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ABSTRACT

Physics-informed neural operators (PINOs) have emerged as powerful tools for learning solution
operators of partial differential equations (PDEs). Recent research has demonstrated that incorporating
Lie point symmetry information can significantly enhance the training efficiency of PINOs, primarily
through techniques like data, architecture, and loss augmentation. In this work, we focus on the latter,
highlighting that point symmetries oftentimes result in no training signal, limiting their effectiveness
in many problems. To address this, we propose a novel loss augmentation strategy that leverages
evolutionary representatives of point symmetries, a specific class of generalized symmetries of the
underlying PDE. These generalized symmetries provide a richer set of generators compared to
standard symmetries, leading to a more informative training signal. We demonstrate that leveraging
evolutionary representatives enhances the performance of neural operators, resulting in improved
data efficiency and accuracy during training.
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1 Introduction

Deep neural networks are increasingly used for scientific
computing, particularly in simulating complex physical
systems governed by partial differential equations (PDEs)
[11], where traditional methods struggle [24].

Physics-informed neural networks (PINNs) [24] integrate
physical laws and constraints directly into the learning
process, demonstrating success in various applications
[24, 29, 35, 14, 27, 33]. However, classical PINNs
face challenges under varying parameters and bound-
ary conditions and often encounter training challenges
due to unbalanced gradients and non-convex loss land-
scapes [10, 15, 22]. Neural operators offer a compelling
alternative, which unlike standard feedforward neural
networks, learn mappings between infinite-dimensional
function spaces, directly connecting parameters and ini-
tial/boundary conditions to PDE solutions [21, 32]. This
eliminates the need for independent simulations and, when
combined with physics-informed loss functions, often im-
proves generalization and physical validity. We focus on
this class of approaches.

In a separate direction, the field of geometric deep learning
has demonstrated the practical and theoretical benefits of
incorporating symmetry information into neural networks,
leading to improved performance through beneficial induc-
tive biases [6, 5]. For example, the translational equivari-
ance of convolutional neural networks (CNNs) [9, 18] has
been suggested as an important reason for their successes
in tasks such as image classification [16, 12].

Similarly, recent work in neural operators has shown that
incorporating PDE symmetries improves generalization
and training efficiency. However, most research has fo-
cused on Lie point symmetries due to their well-established
theoretical foundation and systematic derivation methods
[23, 13, 3]. In contrast, the potential of generalized symme-
tries remains largely unexplored due to their unsuitability
for data augmentation or equivariant architectures.

This paper demonstrates that generalized PDE symmetries
can nonetheless provide valuable inductive biases when
incorporated through loss augmentation.
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1.1 PDE Symmetries in Deep Learning

Incorporation of point symmetries into neural solvers has
received significant attention, leading to the development
of many approaches that can be broadly classified into
three categories:
Data augmentation is the simplest way to add symmetry
information into neural PDE solvers [4, 20] by augmenting
the training data with transformed versions obtained by
applying symmetry operations. While straightforward to
implement, this approach can increase training costs.
Loss augmentation is an alternative way to inject sym-
metry information by appropriately regularizing the loss
using symmetry information [1, 19, 34]. This often leads
to improved generalization and sample efficiency, although
it may not guarantee equivariant models.
Architecture augmentation aims to directly embed
symmetries into the model architecture. Given the com-
plexity of point symmetry groups associated with PDEs,
this requires either general techniques [26] or exploiting
simpler subgroups with existing architectures [31].

Beyond these, alternative approaches exist, based on prob-
lem reformulations [2, 17] or those focused on other types
of structures, e.g. from Hamiltonian dynamics [7, 8, 30].

2 PDE Symmetries

Here, we introduce the notion of PDE symmetries. The for-
mal presentation here closely follows [23], and the reader
is strongly encouraged to read it for more in-depth discus-
sions of the concepts.

In simple words, PDE point symmetries are transforma-
tions that map solutions of a given PDE to other solutions
of the same PDE. To derive these symmetries, traditionally
the focus is shifted to Jet spaces, where the problem of
studying PDE symmetries is transformed into the simpler
task of studying symmetries of algebraic equations. By
employing one-parameter groups of transformations, it
becomes possible to systematically derive all such symme-
tries by examining their infinitesimal actions.

Suppose we are considering a system ∆ of n-th or-
der differential equations involving p independent x =(
x1, . . . , xp

)
∈ X , and q dependent variables u =(

u1, . . . , uq
)
∈ U .

Jet Spaces and Prolongations: Consider f : X → U
smooth and let Uk be the Euclidean space, endowed with
coordinates uα

J = ∂Jf
α(x) in multi-index notation so

as to represent the above derivatives. Furthermore, set
U (n) = U × U1 × · · · × Un to be the Cartesian product
space, whose coordinates represent all the derivatives of
functions u = f(x) of all orders from 0 to n. The total
space X ×U (n), whose coordinates represent the indepen-
dent variables, the dependent variables and the derivatives
of the dependent variables up to order n is called the n-th
order jet space of the underlying space X × U . Given a

smooth function u = f(x), there is an induced function
u(n) = pr(n) f(x), called the n-th prolongation of f , de-
fined by the equations uα

J = ∂Jf
α(x). Thus pr(n)f is a

function from X to the space U (n), and for each x in X ,
pr(n) f(x) is a vector representing values of f and all its
derivatives up to order n at the point x.

The PDE is a system of equations ∆
(
x, u(n)

)
= 0, with

∆ : X × U (n) → Rl smooth, determining a subvariety

S∆ =
{(

x, u(n)
)
: ∆

(
x, u(n)

)
= 0

}
⊂ X × U (n)

A symmetry group of the system ∆ will be a local group
of transformations, G∆, acting on some open subset
M ⊂ X × U such that “G transforms solutions of ∆
to other solutions of ∆”, i.e. leaving S∆ invariant.

Prolongations of actions Now suppose G acts on an
open M ⊂ X × U , i.e. independent and dependent vari-
ables. There is an induced local action of G on the n-jet
space M (n), called the n-th prolongation of G denoted
pr(n)G. This prolongation is defined so that it transforms
the derivatives of functions u = f(x) into the correspond-
ing derivatives of the transformed function ũ = f̃(x̃).
Consider now v a vector field on M , with a corresponding
one-parameter group exp(εv). The n-th prolongation of
v is denoted pr(n) v, will be a vector field on the n-jet
space M (n), and is defined to be the infinitesimal genera-
tor of the corresponding prolonged one-parameter group
pr(n)[exp(εv)]. Relevance of these concepts is highlighted
by the following theorem:
Theorem 2.1 (2.31 in [23]). Suppose ∆

(
x, u(n)

)
= 0 is

a system of differential equations of maximal rank defined
over M ⊂ X×U . If G is a local group of transformations
acting on M , and

pr(n) v
[
∆
(
x, u(n)

)]
= 0, whenever ∆

(
x, u(n)

)
= 0

for every infinitesimal generator v of G, then G is a sym-
metry group of the system.

Generalized Symmetries We can consider some vector
field acting on M of the form

v =

p∑
i=1

ξi(x, u)
∂

∂xi
+

q∑
α=1

ϕα(x, u)
∂

∂uα
,

and provided the coefficient functions ξi, ϕα depend only
on x and u, v generates a one-parameter group of trans-
formations exp(εv) acting pointwise. A significant gen-
eralization of the notion of symmetry group is obtained
by relaxing this geometrical assumption, and allowing the
coefficients ξi, ϕα to also depend on derivatives of u.
Definition 2.1 (Generalized Vector Fields). A generalized
vector field is an expression of the form

v =

p∑
i=1

ξi[u]
∂

∂xi
+

q∑
α=1

ϕα[u]
∂

∂uα

in which ξi and ϕα are smooth differential functions.
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Figure 1: Left (first two): Darcy Flow zero-shot evaluation by resolution. Middle: Burgers’ equation symmetry
regularization effectiveness by vector. Right: Darcy Flow prediction results comparison with 100 training samples

Example. An example of a generalized vector field is
v = ux∂u, which admits the following prolongation:

pr v = ux
∂

∂u
+ uxx

∂

∂ux
+ uxt

∂

∂ut
+ uxxx

∂

∂uxx
+ · · ·

and thus turns out to be a generalized symmetry of the
Burgers’ Equation (6), as pr v [∆B ] = 0.

Evolutionary Vector Fields Among all the generalized
vector fields, those in which the coefficients ξi[u] of the
∂/∂xi are zero play a particularly important role.
Definition 2.2 (5.4 in [23]). Let Q[u] =
(Q1[u], . . . , Qq[u]) be a q-tuple of differential functions.
The generalized vector field

vQ =

q∑
α=1

Qα[u]
∂

∂uα

is called an evolutionary vector field, and Q is called its
characteristic.

Any generalized vector field v has an associated evo-
lutionary representative vQ with characteristic Qα =
ϕα −

∑p
i=1 ξ

i∂uα/∂xi, determining essentially the same
symmetry, as illustrated by the following proposition:
Proposition 2.2 (5.5 in [23]). A generalized vector field v
is a symmetry of a system of differential equations if and
only if its evolutionary representative vQ is.

Evolutionary vector fields are particularly appealing as
they capture the essence of the symmetry, discarding the
dependent variable information, while also admitting much
simpler expressions for their prolongations.

However, it is important to note that these are not sym-
metries in the traditional sense, as they no longer act on
X × U . For a more in-depth discussion, see [23].

3 Methodology

Based on the discussion in Section 2, instead of consider-
ing symmetry vector fields, we propose to use evolutionary
representatives of these vector fields instead. These turn
out to be more informative in practice, as illustrated below.

To understand the proposed methodology, we first recap in
simpler notation, the method of [1, 34]. Clasically, PINNs
aim to solve the PDE by minimizing the residual

min
θ

∥∆[uθ]∥22. (1)

In [1, 34], it is proposed that for a Lie algebra vi, it is
beneficial to minimize (for some γ > 0):

min
θ

∥∆[uθ]∥22 + γ
∑
i

∥pr vi [∆] [uθ]∥22 , (2)

as by Theorem 2.1, zero loss solutions of Equation (1)
are also zero loss solutions of Equation (2). Based on
Proposition 2.2, we instead propose to use the evolutionary
representatives of vi, via

min
θ

∥∆[uθ]∥22 + γ
∑
i

∥∥∥pr [vi]Q [∆] [uθ]
∥∥∥2
2
, (3)

as motivated by the following example:
Example (Burgers). Consider Burgers’ Equation (6), and
consider the symmetry generated by v1 = ∂x. Its evolu-
tionary representative, as above, is [v1]Q = −ux∂u. We
can derive both prolongation actions as:

pr v1 [∆B ] = 0, pr [v1]Q [∆B ] = −Dx [∆B ] , (4)

where Dx denotes the total x derivative. This shows that
standard point symmetries result in no extra terms in Equa-
tion (2), unlike Equation (3). Same occurs for all other
generators for both Burgers’ equation (Appendix A) and
Darcy Flow (Appendix B).

4 Experiments

In this section we present numerical results showcasing
the utility of generalized symmetries for training PINOs.
This is illustrated for the 2D Darcy flow and the 1D
Burgers’ equation. Our code is publicly available at
https://github.com/xiwang129/GPS_PINO.

4.1 Darcy Flow

We consider solving the 2D Darcy Flow equation
∆D := ∇ · (k(x)∇u(x)) + f(x) = 0, (5)

on the domain x ∈ [0, 1]2 with u(x) = 0 on the boundary,
where k(x) is the permeability field and f(x) is the source

3
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Table 1: Comparison of L2 loss and equation error for Darcy Flow and Burgers’ equation with varying sample sizes,
using our symmetry-based method, PINO (no symmetry), and the method from [1, 34].

Equation No. Samples Metric Symmetry (Ours) No Symmetry (PINO) Symmetry [1, 34]

Darcy Flow

100

L2 Loss

0.046± 1e− 3 0.066± 1e− 2
250 0.029± 7e− 4 0.323± 8e− 4
500 0.014± 3e− 4 0.017± 4e− 4
1000 0.011± 2e− 3 0.013± 3e− 4

100

Eqn. Error

1.202± 1e− 2 1.551± 1e− 2
250 0.621± 7e− 3 0.925± 1e− 2
500 0.579± 7e− 3 0.723± 9e− 3
1000 0.491± 6e− 3 0.583± 7e− 3

Burgers’ Eqn.

25
L2 Loss

0.082± 6e− 3 0.089± 6e− 3 0.099± 6e− 3
50 0.044± 3e− 3 0.044± 3e− 2 0.050± 4e− 3
100 0.018± 1e− 3 0.019± 1e− 3 0.022± 1e− 3

25
Eqn. Error

0.182± 3e− 2 0.217± 4e− 2 0.440± 6e− 2
50 0.068± 1e− 2 0.095± 2e− 2 0.217± 4e− 2
100 0.023± 4e− 3 0.024± 4e− 3 0.068± 1e− 2

term. We tested our approach on a 61 × 61 resolution
dataset downsampled from a 421× 421 resolution dataset
and set f(x) = 1 as in [21]. We trained a 2D Fourier
neural operator model for 300 epochs using the proposed
generalized symmetry loss in Equation (3). As is common
with PINOs, in this example we also include a data loss
term enforcing initial and boundary conditions, and a tra-
jectory matching loss. The trained model is tested on 500
samples. Table 1 indicates that the proposed symmetry
regularization improves prediction in terms of both L2 and
equation losses, being more sample efficient in minimizing
the PDE residuals. As shown in Equation (10), the point
symmetry method of [1, 34] in Equation (2) generates no
extra terms, being equivalent to a standard PINO.

Moreover, we experimented with zero-shot prediction by
testing the trained 61 × 61 model on other resolutions:
40 × 40 and 211 × 211. Figure 1 left illustrates that the
resulting model consistently outperforms the baselines in
both L2 and equation loss.

4.2 Burgers’ equation

We consider solving the 1D Burgers’ equation
∆B := ut + uux − νuxx = 0, (6)

on the domain x ∈ [0, 1] and t ∈ [0, 1] with initial con-
dition u(x, 0) = u0(x), for which we generated the 1D
Burgers’ dataset following [25], using a 128×100 grid and
setting the viscosity coefficient to ν = 0.01. We compared
the proposed method in Equation (3) with [1, 34] defined
in Equation (2). Table 1 presents the results, demonstrat-
ing that the proposed method consistently achieves either
superior or comparable performance to the baselines with
respect to both equation error and L2 error. Following ex-
perimental details of [1], the residual for this equation does
not appear directly in the training objective. Figure 2 pro-
vides a representative prediction showcasing the improved
error achieved by our method.

We further evaluated the impact of each of the Lie algebra
vectors from Equation (7) on the resulting equation error,

by adding one term at a time. An example is illustrated in
the middle pane of Figure 1, showcasing that the introduc-
tion of even a single Lie algebra vector yields a substantial
reduction in the equation error, while the benefit of incor-
porating additional vectors becomes marginal.

Figure 2: Visual comparison of trajectory predictions for
Burgers’ equation trained with 50 samples.

4.3 Ablation studies

We evaluated the robustness, generalization ability, and
stability of our approach and PINO by adding various lev-
els of noise into the training dataset using the Darcy flow
equation with 500 samples, as shown in Table 2. The
generalization gap, calculated as the difference between
the L2 loss on the test and training sets, increases slightly
with higher noise level. This suggests that our approach
generalizes reasonably well and resists overfitting to noisy
data.

For robustness, both test L2 loss and the equation error
show a steady increase as the noise level rises, indicating
that the model remains relatively robust up to 5% noise
level. In comparison, our approach consistently achieves
lower L2 loss and the equation error than PINO as the
noise level increase.

However, noise level does impact the the model’s ability to
capture the underlying physics well as reflected by the sta-
bility gap, defined as the difference between the equation
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Table 2: Ablation study of model robustness, generalization, and stability using Darcy flow

Metric Clean data (0%) Noise (1%) Noise (5%) Noise (10%)

Ours PINO Ours PINO Ours PINO Ours PINO

L2 Loss (Train) 0.007± 6e− 6 0.007± 6e− 6 0.007± 6e− 6 0.007± 6e− 6 0.008± 6e− 6 0.008± 6e− 6 0.010± 4e− 6 0.010± 5e− 6
L2 Loss (Test) 0.016± 4e− 4 0.019± 5e− 4 0.018± 4e− 4 0.019± 5e− 4 0.019± 4e− 4 0.020± 4e− 4 0.022± 4e− 4 0.022± 5e− 4
Eqn. error (Train) 0.007± 6e− 4 0.007± 6e− 4 0.092± 5e− 4 0.091± 5e− 4 0.264± 1e− 3 0.268± 1e− 3 0.461± 2e− 3 0.488± 2e− 3
Eqn. error (Test) 0.569± 7e− 3 0.701± 9e− 3 0.624± 8e− 3 0.723± 9e− 2 0.722± 8e− 3 0.723± 9e− 3 0.827± 4e− 3 0.918± 9e− 3

Generalization gap 0.009± 4e− 4 0.012± 5e− 4 0.011± 4e− 4 0.012± 5e− 4 0.011± 4e− 4 0.012± 4e− 4 0.012± 4e− 4 0.012± 5e− 4
Stability gap 0.562± 7e− 3 0.694± 9e− 3 0.532± 8e− 3 0.632± 9e− 3 0.458± 8e− 3 0.455± 9e− 3 0.366± 4e− 3 0.430± 9e− 3

errors on the test and training sets. Notably, while both
the training and test equation errors increase with noise,
the test equation error grows more slowly. Compared to
PINO, our approach achieves a lower stability gap by hav-
ing smaller equation errors, indicating that incorporating
symmetry enhances its ability to learn the underlying phys-
ical laws.

5 Conclusion

This work demonstrates that evolutionary representatives
of point symmetries enhance data efficiency in training
PINOs, resulting in a useful training signal even when the
underlying point symmetries themselves can not be used.

While this study focused on point symmetries, the frame-
work presented is readily applicable to any generalized
symmetry. We hypothesize that incorporating such sym-
metries can similarly improve trainability and we leave a
proper evaluation of this to future work.

We further posit that the observed efficiency partly arises
from the inducement of a Sobolev-type norm [28]. Cru-
cially, our approach offers a systematic way for select-
ing the appropriate norm based on the governing PDE.
This connection between generalized symmetries, Sobolev
norms, and improved training warrants further investiga-
tion.
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Generalized Lie Symmetries in PINOs

A Burgers’ Equation Symmetries

In this appendix, we provide detailed derivations of the
evolutionary representatives and their prolongations for the
symmetries of Burgers’ equation.

Burgers’ equation is given by:

∆B := ut + uux − νuxx = 0

The Lie algebra of symmetries for Burgers’ equation in-
cludes the following generators:

v1 = ∂x,

v2 = ∂t,

v3 = 2t∂t + x∂x − u∂u,

v4 = t∂x + ∂u,

v5 = t2∂t + tx∂x + (x− tu)∂u.

It turns out to be rather simple to find evolutionary repre-
sentatives of these as:

[v1]Q = −ux∂u,

[v2]Q = −ut∂u,

[v3]Q = −(u+ xux + 2tut)∂u,

[v4]Q = −(tux − 1)∂u,

[v5]Q = (x− tu− txux − t2ut)∂u.

The prolongations of these evolutionary representatives
acting on the PDE ∆B are:

pr [v1]Q [∆B ] = −Dx [∆B ] , (7)

pr [v2]Q [∆B ] = −Dt [∆B ] ,

pr [v3]Q [∆B ] = −(3 + xDx + 2tDt) [∆B ] ,

pr [v4]Q [∆B ] = −tDx [∆B ] ,

pr [v5]Q [∆B ] = −t(3 + xDx + tDt) [∆B ] .

However if one were to use the method of [1, 34], the
resulting actions would instead be:

pr v1 [∆B ] = 0, (8)
pr v2 [∆B ] = 0,

pr v3 [∆B ] = 3ν∆B ,

pr v4 [∆B ] = 0,

pr v5 [∆B ] = 3νt∆B .

These calculations show that using the evolutionary rep-
resentatives of the symmetries results in useful training
signals, unlike previous methods used for loss augmenta-
tion.

B Darcy Flow Symmetries

In this appendix, we provide detailed derivations of the
evolutionary representatives and their prolongations for the
Darcy flow symmetries.

The Darcy flow equation is given for x ∈ D ⊂ R2:

∆D := ∇ · (k(x)∇u(x)) + f(x) = 0,

Unlike the the Burgers case, the algebra for the Darcy Flow
is no longer finite dimensional. The algebra of symme-
tries for the Darcy flow equation includes the following
generators:

v∞1 = h[1](u)∂u − kh[1]
u (u)∂k,

v∞2 = −h[2]
y (x, y)∂x − h[2]

x (x, y)∂y + 2fh[2]
xy(x, y)∂f ,

where h[1] is arbitrary and ∇2h[2](x, y) = 0.

The evolutionary representatives of these generators are:

v∞1 = h[1](u)∂u − kh[1]
u (u)∂k,

v∞2 = −h[2]
y (x, y)∂x − h[2]

x (x, y)∂y

+ 2fh[2]
xy(x, y)∂f ,

The prolongations of these evolutionary representatives
acting on the PDE are:

pr [v∞1 ]Q [∆D] = 0,

pr [v∞2 ]Q [∆D] = Dx[h
[2]
y ∆D] +Dy[h

[2]
x ∆D].

Unfortunately, by the virtue of already being in its evo-
lutionary form, the first vector does not result in a useful
training signal.

Now, if we are to enforce this during training we need
to somehow sample h[2], such that it solves the Laplace
equation. For practical purposes, we consider a finite-
dimensional sub-algebra with linear h[2], resulting in a
two-dimensional Lie algebra:

pr
[
v02
]
Q
[∆D] = Dy[∆D], (9)

pr
[
v12
]
Q
[∆D] = Dx[∆D].

However if one were to use the method of [1, 34], the
resulting actions would instead be:

pr v∞1 [∆D] = 0, (10)

pr v∞2 [∆D] = 2h[2]
xy∆D,

which for the two dimensional sub-algebra would both be
zero, resulting in no training signal. Thus, one would be
forced to solve the Laplace equation, making the resulting
method significantly more complex.
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