterday, 
earning a total of 230 yuan. How many 

evening papers did Uncle Tian sell yesterday?

Comp. Graph: x=(num_d-num_a*num_c)/num_b

Uncle Zhang bought 3 kilograms of apples at 
8.2 yuan per kilogram, and another 4 

kilograms of pears, which cost a total of 55.2 
yuan. How much is a kilogram of pears?

Comp. Graph: x=(num_d-num_a*num_b)/num_c

...

Science World" is 87.5 yuan per set, and 
"Up and Down Five Thousand Years" is 62.5 
yuan per set. Teacher Wang bought 4 sets of 
each of these two books. How much is the 

total cost?

Comp. Graph: x=(num_a+num_b)*num_c

The school library is going to buy 5 sets of 
hardcover "Journey to the West", each set is 
286 yuan. How much do you need in total?

Comp. Graph: x=num_a*num_b

A new primary school needs to add two new 
books to the library, and buy 3 sets of each. 

One of them is 125 yuan per set, and the 
other is 18 yuan per set. How much will it 

cost in total?

Comp. Graph: x=num_a*(num_b+num_c)

...

Figure 3: Case study on the retrieved data with our model and BGE respectively. The retrieved data using trained
retriever have similar computational graphs with the query question, while the computational graphs are different
for retrieved data using BGE model.
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Figure 4: The scatter plot of our trained retriever (left) and BGE (right) on 100 random samples from Math23k.
There is a stronger positive correlation between computational graph similarity and embedding similarity for data
with trained retriever than the BGE model.
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Math23k ape210k gsm8k math_qa calc_ape210k aqua_rat Avg.
Semantic RetrieverQwen-0.5B 44.0 40.8 21.3 26.1 22.1 13.4 28.0
BGEQwen-0.5B 43.1 39.7 21.2 27.3 17.6 16.9 27.6
OursQwen-0.5B 57.6 49.2 22.7 26.6 30.5 18.9 34.3

Table 3: Results of ablation study. Semantic retriever refers to the retriever trained with semantic similarity data on
Math23k, which results in a similar performance to the BGE baseline, indicating that the performance gain of our
approach does come from the utilization of computational graphs instead of training on Math23k dataset alone.

Ours BGE Upper Bound
Math23k 66.6 58.7 68.2

Table 4: Comparison of our methods with the upper
bound with Qwen2.5 1.5B model. Our approach results
in a large performance gain compared to the original
BGE model and a score close to the upper bound, sug-
gesting the effectiveness of our training process.

Ours BGE Random
SuperCLUE-Math6 27.2 20.6 18.6

Table 5: Results with Qwen2.5 0.5B model on
SuperCLUE-Math6 test set. Here we use the training
set of ape210k as the retrieval corpus, as the training
set of SuperCLUE-Math6 is not availale. The results
suggest that our approach is robust in the case where
the distributions of the corpus and the task data are dif-
ferent.

4 Computational Graph-Free Training347

Data Acquisition348

Notably, in our training pipeline, we only need data349

pairs that contain either the same or different com-350

putational graphs, rather than requiring the compu-351

tational graphs themselves. This allows us to avoid352

the explicit need for computational graph annota-353

tions. Instead, we can leverage large language mod-354

els (LLMs), such as Claude-3.5 or GPT-4 (OpenAI355

et al., 2024), to generate training data.356

To do this, we prompt the LLM to rewrite the357

questions so that all details, such as numerical val-358

ues and entity names, differ from the original ques-359

tion, while maintaining the same computational360

graph. We use the following prompt of this rewrit-361

ting: “Generate a problem with the same com-362

putation graph as the input math problem, ensur-363

ing that the semantics, numerical values, and sen-364

tence structure are as different as possible. Output365

only one rewritten example, without any additional366

information.” We randomly select 5,000 samples367

from the training set of gsm8k and use this ap-368

proach to generate 5,000 positive pairs to train the369

retriever. The downstream results, shown in Table 370

6, indicate that while the retriever trained with dis- 371

tilled data performs slightly below that trained with 372

labeled data, it consistently outperforms the BGE 373

baseline, demonstrating the effectiveness of the dis- 374

tilled data. Examples of this rewriting process are 375

presented in Figure 5. Empirically, we observe that 376

the sentence structure before and after rewriting is 377

more similar than in the labeled data pairs, which 378

the retriever may rely on to capture similarity be- 379

tween positive pairs during training, rather than 380

focusing on the true computational graphs. 381

5 Related Work 382

Few-shot Prompting for MWP Solving. Large 383

Language Models have shown promising results 384

in tackling math word problems (Toshniwal et al.; 385

Yang et al., 2024; Yu et al., 2024a; Mirzadeh et al., 386

2024; Wei et al., 2022b). To enhance model perfor- 387

mance on math word problems, few-shot prompt- 388

ing has become a widely adopted approach (Wei 389

et al., 2022b; Jiang et al., 2023; Melz, 2023; Henkel 390

et al., 2024). Existing methods for example selec- 391

tion generally fall into two categories: semantic 392

similarity-based retrieval (Huang et al., 2023; Melz, 393

2023; Henkel et al., 2024) and random selection 394

(Wei et al., 2022b; Jiang et al., 2023; Dubey et al., 395

2024). By contrast, our approach leverages a com- 396

putational graph-based retrieval strategy. Rather 397

than relying solely on superficial linguistic features, 398

our method retrieves examples that match the math- 399

ematical structure of the target problem. This struc- 400

turally informed selection enables LLMs to draw 401

from examples that better align with the mathemat- 402

ical reasoning required. 403

Retrieval-Augmented Generation. Retrieval- 404

Augmented Generation (RAG) has recently gained 405

attention to improve the quality of LLM outputs 406

by integrating relevant external information during 407

generation (Lewis et al., 2020; Gao et al., 2023; Fan 408

et al., 2024). For math word problems, Henkel et al. 409

(2024) proposed a RAG system by retrieving con- 410
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gsm8k math_qa Calc-ape210k aqua_rat Avg.
BGE 38.7 45.9 20.4 29.9 33.7
Oursw/ labeled data 40.7 47.3 31.3 37.4 39.2
Oursw/ distillation data 39.4 46.4 27.5 35.0 37.1

Table 6: Results with training data distilled from GPT-4o with LLaMA-3.2-1B-Instruct generator. Retriever trained
with distilled data outperforms the BGE baseline while underperforms the model trained with labeled data on all
tasks.

During Spring Festival, Ethan 
passed out 96 traditional 

lanterns to guests, and the 
following month, he 

distributed a quarter of that 
amount. How many lanterns 

did Ethan distribute over 
these two months combined?

Natalia sold clips to 48 of 
her friends in April, and then 
she sold half as many clips 
in May. How many clips did 

Natalia sell altogether in 
April and May?

Rewritten questionOriginal question

Fred had 236 dollars to 
spend on 6 books. After 
buying them, he had 14 

dollars. On average, how 
much did each book cost?

Lisa baked 280 cookies and 
after giving away over 5 days, 
she had 230 left. How many 

cookies did she give away on 
average each day?

Comp. Graph: 
x=num_a+num_a*num_b

Comp. Graph: 
x=(num_a-num_c)/num_b

Figure 5: Some cases of the original and rewritten questions. The entity names, value of numbers and semantics are
different after rewritting, while the computational graphs remain the same.

tent from an open-source math textbook. Similarly,411

Dixit and Oates (2024) introduced a schema-based412

RAG framework for math word problems, using413

structured schemas to guide LLMs in selecting414

appropriate mathematical operations, ultimately415

enhancing reasoning clarity and problem-solving416

structure. Our framework can also be viewed as a417

RAG system, where the corpus consists of struc-418

turally relevant MWP examples.419

Reasoning Ability in LLMs. Large language420

models (LLMs) have often been criticized for lack-421

ing “system 2” thinking ability (Yu et al., 2024b),422

which limits their performance on complex rea-423

soning tasks. Many prior studies have raised con-424

cerns about the “genuine” reasoning capabilities425

of current LLMs (Hazra et al., 2024; Wei et al.,426

2022a), noting that LLMs struggle to distinguish427

between causality and correlation (Ashwani et al.,428

2024) and are not strong abstract reasoners (Gen-429

dron et al., 2024). These findings suggest that, de-430

spite their extensive pretraining on large-scale cor-431

pora, current LLMs are essentially pattern match-432

ers (Mirzadeh et al., 2024). While reasoning abil-433

ity can be partially elicited through prompt engi- 434

neering techniques like Chain-of-Thought (Wei 435

et al., 2022b), this paper explores an alternative 436

approach—providing the LLM with pre-existing 437

reasoning paths rather than relying on the model to 438

generate them independently. 439

6 Conclusion 440

In this work, we have explored computational 441

graph-based retrieval for solving math word prob- 442

lems, drawing inspiration from the analogy of rea- 443

soning paths between similarly structured prob- 444

lems. Our experiments on both English and Chi- 445

nese math datasets demonstrate the effectiveness 446

of our approach across models of different scales, 447

with performance gains being more pronounced for 448

smaller models. Additionally, by leveraging LLMs, 449

we can automatically construct training data with- 450

out relying on human labor. We hope this paper 451

inspires future research on tackling a variety of 452

reasoning tasks, extending beyond math word prob- 453

lems. 454
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Limitations455

Our computational graph-based retrieval method456

has demonstrated significant improvements in solv-457

ing math word problems (MWPs). However, our458

experiments focus on MWPs, where problems can459

be represented as computational graphs. It re-460

mains unclear whether this approach can gener-461

alize effectively to more complex mathematical462

problems, such as formal proofs or multi-step al-463

gebraic derivations, which may require different464

forms of structural reasoning. And its applicability465

to non-mathematical reasoning tasks, such as com-466

monsense reasoning or scientific problem-solving,467

has not been explored. Additionally, our method468

relies on the acquisition of training data with com-469

putational graphs, posing extra costs.470
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