
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

R&D-AGENT: AN LLM-AGENT FRAMEWORK TO-
WARDS AUTONOMOUS DATA SCIENCE

Anonymous authors
Paper under double-blind review

MLAB
GPT-4o

OpenHands
GPT-4o

AIDE
GPT-4o

AIDE
o1-preview

ML-Master
GPT-5*

ML-Master
Deepseek-R1

R&D-Agent
GPT-5

0%

5%

10%

15%

20%

25%

30%

35%

40%

An
y

M
ed

al
 (

%
)

1.3±0.5

5.1±1.3
8.6±0.5

16.9±1.1 16.9±1.2

29.3±0.8

35.1±0.4
Task Complexity

Low==Lite
Medium
High
All ± SEM

Figure 1: Agent performance on MLE-Bench. Stacked bars show any medal rates for Low==Lite (22
tasks), Medium (38 tasks), and High (15 tasks) complexity levels. The dashed line indicates overall
performance (mean ± SEM). R&D-Agent achieves SOTA performance at 35.1± 0.4%. * indicates
our re-evaluation of ML-Master within our environment.

ABSTRACT

Recent advances in AI and ML have transformed data science, yet increasing
complexity and expertise requirements continue to hinder progress. Although
crowd-sourcing platforms alleviate some challenges, high-level machine learning
engineering (MLE) tasks remain labor-intensive and iterative. We introduce R&D-
Agent, a comprehensive, decoupled, and extensible framework that formalizes
the MLE process. R&D-Agent defines the MLE workflow into two phases and
six components, turning agent design for MLE from ad-hoc craftsmanship into
a principled, testable process. Although several existing agents report promising
gains on their chosen components, they can mostly be summarized as a partial
optimization from our framework’s simple baseline. Inspired by human experts,
we designed efficient and effective agents within this framework that achieve state-
of-the-art performance. Evaluated on MLE-Bench, the agent built on R&D-Agent
ranks as the top-performing machine learning engineering agent, achieving 35.1%
any medal rate, demonstrating the ability of the framework to speed up innovation
and improve accuracy across a wide range of data science applications.

1 INTRODUCTION

Over the past decade, artificial intelligence (AI) and machine learning (ML) have fundamentally
reshaped data science, driving advances across domains as diverse as machine translation (Isik et al.,
2025), recommendation systems (Yuan et al., 2025), social simulation (Yang et al., 2025), and medical
diagnostics (Sepehri et al., 2025). The growing availability of large-scale datasets (Ghorbani et al.,
2023), coupled with rapid algorithmic progress, has enabled models that deliver increasingly accurate
and adaptive outcomes. However, as data becomes more heterogeneous and high-dimensional, so

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

does the demand for experienced data scientists who can craft appropriate models, interpret nuanced
patterns, and iterate toward optimal solutions.

Crowdsourcing platforms like Kaggle1 partially mitigate the expertise bottleneck by mobilizing
thousands of data scientists, yet they also expose the limits of human-driven workflows: even top teams
spend considerable time on trial-and-error experimentation, feature crafting, and hyperparameter
tuning, making progress labor-intensive and slow.

Large language models (LLMs) offer an opportunity to mitigate these limitations. Their demonstrated
strengths in code generation and reasoning(Achiam et al., 2023; Team et al., 2023; Liu et al., 2024)
suggest they can automate exploration of large design spaces. Machine Learning Engineering
(MLE) serves as an ideal testbed for this potential, as success critically depends on efficiently
navigating vast configuration spaces to identify optimal solutions. However, a significant gap persists
between promise and practice. Benchmarks like MLE-bench (Chan et al., 2024), built on real
Kaggle competitions, report that state-of-the-art LLMs reach only a small fraction of human expert
performance, whereas well-designed agents can perform much better, highlighting the potential of
improved agent design to accelerate MLE exploration.

Inspired by the common workflow of data scientist, we introduce R&D-Agent, a comprehensive,
decoupled, and extensible framework that formalizes the MLE process. Mirroring how data scientists
work in practice, R&D-Agent separates: (i) a Research phase focused on idea generation and search-
covering planning (e.g., dynamically adjusting guidelines over time), exploration path structures
(e.g., tree-based search vs. chain-based search), memory context (organizing and retrieving prior
solutions and knowledge), and reasoning pipelines (for hypothesis formation and refinement); and (ii)
a Development phase focused on implementation and feedback-covering coding workflows (steps
turning ideas into runnable code efficiently) and evaluation strategy (obtaining reliable and robust
data-driven feedback). For each aspect, a simple and LLM-first baseline strategy is established as a
clear starting point.

Positioning existing systems within this decomposition clarifies their coverage and gaps. As shown
in Table 1, previous work typically optimizes only a narrow slice of the workflow. For instance,
AIDE (Jiang et al., 2025) and ML-Master (Liu et al., 2025) primarily target the exploration path
structure via tree-based search, while MLE-STAR (Nam et al., 2025) explores deeply along a single
chain. KompeteAI (Kulibaba et al., 2025) emphasizes the coding workflow with faster debugging.
All the existing methods can be summarized as a partial optimization from our framework’s
simple baseline.

Table 1: Comparison of R&D-Agent with existing methods, grouped by Research and Development
phase design aspects. “/” denotes not covered or a simple, LLM-first baseline strategy. Research
phase includes: (i) Planning, (ii) Exploration Path Structuring, (iii) Memory Context, (iv) Reasoning
Pipeline. Development phase includes: (v) Coding Workflow, (vi) Evaluation Strategy. COG indicates
that the framework provides multiple options followed by recommended best practices. Details of
R&D-Agent’s design are provided in Sec. 3.3.

Phase Design Aspect
Agent Designs Frameworks

AIDE ML-Master KompeteAI MLE-STAR AIRA R&D-Agent
(Jiang et al., 2025) (Liu et al., 2025) (Kulibaba et al., 2025) (Nam et al., 2025) (Toledo et al., 2025) (Ours)

Research

Planning / / / / / COG Dynamic
Path Structuring Tree (Greedy) Tree + MCTS Tree + Merging Chain COG Tree + MCTS COG Adaptive
Memory Context / Sibling Sibling Sibling COG Sibling COG Collab. Comm.
Reasoning Pipeline One step One step One step One step One step COG Scientific multi-step

Development Coding Workflow Node Debug Node Debug Debug Debug / COG Eff. & Iter. Debug
Evaluation Strategy / / / / / COG Aggregated

Although these systems report promising gains on their chosen components, they often (i) cover only
a subset of the full MLE workflow, (ii) entangle multiple steps into monolithic pipelines rather than
cleanly separating them into specialized components or agents, and (iii) leave many alternative designs
within each phase unexplored. As a result, insights and improvements are difficult to generalize
or reuse across tasks and domains. While Toledo et al. (2025) recognize the need for a flexible
framework, their design offers limited agent-level modularity and restricts exploration of the broader
design space.

1https://www.kaggle.com/

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Our framework directly addresses these issues. R&D-Agent (i) is comprehensive, enabling systematic
exploration across the entire MLE workflow; (ii) is well-decoupled, allowing each phase to be
implemented, replaced, and improved by dedicated components or expert agents; and (iii) is highly
extensible, supporting plug-and-play alternatives that unify and generalize prior systems while
facilitating the discovery of new agent configurations. In short, R&D-Agent turns agent design for
MLE from ad-hoc craftsmanship into a principled, testable process.

Guided by human expertise, we instantiate R&D-Agent and conduct systematic ablations across each
phases to isolate the contribution of each component. Composing the best-performing choices shown
in Table 1 within the framework yields a well-configured agent that delivers significant gains on
MLE-bench (Chan et al., 2024), achieving new state-of-the-art results.

In summary, our primary contributions are:

• We introduce R&D-Agent, a comprehensive, decoupled, and extensible autonomous agent
framework that formalizes the MLE process by separating a research phase (planning, exploration
path structure, memory context, and reasoning pipelines) from a development phase (coding
workflows and evaluation strategy).

• With R&D-Agent enabling plug-and-play alternatives, we conduct systematic ablations across
both phases to isolate the contribution of each component and derive insights into the factors that
most affect agent performance on data science.

• Guided by human expertise, an R&D-Agent configuration that composes the best-performing
choices within the framework delivers significant gains on MLE-bench (Chan et al., 2024),
achieving new state-of-the-art results and demonstrating the efficiency and effectiveness of our
approach.

2 PREREQUISITES

In the context of MLE agents, the main goal is to maximize the evaluation score on a given benchmark
under a limited time budget. Formally, let T be an ML task with dataset D = {Ddev,Dtest}, where
Ddev is the development set and Dtest is the test set. The agent can only develop, tune, and iterate
its solution on Ddev, while the final performance is measured on the unseen Dtest. This fundamental
separation means the agent never has access to the final evaluation metric during its development
process. Instead, it must rely on a proxy metric, M(s;Ddev), evaluated on the development set to guide
its exploration. Let T denote the total allowed wall-clock time for the agent to generate a complete
solution (including the actual execution/running time of the solution code). Let s = Agent(T , T) be a
candidate solution generated by the agent (e.g., a Python script for data preprocessing, model training,
and evaluation) within this generation-time budget T . The performance of s on T is measured by a
task-specific metric M(s;Dtest) ∈ R, such as accuracy or correlation.

The agents objective can be written as the constrained optimization problem

s? = arg max
s=Agent(T ,T),

s∈S

M(s;Dtest), s.t. gen_time(s) ≤ T,

where S is the set of all feasible solutions the agent can generate and gen_time(s) denotes the total
generation time spent by the agent to produce s?.

3 R&D-AGENT

The architecture of the R&D-Agent framework, illustrated in Figure 2, addresses the core challenge of
efficiently exploring optimal solutions in MLE. Built on a modular design principle, it decomposes the
entire pipeline into distinct, configurable components. The framework orchestrates two specialized
agents: a Research Agent that explores ideas through parallel paths, and a Development Agent that
implements and iteratively refines these proposals.

This modularity transforms agent development from monolithic construction into compositional
optimization, enabling systematic exploration of a vast configuration space. Guided by human
expert workflows, we navigated this space to identify an optimal design that achieves state-of-the-
art performance on MLE-Bench, validating both our modular approach and the effectiveness of
human-inspired reasoning patterns.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

 ...

 ...

 ... Initialization

❷Exploration Path Structuring

❶Planning:
dynamic strategy over time

More Exploration More Exploitation

Parallel Running Processes
P#1
P#2

P#3
P#4

Parallel Exploration

Research Agent Development Agent

❸Reasoning Pipeline & Idea Proposal

❹Memory
Context

Virtual Eval.

Scientifically Inspired Reasoning Pipeline

Runnable Solution

Dev & Enhance
Iteratively Efficient Debug

Sampled Dataset
for Debugging

Run & Calc.
Evaluation Metric

Full
Dataset

Data Curation

Real
Eval. from
Valid. Data

An Idea
(improved)

Early Stop

An Idea
(failed to improve)

Prev. Real
Eval. from
Valid. Data

W
ith

in
 E

ac
hE

ex
pa

ns
io

n
St

ep

Try to tackle different problems efficiently
Solution with low computational budget
...

Optimize existing solutions
Solution with high computational budget
...

❺Coding Workflow ❻Evaluation Strategy

Hypothesis Driven
Idea Proposal

Problem/Challenge
Identification

Remaining time

SelectParents

Next Expansion
Node

Figure 2: Framework of R&D-Agent. R&D-Agent works in an iterative loop in which the Research
Agent proposes ideas and the Development Agent implements them into runnable solutions to obtain
feedback from data. By decoupling high-level research from low-level implementation, the framework
efficiently explores the solution space through parallel exploration paths and iterative refinement,
progressively converging on optimal solutions.

3.1 FRAMEWORK OVERVIEW

Inspired by the common workflow of data scientists, the R&D-Agent framework defines six key,
extensible components, organized into two main phases: the Research Phase and the Development
Phase. We introduce the Framework Concept (FC) of each component in this section.

The Research Phase. The research phase aims to discover and refine promising ideas before
committing to costly implementation. It consists of four primary components:

¶ FC-Planning: This component focuses on the high-level allocation of exploration effort over
time. Since data science tasks are sequential decision problems involving iterative trial-and-error,
an effective plan must dynamically adjust the timing, budget, and guidelines for idea exploration.
It adapts priorities and resources as new information emerges, managing the crucial trade-off
between exploration and exploitation.

· FC-Exploration Path Structuring: This component determines how the solutions are organized
and the historical solutions to which they will be referred. Strategies range from greedy chain-
based approaches (Nam et al., 2025), which offer fast convergence at the risk of local optima,
to tree-based search methods (Liu et al., 2025; Kulibaba et al., 2025), which maintain greater
diversity at a higher computational cost. Our framework supports hybrid and adaptive designs
that can combine these strengths.

¸ FC-Reasoning Pipeline: This component defines how knowledge from the memory context is
transformed into concrete research ideas. This process may include dataset analysis, hypothesis
formulation, benefit justification, trade-off assessment, and implementable solution sketches. A
clear, structured reasoning pipeline improves the quality, novelty, and feasibility of ideas, while
supporting systematic evaluation before moving to development.

¹ FC-Memory Context: This component manages how accumulated knowledge, such as historical
solutions, evaluation results, and insights, is stored, retrieved, and reused to inform the reasoning
pipeline. Well-structured memory enables knowledge transfer between iterations, reduces
redundant exploration, and stabilizes long-horizon reasoning.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The Development Phase. The development phase turns the most promising research ideas into
fully bug-free and evaluated solutions. It is composed of two key components:

º FC-Coding Workflow: This component covers the process from a conceptual idea to bug-
free code. It emphasizes modular design, efficient iterative debugging, and early detection of
runtime issues. Techniques like rapid prototyping on sampled data can significantly shorten the
development cycle while preserving correctness.

» FC-Evaluation Strategy: This component ensures reliable and consistent assessment of solution
performance. A strong evaluation strategy involves choosing stable metrics, adhering to fixed
validation settings, and using aggregated evaluations to reduce noise. This mitigates overfitting
risks, filters out spurious high scores from underfitting, and ensures that iterative improvements
reflect genuine performance gains rather than evaluation artifacts.

3.2 FRAMEWORK FORMULATION

We formalize the R&D-Agent framework with the high-level algorithm presented in Algorithm 1.
The algorithm iteratively builds an exploration graph G, by executing a loop composed of a Research
Phase and a Development Phase until the time budget T is met. Each component in the algorithm
corresponds to the design aspects detailed in our framework overview. We call the loop in Algorithm 1
containing a research and development phase as R&D loop.

Algorithm 1: High-Level Algorithm of the R&D-Agent Framework
Notation :Gt: exploration graph; πt: plan; Nt: parent nodes; ct: context; it: idea; xt: code; st:

score.
Input :ML task T , total time budget T
Output :Final solution x∗

G ← ∅ // Initialize exploration graph
while elapsed_time() < T do

// Research Phase
π ← P(G, elapsed_time(), T) // Planning
N ← SelectParents(G, π) // Exploration Path Structuring
c←M(G, π) // Memory Context
i←R(c,N , π) // Reasoning Pipeline

// Development Phase
x← Dev(i,N) // Coding Workflow
s← Eval(x, T) // Evaluation Strategy

G ← G ∪ {(N , i, x, s)} // Update exploration graph
end
x∗ ← Submit(G) // Select and submit final solution

3.3 A HUMAN-EXPERT-INSPIRED AGENT DESIGN

The R&D-Agent framework enables the systematic discovery of novel agent architectures. Guided
by the workflows of human experts, we identified a specific, highly efficient agent configuration that
establishes a new state-of-the-art on MLE-Bench. This section details the design choices for each
of the six components in this SOTA configuration, with its core ideas illustrated in Figure 2. We
introduce the Module Design (MD) of each component in this section.

¶ MD-Planning. Like human experts in scientific exploration, we quickly identify promising
directions in the early stages and move to more sophisticated solutions later. To achieve this, we
use a dynamic planning strategy that adjusts over time. In the early stage (e.g., the first hour), the
agent is given a limited computational budget, which discourages the use of heavy techniques
such as ensembles or cross-validation. As promising directions emerge, the budget gradually
increases, enabling more costly yet effective methods (e.g., ensembles, cross-validation) in later
stages (e.g., at 4h). The plan also steers idea generation: early stages encourage novelty, while
later stages focus on refining high-performing solutions with proven techniques.

· MD-Exploration Path Structuring. Like human experts, R&D-Agent explores multiple re-
search directions in parallel and merges their strengths at the last stage for optimal solutions. We

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

adopt an adaptive DAG-based exploration structure guided by a core insight: initial implementa-
tions have disproportionate impact on exploration diversity, as subsequent steps are inherently
path-dependent. Therefore, we maximize diversity in the first layer to establish distinct research
directions, then greedily exploit the best solution within each branch while pruning sub-optimal
paths. This design achieves efficient parallel exploration and result fusion.

¸ MD-Scientific Reasoning Pipeline. Human data scientists typically follow a rigorous reasoning
process to propose research ideas, which is a valuable distillation of human intelligence. Inspired
by this, we propose a scientific multi-step reasoning pipeline that begins by analyzing the current
solution and dataset characteristics to identify the most critical problem (e.g., for a time-series
dataset, mining temporal patterns is crucial for high performance). Rather than generating shallow
ideas, the agent dives deeper into the problem, formulating hypotheses on why a proposed method
would address it (e.g., an RNN can capture temporal dependencies in time-series data), and
finally outputs an idea implementable by an LLM (e.g., training an LSTMGraves (2012) to
model dependencies). Since verifying ideas is more costly than generating them, we introduce a
virtual evaluation strategy: the agent generates multiple ideas during reasoning, uses LLM-based
assessments to select the most promising one, and sends only that to the development phase.

¹ MD-Memory Context. We enhance collaborative memory to enable knowledge sharing across
parallel branches without sacrificing diversity. Each branch begins with a distinct idea and
explores independently. After hypothesis generation, we augment each branch’s context with
two sources: the best ideas across all branches and a probabilistically sampled subset from others.
The sampling kernel favors ideas that are topically similar and have higher scores, with more
recent ideas weighted higher. An LLM then selects the most promising candidates from this
enriched pool, accelerating convergence while maintaining exploration diversity.

º MD-Coding Workflow. To improve efficiency, particularly for solutions with long runtimes, we
adopt an efficient and iterative debug workflow. Our LLM-powered agent first samples a small,
representative subset of the training data and enters a rapid prototyping loop: implementing the
proposed idea, testing on this subset, and refining based on immediate feedback. This cycle
continues until achieving a runnable and logically sound solution on the subset. Only validated
solutions proceed to full-scale evaluation. This approach mirrors human rapid prototyping
practices, significantly reducing development time by catching errors early and ensuring that
computational resources are not wasted on flawed implementations. The workflow enables the
agent to explore substantially more solution candidates within the same time budget.

» MD-Evaluation Strategy. To ensure robust and reliable performance assessment, we implement
an aggregated evaluation strategy with standardized protocols. A key challenge in many MLE
tasks is that evaluation logic is part of the agent’s solution, causing inconsistent metrics and
data splits that prevent fair comparison. We address this through two mechanisms. First, we
enforce standardized data splitting: preparing fixed train-validation-test splits at the beginning
of agent runs, with test data remaining entirely inaccessible for final grading. Second, beyond
standard validation-based selection, we introduce an additional evaluation layer that collects
top solutions from different exploration branches and evaluates them using consistent metrics
on the same validation set. This aggregated approach ensures fair comparison across diverse
solution strategies and enables more reliable selection of the best-performing solution for final
submission.

4 EXPERIMENT

To rigorously evaluate R&D-Agent’s capabilities in realistic data science scenarios, we conduct
extensive experiments on MLE-Bench (Chan et al., 2024). As a benchmark comprising a diverse
set of authentic Kaggle competitions, MLE-Bench serves as an excellent proxy for real-world
challenges, demanding a holistic combination of strategic thinking and robust engineering for agents
to autonomously design, build, and train models.

4.1 EXPERIMENT SETUP

All our experiments are conducted on the MLE-Bench (Chan et al., 2024) benchmark. We compare
R&D-Agent against leading open-source systems, primarily ML-Master (Liu et al., 2025) and
AIDE (Jiang et al., 2025), using their official leaderboard metrics. In time budget, we align with ML-
Master allowing 12 hours compared to the official 24 hours setting. In computation, our environment

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

has a lower throughput with 12 vCPUs, 220GB RAM, and 1 V100 GPU while AIDE uses 36 vCPU,
440GB RAM and 1 A10 GPU, ML-Master uses 36 vCPU, 512GB shared RAM and 1 A100 GPU.
Therefore, our experimental setup is intentionally more challenging than all the previous work.

To ensure fair comparison, we evaluate R&D-Agent using two frontier LLM configurations: (1)
GPT-5 only, and (2) a hybrid o3(R) + GPT-4.1(D), where o3 powers the Research phase and GPT-4.1
the Development phase. Furthermore, We re-evaluated the previous SOTA, ML-Master, under our
identical 12-hour setting using both configurations. All our new results are averaged over three
runs with different random seeds for statistical robustness. Our evaluation is based on the official
MLE-Bench metrics, with the Any-Medal Rate as the primary indicator of overall performance.

4.2 MAIN RESULTS

R&D-Agent establishes a new SOTA on MLE-Bench (Chan et al., 2024), significantly outperforming
all existing open-source systems. As illustrated in Figure 1, R&D-Agent powered by GPT-5 achieves
35.1% Any-Medal Rate, exceeding the previous state-of-the-art ML-Master (Liu et al., 2025) (29.3%
with Deepseek-R1) by 5.8 percentage points. The stacked bars further reveal R&D-Agent’s consistent
superiority across all task complexity levels, demonstrating its robust performance on diverse data
science challenges.

Table 2 further demonstrates our framework’s architectural advantages. With GPT-5, R&D-Agent
achieves the highest Any-Medal Rate at 35.1 ± 0.4%, while our hybrid o3(R) + GPT-4.1(D) configu-
ration also excels at 29.7 ± 0.4%, with both substantially outperforming all prior systems. Crucially,
when ML-Master was re-evaluated with GPT-5 in our environment, it achieved only 16.9 ± 2.0%2.
This direct comparison under identical LLM configurations confirms that our framework’s design,
not merely model selection, drives the substantial performance gap. Both R&D-Agent configurations
demonstrate strong performance across multiple metrics, with GPT-5 achieving 45.3 ± 0.0% Above-
Median Rate and 16.4 ± 0.9% Gold Medal Rate, showcasing the framework’s ability to consistently
produce competitive solutions regardless of the underlying LLM choice.

Table 2: Comparative performance of all agents across the official MLE-Bench evaluation metrics.
All results represent the mean ± SEM from three independent runs with different random seeds.
The top-performing agent is highlighted in bold and the second-best is underlined. * indicates our
re-evaluation of ML-Master (Liu et al., 2025) within our environment (V100 GPU) to ensure fair
comparison under identical conditions. Complete individual run results are provided in Appendix D.1.

Agent
Valid

Submission
(%)

Above
Median

(%)

Bronze
(%)

Silver
(%)

Gold
(%)

Any
Medal

(%)

MLAB (Huang et al., 2023)

GPT-4o 44.3 ± 2.6 1.9 ± 0.7 0.0 ± 0.0 0.0 ± 0.0 0.8 ± 0.5 0.8 ± 0.5

OpenHands (Wang et al., 2024)

GPT-4o 52.0 ± 3.3 7.1 ± 1.7 0.4 ± 0.4 1.3 ± 0.8 2.7 ± 1.1 4.4 ± 1.4

AIDE (Jiang et al., 2025)

GPT-4o 54.9 ± 1.0 14.4 ± 0.7 1.6 ± 0.2 2.2 ± 0.3 5.0 ± 0.4 8.7 ± 0.5
o1-preview 82.8 ± 1.1 29.4 ± 1.3 3.4 ± 0.5 4.1 ± 0.6 9.4 ± 0.8 16.9 ± 1.1

ML-Master (Liu et al., 2025)

Deepseek-R1 93.3 ± 1.3 44.9 ± 1.2 4.4 ± 0.9 7.6 ± 0.4 17.3 ± 0.8 29.3 ± 0.8
o3(R) + GPT-4.1(D)* 98.2 ± 0.9 25.8 ± 1.9 5.8 ± 1.6 3.1 ± 1.9 9.3 ± 0.8 18.2 ± 1.9
GPT-5* 85.3 ± 3.5 26.2 ± 1.6 4.4 ± 1.2 3.1 ± 0.4 9.3 ± 0.8 16.9 ± 1.2

R&D-Agent (Ours)

o3(R) + GPT-4.1(D) 94.2 ± 0.4 44.9 ± 0.4 6.2 ± 0.9 7.5 ± 1.2 16.0 ± 0.8 29.7 ± 0.4
GPT-5 96.0 ± 0.0 45.3 ± 0.0 6.7 ± 1.5 12.0 ± 0.8 16.4 ± 0.9 35.1 ± 0.4

2This differs from ML-Master’s official 29.3% primarily due to: (1) hardware differences (V100 vs. A100
GPU), and (2) backend model differences (GPT-5 vs. Deepseek-R1). We report this for transparent comparison
under identical conditions.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4.3 ABLATION STUDY

We quantify each component’s contribution by removing one component at a time while preserving all
others. For computational efficiency, evaluations are conducted on a curated subset of 40 competitions
from MLE-Bench (Chan et al., 2024) using GPT-5 (see Appendix D.4). This subset includes tasks
where our method, AIDE (Jiang et al., 2025), or ML-Master (Liu et al., 2025) achieved medals,
ensuring coverage of scenarios most influenced by our design.

Our analysis aligns with the dual-phase architecture: the research phase ablation evaluates four com-
ponents (dynamic planning, exploration path structuring, memory context, and reasoning pipeline),
while the development phase ablation focuses on implementation elements (coding workflows and
evaluation strategy).

4.3.1 RESEARCH PHASE ABLATION STUDY

Table 3 summarizes our analysis across four key metrics: (1) Avg. Loops: number of R&D loops
per competition, (2) Improve Rate: percentage of R&D loops yielding performance gains, (3)
First-Medal: time to first medal-winning solution, (4) Medal Rate: percentage achieving medals in
the 40-competition subset. (5) Any Medal: percentage achieving medals in the whole 75-competition
set. The 35 remaining competitions are all considered non-medal in this calculation.

Table 3: Research Phase Ablation Results on 40-competition subset. Each column removes one
component while preserving others. Full System shows mean ± SEM over 3 runs; ablation results
report single representative runs due to computational constraints.

Metric Full System w/o Planning w/o Exploration w/o Reasoning w/o Memory
Path Pipeline Context

Avg. Loops 45.9 ± 2.2 48.4 19.4 55.3 44.0
Improve Rate (%) 41.1 ± 0.4 39.4 40.0 23.0 40.9
First-Medal (h) 2.9 ± 0.1 1.7 3.0 1.7 2.0
Medal Rate (%) 65.8 ± 0.8 50.0 47.5 50.0 60.0
Any Medal (%) 35.1 ± 0.4 26.7 25.3 26.7 32

Each ablation reveals how R&D-Agent degrades toward existing baselines (Table 1), confirming our
framework’s architectural advantages:

• w/o Planning (24% relative decline). Degrading component Planning from Dynamic to baseline
approaches lacking strategic resource allocation ("/"). Any Medal Rate drops from 35.1% to
26.7%. Despite faster First-Medal time (2.9h→1.7h), the system rushes to local optima without
temporal adaptation, matching the performance degradation observed in methods like AIDE.

• w/o Exploration Path (28% relative decline). The most severe degradation occurs when
degrading Adaptive path structuring to sequential chain exploration (similar to MLE-STAR (Nam
et al., 2025)). Any Medal Rate drops to 25.3% and average loops fall dramatically (45.9→19.4),
demonstrating how tree-based adaptive exploration fundamentally outperforms rigid chain
structures in solution space coverage.

• w/o Reasoning Pipeline (24% relative decline). Degrading our Scientific multi-step reasoning
to baseline one-step approaches used by prior methods. Any Medal Rate drops to 26.7% and
Improve Rate collapses (41.1%→23.0%). Despite high exploration volume (55.3 loops), the
system generates improvements in only 23% of loops, highlighting how structured multi-step
reasoning enables more effective hypothesis generation than simple one-step approaches.

• w/o Memory Context (9% relative decline). Degrading component Memory Context from Col-
laborative Communication to a simple memory management approach(similar to ML-Master (Liu
et al., 2025)), showing the smallest degradation to 32.0% Any Medal Rate. The preserved itera-
tion efficiency suggests that while collaborative memory provides optimization benefits, core
learning mechanisms remain functional through alternative pathways, validating our architectural
separation between fundamental and enhancement components.

These results demonstrate that R&D-Agent’s superior performance stems from architectural in-
novations, with exploration path structuring providing the most critical advantage over existing
approaches.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.3.2 DEVELOPMENT PHASE ABLATION STUDY

Unlike research components that affect idea generation, development components impact solution
implementation quality and reliability. We analyze their contributions through temporal medal
acquisition patterns over 12 hours, as shown in Figure 3. This temporal approach reveals not just
final performance, but also when and how quickly each component contributes to success. Results
combine ablation studies with one representative run from the primary experiment, illustrating the
temporal dynamics of development components.

Perfect Selection (Upper Bound). Theoretical maximum performance if we could submit all
generated solutions and select the best performer. This oracle bound reaches 37.3% Any Medal Rate,
establishing our solution pool’s upper limit.

Full System. Exhibits rapid initial progress (0-2h), steady refinement (2-6h), and convergence
at 34.7% Any Medal Rate. Achieving 93% of perfect selection demonstrates effective solution
identification without test set access.

Figure 3: Development Phase Temporal Ab-
lation. Medal acquisition rate (percentage of
75 competitions) over 12 hours reveals when
and how each component contributes.

W/o Coding Workflow. Degrading our Efficient &
Iterative Debug workflow forces the system to use
full-dataset debugging like baseline methods. Perfor-
mance drops immediately to 24.0% Any Medal Rate
and remains persistently degraded. This demonstrates
that our sample-based debugging fundamentally out-
performs traditional full-dataset approaches, where
computational overhead severely constrains explo-
ration within time budgetsthe same bottleneck that
limits existing systems.

W/o Evaluation Strategy. Degrading our Aggre-
gated evaluation strategy to baseline approaches
without systematic evaluation. Performance initially
matches the full system until hour 2, then diverges
significantly to 30.7% Any Medal Rate. This delayed
degradation shows that while basic evaluation suffices
for simple solutions, sophisticated multi-dimensional
evaluation becomes critical as solution complexity
and over-fit risk increases-an advantage absent in existing methods.

These temporal patterns show how R&D-Agent’s development innovations address fundamental
bottlenecks overlooked by prior work: coding workflow provides implementation efficiency from the
start, while evaluation strategy enables sustained improvement as solutions grow sophisticated.

5 RELATED WORK IN APPENDIX A

6 CONCLUSION

In this paper, we introduced R&D-Agent, a comprehensive and decoupled framework that transforms
MLE agent design from monolithic construction into systematic exploration. We proposed explicit
phase separation between research and development as the core design principle, implemented through
six extensible and modular components that enable efficient exploration of complex solutions.

Guided by human-expert workflows, we discovered an optimal configuration that achieves 35.1%
Any-Medal Rate on MLE-Bench, establishing a new state-of-the-art despite operating with more
limited computational resources than prior work. Comprehensive ablation studies validate the
contribution of each component, confirming that our framework’s extensible architecture, rather than
merely improved model capabilities, is the key driver of these performance gains.

R&D-Agent enables researchers to systematically test and compare different agent architectures
within a unified framework, eliminating the need to rebuild entire systems from scratch. The
framework’s modularity allows precise attribution of performance gains to specific components,
transforming agent development from trial-and-error into principled experimentation. By open-
sourcing both the framework and our discovered configurations, we provide the ML community with
immediately deployable solutions and a platform for further innovation in autonomous AI systems.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure reproducibility of our work, we provide comprehensive implementation details and re-
sources throughout the paper and supplementary materials. The complete source code for the
R&D-Agent framework, including all six modular components and our discovered optimal config-
uration, is available as anonymous supplementary material. Algorithm 1 presents the high-level
framework structure, with detailed component implementations described in Section 3.3. Complete
prompts and technical specifications for each component are provided in Appendix E. Our exper-
imental setup is fully specified in Section 4.1, including hardware environment, time constraints,
and evaluation protocol on MLE-Bench. All reported results represent mean ± SEM across three
independent runs with different random seeds to ensure statistical robustness. Upon acceptance, we
will publicly release the complete codebase with documentation and tutorials.

ETHICS STATEMENT

Our work on R&D-Agent is guided by a commitment to contribute to society and human well-
being by responsibly augmenting data science practice rather than replacing expert judgment. We
uphold high standards of scientific excellence through rigorous evaluation on public, appropriately
licensed datasets, reproducible ablations, and transparent reporting of assumptions, limitations, and
negative results. To avoid harm, we do not use sensitive or personally identifiable data, we encourage
domain-appropriate oversight for any deployment, and we design workflows that minimize misuse
and leakage of credentials or private materials. We are honest, trustworthy, and transparent about
methods, data, and outcomes; we seek fairness and take action to avoid discrimination by monitoring
for bias and refraining from using protected attributes in ways that could lead to disparate impact.
We respect the work required to produce new ideas and artefacts through proper citation and license
compliance, and we respect privacy and honour confidentiality by safeguarding any proprietary assets
shared in evaluation and by preventing unauthorized disclosure.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Moez Ali. PyCaret: An open source, low-code machine learning library in Python, April 2020. URL
https://www.pycaret.org. PyCaret version 1.0.0.

Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio
Starace, Kevin Liu, Leon Maksin, Tejal Patwardhan, et al. Mle-bench: Evaluating machine learning
agents on machine learning engineering. arXiv preprint arXiv:2410.07095, 2024.

Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, Mu Li, and Alexander
Smola. Autogluon-tabular: Robust and accurate automl for structured data. arXiv preprint
arXiv:2003.06505, 2020.

Behrooz Ghorbani, Orhan Firat, Markus Freitag, Ankur Bapna, Maxim Krikun, Xavier Garcia,
Ciprian Chelba, and Colin Cherry. Scaling laws for neural machine translation. In International
Conference on Learning Representations, 2023.

Alex Graves. Long short-term memory. Supervised sequence labelling with recurrent neural
networks, pp. 37–45, 2012.

HeyNeo Team. Neo: Next-generation ai agents. https://heyneo.so/blog, 2025.

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. Mlagentbench: Evaluating language agents
on machine learning experimentation. arXiv preprint arXiv:2310.03302, 2023.

Akira Isihara. Statistical physics. Academic Press, 2013.

Berivan Isik, Natalia Ponomareva, Hussein Hazimeh, Dimitris Paparas, Sergei Vassilvitskii, and
Sanmi Koyejo. Scaling laws for downstream task performance in machine translation. In The
Thirteenth International Conference on Learning Representations, 2025.

10

https://www.pycaret.org
https://heyneo.so/blog

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zhengyao Jiang, Dominik Schmidt, Dhruv Srikanth, Dixing Xu, Ian Kaplan, Deniss Jacenko, and
Yuxiang Wu. Aide: Ai-driven exploration in the space of code. arXiv preprint arXiv:2502.13138,
2025.

Liqiang Jing, Zhehui Huang, Xiaoyang Wang, Wenlin Yao, Wenhao Yu, Kaixin Ma, Hongming
Zhang, Xinya Du, and Dong Yu. Dsbench: How far are data science agents to becoming data
science experts? arXiv preprint arXiv:2409.07703, 2024.

Stepan Kulibaba, Artem Dzhalilov, Roman Pakhomov, Oleg Svidchenko, Alexander Gasnikov, and
Aleksei Shpilman. Kompeteai: Accelerated autonomous multi-agent system for end-to-end pipeline
generation for machine learning problems. arXiv preprint arXiv:2508.10177, 2025.

Lei Liang, Zhongpu Bo, Zhengke Gui, Zhongshu Zhu, Ling Zhong, Peilong Zhao, Mengshu Sun,
Zhiqiang Zhang, Jun Zhou, Wenguang Chen, et al. Kag: Boosting llms in professional domains via
knowledge augmented generation. In Companion Proceedings of the ACM on Web Conference
2025, pp. 334–343, 2025.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Zexi Liu, Yuzhu Cai, Xinyu Zhu, Yujie Zheng, Runkun Chen, Ying Wen, Yanfeng Wang, Siheng
Chen, et al. Ml-master: Towards ai-for-ai via integration of exploration and reasoning. arXiv
preprint arXiv:2506.16499, 2025.

Bodhisattwa Prasad Majumder, Harshit Surana, Dhruv Agarwal, Bhavana Dalvi Mishra, Abhi-
jeetsingh Meena, Aryan Prakhar, Tirth Vora, Tushar Khot, Ashish Sabharwal, and Peter Clark.
Discoverybench: Towards data-driven discovery with large language models. arXiv preprint
arXiv:2407.01725, 2024.

Aigerim Mansurova, Aiganym Mansurova, and Aliya Nugumanova. Qa-rag: Exploring llm reliance
on external knowledge. Big Data and Cognitive Computing, 8(9):115, 2024.

Jaehyun Nam, Jinsung Yoon, Jiefeng Chen, Jinwoo Shin, Sercan Ö Arık, and Tomas Pfister. Mle-
star: Machine learning engineering agent via search and targeted refinement. arXiv preprint
arXiv:2506.15692, 2025.

Gaurav Sahu, Abhay Puri, Juan Rodriguez, Amirhossein Abaskohi, Mohammad Chegini, Alexan-
dre Drouin, Perouz Taslakian, Valentina Zantedeschi, Alexandre Lacoste, David Vazquez, et al.
Insightbench: Evaluating business analytics agents through multi-step insight generation. arXiv
preprint arXiv:2407.06423, 2024.

Mohammad Shahab Sepehri, Zalan Fabian, Maryam Soltanolkotabi, and Mahdi Soltanolkotabi.
Mediconfusion: Can you trust your ai radiologist? probing the reliability of multimodal medical
foundation models. In The Thirteenth International Conference on Learning Representations,
2025.

Zhiqiang Tang, Haoyang Fang, Su Zhou, Taojiannan Yang, Zihan Zhong, Tony Hu, Katrin Kirchhoff,
and George Karypis. Autogluon-multimodal (automm): Supercharging multimodal automl with
foundation models. arXiv preprint arXiv:2404.16233, 2024.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

NovelSeek Team, Bo Zhang, Shiyang Feng, Xiangchao Yan, Jiakang Yuan, Zhiyin Yu, Xiaohan He,
Songtao Huang, Shaowei Hou, Zheng Nie, et al. Novelseek: When agent becomes the scientist–
building closed-loop system from hypothesis to verification. arXiv preprint arXiv:2505.16938,
2025.

Edan Toledo, Karen Hambardzumyan, Martin Josifoski, Rishi Hazra, Nicolas Baldwin, Alexis
Audran-Reiss, Michael Kuchnik, Despoina Magka, Minqi Jiang, Alisia Maria Lupidi, et al. Ai
research agents for machine learning: Search, exploration, and generalization in mle-bench. arXiv
preprint arXiv:2507.02554, 2025.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, et al. Openhands: An open platform for ai software
developers as generalist agents. arXiv preprint arXiv:2407.16741, 2024.

Yuzhe Yang, Yifei Zhang, Minghao Wu, Kaidi Zhang, Yunmiao Zhang, Honghai Yu, Yan Hu, and
Benyou Wang. Twinmarket: A scalable behavioral and social simulation for financial markets.
arXiv preprint arXiv:2502.01506, 2025.

Yiwen Yuan, Zecheng Zhang, Xinwei He, Akihiro Nitta, Weihua Hu, Dong Wang, Manan Shah,
Shenyang Huang, Blaž Stojanovič, Alan Krumholz, et al. Contextgnn: Beyond two-tower recom-
mendation systems. In Thirteenth International Conference on Learning Representations, 2025.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX

A RELATED WORK

Recent advances in large language models (LLMs) have enabled the development of general-purpose
agents capable of performing complex reasoning, planning, and decision-making across a wide
range of domains (Achiam et al., 2023; Team et al., 2023; Liu et al., 2024). In the context of data-
science(Chan et al., 2024; Jing et al., 2024; Majumder et al., 2024; Sahu et al., 2024; Huang et al.,
2023), these agents have demonstrated the potential to markedly improve efficiency and effectiveness
across diverse tasks, surpassing traditional automated methods in several benchmark evaluations.
Machine learning engineering (MLE) is a rapidly growing subfield of data science, which directly
delivers runnable machine learning solutions, MLE-Bench(Chan et al., 2024) is the most widely
adopted for evaluating general LLM-based MLE agents, as it draws from real Kaggle competitions
and incorporates human expert solutions for direct performance comparison, offering both realism
and rigor.

Research into automating MLE workflows has progressed along two complementary directions.
The first comprises highly encapsulated AutoML frameworks such as PyCaret (Ali, 2020) and
AutoGluon (Erickson et al., 2020; Tang et al., 2024), which offer predefined modeling pipelines
and automated hyperparameter optimization. The second involves LLM-driven AutoML agents
that leverage the reasoning and coding abilities of LLMs to dynamically design and refine machine
learning solutions. Some early methods (Jing et al., 2024) enabled agents to iteratively improve a
solution within a fixed scaffold, achieving promising results in a small set of concrete scenarios, but
they failed to generalize to broader MLE tasks. Therefore, a series of subsequent methods aimed
at general MLE have emerged. Examples include AIDE (Jiang et al., 2025), ML-Master (Liu et al.,
2025), KompeteAI (Kulibaba et al., 2025), and MLE-STAR (Nam et al., 2025), which differ in their
exploration path structures, coding workflows, and reasoning pipelines. Framework-oriented efforts,
such as AIRA (Toledo et al., 2025), show how flexible design space exploration can support adaptive
reasoning strategies. More recently, closed-source systems like Neo (HeyNeo Team, 2025) and
InternAgent (data science version) (Team et al., 2025) have achieved state-of-the-art performance,
but provide little transparency about their internal designs.

These explorations show the need for a comprehensive, extensible framework for systematic design
space exploration. We introduce R&D-Agent, which unifies and generalizes prior MLE agent designs
by separating the strategic research phase from the tactical development phase, enabling diverse
strategy integration and achieving state-of-the-art MLE-Bench results under stricter time limits.

B LLM USAGE STATEMENT

We used LLMs solely as general-purpose writing assistants to improve grammar, refine sentence
structure, and ensure style consistency throughout the manuscript. The LLMs did not contribute to
the core research ideas, framework design, experimental methodology, or interpretation of results. All
research contributions, including the R&D-Agent framework design, experimental setup, and analysis,
were developed entirely by the authors. The use of LLMs in our experiments (as the backend for
R&D-Agent) is part of the research methodology itself and is fully documented in the experimental
sections.

C ADDITIONAL EXPERIMENTS

C.1 PERFORMANCE ANALYSIS ACROSS DIFFERENT BACKEND LLMS

We evaluated R&D-Agent’s adaptability using three LLM configurations: GPT-4.1 only, o3 only, and
hybrid o3(R)+GPT-4.1(D). Figure 4 presents the results on MLE-Bench.

The results demonstrate two key findings. First, o3 only significantly outperforms GPT-4.1 only,
confirming that reasoning-enhanced models are critical for autonomous ML engineering. Second
and more importantly, the hybrid configuration achieves 29.3% Any-Medal Rate, surpassing both
single-model setups. This 4.0 percentage point improvement over o3 only indicates that our dual-
phase architecture creates synergistic benefits beyond simple model substitution, assigning reasoning
models to research and code generators to development yields a 57% relative improvement over
GPT-4.1 only.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

GPT-4.1 only o3 only o3(R) + GPT-4.1(D)
0%

5%

10%

15%

20%

25%

30%

An
y

M
ed

al
 R

at
e

(%
)

18.6%

25.3%

29.3%

Figure 4: Performance comparison of R&D-Agent across different backend LLM configurations. The
hybrid configuration achieves superior performance by leveraging specialized models for each phase.

These findings validate our framework’s core design principle: the modular architecture transforms
the limitation of single-model deployment into an advantage through phase-specific optimization.
Each phase leverages the most suitable model capabilities, enabling both superior performance and
cost-effective deployment where expensive reasoning models are selectively applied. The consistent
performance hierarchy (GPT-4.1 only < o3 only < hybrid) confirms that gains stem from principled
architectural design rather than model-specific tuning.

C.2 EFFECT OF EXTERNAL KNOWLEDGE

Retrieval-Augmented Generation (RAG) has emerged as a promising approach for enhancing LLM-
based agents. We investigated how incorporating external knowledge influences our agent’s perfor-
mance across different competition difficulty levels.

We compiled a comprehensive knowledge base from 85 Kaggle competitions (excluding those in
MLE-Bench), containing high-quality notebooks and forum discussions covering diverse competition
types including tabular data, computer vision, NLP, and time series forecasting. Our retrieval strategy
employs embedding-based similarity matching to identify the most relevant knowledge during the
research phase, where external knowledge is retrieved after problem analysis and incorporated as
reference material during solution design.

Table 4: Effect of external knowledge integration on agent performance. Values represent Any-Medal
rates (%) across three runs.

Configuration Low==Lite Medium High Overall

R&D-Agent (baseline) 68.2 21.1 22.2 35.1
R&D-Agent w/ RAG 54.6 21.1 26.7 32.0

As shown in Table 4, incorporating external knowledge surprisingly harms overall performance, with
particularly severe degradation on Low==Lite tasks. This counterintuitive finding challenges the
prevailing assumption that RAG universally improves LLM capabilities (Mansurova et al., 2024;
Liang et al., 2025).

The only scenario where RAG proves beneficial is for high-difficulty competitions, suggesting that
external knowledge primarily adds value when facing genuinely novel or specialized challenges
beyond the model’s training distribution. For standard ML tasks, we hypothesize that modern
LLMs have already internalized common patterns sufficiently well, and external retrieval introduces

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

noise that disrupts their problem-solving flow. These findings suggest that RAG should be applied
selectively based on task complexity rather than as a universal enhancement for MLE agents.

C.3 COMPUTATIONAL EFFICIENCY ANALYSIS

We evaluate R&D-Agent’s computational efficiency compared to existing methods. Table 5 summa-
rizes the runtime and GPU requirements across different agents.

Table 5: Runtime and GPU Specifications of Different Agents. None indicates that the GPU
information was not explicitly stated in the original paper.

Agent Runtime (h) GPU

MLAB GPT-4o 24 NVIDIA A10
OpenHands GPT-4o 24 NVIDIA A10
AIDE GPT-4o 24 NVIDIA A10
AIDE o1-preview 24 NVIDIA A10
ML-Master Deepseek-R1 12 NVIDIA A100
KompeteAI Gemini-2.5-flash 6 NVIDIA A100
MLE-STAR Gemini-2.5-pro 24 8× NVIDIA V100
MLE-STAR Gemini-2.0-flash 24 8× NVIDIA V100
AIRA Greedy 24 NVIDIA H200
AIRA MCTS 24 NVIDIA H200
R&D-Agent GPT-5(ours) 12 NVIDIA V100

R&D-Agent achieves state-of-the-art performance using only a single NVIDIA V100 GPU within 12
hours, demonstrating superior resource efficiency compared to methods requiring multiple GPUs
(e.g., MLE-STAR with 8×V100) or extended runtimes (24 hours for most baselines). The efficiency
advantage that we achieve comparable or better results with 2× less time and 8× fewer GPUs makes
our framework significantly more practical for real-world deployment where computational resources
are constrained.

C.4 COMPARISON WITH CLOSED-SOURCE SYSTEMS

To assess R&D-Agent’s competitiveness beyond open-source baselines, we compare against recent
closed-source commercial systems on MLE-Bench. As a framework for autonomous ML engineering,
R&D-Agent faces the dual challenge of achieving fully autonomous operation while competing
with proprietary systems that may leverage private datasets, custom infrastructure, and undisclosed
optimizations. Table 6 presents the comparison results.

Table 6: Comparison with Recent Closed-Source MLE-Bench Agents. Values show mean ± SEM.

Agent Time Low/Lite Medium High All
(h) (%) (%) (%) (%)

InternAgent (Team et al., 2025) 12 62.1± 3.0 26.3± 2.6 24.4± 2.2 36.4± 1.2
Neo (HeyNeo Team, 2025) 36 48.5± 1.5 29.8± 2.3 24.4± 2.2 34.2± 0.9
R&D-Agent 12 68.2± 2.6 21.1± 1.5 22.2± 2.2 35.1± 0.4

Despite being fully open-source and operating completely autonomously without human intervention,
R&D-Agent achieves remarkably competitive performance against closed-source systems. The
framework autonomously completes the entire ML pipeline, from problem analysis through solution
implementation to evaluation, approaching InternAgent’s 36.4%. This near-parity performance is
particularly notable given that our autonomous agent surpasses Neo (34.2%) while requiring only
one-third of the runtime (12h vs. 36h), demonstrating that efficient autonomous operation need not
compromise solution quality.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Our framework particularly excels on Low==Lite tasks, where R&D-Agent achieves 68.2%, outper-
forming both closed-source alternatives by substantial margins. This strong performance on founda-
tional tasks validates that our architectural innovationsthe dual-phase design enabling autonomous
research and development, modular components for systematic exploration, and standardized evalua-
tion protocolsprovide fundamental advantages for autonomous ML engineering.

C.5 EXTENDED ANALYSIS: MLE-BENCH LITE RESULTS

While our main experiments evaluate agents on the full MLE-Bench dataset, we additionally provide
detailed comparisons on the MLE-Bench Lite subset for completeness and to facilitate comparison
with methods that only report Lite results (Kulibaba et al., 2025; Nam et al., 2025). Figure 5 presents
comprehensive performance comparisons across all agents that have reported results on this subset.

R&D-A
ge

nt

GPT
-5

MLE
-S

TA
R

Gem
ini

-2.
5-p

ro

Int
er

nA
ge

nt

Dee
ps

ee
k-R

1

Kom
pe

te
AI

Gem
ini

-2.
5-f

las
h

ML-M
as

te
r

Dee
ps

ee
k-R

1 Neo
AIR

A

Gre
ed

y AID
E

o1
-p

re
vie

w

Ope
nH

an
ds

GPT
-4o MLA

B

GPT
-4o

0%

10%

20%

30%

40%

50%

60%

70%

80%

Lo
w

=
=

Li
te

 P
er

fo
rm

an
ce

 (
%

) 68.2±2.6 63.6±6.0
62.1±3.0

51.5±1.5
48.5±1.5 48.5±1.5 47.7

34.3±2.4

11.5±3.4

4.2±1.5

Figure 5: Agent performance on MLE-Bench (Lite). Each value represents the mean performance
across all benchmark tasks, with the value after “±” indicating SEM. For the AIRA agents, the
reported value is 0 because the original paper did not provide explicit results.

On the Lite subset, R&D-Agent achieves 68.2± 2.6%, establishing the highest performance among all
evaluated systems. This represents a 4.6 percentage point improvement over the previous best result
of 63.6 ± 6.0% (MLE-STAR with Gemini-2.5-pro), despite using significantly fewer computational
resources (as detailed in Appendix C.3). The performance progression from early agents (MLAB
at 4.2 ± 1.5%) to current state-of-the-art demonstrates the rapid advancement in autonomous ML
engineering capabilities.

D EXPERIMENTAL DETAILS AND SUPPLEMENTARY RESULTS

This section provides comprehensive experimental details and supplementary analysis to complement
the main results, including detailed performance breakdowns and experimental design specifications.

D.1 RAW MAIN EXPERIMENTAL RESULTS

Table 7 shows complete performance metrics for both R&D-Agent configurations across all three
independent runs, providing transparency into the variability and statistical robustness of our experi-
mental.

D.2 COST ANALYSIS

One critical advantage of R&D-Agent is its exceptional cost efficiency. Table 8 presents the compu-
tational costs per competition across three independent runs with GPT-5 in the main experiments,
demonstrating that our framework achieves state-of-the-art performance at remarkably low costs.

At approximately $21 per competition, R&D-Agent achieves medal-winning performance at a fraction
of traditional computational costs. This cost efficiency is particularly significant when compared
to typical ML engineering workflows, which often require extensive hyperparameter tuning, model
selection, and ensemble training that can consume hundreds or thousands of dollars in computational

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 7: Complete performance metrics for R&D-Agent configurations across three independent runs

Configuration Valid Sub. Above Median Bronze Silver Gold Any Medal
(%) (%) (%) (%) (%) (%)

R&D-Agent (GPT-5)
96.0 45.3 6.7 12.0 17.3 36.0
96.0 45.3 4.0 13.4 17.3 34.7
96.0 45.3 9.3 10.7 14.7 34.7

R&D-Agent (o3+GPT-4.1)
94.7 45.3 8.0 5.3 17.3 30.6
93.3 44.0 5.3 8.0 16.0 29.3
94.7 45.3 5.3 9.3 14.7 29.3

Table 8: Average computational cost per competition for R&D-Agent (GPT-5) across three runs (in
USD)

Run Research Phase Development Phase Total Cost
(per competition) (per competition) (per competition)

Run 1 $4.68 $11.14 $15.82
Run 2 $7.85 $14.37 $22.22
Run 3 $8.43 $15.75 $24.18

Average $6.99 $13.75 $20.74

resources. The framework’s ability to autonomously complete complex ML tasks from data analysis
through model development to final submission at such low costs represents a substantial reduction in
the barrier to entry for competitive ML engineering. This democratization of access enables academic
researchers, small organizations, and individual practitioners to engage in advanced ML development
without requiring substantial computational budgets, potentially accelerating innovation across the
broader ML community.

D.3 MEMORY CONTEXT DESIGN

Existing MLE agents employ various strategies for managing information across exploration traces.
MCTS-based methods achieve global information integration but often converge prematurely, while
AIDE maintains independent branches with greedy exploitation followed by late-stage merging. Kom-
peteAI combines different architectural components without explicit cross-branch communication.
These approaches face a fundamental trade-off: maintaining branch independence preserves diversity
but sacrifices efficiency through redundant exploration and missed knowledge transfer opportunities.

Our memory context design addresses this trade-off by enabling controlled information exchange
between otherwise independent branches. While diversity emerges naturally from different initial-
ization points and exploration paths, the lack of communication between branches leads to critical
inefficiencies: (i) successful hypotheses discovered in one branch cannot inform others, making it
difficult for branches to quickly reach optimal solutions; (ii) historical information from different
branches cannot be fully utilized, since each branch evolves independently without access to others’
past states.

To address these limitations, we introduce a probabilistic interaction mechanism inspired by statistical
physics (Isihara, 2013). After generating hypotheses in each branch, we apply a probabilistic
interaction kernel over all candidate hypotheses, thereby simulating the interaction process observed
in physical systems.

D.3.1 CANDIDATE HYPOTHESIS CONSTRUCTION

We construct the candidate pool from three complementary sources:

1. hc: Hypotheses proposed by the current main branch, designed as solutions based on the
problem in the current branch

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

2. h?: Globally optimal hypotheses from the highest-scoring loops in other branches (or
possibly from the branch itself)

3. hs: Hypotheses obtained by sampling the kernel of probabilistic interaction

The interaction kernel is formulated as:

Uij = αSije
−γL + β tanh(∆ij) ∈ [−2, 2], pij =

exp(Uij)∑
k exp(Uik)

, hs ∼ Categorical(pij) (1)

where Uij is the interaction potential between hypothesis hc
i and all historical hypothesis hj . The

parameters α and β are weights controlling the relative importance of the similarity Sij (cosine
similarity between embeddings of hc

i and hj) and score difference ∆ij . The parameter γ is a decay
factor based on the path length L.

The score difference ∆ij is defined as:

∆ij =

{
s?j − s?, if higher score is better
s? − s?j , if lower score is better

(2)

where s? is the best score across all branches (global best), and s?j is the best score in the current
branch. The final candidate hypotheses areHcand = {hc

1, . . . , h
c
m} ∪ {h?} ∪ {hs

1, . . . , h
s
n}.

This interaction potential function integrates both information from the hypothesis text and the score.
The decay factor e−γL applied to the hypothesis information reflects that the trajectory is not a
Markov process, the generation of later hypotheses depends on multiple previous steps. Therefore, in
the later stages of exploration, we want the weight of this component to decay rapidly, so that the
score information plays a more dominant role.

D.3.2 ADAPTIVE HYPOTHESIS SELECTION

In the second step, we use an LLM to select from these candidate hypotheses. In the LLM selection
algorithm, we do not intend to strictly constrain the range of hypotheses. The provided candidate
hypotheses serve only as a reference. Rather than being limited to selecting a single candidate
hypothesis, the prompt suggests three possible actions: (1) Select: choose the best hypothesis from
the candidate set; (2) Modify: revise an existing candidate hypothesis to improve it; (3) Generate:
create a new hypothesis based on the candidate hypotheses. This design aims to reduce hallucinations
and stabilize the outcomes across different traces.

Algorithm 2 presents the detailed selection process, which adapts its strategy based on the exploration
stage and remaining time budget.

Algorithm 2: LLM-Based Hypothesis Selection
Require: Candidate hypothesesHcand = {hc

1, . . . , h
c
m} ∪ {h?} ∪ {hs

1, . . . , h
s
n}, current SOTA

score s?j , s? global best score, time budget T
Ensure: Selected or generated hypothesis ho

// Candidate hypothesesHcand are for reference only
If s?j ≤ s? (higher score is better), prioritize {h?} ∪ {hs

1, . . . , h
s
n}; else prioritize {hc

1, . . . , h
c
m}

Draft Stage: Focus on simple, quick-to-implement hypotheses
• Select: Pick the most promising hypothesis from candidates
• Modify: Adjust candidate (hyperparameters, loss, augmentations)
• Create: Integrate advantages from multiple candidates or historical hypotheses

Improvement Stage: Focus on meaningful gains without overcomplicating
• Select: Pick the single most promising candidate
• Modify: Refine candidate for faster iteration and improved gain
• Create: Combine best parts of candidates into a new hypothesis

Multi-trace Merge Stage (Final): Integrate best solutions across all traces
• Select: Identify complementary solutions from different traces
• Modify: Adapt solutions from other traces to current context
• Create: Synthesize strengths from multiple traces into unified solution

Return ho

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

This adaptive selection mechanism, combined with the probabilistic interaction kernel, enables
efficient cross-branch learning without sacrificing exploration diversity. The stage-aware strategy
progresses from rapid exploration (Draft) through focused improvement to final multi-trace integra-
tion, ensuring that the system leverages the collective discoveries from all parallel explorations. The
multi-trace merge stage specifically enables the synthesis of complementary solutions discovered
independently, maximizing the benefit of our parallel exploration architecture.

D.4 COMPETITION SUBSET FOR ABLATION STUDIES

Table 10 lists the complete set of 40 competitions used in our development phase ablation experiments.
These competitions represent a diverse range of machine learning tasks, including classification,
regression, and time-series forecasting challenges across tabular, text, image, and multimodal data
types.

D.5 COMPARATIVE BASELINE MEDAL ACHIEVEMENT STATISTICS

To provide comprehensive context for evaluating R&D-Agent’s performance, we present detailed
medal achievement statistics for competing baseline systems across the MLE-Bench evaluation set.
This analysis examines the consistency and reliability of different agent configurations across multiple
independent runs.

Table 9 summarizes the medal achievement frequency for two prominent baseline configurations: o3-
4.1 and GPT-5, each evaluated across three independent runs on 75 Kaggle competitions. The results
demonstrate significant variation in performance consistency across different model configurations.

Table 9: Medal achievement statistics for baseline agent configurations across 75 MLE-Bench
competitions. Each configuration was evaluated across three independent runs. Values represent the
number of medals achieved per competition (0-3).

Competition ML-Master ML-Master R&D-Agent R&D-Agent
o3+GPT4.1 GPT-5 GPT-5 o3+GPT4.1

inaturalist-2019-fgvc6 0 0 3 3
plant-pathology-2020-fgvc7 1 2 3 3
h-and-m-personalized-fashion-recommendations 2 0 0 0
the-icml-2013-whale-challenge-right-whale-
redux

1 2 3 3

jigsaw-toxic-comment-classification-challenge 0 0 2 0
detecting-insults-in-social-commentary 3 1 3 3
aptos2019-blindness-detection 1 0 2 2
iwildcam-2020-fgvc7 2 0 2 3
us-patent-phrase-to-phrase-matching 0 0 0 1
hotel-id-2021-fgvc8 3 2 3 3
freesound-audio-tagging-2019 0 0 0 0
rsna-miccai-brain-tumor-radiogenomic-
classification

2 0 1 1

text-normalization-challenge-russian-language 0 1 3 2
spooky-author-identification 0 0 3 1
tabular-playground-series-dec-2021 3 2 3 3
herbarium-2022-fgvc9 1 0 0 0
herbarium-2020-fgvc7 0 0 3 2
plant-pathology-2021-fgvc8 3 3 3 3
google-quest-challenge 0 1 3 3
stanford-covid-vaccine 0 2 3 2
random-acts-of-pizza 0 3 3 1
herbarium-2021-fgvc8 1 0 1 0
leaf-classification 0 0 2 0
nomad2018-predict-transparent-conductors 3 3 3 3
aerial-cactus-identification 0 1 2 2
seti-breakthrough-listen 1 0 1 1

Continued on next page

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 9 – continued from previous page

Competition ML-Master ML-Master R&D-Agent R&D-Agent
o3+GPT4.1 GPT-5 GPT-5 o3+GPT4.1

kuzushiji-recognition 0 0 1 0
cassava-leaf-disease-classification 0 0 0 0
predict-volcanic-eruptions-ingv-oe 2 2 3 3
whale-categorization-playground 0 0 0 2
learning-agency-lab-automated-essay-scoring-2 0 0 1 0
3d-object-detection-for-autonomous-vehicles 0 1 0 0
histopathologic-cancer-detection 3 3 3 3
dogs-vs-cats-redux-kernels-edition 3 2 3 3
tweet-sentiment-extraction 0 0 0 0
mlsp-2013-birds 0 0 1 0
iwildcam-2019-fgvc6 3 3 3 3
text-normalization-challenge-english-language 2 1 3 2
denoising-dirty-documents 1 3 3 3
google-research-identify-contrails-reduce-global-
warming

0 0 0 0

imet-2020-fgvc7 0 0 0 0
rsna-2022-cervical-spine-fracture-detection 0 0 0 0
vesuvius-challenge-ink-detection 0 0 0 0
tabular-playground-series-may-2022 0 0 0 0
alaska2-image-steganalysis 0 0 0 0
tensorflow2-question-answering 0 0 0 0
dog-breed-identification 0 0 0 0
siim-isic-melanoma-classification 0 0 0 0
osic-pulmonary-fibrosis-progression 0 0 0 0
vinbigdata-chest-xray-abnormalities-detection 0 0 0 0
ranzcr-clip-catheter-line-classification 0 0 0 0
lmsys-chatbot-arena 0 0 0 0
tensorflow-speech-recognition-challenge 0 0 0 0
champs-scalar-coupling 0 0 0 0
statoil-iceberg-classifier-challenge 0 0 0 0
jigsaw-unintended-bias-in-toxicity-classification 0 0 0 0
tgs-salt-identification-challenge 0 0 0 0
bms-molecular-translation 0 0 0 0
billion-word-imputation 0 0 0 0
smartphone-decimeter-2022 0 0 0 0
facebook-recruiting-iii-keyword-extraction 0 0 0 0
rsna-breast-cancer-detection 0 0 0 0
icecube-neutrinos-in-deep-ice 0 0 0 0
ventilator-pressure-prediction 0 0 0 0
nfl-player-contact-detection 0 0 0 0
siim-covid19-detection 0 0 0 0
hubmap-kidney-segmentation 0 0 3 2
hms-harmful-brain-activity-classification 0 0 0 0
AI4Code 0 0 0 0
chaii-hindi-and-tamil-question-answering 0 0 0 0
petfinder-pawpularity-score 0 0 0 0
multi-modal-gesture-recognition 0 0 0 0
new-york-city-taxi-fare-prediction 0 0 0 0
cdiscount-image-classification-challenge 0 0 0 0
uw-madison-gi-tract-image-segmentation 0 0 0 0

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 10: Complete list of 40 MLE-Bench competitions used for development phase ablation studies

ID Competition Name Category Complexity

1 3d-object-detection-for-autonomous-vehicles Image Segmentation High

2 aerial-cactus-identification Image Classification Low

3 aptos2019-blindness-detection Image Classification Low

4 cassava-leaf-disease-classification Image Classification Medium

5 denoising-dirty-documents Image to Image Low

6 detecting-insults-in-social-commentary Text Classification Low

7 dogs-vs-cats-redux-kernels-edition Image Classification Low

8 freesound-audio-tagging-2019 Audio Classification Medium

9 google-quest-challenge Training LLMs Medium

10 h-and-m-personalized-fashion-
recommendations

Tabular Medium

11 herbarium-2020-fgvc7 Image Classification Medium

12 herbarium-2021-fgvc8 Image Classification Medium

13 herbarium-2022-fgvc9 Image Classification Medium

14 histopathologic-cancer-detection Image (Other) Low

15 hotel-id-2021-fgvc8 Image Classification Medium

16 hubmap-kidney-segmentation Image Segmentation Medium

17 inaturalist-2019-fgvc6 Image Classification Medium

18 iwildcam-2019-fgvc6 Image Classification High

19 iwildcam-2020-fgvc7 Image Classification Medium

20 jigsaw-toxic-comment-classification-challenge Text Classification Low

21 kuzushiji-recognition Image Classification Medium

22 leaf-classification Image Classification Low

23 learning-agency-lab-automated-essay-scoring-2 Text Classification Medium

24 mlsp-2013-birds Audio Classification Low

25 nomad2018-predict-transparent-conductors Tabular Low

26 plant-pathology-2020-fgvc7 Image Classification Low

27 plant-pathology-2021-fgvc8 Image Classification Medium

28 predict-volcanic-eruptions-ingv-oe Signal Processing High

29 random-acts-of-pizza Text Classification Low

30 rsna-miccai-brain-tumor-radiogenomic-
classification

Image (Other) High

31 seti-breakthrough-listen Signal Processing Medium

32 spooky-author-identification Text Classification Low

33 stanford-covid-vaccine Tabular High

34 tabular-playground-series-dec-2021 Tabular Low

35 text-normalization-challenge-english-language Sequence to Sequence Low

36 text-normalization-challenge-russian-language Sequence to Sequence Low

37 the-icml-2013-whale-challenge-right-whale-
redux

Audio Classification Low

38 tweet-sentiment-extraction Text Classification Medium

39 us-patent-phrase-to-phrase-matching Text (Other) Medium

40 whale-categorization-playground Image Classification Medium

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

E PROMPT

E.1 PLANNING

The Planning component implements dynamic time-aware strategy selection, adapting experimental
approaches based on remaining computational budget and current exploration state. Rather than
relying on fixed schedules, it dynamically evaluates the exploration trace and remaining time to
determine the optimal balance between breadth and depth of exploration.

Competition Analysis Prompt — Planning Component

You are a data science assistant that extracts structured information from unstructured text.
The user will provide you a Kaggle competition description, and you need to extract specific
details from it.
Please answer in json format with the following schema:

• “Task Type”: The type of competition task, e.g., ‘Classification’, ‘Regression’,
‘Time-Series Forecasting’

• “Data Type”: The type of competition data, e.g., ‘Tabular’, ‘Time Series’, ‘Text’,
‘Image’, ‘Audio’

• “Brief Description”: A brief description of the competition
• “Dataset Description”: The dataset structure based on processed data folder de-

scription
• “Submission Specifications”: The submission specification & sample submission

file descriptions
• “Metric Evaluation Description”: A precise explanation of how submissions are

scored
• “Metric Name”: The name of the metric which this competition uses for scoring
• “Metric Direction”: True or False as True means bigger metric number is better
• “Longer time limit required”: True or False, whether the scenario requires a longer

time limit

Dynamic Expert Role Assignment — Planning Component

You are a world-class data scientist and machine learning engineer with deep expertise in
statistics, mathematics, and computer science. Your knowledge spans cutting-edge data
analysis techniques, advanced machine learning algorithms, and their practical applications.
The task type for this competition is {{ task_type }}. The data type used in this competition
is {{ data_type }}.
Briefly, the competition involves: {{ brief_description }}.
The evaluation metric of this competition is: {{ metric_description }}.
Dynamic Time Management:

• Your execution is limited to {{ time_limit }} when specified
• Recommended time budget: {{ recommend_time_limit }} for efficiency
• Leverage all computational resources during the allocated time

E.2 EXPLORATION PATH STRUCTURING

The Exploration Path Structuring component manages parallel exploration across multiple solution
traces, implementing intelligent merging strategies and diversity-aware selection mechanisms. It coor-
dinates the systematic exploration of the solution space through structured branching and convergence
protocols.

Intelligent SOTA Selection — Exploration Path Structuring Component

You are an expert Kaggle competitor. You are given a list of SOTA experiments and feedbacks
for a Kaggle competition. You are tasked with reviewing the list of SOTA experiments and
feedbacks, and selecting the most promising experiment to submit.
Principles for Selection:

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

1. Valid Score as Primary Criterion: The valid score in the feedbacks is the most
crucial information and should be considered first. Also consider generalizability
and risk of overfitting when scores are close.

2. Generalizability:
• Data Diversity: Solutions leveraging more diverse data or input modalities

should be favored
• Stable Information: Solutions that are stable and converge faster should be

prioritized
• Refined Representations: Models with better generalized, robust features

should be favored
3. Risk of Overfitting:

• Be cautious of solutions with high valid scores that might overfit training data
• Ensure consistent performance across different validation folds
• Avoid significant performance fluctuations

Output Format:

1 {
2 "selected_SOTA_idx": [positive integer or None],
3 "explanation": "Brief explanation for selection"
4 }

Multi-Trace Solution Merging — Exploration Path Structuring Component

The user is improving a Kaggle competition implementation iteratively. Your task is to merge
multiple solutions to create a better version that combines the strengths of multiple solutions
while discarding their weaknesses, to create a new version that is better than any of the given
solutions alone.
Input Structure:

1. Previous Main Solution: The main solution you will build on to create an improved
version

2. Solutions to be merged: Multiple trials of solutions that you will combine with the
previous main solution. For each solution to be merged, you will receive:

• Solution Description: The approach or method used in this solution
• Feedback to the Solution: Steps or changes that led to success, or failure

analysis
Merging Strategy: Systematically analyze the successful components from each solution
and integrate them while avoiding known failure patterns from the feedback history.

E.3 REASONING PIPELINE

The Reasoning Pipeline component orchestrates systematic hypothesis formulation through structured
scientific reasoning, implementing multi-dimensional problem identification and rigorous evalua-
tion protocols. It transforms observations and historical knowledge into testable hypotheses with
quantitative assessment criteria.

Systematic Problem Identification — Reasoning Pipeline Component

Your task is to analyze the provided information and identify a concise list of Key Challenges
or Core Problems relevant to achieving success in this competition. Aim for FEWER BUT
BETTER challenges (e.g., 2-3 critical challenges), focusing on the most impactful aspects.
Core Analysis Dimensions:

• Gap Identification: Examine what successful approaches highlight as unexploited
methodological avenues

• Domain-Implementation Coherence Check: Identify technical violations of do-
main constraints

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

• SOTA Alignment Analysis: Compare current SOTA against dataset properties and
identify discrepancies

• Resource-Performance Trade-offs: Identify computational or time constraint
issues

Problem Categorization Framework:
1. Data-Related Problems: Missing preprocessing, feature engineering gaps, data

quality issues
2. Model-Related Problems: Architecture misalignment, hyperparameter suboptimal-

ity
3. Evaluation-Related Problems: CV strategy issues, overfitting risks, metric mis-

alignment
4. Implementation-Related Problems: Code bugs, inefficient implementations, time-

out issues

Scientific Hypothesis Generation — Reasoning Pipeline Component

You are a research scientist formulating testable hypotheses. For each hypothesis, perform
two main tasks: hypothesis proposal and rigorous five-dimensional evaluation.
Hypothesis Development Guidelines:

1. Specificity & Decisiveness: State exact, unambiguous changes. Avoid vague goals
or alternatives.

2. Testability & Actionability: Describe implementable and measurable changes.
Focus on single, unified conceptual improvements.

3. Evidence-Based Reasoning: Ground hypotheses in experimental history or domain
knowledge.

4. Implementation Feasibility: Consider resource constraints and technical complex-
ity.

Five-Dimensional Evaluation Protocol: Score each hypothesis (1-10) across:
• Problem-Hypothesis Alignment: How well the hypothesis addresses the identified

problem
• Expected Impact: The estimated improvement after applying the hypothesis
• Novelty: Degree of innovation compared to previous attempts
• Feasibility: The ease of implementing the proposed hypothesis
• Risk-Reward Balance: The exploration-exploitation balance of the proposed hy-

pothesis
Component Classification: Assign each hypothesis to: DataLoadSpec, FeatureEng,
Model, Ensemble, or Workflow.

E.4 MEMORY CONTEXT

The Memory Context component manages collaborative knowledge accumulation and retrieval,
implementing structured feedback analysis and cross-experiment learning mechanisms. It maintains
historical performance records and enables knowledge transfer across exploration traces.

Structured Experiment Analysis — Memory Context Component

You are an advanced assistant analyzing results in data-driven R&D. Your task is to analyze
the current experiment’s hypothesis, implementation (code and its changes), and results,
explicitly comparing them with previous best SOTA result step by step.
Step-by-step Analysis Process:

1. Verify Submission Format: Check format compliance and validity
2. Evaluate Alignment with Competition Requirements: Assess consistency with

evaluation protocol
3. Analyze Experimental Results: Compare performance with SOTA and validate

hypothesis
Key Analysis Components:

• SOTA Comparison: Direct comparison with historical best performance

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

• Code Change Analysis: Analyze implementation differences via diff
• Performance Evaluation: Score comparison with metric-aware reasoning
• Hypothesis Validation: Whether experimental results support or refute the hypoth-

esis
Memory Integration Guidelines:

1. Historical Context: Reference previous similar attempts and their outcomes
2. Pattern Recognition: Identify recurring issues or successful strategies
3. Knowledge Transfer: Extract reusable insights for future experiments
4. Risk Assessment: Evaluate potential pitfalls based on historical failures

Memory-Enhanced Code Generation — Memory Context Component

You are a grandmaster-level data scientist generating robust, debuggable code following
systematic development process.
Important Context: You are working on sample datasets and your code will go through
automated iterations. Design your code to be iteration-friendly with comprehensive print
statements and clear debugging information to facilitate the automatic improvement process.
Memory-Enhanced Guidelines:

1. Historical Learning: Reference previous failed attempts and their feedback
2. Pattern Reuse: Apply successful patterns from similar tasks
3. Error Prevention: Avoid mistakes that occurred in previous experiments
4. Performance Optimization: Implement improvements suggested in historical

feedback
Quality Assurance Requirements:

• Debug Mode Integration: Support -debug flag with data sampling and timing
estimation

• Structured Output: Use print statements for progress tracking, avoid external
logging dependencies

• Reproducibility: Implement proper random seed management and deterministic
behavior

• Resource Management: Dynamic resource allocation and proportional data split-
ting

E.5 CODING WORKFLOW

The Coding Workflow component implements an efficient iterative debugging strategy that enables
rapid prototyping through intelligent data sampling and systematic code evaluation. This component
addresses the computational challenge of developing solutions for large-scale datasets by employing
a debug-first approach that mirrors human development practices.

Iterative Debug Mode Implementation — Coding Workflow Component

You are a grandmaster-level data scientist generating robust, debuggable code following
systematic development process.
Important Context: You are working on sample datasets and your code will go through
automated iterations. Design your code to be iteration-friendly with comprehensive print
statements and clear debugging information to facilitate the automatic improvement process.
Debug Mode Protocol: Your code will be executed in debug mode with the following
command:
python main.py --debug
Data Sampling Strategy:

• Training Data: Sample 10% of the training data to quickly test code correctness
• Epoch Reduction: Run minimum epochs for rapid iteration loops
• Test Data Efficiency: Perform inference only on the first test sample, use placehold-

ers for remaining samples
• Class Preservation: Maintain identical label class numbers between debug and full

modes

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Timing and Estimation Requirements: Implement precise timing mechanism to estimate
full run duration:
start_time = time.time()
Train your model (timing scope)
end_time = time.time()
debug_time = end_time - start_time
Output timing information in standardized format:
=== Start of Debug Information ===
debug_time: {actual_debug_time_in_seconds}
estimated_time: {estimated_full_run_time_in_seconds}
=== End of Debug Information ===
Validation Strategy Safeguards: Handle stratified sampling edge cases with robust fallback
mechanisms:
try:

fold_indices = StratifiedKFold(...).split(train_X, train_y)
except Exception as e:

fold_indices = KFold(...).split(train_X, train_y)

Systematic Code Evaluation Framework — Coding Workflow Component

Rigorously evaluate code implementation through multi-stage assessment pipeline ensuring
execution correctness, competition alignment, and submission authenticity.
Evaluation Pipeline:

1. Execution Success: Verify error-free code execution with focus on functionality
over performance

2. Competition Alignment: Confirm strict adherence to evaluation rules and experi-
mental setup consistency

3. Debug Mode Compliance: Validate proper debug mode implementation and timing
estimation accuracy

4. Submission Authenticity: Verify genuine model-generated predictions, preventing
fabricated or placeholder outputs

Debug Mode Compliance Criteria:
• Data Sampling: Exactly 10% training data sampling with maintained class distribu-

tions
• Timing Accuracy: Reasonable debug execution time with realistic full-run estima-

tions
• Early Stopping Integration: Proper consideration of early stopping in time estima-

tion calculations
• Output Consistency: Identical submission format between debug and full modes

Submission Verification Protocol:
• Format Compliance: Strict matching of column names, index format, and data

types
• Authenticity Verification: Cross-reference code logic and stdout to ensure genuine

model predictions
• Anti-Cheating Measures: Detect and reject constant, random, or hard-coded

submission values
• Model Checkpoint Usage: Verify usage of best saved model for final predictions

Quality Assurance Standards: The evaluation framework enforces comprehensive quality
checks including execution traceability, algorithmic appropriateness assessment, and technical
implementation review to ensure reproducible and reliable solution development.

E.6 EVALUATION STRATEGY

The Evaluation Strategy component implements automated data splitting and performance assessment
protocols to ensure robust model validation and selection. This component addresses the critical
challenge of overfitting to validation sets by creating consistent holdout datasets and implementing
standardized evaluation protocols across experiments.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Automated Data Sampling — Evaluation Strategy Component

Generate a single, self-contained Python script that strictly follows the user’s instructions.
Requirements:

• The script MUST be runnable via python <file>.py without extra arguments
unless specified

• Prefer standard libraries; it’s OK to use numpy/pandas/scikit-learn if helpful
• Use robust error handling and clear messages
• Use relative paths only and create missing directories when needed
• Keep the script concise and well-commented

Data Splitting Protocol: Write a separate script based on this code to sample 90% of the
data (while maintaining the class proportions as much as possible) as the new train set, and
10% as the new test set. Save the new train and test in the specified folder.
Save test label with id to label.csv, which is to be used for grading. Load source data
from path ./source directory.
Please make sure the new test set has the same columns as the original test set. Please make
sure all files used in the original code and exists in source folder are also available in the
specified folder.

Standardized Performance Grading — Evaluation Strategy Component

Write a Python script named grade.py to evaluate submission.csv produced by a
model. Evaluation Protocol:

• Input files: label.csv and submission.csv (relative to current working
directory)

• Output format: "score": float, "metric": str
• Metric consistency: Use the same evaluation metric as specified in the reference

code
• Error handling: Implement robust parsing and validation of submission format
• Data splitting strategy: Apply stratified sampling when creating train/validation

splits to preserve class distribution. When certain classes have insufficient samples
for proper stratification, prioritize ensuring all classes are represented in the training
set, then adjust validation split accordingly

The grading script must extract the competition-specific metric from the reference implemen-
tation and apply it consistently to the holdout test set, ensuring alignment between validation
methodology and final evaluation criteria. The evaluation should maintain class balance
awareness throughout the assessment process.

Validation Selector Implementation: The core evaluation strategy is implemented through the
ValidationSelector class, which performs multi-candidate re-validation using consistent holdout
datasets. This meta-selector operates in four stages:

1. Candidate Collection: Gathers top-performing experiments from multiple exploration
branches using BestValidSelector with configurable candidate limits

2. Synthetic Dataset Generation: Creates stratified 90-10 train-test splits while preserving
class proportions and data distribution characteristics

3. Parallel Re-evaluation: Executes all candidate models on the consistent holdout dataset
using isolated execution environments

4. Performance Ranking: Applies standardized grading protocols to rank candidates based on
holdout performance, accounting for metric direction (higher-is-better vs. lower-is-better)

This evaluation framework mitigates validation set overfitting by introducing a consistent, previously
unseen test set for final model selection, while maintaining computational efficiency through parallel
execution and robust error handling across the candidate pool.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

F CASE STUDY: COMPARATIVE ANALYSIS ON JIGSAW TOXIC COMMENT
CLASSIFICATION

To provide concrete evidence of R&D-Agent’s capabilities, we present a detailed comparison with
ML-Master on the Jigsaw Toxic Comment Classification Challenge, a multi-label text classification
task with severe class imbalance. Both systems operated under identical conditions: 12-hour runtime,
GPT-5 base model, and single V100 GPU. R&D-Agent achieved a bronze medal while ML-Master
performed slightly above median.

Table 11 summarizes the key technical differences between the two solutions, revealing substantial
distinctions in algorithmic sophistication and implementation quality.

Table 11: Technical comparison of R&D-Agent and ML-Master solutions on Jigsaw Toxic Comment
Classification Challenge

Aspect R&D-Agent ML-Master

Performance Bronze Medal Above Median
Loss Function AsymmetricLossMultiLabel (custom) BCEWithLogitsLoss (standard)
Batch Strategy Adaptive (OOM fallback) Fixed batch size
Architecture Modified RoBERTa w/ dropout Unmodified pretrained model
Text Truncation Head-tail preservation Standard truncation
Debug Mode Integrated fast iteration Not implemented
Token Analysis Per-label statistics Basic preprocessing

Our implementation demonstrates higher code quality and algorithmic sophistication. Specifically,
we design a custom AsymmetricLossMultiLabel loss function, which more accurately op-
timizes model performance in multi-label tasks with imbalanced positive and negative samples,
whereas ML-Master employs the standard BCEWithLogitsLoss. Furthermore, we utilize the
attempt_training_with_oom_fallback strategy, which adaptively determines the opti-
mal batch size, thereby improving computational efficiency.

In terms of model architecture, our approach customizes RobertaMultiLabel by incorporating
dropout and adding a flexible, trainable fully connected layer (self.classifier(x)), whereas
ML-Master directly uses the standard AutoModel.from_pretrained(model_name,
config=self.config) without modification. Additionally, we integrate a debug module that
facilitates rapid iteration and significantly reduces development time.

Our code also implements a Head+Tail deterministic truncation strategy, which preserves both the
beginning and end of texts, avoiding information loss, particularly for long sequences. It outputs the
head/tail fraction and truncation ratio, facilitating analysis of truncation effects on model performance.

F.1 CODE OF R&D-AGENT

R&D-Agent: Core code (Simplified)

This code is from R&D-agent:

=========================
Utility functions
=========================
def set_global_seed(seed=42):

random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False

def read_csv_safely(path):
...
return df

def sanitize_train_df(train_df, label_cols):

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

...
return train_df

def sanitize_test_df(test_df):
...
return test_df

=========================
Dataset & Collate
=========================
class TextDataset(Dataset):

def __init__(self, texts, labels=None):
self.texts = texts
self.labels = labels

def __len__(self):
return len(self.texts)

def __getitem__(self, idx):
if self.labels is not None:

return self.texts[idx], self.labels[idx]
return self.texts[idx]

"""
Collate function implementing deterministic head+tail truncation:
- Reserve special tokens (tokenizer.num_special_tokens_to_add(pair=False)).
- If content length > budget, take 75% head and 25% tail.
- Wrap with special tokens and pad to batch max length (<= max_length).
"""
special_tokens_count = tokenizer.num_special_tokens_to_add(pair=False)
content_budget = max_length - special_tokens_count
head_ratio = 0.75

def collate(batch):
if with_labels:

texts, labels = zip(*batch)
else:

texts = batch
labels = None

Minimal normalization
texts = [str(x).strip() if x is not None else "" for x in texts]

seqs = []
masks = []
for t in texts:

content_ids = tokenizer.encode(t, add_special_tokens=False)
if len(content_ids) <= content_budget:

kept_ids = content_ids
else:

head_count = int(math.floor(head_ratio * content_budget))
tail_count = int(content_budget - head_count)
if tail_count <= 0:

kept_ids = content_ids[:content_budget]
else:

kept_ids = content_ids[:head_count] + content_ids[-tail_count:]
final_ids = tokenizer.build_inputs_with_special_tokens(kept_ids)
seqs.append(final_ids)
masks.append([1] * len(final_ids))

Pad to batch max length
padded = tokenizer.pad(

{"input_ids": seqs, "attention_mask": masks},
padding=True,
return_tensors="pt"

)

input_ids = padded["input_ids"]
attention_mask = padded["attention_mask"]

if with_labels:
labels_tensor = torch.tensor(np.array(labels), dtype=torch.float32)
return input_ids, attention_mask, labels_tensor

else:
return input_ids, attention_mask

=========================
Model
=========================
class RobertaMultiLabel(nn.Module):

def __init__(self, model_name, num_labels=6):

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

super().__init__()
self.config = AutoConfig.from_pretrained(model_name)
self.backbone = AutoModel.from_pretrained(model_name, config=self.config)
hidden_size = getattr(self.config, "hidden_size", 768)
dropout_prob = getattr(self.config, "classifier_dropout", 0.1)
self.dropout = nn.Dropout(dropout_prob)
self.classifier = nn.Linear(hidden_size, num_labels)

def forward(self, input_ids, attention_mask):
last_hidden = self.backbone(input_ids, attention_mask).last_hidden_state
cls_repr = last_hidden[:, 0, :]
x = self.dropout(cls_repr)
logits = self.classifier(x)
return logits

=========================
Loss
=========================
class AsymmetricLossMultiLabel(nn.Module):

def __init__(self, gamma_pos=1.0, gamma_neg=4.0, clip=0.05, eps=1e-8, reduction="mean"):
super().__init__()
self.gamma_pos = float(gamma_pos)
self.gamma_neg = float(gamma_neg)
self.clip = float(clip) if clip is not None else 0.0
self.eps = float(eps)
self.reduction = reduction

def forward(self, logits: torch.Tensor, targets: torch.Tensor) -> torch.Tensor:
logits: [B, C], targets: [B, C] in {0,1}
Probabilities
x_sigmoid = torch.sigmoid(logits)
xs_pos = x_sigmoid
xs_neg = 1.0 - x_sigmoid

Asymmetric clipping for negatives
if self.clip > 0:

xs_neg = torch.clamp(xs_neg + self.clip, max=1.0)

Log-likelihoods with numeric stability
log_pos = torch.log(torch.clamp(xs_pos, min=self.eps))
log_neg = torch.log(torch.clamp(xs_neg, min=self.eps))

Basic loss
loss = targets * log_pos + (1.0 - targets) * log_neg

Asymmetric focusing
if self.gamma_pos > 0 or self.gamma_neg > 0:

pt = targets * xs_pos + (1.0 - targets) * xs_neg # pt for each example/label
one_sided_gamma = self.gamma_pos * targets + self.gamma_neg * (1.0 - targets)
modulating = torch.pow(1.0 - pt, one_sided_gamma)
loss = loss * modulating

Final reduction
loss = -loss
if self.reduction == "mean":

return loss.mean()
elif self.reduction == "sum":

return loss.sum()
else:

return loss

=========================
Training & Evaluation
=========================
def evaluate(model, val_loader, device, criterion, use_amp):

...
return mean_auc, per_label_auc, val_loss, probs

def train_one_run(train_loader, val_loader, device, model_name, lr=2e-5, max_epochs=2, ...):
model = RobertaMultiLabel(model_name).to(device)
optimizer = torch.optim.AdamW(model.parameters(), lr=lr)
scheduler = get_linear_schedule_with_warmup(optimizer, ...)
criterion = AsymmetricLossMultiLabel()
scaler = torch.cuda.amp.GradScaler(enabled=(device.type=="cuda"))
best_auc = -float("inf")
for epoch in range(max_epochs):

model.train()
for input_ids, attention_mask, labels in train_loader:

...
scaler.scale(loss).backward()

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

scaler.step(optimizer)
scaler.update()
scheduler.step()

mean_auc, _, val_loss, _ = evaluate(model, val_loader, device, criterion,
use_amp=True)
if mean_auc > best_auc:

best_auc = mean_auc
best_state_dict = {k:v.cpu() for k,v in model.state_dict().items()}

return best_state_dict, best_auc, _

def attempt_training_with_oom_fallback(train_dataset, val_dataset, tokenizer, device,
initial_batch_size=32, max_epochs=2):

for bs in [initial_batch_size, 24, 16]:
try:

train_loader = DataLoader(train_dataset, batch_size=bs, shuffle=True,
collate_fn=make_head_tail_collate_fn(tokenizer))
val_loader = DataLoader(val_dataset, batch_size=bs, shuffle=False,
collate_fn=make_head_tail_collate_fn(tokenizer))
return train_one_run(train_loader, val_loader, device, model_name="roberta-base",
max_epochs=max_epochs), bs

except RuntimeError as e:
if "out of memory" in str(e).lower():

torch.cuda.empty_cache()
continue

else:
raise

def main():
...
Debug mode: sample 10% after split

if DEBUG:
rng = np.random.default_rng(seed)
train_sample_size = max(1, int(0.1 * len(train_idx)))
val_sample_size = max(1, int(0.1 * len(val_idx)))
train_idx = rng.choice(train_idx, size=train_sample_size, replace=False)
val_idx = rng.choice(val_idx, size=val_sample_size, replace=False)
print(f"DEBUG mode active: using {len(train_idx)} train samples and {len(val_idx)}
val samples (10% of split).")

...

F.2 CODE OF ML-MASTER

ML-master: Core code (Simplified)

This code is from ML master:
import torch
from torch.utils.data import Dataset, DataLoader
from transformers import AutoTokenizer, AutoModelForSequenceClassification,
get_linear_schedule_with_warmup
from torch.cuda.amp import autocast, GradScaler
import numpy as np

=== Preprocessing & data loading ===
train_df, test_df = ...
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
encodings = tokenizer(...)

class ToxicDataset(Dataset):
"""Custom dataset for multi-label classification."""
def __init__(self, encodings, labels=None):

self.input_ids = encodings["input_ids"]
self.attention_mask = encodings["attention_mask"]
self.labels = labels

def __len__(self): return len(self.input_ids)
def __getitem__(self, idx):

item = {
"input_ids": torch.tensor(self.input_ids[idx]),
"attention_mask": torch.tensor(self.attention_mask[idx]),

}
if self.labels is not None:

item["labels"] = torch.tensor(self.labels[idx])
return item

=== DataLoader setup ===
train_loader = DataLoader(ToxicDataset(...), batch_size=32, shuffle=True)
val_loader = DataLoader(ToxicDataset(...), batch_size=32)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

=== Model, optimizer, and scheduler ===
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = AutoModelForSequenceClassification.from_pretrained(

"distilbert-base-uncased", num_labels=6
).to(device)

optimizer = torch.optim.AdamW(model.parameters(), lr=2e-5)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=...,
num_training_steps=...)
criterion = torch.nn.BCEWithLogitsLoss(pos_weight=...)
scaler = GradScaler()

=== Evaluation function ===
def evaluate(model, loader):

"""Compute ROC-AUC on validation set."""
model.eval()
all_probs, all_true = [], []
with torch.no_grad():

for batch in loader:
input_ids = batch["input_ids"].to(device)
mask = batch["attention_mask"].to(device)
outputs = model(input_ids=input_ids, attention_mask=mask)
probs = torch.sigmoid(outputs.logits).cpu().numpy()
all_probs.append(probs)
if "labels" in batch: all_true.append(batch["labels"].cpu().numpy())

Compute mean AUC over all labels
...
return mean_auc

=== Training loop ===
best_auc, best_state = -np.inf, None
for epoch in range(2):

model.train()
for batch in train_loader:

input_ids = batch["input_ids"].to(device)
mask = batch["attention_mask"].to(device)
labels = batch["labels"].to(device)

optimizer.zero_grad(set_to_none=True)
with autocast():

outputs = model(input_ids=input_ids, attention_mask=mask)
loss = criterion(outputs.logits, labels)

scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
scheduler.step()

Validation step
val_auc = evaluate(model, val_loader)
if val_auc > best_auc:

best_auc, best_state = val_auc, {k: v.cpu().clone() for k, v in
model.state_dict().items()}

=== Final evaluation & prediction ===
model.load_state_dict(best_state)
final_auc = evaluate(model, val_loader)
test_preds = model(...)
sub.to_csv("submission.csv")

32

	introduction
	Prerequisites
	R&D-Agent
	Framework Overview
	Framework Formulation
	A Human-Expert-Inspired Agent Design

	experiment
	Experiment Setup
	Main Results
	Ablation Study
	Research Phase Ablation Study
	Development Phase Ablation Study

	Related Work In Appendix A
	Conclusion
	Related Work
	LLM Usage Statement
	Additional Experiments
	Performance Analysis Across Different Backend LLMs
	Effect of External Knowledge
	Computational Efficiency Analysis
	Comparison with Closed-Source Systems
	Extended Analysis: MLE-Bench Lite Results

	Experimental Details and Supplementary Results
	Raw Main Experimental Results
	Cost Analysis
	Memory Context Design
	Candidate Hypothesis Construction
	Adaptive Hypothesis Selection

	Competition Subset for Ablation Studies
	Comparative Baseline Medal Achievement Statistics

	Prompt
	Planning
	Exploration Path Structuring
	Reasoning Pipeline
	Memory Context
	Coding Workflow
	Evaluation Strategy

	Case Study: Comparative Analysis on Jigsaw Toxic Comment Classification
	Code of R&D-Agent
	Code of ML-master

