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PS-TTL: Prototype-based Soft-labels and Test-Time Learning
for Few-shot Object Detection

Anonymous Author(s)

ABSTRACT
In recent years, Few-Shot Object Detection (FSOD) has gained wide-
spread attention and made significant progress due to its ability to
learn models with strong generalization power using extremely lim-
ited annotated data. Although the fine-tuning based paradigm for
FSOD has become mainstream, where detectors are initially pre-
trained on base classes with sufficient samples and then fine-tuned
on novel classes with few annotated samples, the scarcity of samples
in novel classes hampers the precise capture of their data distribu-
tion. To address this issue, we propose a novel framework for FSOD,
namely Prototype-based Soft-labels and Test-Time Learning (PS-
TTL). Specifically, we design a Test-Time Learning (TTL) module
that employs a mean-teacher network for self-training to discover
novel instances on test data, effectively alleviating the problem of
overfitting to the base class. Furthermore, we develop a Prototype-
based Soft-labels (PS) strategy via assessing similarities between
pseudo-labels and category prototypes to unleash the potential of
low-quality pseudo-labels, thereby significantly mitigating the con-
straints posed by few-shot samples. Extensive experiments on both
the VOC and COCO benchmarks show that PS-TTL achieves a new
state-of-the-art, highlighting its effectiveness.

CCS CONCEPTS
• Computing methodologies → Scene understanding; Object
detection; Online learning settings.

KEYWORDS
Few-shot Object Detection, Online Learning, Prototype, Pseudo
Label

1 INTRODUCTION
Object detection [24, 39, 44, 50] is a fundamental computer vision
task and has a variety of applications, including autonomous driv-
ing [58, 63], robotics [31, 37], medicine [23, 27], etc. Although sig-
nificant progress has been archived in recent years [35, 43, 57, 60],
these detectors heavily rely on a large number of training samples.
On the other hand, humans can quickly extract novel concepts from
a small amount of data. For example, children can learn to identify
objects of novel categories after viewing a few pictures. The deep
object detectors are also supposed to be able to learn effectively
in data-limited scenarios because labelling data is quite expensive,
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Figure 1: Motivation of Test-Time Learning. (a) Hallucination
FSOD methods suffer from mismatched distributions between
synthetic data and real data. (b) Semi-supervised FSOD methods
mine implicit novel instances from the base data; however, poten-
tial novel instances are not always included in the base data. (c)
For the first time, rather than generating synthetic data for novel
classes or mining implicit novel instances from the training set,
we propose to learn at test time, effectively leveraging the novel
class data present in the test data in a more realistic manner
aligned with real-world applications.

and collecting enough training examples for some rare categories is
extremely hard.

Few-Shot Object Detection (FSOD) is a promising way to ad-
dress this issue. It aims to train an object detector using only a
few samples on novel classes with the help of abundant data on
base classes, attracting widespread attention from researchers. Early
FSOD methods typically adopt the meta-learning paradigm, orga-
nizing the task into a series of episodes simulating FSOD scenarios,
where each episode includes few-shot training (support) and test
(query) sets. The support set is utilized for model training with
a limited number of samples, while the query set is employed to
assess the model’s detection performance on novel objects. Kang
et al. [16] propose a lightweight feature reweighting module that
learns to capture the global features of support images and embeds
such features into reweighting coefficients to adjust the meta fea-
tures of the query image. Meta R-CNN [52] develops a meta-learner,
known as the Predictor-head Remodeling Network (PRN), leverag-
ing a common Faster R-CNN [39] backbone to efficiently extract
features from support images. Subsequently, meta-learning based
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works progress from optimizing both classification and localization
features [6, 9, 11, 46, 53], employing Transformer for capturing
spatial relationships between support and query classes [13, 56], as
well as exploring inter-class relationships [14, 17, 29, 59]. However,
such methods involve complex architectures and training procedures,
leading to increased computational complexity and costs. Addition-
ally, they suffer from poor interpretability of what the model learned
in the novel stage.

To facilitate faster training and simple deployment for rapid adap-
tation to novel classes, most existing FSOD methods employ a
fine-tuning based paradigm. The detector is first pre-trained on base
classes with adequate samples, then fine-tuned on novel classes
with few annotated samples. Early methods [4, 48] employ a jointly
fine-tuning based architecture, where the entire pre-trained base
model, comprising both the class-agnostic and class-specific lay-
ers, is updated simultaneously during training on the novel task.
Later, the two-stage fine-tuning approaches [2, 8, 32, 40, 45, 47, 62]
demonstrate that maintaining the feature extraction part of the model
unchanged and solely fine-tuning the last layer can significantly en-
hance detection accuracy. Based on this fact, most of the subsequent
methods combined with knowledge distillation [33, 34, 49], context
reasoning [19, 65], or decoupling detection networks [30, 36, 54] to
further improve the detection performance. However, constrained by
the limited samples for novel classes, they struggle to accurately cap-
ture the data distribution. Some works attempt to address this issue
by generating synthetic data for novel classes [61, 64] or mining im-
plicit novel instances from the training set [3, 18, 41]. However, the
former method relies on information from base classes to synthesize
novel samples, which may not accurately reflect the true distribution
as shown in Fig. 1(a). The latter approach relies on the assumption
that unlabeled novel instances are widely present in abundant base
data as shown in Fig. 1(b), which may not hold true in real-world
scenarios.

Considering the accessibility of novel instances in the test data,
it motivates us to explore fine-tuning an object detection model at
test-time as shown in Fig. 1(c). Compared to mining novel instances
from base class data (the presence of unlabeled novel instances in
base class data essentially represents a loophole in few-shot object
detection settings), conducting online learning on test data is a more
realistic approach aligned with real-world applications. In this paper,
we first propose a Test-Time Learning (TTL) module, which utilizes
a mean-teacher network for self-training to simultaneously train and
test on test data, effectively leveraging the novel class data present
in the test data. Specifically, both the student and teacher networks
are first initialized by the FSOD detector fine-tuned on novel data.
Then, the teacher network takes test data as input to generate pseudo-
labels. The student model is trained using the pseudo-labels after
post-processing and N-way-K-shot data as supervision signals and
updates the teacher network through exponential moving average.
Additionally, considering the limited number of high-quality pseudo
labels and the fact that a large number of low-quality pseudo labels
can recall most of the foreground but exhibit low classification ac-
curacy, we develop a Prototype-based Soft-labels (PS) strategy to
unlock the potential of these low-quality pseudo-labels. Specifically,
we maintain class prototypes and compute the feature similarity be-
tween low-confidence pseudo-labels and class prototypes to replace

them with soft-labels. Class prototypes are initialized using N-way-
K shot data and dynamically updated during online learning using
the instance features of high-confidence pseudo-labels. Finally, we
integrate the aforementioned two modules into a novel framework
for few-shot object detection, dubbed PS-TTL.

In summary, the major contributions of this paper are:

• We propose a novel PS-TTL framework for few-shot object
detection, which effectively mines new instances from test
data to address the issue of limited novel class samples. To
the best of our knowledge, it is the first attempt to explore
fitting novel class data distributions in a way that is more in
line with real-world scenarios.

• We design a Test-Time Learning (TTL) module that employs
a mean-teacher network for self-training to discover novel
instances on test data and develop a Prototype-based Soft-
labels (PS) strategy to unleash the potential of low-quality
pseudo-labels.

• We achieve a newly state-of-the-art performance of all few-
shot settings on the VOC and COCO benchmarks in com-
parison to the published counterparts, and demonstrate its
advantage in detecting novel objects.

2 RELATED WORK
2.1 Object Detection
Object detection aims to identify and localize objects within images,
constituting a fundamental challenge in computer vision. Recently,
the success of deep learning has yielded numerous effective object
detection methods. These methods can be categorized into two main
groups: two-stage and one-stage.

Single-stage detectors (e.g., SSD [26] and RetinaNet [24]) pre-
dict bounding boxes and classification scores based on predefined
anchor boxes, exhibiting strong real-time performance. Subsequent
anchor-free detectors [43, 60] alleviate the prior constraints of prede-
fined anchors, further streamlining the detection process. The YOLO
[38, 44] series, by continuously assimilating the latest advancements
in object detection, such as label assignment and multi-scale fea-
ture fusion techniques, has achieved high-precision real-time object
detection. Although the structure of single-stage detectors is straight-
forward, their integrated design also makes them less adaptable to
FSOD tasks.

Two-stage detectors (e.g., Faster R-CNN [39] and Double-Head
[50]) usually first use an region proposal network (RPN) to propose
potential proposals, which are then refined by other modules. Meth-
ods such as Cascade R-CNN [1] and HTC [5] employ multi-stage
refinement, further enhancing the detection precision. Compared
to single-stage detectors, two-stage detection frameworks achieve
higher detection performance. The concept of multi-stage refinement
is also widely employed in the recently transformer-based detectors
[35, 57]. Due to the design of multi-stage refinement, FSOD can
achieve few-shot fine-tuning by controlling the gradients obtained by
each stage of the detection module, effectively mitigating the issue
of knowledge forgetting [45]. Two-stage detectors also facilitate
the extraction of instance features for metric learning, making them
commonly used in FSOD research [51].
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2.2 Few-shot Object Detection
The FSOD methods enable detectors to swiftly adapt to new tasks
with minimal data while preserving their original performance,
enhancing the adaptability of models under data-constrained cir-
cumstances. FSOD methods can be broadly categorized into two
paradigms: meta-learning based and fine-tuning based.

Meta-learning based methods employ numerous N-way K-shot
detection tasks [55] for training, aiming to quickly adapt to new
tasks with few support samples. FSRW [16] and Meta R-CNN [52]
propose feature reweighting strategies on single-stage and two-stage
detectors, respectively. They extract class-specific representations
from support images and combine them with weighted queries to
achieve detection for specific categories. Attention-RPN [9] inte-
grates support information into the Region Proposal Network (RPN)
and employs a contrastive training strategy to enhance the relevance
between proposals and support classes. MetaDet [46] disentangle
the learning of category-agnostic and category-specific components
in detectors better to tackle few-shot classification and localization
in a unified way. Recent efforts to improve meta-learning based
approaches include introducing metric learning to enhance feature
discriminability. CME [22] utilizes class margin loss to preserve
sufficient margin space for novel classes. TIP [21] introduces consis-
tency regularization on image transformation to enhance the model’s
generalization ability. Meta-learning methods enable detectors to
rapidly adapt to new categories. However, the training and infer-
ence processes of these methods are highly complex, making them
challenging to deploy in real-world scenarios.

Fine-tuning based methods adopt the two-stage training strategy,
i.e., base training and then few-shot fine-tuning, which expects to
transfer the prior knowledge from base classes to the novel classes.
LSTD [4] is the earliest method to employ the two-stage training
strategy for FSOD, using regularization to retain base knowledge.
TFA [45] simply freezes the backbone and only fine-tunes the box
classifier with instance-level normalization. Based on TFA, FSCE
[40] introduces contrastive learning to learn the discriminative ob-
ject proposal representations, alleviating the misclassification issues
in novel classes. Subsequent research refine the TFA method and
integrate it with other techniques to further enhancing the FSOD
performance [10, 19, 30, 33, 34, 36, 49, 54, 65]. DeFRCN [36] em-
ploys the gradient decoupled layer to stop the gradient from the
detector head, aiming to preserve generic knowledge of base classes
while gradually extracting novel information in examples. PTF [54]
devise an effective method for initializing novel class weights and
propose an adaptive length re-scaling strategy to enhance classifi-
cation precision. Although fine-tuning-based methods are simple
for deployment, their generalization primarily relies on extensive
pretraining with base data. When the disparity between novel and
base classes is significant, detectors still struggle to adapt to novel
domains with few samples.

Semi-supervised learning has been applied in FSOD to enrich
the diversity of novel samples and address the issue of inconsistent
label assignment for novel classes [3, 18, 41]. Kaul et al. [18] in-
troduce a simple pseudo labelling strategy to detect potential novel
instances in the base dataset. MINI [3] introduces a teacher-student
framework and performs online parameter updates, enabling better
novel instance mining. Tang et al. [41] propose a class-adaptive

threshold filtering strategy to select more valuable pseudo labels.
The core assumption of these methods is that novel instances appear
frequently in the base dataset, which may not hold in real-world
scenarios. However, novel instances are guaranteed to appear in the
test set, making our TTL method more practically valuable.

3 METHODS
In this section, we initially review the problem setting of conven-
tional few-shot object detection in Section 3.1, followed by a brief
introduction to our baseline method, DeFRCN [36], in Section 3.2.
Subsequently, we elaborate on our Test-Time Learning (TTL) mod-
ule in Section 3.3 and Prototype-based Soft-labels (PS) strategy in
Section 3.4. Finally, we delve into the training process of the entire
framework in Section 3.5.

3.1 Problem Setting
We follow the standard few-shot object detection setting introduced
in [45]. There are two disjoint training sets: a base dataset 𝐷𝑏 =

{𝑥𝑏
𝑖
, 𝑦𝑏
𝑖
} with exhaustively annotated instances for each base class

𝐶𝑏 and a novel dataset 𝐷𝑛 = {𝑥𝑛
𝑖
, 𝑦𝑛
𝑖
} with only 𝐾 (usually less than

30) instances for each novel class 𝐶𝑛 . In which 𝑥𝑖 and 𝑦𝑖 refer to
the input image and the ground truth, respectively. It is worth noting
that there is no intersection between the base classes and the novel
classes, i.e., 𝐶𝑏 ∩𝐶𝑛 = ∅. Therefore, the ultimate goal of the FSOD
is to train a robust detector based on the 𝐷𝑏 and 𝐷𝑛 to detect objects
in the test set that contains both instances in 𝐶𝑏 ∪𝐶𝑛 .

3.2 Review of Few-shot Object Detector
DeFRCN [36] is a state-of-the-art fine-tuning based few-shot ob-
ject detector, consisting of two training stages. In the first phase,
the Faster-RCNN is trained on the base classes 𝐶𝑏 with sufficient
samples. In the second phase, the transfer learning is performed, by
fine-tuning the Faster-RCNN on the base classes and novel classes
𝐶𝑏 ∪𝐶𝑛 with 𝐾 instances per class. Fine-tuning on a balanced set
𝐷𝑛𝑘 containing training samples for base and novel classes can help
preserve the performance on base classes. The overall procedure of
the fine-tuning based methods is summarized as follows:

𝐹𝑖𝑛𝑖𝑡
𝐷𝑏

−−→ 𝐹𝑏𝑎𝑠𝑒
𝐷𝑛𝑘

−−−→ 𝐹𝑛𝑜𝑣𝑒𝑙 (1)

where 𝐹𝑖𝑛𝑖𝑡 , 𝐹𝑏𝑎𝑠𝑒 , and 𝐹𝑛𝑜𝑣𝑒𝑙 indicate the detector in the initializa-
tion, base training, and novel fine-tuning stages, respectively.

Different from previous fine-tuning based methods, which only
fine-tune a small number of parameters of the Faster-RCNN, such as
the prediction head, to prevent overfitting of the detector. DeFRCN
introduces a Gradient Decoupled Layer during fine-tuning to stop
the gradient between RPN and backbone while scaling the gradi-
ent between RCNN and backbone. It allows the detector to learn
sufficiently about the novel data while preventing overfitting and is
remarkably superior to other existing approaches.

Despite the significant progress made by the fine-tuning based
methods, given only 𝐾 novel instances, researchers fail to capture the
data distribution accurately. To overcome the obstacles, we propose
Prototype-based Soft-labels and Test-Time Learning (PS-TTL) to
mine novel instances in the test data. The overall architecture of the
model is illustrated in Fig. 2.
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Figure 2: The overview of the proposed Prototype-based Soft-labels and Test-Time Learning (PS-TTL) framework for FSOD. Both
the student and teacher networks are first initialized by the FSOD detector and fine-tuned on novel data. Then, the teacher network
takes test data as input to generate pseudo-labels. The student model is trained using the pseudo-labels after post-processing and
N-way-K-shot data as supervision signals and updates the teacher network through exponential moving average. Additionally, a
Prototype-based Soft-labels (PS) strategy is adopted to maintain class prototypes and compute the feature similarity between low-
confidence pseudo-labels and class prototypes to replace them with soft-labels.

3.3 Test-Time Learning with Mean-Teacher
Self-training has promising performance for semi-supervised object
detection [20, 28, 42]. It typically generates pseudo labels for the
unlabeled data, and then the high-confidence pseudo labels are used
to supervise the detector training.

In this work, we hope to fully leverage novel instances in the test
data, especially in the scenario of online learning, called Test-Time
Learning (TTL). Therefore, we employ a mean-teacher self-training
paradigm [42]. This paradigm mainly consists of two architecturally
identical detectors, namely the student network and the teacher net-
work. The teacher network first detects objects in the test data. Then
we can obtain pseudo labels from the detection results through some
post-processing procedures (e.g., non-maximum suppression and fil-
tering using a confidence threshold). The high-quality pseudo labels
are used to supervise the student network, enhancing its detection
capability.

Since we rely on the teacher network to predict reliable pseudo
labels of novel classes in the test data, we utilize the FSOD detector
𝐹𝑛𝑜𝑣𝑒𝑙 which has fine-tuned on novel data as the initialization of
both the student and teacher network. However, the self-training
paradigm inevitably generates noisy pseudo labels, especially in the
novel classes. If we use excessively noisy pseudo labels to train the
student network, the performance of the detector would deteriorate
as training progresses. To filter out the noisy pseudo labels, we first
apply non-maximum suppression for each class to remove duplicate
detection boxes. Then, we set a high confidence threshold 𝛿𝑢𝑝𝑝𝑒𝑟 to
exclude uncertain labels. Finally, we optimize the student network
using the remaining high-quality pseudo labels with the loss function
as follows:

𝐿𝑢𝑛𝑠𝑢𝑝 (𝑋𝑡 , 𝑌𝑡 ) = 𝐿𝑟𝑝𝑛𝑐𝑙𝑠
(𝑋𝑡 , 𝑌𝑡 ) + 𝐿𝑟𝑜𝑖𝑐𝑙𝑠

(𝑋𝑡 , 𝑌𝑡 ) (2)

where 𝑋𝑡 is the input test image, and 𝑌𝑡 denotes the filtered pseudo
labels. Note that the unsupervised loss is only applied to the classifi-
cation heads of the Region Proposal Network (RPN) and Region of
Interest (ROI) head.

Even after filtering out low-confidence predictions, the pseudo
labels are still noisy due to the poor detection performance of the
FSOD detector 𝐹𝑛𝑜𝑣𝑒𝑙 . Therefore, to alleviate the degradation of the
FSOD detector during test-time learning, we propose using N-way-
K-shot data 𝐷𝑛𝑘 as supervision signals. Hence, the supervised loss
for training the student network can be defined as:

𝐿𝑠𝑢𝑝 (𝑋𝑠 , 𝑌𝑠 ) = 𝐿𝑟𝑝𝑛𝑐𝑙𝑠
(𝑋𝑠 , 𝑌𝑠 ) + 𝐿𝑟𝑝𝑛𝑟𝑒𝑔 (𝑋𝑠 , 𝑌𝑠 )

+ 𝐿𝑟𝑜𝑖
𝑐𝑙𝑠
(𝑋𝑠 , 𝑌𝑠 ) + 𝐿𝑟𝑜𝑖𝑟𝑒𝑔 (𝑋𝑠 , 𝑌𝑠 ) (3)

Where {𝑋𝑠 , 𝑌𝑠 } ∈ 𝐷𝑛𝑘 . Both RPN and ROI head adopt classification
loss and bounding box regression loss.

Following the mean-teacher [42], to obtain strong pseudo labels
from the test data, we update the teacher network weights via Expo-
nential Moving Average (EMA) of student ones as below:

𝜃𝑡 = 𝛼𝜃𝑡 + (1 − 𝛼)𝜃𝑠 (4)

where 𝜃𝑡 and 𝜃𝑠 are the network parameters of the teacher network
and the student network, respectively. And 𝛼 is the EMA momentum
coefficient.

3.4 Prototype-based Soft-labels Strategy
Utilizing the mean-teacher self-training framework proposed in Sec-
tion 3.3 for test-time learning on the test data can promote the
detection performance. Through experiments, we found that it is
necessary to choose a large threshold 𝛿𝑢𝑝𝑝𝑒𝑟 to filter the generated
pseudo labels. However, this leads to severely missed detections,
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indicating that many test images have no pseudo labels. Different
from semi-supervised object detection, where multiple rounds of
fine-tuning can be conducted on the unlabeled data. Under the test-
time learning setting, we can only perform one epoch of training on
the test data. How to fully utilize every input test image is crucial.

As shown in the Fig. 3, we observed that relatively low-confidence
pseudo labels, despite having classification confusion, mostly recall
the foreground. Based on this phenomenon, we propose a Prototype-
based Soft-labels (PS) strategy to replace the hard labels of these
implicit foreground predictions with soft labels for fully unleashing
the potential of low-quality pseudo-labels.

Firstly, we introduce a lower bound confidence threshold 𝛿𝑙𝑜𝑤𝑒𝑟 ;
the predicted results between 𝛿𝑙𝑜𝑤𝑒𝑟 and 𝛿𝑢𝑝𝑝𝑒𝑟 are also assigned
as foreground. Due to the increased class confusion in these im-
plicit foreground predictions, employing class-specific NMS in the
teacher network fails to effectively remove redundant boxes. There-
fore, after removing the hard labels of these implicit foreground
predictions, we apply class-agnostic NMS to them using every high-
confidence pseudo prediction (i.e., whose confidence score is greater
than 𝛿𝑢𝑝𝑝𝑒𝑟 ) to filter the redundant ones.

We then generate soft labels for the implicit foreground predic-
tions by measuring their similarities to each class. Formally, given a
implicit foreground prediction 𝑟 , we define its similarity to a class 𝑐
as the cosine distance between its ROI feature 𝑉𝑟 and the prototype
𝑃𝑐 of the class 𝑐:

𝑠𝑐𝑟 =
𝑉𝑇𝑟 𝑃𝑐

| |𝑉𝑇𝑟 | | | |𝑃𝑐 | |
, 𝑐 ∈ 𝐶𝑏 ∪𝐶𝑛 (5)

Finally, 𝑠𝑟 = [𝑠1𝑟 , 𝑠2𝑟 , ..., 𝑠𝑁𝑟 ] followed a softmax function to gen-
erate 𝑞𝑟 , which represents the soft label of the implicit foreground
prediction 𝑟 . And we minimize the Kullback-Leibler (KL) diver-
gence between the soft label and the class logits 𝑝𝑟 of each implicit
foreground prediction 𝑟 :

𝐿𝐾𝐿 =

𝑁+1∑︁
𝑐=1

𝑞𝑐𝑟 𝑙𝑜𝑔(
𝑞𝑐𝑟

𝑝𝑐𝑟
) (6)

where 𝑁 +1 denotes 𝑁 foreground classes and one background class.
Additionally, we set 𝑞𝑁+1𝑟 = 0.

To leverage soft labels of the implicit foreground predictions
at the early stage during test-time learning, we initialize the class
prototypes with N-way-K-shot data:

𝑃𝑐 =
1
𝐾

𝐾∑︁
𝑖=1

𝑓 𝑖𝑐 (7)

where 𝑓 𝑖𝑐 is the ROI feature of the 𝑖-th instance for class 𝑐. Because
N-way-K-shot data cannot accurately represent the class prototypes,
we propose dynamically updating the class prototypes using both
labeled data and test data with high-confidence pseudo labels, aiming
for the class prototypes to converge to the true representations as
training progresses. Specifically, we update the class prototypes
using the following formula:

𝑃𝑐 = 𝑃𝑐 (1 − 𝑠𝑖𝑚(𝑃𝑐 , 𝑓𝑐 )) + 𝑓𝑐𝑠𝑖𝑚(𝑃𝑐 , 𝑓𝑐 ) (8)

where 𝑓𝑐 is the averaged ROI features for class 𝑐. And 𝑠𝑖𝑚(·, ·) is the
cosine similarity function.

Chair  0.93

0.76

Chair  0.93

Figure 3: Illustration for the issue of low-confidence pseudo
labels. In the left image, pseudo-labels are generated using 𝛿𝑢𝑝𝑝𝑒𝑟
filtering for self-training. In the right image, as we decrease the
threshold, the low-confidence pseudo labels are converted into
high-quality implicit foreground predictions.

3.5 Training Procedure
During test-time learning, the total loss we optimize is as follows:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑠𝑢𝑝 + 𝜆1𝐿𝑢𝑛𝑠𝑢𝑝 + 𝜆2𝐿𝐾𝐿 (9)

which consists of supervised loss of N-way-K-shot data, unsuper-
vised loss of pseudo labels, and KL loss of soft labels. Here, 𝜆1 and
𝜆2 are hyper-parameters to balance among losses.

Then, we summarize the overall algorithm. We aim for the FSOD
detector to learn from the test data. When a mini-batch of testing
samples arrives, we update the model weights through the total loss.
A detailed description is provided in Algorithm 1.

Algorithm 1: PS-TTL algorithm.

Input: Testing data D𝑡 = {𝑥𝑡
𝑖
}𝑖=1· · ·𝑁𝑡

, and N-way K-shot
data D𝑛𝑘 = {𝑥𝑖 , 𝑦𝑖 }𝑖=1· · ·𝑛𝑘

for 𝑥𝑡
𝑖
← 1 to 𝑁𝑡 do

# Inference Stage:
Predict objects: 𝑅𝑒𝑠 = teacherDet(𝑥𝑡

𝑖
)

# Fine-tune Stage:
Get supervised data: {𝑥𝑖 , 𝑦𝑖 } = iter(D𝑛𝑘 , 𝑖)
Pseudo label prediction: P = teacherDet(𝑥𝑡

𝑖
);

Pseudo label filter: threshold(P)&NMS(P)
Total loss: Ltotal = Lsup + 𝜆1Lunsup + 𝜆2LKL;
Student update (Gradient descent):
Θ𝑠 = Θ𝑠 − 𝜂∇Ltotal

Teacher update (EMA):
Θ𝑡 = 𝛼Θ𝑡 + (1 − 𝛼)Θ𝑠

4 EXPERIMENTS
In this section, we first introduce the experimental benchmarks in
Section 4.1 and then describe the implementation details of our
method in Section 4.2. Following this, we conduct extensive exper-
iments on PASCAL VOC and MS COCO to compare our method
with previous state-of-the-art approaches in Section 4.3. Finally,
we provide extensive ablation studies on different components in
Section 4.4.
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Table 1: Comparison of different few-shot object detection methods in terms of nAP50 on three PASCAL VOC Novel Split sets.

Method / Shots
Novel Split 1 Novel Split 2 Novel Split 3

1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

YOLO-ft [16] 6.6 10.7 12.5 24.8 38.6 12.5 4.2 11.6 16.1 33.9 13.0 15.9 15.0 32.2 38.4
FRCN-ft [52] 13.8 19.6 32.8 41.5 45.6 7.9 15.3 26.2 31.6 39.1 9.8 11.3 19.1 35.0 45.1
LSTD [4] 8.2 1.0 12.4 29.1 38.5 11.4 3.8 5.0 15.7 31.0 12.6 8.5 15.0 27.3 36.3
FSRW [16] 14.8 15.5 26.7 33.9 47.2 15.7 15.3 22.7 30.1 40.5 21.3 25.6 28.4 42.8 45.9
MetaDet [46] 18.9 20.6 30.2 36.8 49.6 21.8 23.1 27.8 31.7 43.0 20.6 23.9 29.4 43.9 44.1
Meta R-CNN [52] 19.9 25.5 35.0 45.7 51.5 10.4 19.4 29.6 34.8 45.4 14.3 18.2 27.5 41.2 48.1
RepMet [17] 26.1 32.9 34.4 38.6 41.3 17.2 22.1 23.4 28.3 35.8 27.5 31.1 31.5 34.4 37.2
TFA w/cos [45] 39.8 36.1 44.7 55.7 56.0 23.5 26.9 34.1 35.1 39.1 30.8 34.8 42.8 49.5 49.8
MPSR [48] 41.7 − 51.4 55.2 61.8 24.4 − 39.2 39.9 47.8 35.6 − 42.3 48.0 49.7
HallucFsDet [61] 47.0 44.9 46.5 54.7 54.7 26.3 31.8 37.4 37.4 41.2 40.4 42.1 43.3 51.4 49.6
Retentive R-CNN[10] 42.4 45.8 45.9 53.7 56.1 21.7 27.8 35.2 37.0 40.3 30.2 37.6 43.0 49.7 50.1
FSCE [40] 44.2 43.8 51.4 61.9 63.4 27.3 29.5 43.5 44.2 50.2 37.2 41.9 47.5 54.6 58.5
SRR-FSD [65] 47.8 50.5 51.3 55.2 56.8 32.5 35.3 39.1 40.8 43.8 40.1 41.5 44.3 46.9 46.4
CME [22] 41.5 47.5 50.4 58.2 60.9 27.2 30.2 41.4 42.5 46.8 34.3 39.6 45.1 48.3 51.5
FADI [2] 50.3 54.8 54.2 59.3 63.2 30.6 35.0 40.3 42.8 48.0 45.7 49.7 49.1 55.0 59.6
UP-FSOD [47] 43.8 47.8 50.3 55.4 61.7 31.2 30.5 41.2 42.2 48.3 35.5 39.7 43.9 50.6 53.3
QA-FewDet [11] 42.4 51.9 55.7 62.6 63.4 25.9 37.8 46.6 48.9 51.1 35.2 42.9 47.8 54.8 53.5
LVC‡ [18] 54.5 53.2 58.8 63.2 65.7 32.8 29.2 50.7 49.8 50.6 48.4 52.7 55.0 59.6 59.6
DeFRCN* [36] 55.4 62.1 65.0 68.4 67.6 35.5 45.4 51.8 51.7 47.5 50.8 57.4 57.8 62.7 65.0

Ours 58.4 65.5 67.9 69.3 68.1 38.4 47.8 52.8 53.6 49.1 53.0 58.8 59.2 63.8 64.1

Table 2: Few-shot object detection performance on MS COCO.

Method
10-shot 30-shot

nAP nAP75 nAP nAP75

FSRW [16] 5.6 4.6 9.1 7.6
MetaDet [46] 7.1 6.1 11.3 8.1
Meta R-CNN [52] 8.7 6.6 12.4 10.8
DCNet [15] 12.8 11.2 18.6 17.5
CME [22] 15.1 16.4 16.9 17.8
TFA [45] 9.1 8.8 12.1 12.0
MPSR [48] 9.8 9.7 14.1 14.2
Retentive R-CNN [10] 10.5 − 13.8 −
FSCE [40] 11.4 10.1 15.8 14.7
SRR-FSD [65] 11.3 9.8 14.7 13.5
FADI [2] 12.2 − 16.1 −
QA-FewDet [11] 11.6 9.8 16.5 15.5
Meta FRCN [12] 9.7 9.0 10.7 10.6
VFA [14] 16.2 − 18.9 −
LVC‡ [18] 18.6 18.5 26.1 26.8
DeFRCN* [36] 17.1 15.9 20.2 19.5

Ours 17.3 16.7 20.9 21.3

4.1 Datasets
PASCAL VOC. For PASCAL VOC [7], the overall 20 classes are
divided into 15 base classes and 5 novel classes. Following TFA
[45], we utilize three different class splits, namely split 1, 2, and 3.

For each split, base classes are exhaustively annotated, but novel
classes only have 𝐾 = 1, 2, 3, 5, 10 annotated instances per class. Both
base and novel class instances are sampled from the PASCAL VOC
(07+12) trainval set, and the model is tested on the PASCAL VOC07
test set. We report AP50 for novel classes during evaluation.

MS COCO. MS COCO [25] has 80 classes, we selecte the 20
classes that overlapped with PASCAL VOC as novel classes and the
remaining 60 classes as base classes. In this case, we evaluate our
method with 𝐾 = 10, 30 shots for each novel class. And we report
mAP, and AP75, respectively.

4.2 Implementation Details
Our method can be combined with majority fine-tuning based few-
shot object detector. For simplicity, we chose the most representative
SOTA method, DeFRCN [36], as our baseline. DeFRCN uses Faster-
RCNN [39] as the detection model and ImageNet pre-trained ResNet-
101. We use DeFRCN, which has been pre-trained on base classes
and fine-tuned on novel classes, as the initialization of our model,
and then fine-tune on the test data. During test-time learning, we
fine-tune our model with a mini-batch of 2 on single GPU, which
simulate the real inference process of the FSOD detector. Besides,
we adopt a one-pass setting, where we fine-tune on the test data for
only one epoch. We also utilize the N-way K-shot data used for novel
fine-tuning during the testing process. Due to the poor performance
of the FSOD detector, we apply weak data augmentation to both the
N-way K-shot data and the test data, including random resize and
random horizontal flip. For the hyperparameter, we set the 𝜆1 = 0.5
and 𝜆2 = 0.1 for all the experiments for simplicity. We set the
thresholds 𝛿𝑢𝑝𝑝𝑒𝑟 = 0.9 and 𝛿𝑙𝑜𝑤𝑒𝑟 = 0.7. We optimize the network
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Table 3: Contributions of each component to PS-TTL.

𝐿𝑠𝑢𝑝 𝐿𝑢𝑛𝑠𝑢𝑝 𝐿𝐾𝐿
nAP50

1-shot 2-shot 3-shot

55.4 62.1 65.0
✓ 54.3 61.5 63.2

✓ 56.1 63.4 65.7
✓ ✓ 57.0 63.8 65.4
✓ ✓ ✓ 58.4 65.5 67.9

Table 4: Ablation study of the threshold selection.

𝛿𝑢𝑝𝑝𝑒𝑟 𝛿𝑙𝑜𝑤𝑒𝑟
nAP50

1-shot 2-shot 3-shot

− − 55.4 62.1 65.0
0.95 − 55.5 61.6 64.2
0.90 − 57.0 63.8 65.4
0.85 − 56.8 63.4 65.6

0.90 0.8 57.1 65.2 67.4
0.90 0.7 58.4 65.7 67.9
0.90 0.6 57.5 65.2 67.5

using Stochastic Gradient Descent (SGD) and set the learning rate
to 0.00125. The momentum coefficient of the EMA for the teacher
network is set to 0.9996.

4.3 Main Results
PASCAL VOC. Experimental results on the PASCAL VOC dataset
are shown in Table 1. We use DeFRCN as our baseline, which in-
corporates an additional Prototypical Calibration Block (PCB) for
refining the predictions. However, we find that the N-way K-shot
data utilized by the PCB may not align with that used during the
novel fine-tuning stage. Therefore, we exclude the PCB and present
our re-implementation results DeFRCN* in Tables 1 and 2. It can
be observed that our method achieves improvements across various
splits and different shots on PASCAL VOC benchmark. Our method
outperforms HallucFsDet[61] and LVC[18], which represent syn-
thetic novel class data and semi-supervised learning on the base data,
respectively. Meanwhile, we find that the improvement gained from
test-time learning becomes more significant as the shot decreases,
especially in the 1-shot scenario.

MS COCO. Table 2 shows the detection results on MS COCO.
The MS COCO dataset contains more categories, and typically, a
single image contains multiple instances. FSOD detectors generally
perform poorly on MS COCO due to these factors, which under-
mine the performance of our method. However, we observe that our
method achieves a significant improvement compared to the base-
line, especially in the mAP75 metric. There is a 5.0% improvement
in AP75 at 10 shots and a 9.2% improvement in AP75 at 30 shots.
LVC [18] demonstrates a noticeable improvement on the MS COCO
dataset, because the base data in the MS COCO benchmark contains
a large number of implicit novel instances. However, this issue arises
from the setting of few-shot detection, which could not reflect the

Table 5: Ablation study of the class prototypes update.

Update Methods
nAP50

1-shot 2-shot 3-shot

Static 57.5 65.1 67.7
Dynamic 58.4 65.7 67.9

Table 6: Ablation study of the different data augmentation.

Student Aug. Teacher Aug.
nAP50

1-shot 2-shot 3-shot

Strong Weak 56.9 64.9 66.6
Weak Weak 58.4 65.7 67.9

real-world scenario. Under the test-time learning setting, we only
have 5000 images available for mining the implicit novel instances.

4.4 Ablation Studies
In this section, we conduct ablation studies on novel split 1 of the
PASCAL VOC benchmark to reveal the effectiveness of each indi-
vidual component.

4.4.1 Effectiveness of each component. We conduct a detailed
ablation study on each component of the model, as shown in Table 3.
The first row presents our baseline, which is the result of DeFRCN.
Initially, we attempted to solely utilize N-way K-shot data for su-
pervised learning during testing but found that the model tended
to overfit to these K-shot data, resulting in decreased performance.
In the third row, we only fine-tuned the model using high-quality
pseudo labels during testing, yielding results superior to the baseline.
To further enhance FSOD performance in low-sample scenarios, we
combined N-way K-shot data with pseudo-labels for training. Inter-
estingly, except for the 3-shot setting, the model achieved further
optimization in other cases, suggesting that this training approach ef-
fectively prevented the accumulation of biases in the model. Finally,
by introducing 𝐿𝐾𝐿 , i.e., employing a prototype-based soft-label
strategy during testing, the model significantly improved its per-
formance across various sample sizes. This also indicates that our
proposed method can more efficiently utilize pseudo-labels.

4.4.2 Upper and lower thresholds setting. Threshold selection
has always been crucial in pseudo-label training, so we conducted
ablation experiments on pseudo-label thresholds, as shown in Table
4. Firstly, we used a large threshold 𝛿𝑢𝑝𝑝𝑒𝑟 to filter high-quality
pseudo-labels as hard labels for training the student network. To
determine the appropriate value of 𝛿𝑢𝑝𝑝𝑒𝑟 , we performed standard
self-training on the test data without using soft labels. From Table 4,
it can be observed that using a larger threshold may result in only
a few pseudo-labels available as hard labels, which could lead to
many foreground objects being mistakenly classified as background,
damaging the model’s detection performance. Conversely, setting
a threshold too low introduces excessive noise labels, which also
affects performance. By comparing the results from rows 1 to 4,
we set 𝛿𝑢𝑝𝑝𝑒𝑟 to 0.9. Next, we conducted experiments on the low
threshold 𝛿𝑙𝑜𝑤𝑒𝑟 , where prediction boxes with confidence scores be-
tween the high threshold 𝛿𝑢𝑝𝑝𝑒𝑟 and the low threshold 𝛿𝑙𝑜𝑤𝑒𝑟 were
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Figure 4: Qualitative visualization comparison on PASCAL VOC. The top and bottom lines respectively show the detection results
from DeFRCN and our PS-TTL.

considered implicit foreground predictions and assigned soft labels.
Setting 𝛿𝑙𝑜𝑤𝑒𝑟 too high may result in only a few implicit foreground
predictions available as soft labels, while setting it too low may
lead to many false positives, mistaking background as implicit fore-
ground. From Table 4, we chose 𝛿𝑙𝑜𝑤𝑒𝑟 = 0.7, which helps the model
efficiently utilize implicit foreground predictions, especially in ex-
tremely low-shot scenarios (i.e., shot=1). Additionally, we noticed
that when the FSOD detector performs well, it is not sensitive to
the threshold 𝛿𝑙𝑜𝑤𝑒𝑟 . We speculate that this is because implicit fore-
ground predictions are correctly assigned higher confidence scores,
while background is given lower confidence scores.

4.4.3 Class prototypes update. As mentioned earlier, we utilize
the similarity between the ROI features of implicit foreground pre-
dictions and each class prototype to generate soft labels, where well-
defined class prototypes can produce more accurate soft labels for
implicit foreground predictions. However, since we initialize class
prototypes using N-way K-shot data. During the teacher-student
learning phase, predictions for the features of objects in each class
are changing. Therefore, static prototype features cannot accurately
represent their respective classes. We propose dynamically updat-
ing class prototypes using high-confidence pseudo-labels, aiming
to gradually converge the prototypes to their true class distributions
during test-time learning. In Table 5, we compare the results of static
class prototypes and dynamically updated class prototypes across
multiple samplings, with the latter showing consistent improvements.
We observe that the improvement brought by dynamically updat-
ing class prototypes becomes more pronounced as the number of
samples decreases.

4.4.4 Alternative data augmentation. We also validated the
data augmentation used for both the student and teacher networks.
Generally, in semi-supervised object detection, weak augmentation
is applied to input images for the teacher network, while strong
augmentation is used for the student network. For details on data
augmentation, readers are advised to refer to [28]. However, in our
case, we found that even when employing weak data augmentation
for the student network, its performance improved. As shown in

Table 6, consistently using weak-weak data augmentation enhanced
performance across all settings. This is because, during test-time
learning, we can only fine-tune on the test data for one epoch. Ad-
ditionally, in scenarios of data scarcity, strong data augmentation
disrupts the original data distribution, impeding the model conver-
gence.

4.4.5 Qualitative evaluation. We visualize the detection results
of 1-shot of PASCAL VOC in Fig. 4. Our method can significantly al-
leviate the problem of classification confusion between base classes
and novel classes. In the first column, DeFRCN misclassifies a base
class (horse) as a novel class (cow), and in the second column,
DeFRCN misclassifies a novel class (motorcycle) as a base class
(bicycle). Our method addresses this issue through test-time learning.
In the third column, DeFRCN predicts multiple local regions of a
bus (novel class) as the bus category. Although we doesn’t design
any loss specifically for regression, the improvement in classification
performance also helps the model alleviate this issue. Additionally,
our method also improves the performance on base classes. For
example, in column 4 of Fig. 4, DeFRCN incorrectly identifies a
newsstand as a bottle and misses dense cars, both of which have
been corrected by our method.

5 CONCLUSION
This paper proposes a novel framework for few-shot object detec-
tion, namely Prototype-based Soft-labels and Test-Time Learning
(PS-TTL). It aims to address the challenge of accurately capturing
the real data distribution under the condition of scarce samples from
novel classes. To this end, we propose a Test-Time Learning (TTL)
module to discover novel instances of test data, effectively allevi-
ating the problem of overfitting to the distribution of base class.
Furthermore, we design a Prototype-based Soft-labels (PS) strategy
to unleash the potential of low-quality pseudo-labels, thereby signif-
icantly mitigating the constraints posed by few-shot samples. Exten-
sive experiments are conducted on VOC and COCO, and PS-TTL
reaches state-of-the-art performance, validating its effectiveness.
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