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Abstract

Multimodal large language models (MLLMs)
demonstrate strong performance across visual
tasks, but their efficiency is hindered by sig-
nificant computational and memory demands
from processing long contexts in multimodal
inputs. To address this, we introduce PAR
(Prompt-Aware Token Reduction), a novel and
plug-and-play approach that reduces visual to-
kens efficiently without compromising model
performance. Unlike previous methods that
rely heavily on attention mechanisms and over-
looking cross-modal interactions , we uses a
prompt-aware strategy to adpative identify and
cluster essential visual tokens. PAR catego-
rizes visual context redundancy into two types:
external and internal. External redundancy is
minimized through semantic retrieval, while
internal redundancy is addressed using a to-
ken routing mechanism. This method substan-
tially reduces computational load without re-
quiring additional training or complex archi-
tectural modifications. Experimental results
demonstrate that across various visual ques-
tion answering tasks, PAR reduces FLOPs
by 83% with a compression ratio of 89 %,
while retaining 97% of baseline accuracy.
The adaptive design of PAR achieves a 2x token
reduction ratio compared to prior approaches,
enabling a better balance between performance
and efficiency.

1 Introduction

Thanks to advanced architectures and large-
scale training, large language models (LLMs) have
achieved remarkable success in natural language
understanding and generation tasks in a range
of NLP domains(Touvron et al.; Ouyang et al.,
2022; Chowdhery et al., 2023). While traditional
LLMs operate on textual inputs, real-world data
spans multiple modalities, including images, au-
dio, and point clouds. To bridge this gap, re-
cent research has extended LLM capabilities to
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Figure 1: Previous works relying on the attention mech-
anism, focus on global visual tokens and cause unnec-
essary redundancy. In contrast, our method is guided
by prompts and focuses more effectively on the task-
relevant visual tokens. Our approach achieves a token
reduction ratio about 2x of previous methods.

multimodal domains(Jin et al., 2024; Song et al.,
2023), giving rise to multimodal large language
models (MLLMs) such as GPT-4(OpenAl, 2024),
Gemini(Team, 2024), LLaVA(Liu et al., 2024),
and MiniGPT-4(Zhu et al., 2023). These mod-
els leverage pre-trained modality-specific encoders
and alignment strategies to integrate information
across modalities efficiently, enabling broader ap-
plicability without the cost of training from scratch.

Despite their potential, MLLMs face significant
computational and memory challenges, particularly
in deployment and inference. MLLMs rely on vi-
sual encoders to convert image inputs into large sets
of visual tokens, concatenated with prompt tokens,
forming long input sequences. This increase in
sequence length raises storage and computational
demands. How to reduce the number of visual
tokens without significantly impacting generation
performance is a critical challenge that must be
addressed.

Traditional token reduction methods (Chen et al.,
2023; Shang et al., 2024; Chen et al., 2025) typi-
cally rely on attention scores to remove unimpor-
tant tokens. However, these methods struggle to
adaptively balance efficiency and task relevance,
and often overlook the unique redundancy patterns



of visual tokens. Some also require customized
architectures (Chu et al., 2023; Cao et al., 2024,
Haurum et al., 2023), adding extra complexity. In
this work, we innovatively take an information-
theoretic view and classify visual redundancy into
two types: external redundancy, referring to task-
irrelevant information, and internal redundancy, re-
ferring to semantically repetitive yet task-relevant
tokens. This formulation guides our design of a
more efficient reduction method.

Fully considering both external and internal re-
dundancy observed in visual tokens, we introduce
a simple yet effective training-free token reduc-
tion method called PAR (Prompt-Aware Token
Reduction). In this approach, we develop a prompt-
aware strategy to identify and retrieve important
visual tokens within the given context, effectively
optimizing the selection of tokens based on their
semantic relevance.

Our method proceeds as follows. First, we apply
predefined templates to rewrite the user prompt, en-
hancing its semantic representation in future steps.
Next, we use a graph-based clustering algorithm
to partition visual tokens into meaningful semantic
clusters based on similarity distribution. We then
perform prompt-guided semantic retrieval, match-
ing the most prompt-relevant visual tokens to elim-
inate external redundancy. Finally, a token router
simplifies the retained tokens by refining the final
selection thus removing internal redundancy.

In the design of the experiments, we fully con-
sidered the balance between performance and effi-
ciency. Our goal was to achieve the optimal trade-
off by minimizing the final number of visual tokens
used while ensuring a minimal loss in accuracy. Ex-
perimental results show that PAR achieves an 83%
reduction in FLOPs and an 89% compression ratio
across diverse visual question-answering tasks, all
while preserving 97% of the baseline accuracy. No-
tably, in hallucination benchmarks(Li et al., 2023),
PAR outperforms the original model under specific
settings, indicating effective mitigation of hallu-
cination phenomena in MLLMs through reduced
external redundancy.

In summary, our work makes three main contri-
butions:

* We conducted an in-depth analysis of the re-
dundancy present in visual representations,
categorizing it into external and internal redun-
dancy. External redundancy refers to repre-
sentations irrelevant to the task, while internal

redundancy represents those that contribute
overlapping semantic information.

* Inspired by human cognition, we propose
PAR, a training-free method for reducing vi-
sual tokens. PAR leverages prompt semantics
to eliminate external redundancy, while a to-
ken router adaptively filters internal redundan-
cies, retaining only the most relevant tokens.

* Experimental results show that PAR not only
surpasses previous methods in accuracy but
also achieves a 2x token reduction, effectively
balancing efficiency and performance.

2 Related works

2.1 Multimodal Large Language Models

The development of Large Language Mod-
els (LLMs) such as GPT-3(Brown et al., 2020),
LLaMA(Touvron et al.), and GPT-4(OpenAl, 2024)
has seen substantial progress in recent years. These
advancements have inspired the evolution of Multi-
modal Large Language Models (MLLMs), which
extend the capabilities of LLMs to include images.
Notable examples of this progress are LLava(Liu
et al., 2024), MiniGPT-4(Zhu et al., 2023), Instruct-
BLIP(Dai et al., 2023),Qwen(Bai et al., 2023),and
Gemini(Team, 2024) .

These MLLMs primarily utilize a visual en-
coder(Radford et al., 2021) to process visual in-
put. They then align this visual data with text
through linear projection and concatenate the vi-
sual information with text tokens for generation
by a pre-trained LLM. By integrating data from
various modalities, MLLMs enhance contextual
understanding, thereby improving the accuracy of
information processing and generation.

Despite these advancements, MLLMs face sig-
nificant computational costs during inference and
deployment, highlighting the need for efficient to-
ken reduction techniques. Especially when dealing
with videos or high-resolution images, processing
thousands of tokens becomes necessary.

2.2 Visual token pruning

The quadratic complexity of Transformers
(Vaswani, 2017) is a significant challenge, espe-
cially for MLLMs where image inputs are con-
verted into numerous tokens. This process results
in substantial computational costs and limits scala-
bility due to the high memory demands of process-
ing long sequences.



Recent research has sought to improve infer-
ence efficiency by pruning visual tokens. LLaVA-
PruMerge (Shang et al., 2024) employs an adaptive
visual token reduction strategy that takes advan-
tage of the sparsity in visual encoders, selectively
retaining essential tokens and enhancing their infor-
mational content through clustering and weighted
averaging. FastV (Chen et al., 2025) reduces infer-
ence costs by learning adaptive attention patterns
in early layers and pruning tokens in later layers.
However, these approaches still rely heavily on
attention mechanisms and often overlook the cross-
modal relevance of tokens. Due to the inherent
properties of the attention mechanism, they strug-
gle to adaptively reduce tokens within a task-aware
context, making it difficult to maintain a balance
between performance and efficiency.

3 Methods

3.1 Preliminaries

Multimodal large language models(MLMMs)
(Liu et al., 2024)(OpenAl, 2024) represent a sig-
nificant advancement in artificial intelligence by
integrating visual encoders with pre-trained large
language models. This integration allows these
models to jointly process and understand diverse
modalities, such as images and text, enabling more
comprehensive and contextually aware analyses.

For a given image I, the visual encoder fy;suai
transforms it into a series of token representations
V:

V= fvisual(I) (1)

Here, V denotes a set of visual tokens {v;}! ; C
R? that capture essential visual features and se-
mantic information from the image. This process
allows image content to be encoded in a format
compatible with the language model, facilitating
the effective integration of visual and textual data.

3.2 Redundancy Analysis and Motivation

MLLMs typically handle lengthy sequences of
visual tokens densely extracted from images. Due
to the quadratic complexity of the attention mecha-
nism(Vaswani, 2017), processing such long visual
inputs imposes a significant computational burden,
regardless of whether all tokens are necessary for
the downstream task. While prior methods often
rely on intrinsic model properties, such as attention
mechanism for token selection or pruning, we take

a different perspective. We propose an information-
theoretic framework to formally characterize and
eliminate redundancy in MLLMs’ visual inputs.

In this section, we provide a conceptual and
theoretical analysis of two prevalent forms of re-
dundancy: external redundancy, where tokens are
irrelevant to the task, and internal redundancy,
where tokens carry overlapping information. This
analysis serves as the motivation for our proposed
method, which explicitly addresses both redun-
dancy types to improve efficiency and preserve
semantic integrity.

3.2.1 External Redundancy: Task-Irrelevant
Tokens

External redundancy refers to visual tokens that
are semantically unrelated to the task objective.
These tokens often originate from uninformative
background regions or task-irrelevant objects. This
issue is particularly prominent in Visual Question
Answering (VQA) tasks, where the model is ex-
pected to attend only to task-relevant regions, rather
than uniformly processing all visual input.

From an information-theoretic perspec-
tive(Kraskov et al., 2004), the irrelevance of such
tokens can be formalized as:

I(ve; Y |T) =0 (2)

where T’ denotes the task instruction, Y is the
model’s output, and v, C V is the subset of vi-
sual tokens deemed externally redundant.

Tokens with near-zero conditional mutual infor-
mation contribute minimally to the final output. Re-
taining such irrelevant content not only introduces
unnecessary computational overhead but may also
increase the risk of hallucination during genera-
tion, thereby compromising the faithfulness of the
model’s predictions.

3.2.2 Internal Redundancy: Repetitive or
Overlapping Tokens

Internal redundancy arises when multiple tokens
convey overlapping semantic content despite being
individually task-relevant. This commonly occurs
due to repeated textures or structures in the image.
With fixed patch-based vision encoders, a single
object may be split into multiple similar tokens,
producing duplicated representations.

Let V' = {v1,va,...,ux} C V be a subset of
visual tokens. We characterize internal redundancy
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Figure 2: The framework of our method. Given an input of image and text, PAR processes each modality
separately: the text is structured using predefined templates, and the image undergoes semantic clustering. Prompt
tokens are then retrieval with visual tokens to select relevant ones, reducing external redundancy. Finally, the token
router refines these selections, removing internal redundancy.Finally, the prompt token is concatenated with the
refined visual tokens and fed into the large language model (LLM) to generate the final answer.

via mutual information as follows:

Jv;,v; € V' 3)
I(vi; vj) >0, ()]
I Y | T) = I(vj; Y | T) (5)

Equation (4) indicates a high degree of semantic
similarity between tokens, suggesting duplication.
Equation (5) implies that their influence on the final
output Y, given the task instruction 7', is nearly
indistinguishable.

Together, these conditions identify token sets
that are semantically redundant and contribute
repetitive information. Such redundancy not only
offers limited information but also undermines in-
ference efficiency. Moreover, this type of redun-
dancy is unique to the visual domain and remains
inadequately addressed by existing compression
or pruning methods, thus motivating a dedicated
solution.

3.3 Semantic Retrieval for External
Redundancy

Building upon the analysis of external redun-
dancy in Section 3.2.1, we propose a novel token
reduction designed for external redundancy.

We formulate external redundant token reduction
as a mutual information maximization problem.
Given a visual token set V' and an task instruction
T, the goal is to select a subset V' C V of size k
that retains the most informative content:

> I T)

v, eV’

(6)

max
V/'cV, |V |=k

However, directly estimating mutual information
I(v;; T') is intractable in practice. To avoid this,
we leverage the shared semantic embedding space
in MLLMs, where both visual and textual inputs

are encoded into a unified representation. Within
this space, semantic similarity naturally correlates
with mutual information and can thus be used as a
practical proxy.

We thus approximate [ (v;; T') using the similar-
ity between a visual token v; and the task instruc-
tion 7', denoted as sim(v;, T'):

(N

In implementation, both v; and 7" are encoded
using the same multimodal encoder thus ensuring
alignment in the shared embedding space.

Based on this approximation, we formulate the
token reduction problem as a semantic retrieval
task—identifying a subset of visual tokens that are
most semantically aligned with the task prompt.
To enhance retrieval efficiency and mitigate the
effects of diverse visual appearances and prompt
styles, we introduce a query rewrite mechanism
and a graph-based semantic cluster algorithm.
Query Rewrite. It is not appropriate to use all
prompt tokens as the query for retrieval. Original
prompts may contain biases that inadequately repre-
sent certain semantic information in the embedding
space, thus impacting retrieval accuracy.

To address the issue of information asymme-
try between different modalities, we rewrite the
query prompts ahead of retrieval. By intentionally
controlling the structure and word choices of the
query, we ensure that the text embeddings more
accurately capture the semantic features relevant to
the target image, thus enhancing the performance
and retrieval precision.

We simply employ a text rewriting framework
based on predefined templates, as illustrated below:

I(vi; T) o sim(v;, T)

< Prefix >< Main >< Info > (8)



This framework systematically organizes differ-
ent forms of text descriptions to ensure that the
prompts effectively convey semantic information
aligned with visual features. Additionally, key el-
ements can be precisely adjusted based on task
requirements to optimize the retrieval performance
of the text prompts.

Semantic Cluster. The semantic understanding
of visual tokens is highly dependent on contextual
information. If retrieval is conducted on a single-
token level, it may result in the loss or blurring of
higher-level semantic details.

To address this issue, we propose a graph-based
semantic clustering strategy that supports prompt-
aware retrieval. The key insight is that by grouping
semantically coherent tokens before retrieval, we
can (1) aggregate local semantic context to form
robust cluster representations and (2) reduce the
number of retrieval candidates without losing se-
mantic coverage.

Formally, given a visual token set V =
{v1,...,v,} C R% we construct a semantic sim-
ilarity graph G = (V, E), where an undirected
edge (v;,v;) € E exists if the semantic similarity
between v; and v; exceeds a predefined threshold
€. We then extract connected components from
this graph as semantic clusters, each representing a
locally consistent region in the image. The detail
algorithm is depicted in Algorithm 1.

Algorithm 1 Graph-Based Semantic Clustering

Require: Visual tokens: V = {v;}?" | C R%: sim-
ilarity threshold e
Ensure: Semantic clusters C = {C}}}" ;; cluster
prototypes P = {ci}1-,
1: procedure CLUSTERTOKENS(V, €)
2: Compute cosine similarity matrix S €
R™ ", where S;; = cos(v;, vj)
3: Construct graph G = (V, E), with edges
E = {(vi,vj) | 5ij = €}
Identify connected components C =
{C1,...,Cy} from G cluster C, € C
Compute prototype ci = ﬁ Y viec, Vi

»

return C, P
end procedure

This clustering process transforms a dense vi-
sual token sequence into a compact, semantically
meaningful candidate set. The prototypes P are
then used for prompt-aware semantic retrieval, en-
suring that the model focuses on main visual con-

cepts while discarding irrelevant or redundant back-
ground content.

To finalize the selection, we perform semantic
retrieval using the rewritten instruction prompt 7"
against the set of semantic cluster prototypes {cy }.
We compute the similarity between each cluster
prototype and the rewritten prompt, and rank the
clusters accordingly to select the top-k candidates:

Top-k = arg topy, sim(cy, T") )

where sim(-,-) denotes the semantic similar-
ity between the cluster representation c; and the
rewritten prompt embedding 7".

3.4 Token Router for Internal Redundancy

In the previous section, we addressed external
redundancy by constructing a compact set of task-
relevant tokens through semantic retrieval. How-
ever, the resulting token set ' may still contain
internal redundancy—tokens that are individually
relevant but semantically overlapping, thus con-
tributing redundant information to the final repre-
sentation.

To eliminate this redundancy, we propose a
lightweight yet effective post-retrieval pruning
mechanism called token router. The key idea is
to iteratively retain the most informative and se-
mantically distinct tokens while discarding those
with high pairwise similarity to already selected
ones. This ensures the final token set maintains
diversity and avoids unnecessary duplication.The
detail as illustrated in Algorithm 2

By routing semantically diverse tokens in this
way, our method reduces internal redundancy while
preserving the most informative content, ultimately
enhancing the efficiency and effectiveness of down-
stream generation.

4 Experiments

4.1 Experimental Setting

Datasets.To accurately assess the practical ef-
fectiveness of our method, we selected four types
of popular visual question-answering benchmarks,
including (1)General visual question answering
benchmark: GQA(Hudson and Manning, 2019)
(2)Hallucination benchmark: POPE(Li et al., 2023)
(3)Optical character-based visual question answer-
ing benchmark: TextVQA(Singh et al., 2019)
(4)Comprehensive benchmark:MME(Fu et al.,
2024),MMBench(Liu et al., 2025), MM Vet(Yu
et al., 2023).



Algorithm 2 Token Routing Algorithm

Require: Retrieved visual tokens V = {v;}}_, C
R4, threshold 7 € [0, 1]
Ensure: Filtered token set V'’
1: function TOKENROUTER(V, 7)
2 Normalize all vectors: v; < v;/||v;]|
3 Compute similarity matrix S;; < 0; - 0;
4: Set S;; « 0, and Sij +— 0if Sij <rT
5 Initialize result set R < (), candidate index
list Q < [, ..., k]

6: while () not empty do

7: Pop t from @, add to R

8: Remove all j € () where S;; > 0 (i.e.,
similar to t)

9: end while

10: return V' < {v; | i € R}
11: end function

Model.We first applied our method to LLaVA-
1.5(Liu et al., 2024), an open-sourced multimodal
large model designed for tasks such as visual
question answering and image captioning.LLLaVA-
1.5 uses CLIP(Radford et al., 2021) as the
visual encoder and a LLaMA-based (Touvron
et al.)backbone large language model. The encoder
and model are connected with a linear projector. To
ensure semantic consistency, we use the CLIP text
encoder as a text feature extractor in our method.

Notably, our approach does not require addi-
tional training or fine-tuning, setting it apart from
most mainstream methods. All experiments were
conducted on an NVIDIA A100 80G GPU.

4.2 Performance evaluation

In Table 1, we present PAR’s performance on
several visual question-answering benchmarks.

Compared to the baseline LLaVA-1.5 model, our
approach maintains approximately 97% of the orig-
inal model’s accuracy across diverse datasets, using
only around 11% of the visual tokens. This yields
a tenfold increase in efficiency. Notably, on the
multimodal hallucination benchmark POPE, PAR
surpasses the original model in accuracy, under-
scoring its effectiveness in handling hallucination
issues.

To further validate PAR’s efficiency, we bench-
marked it against two state-of-the-art methods:
LLaVA-PruMerge+ (Shang et al., 2024) and Fast-
V (Chen et al., 2025). Using identical experimen-
tal conditions and reproduced open-source code
and weights, PAR consistently outperformed these
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Figure 3: Hyperparameters ablation results about Hy-
brid Retrieval Ratio ,Token Router Threshold and
Semantic Cluster Rate across three datasets. To illus-
trate the trade-off between performance and efficiency,
we use Token Ratio as the x-axis and Accuracy as the
y-axis. The red sign represents the selected parameters.

methods both in terms of accuracy and token prun-
ing efficiency.

These results highlight that our method, by ef-
fectively reducing redundancy in visual tokens,
achieves near-baseline performance with a frac-
tion of the computational cost. Furthermore, its
strong results on hallucination benchmarks illus-
trate PAR’s capability to minimize irrelevant con-
textual interference, demonstrating its robustness
and precision in multimodal inference.

4.3 Ablation Study

This section establishes the purpose and struc-
ture of the ablation study clearly, setting up an
in-depth examination of each component’s contri-
butions.

Effectiveness of Each Modules. Table 2
show the effectiveness of each module in our
method and attention based method. We first com-
pare the effectiveness of using only semantic re-
trieval versus using only attention-based selection.
Both approaches achieve comparable accuracy and
speedup under similar conditions. Subsequently,
we integrate the token router component with each
of the two methods. In both cases, this addition
leads to a notable reduction in the number of tokens.



Method GQA VQA!x POPE MMEer MMEc o MMBench MMyvet Avg
LLaVA-v1.5-7B 61.23/100 60.12/100 85.3/100 1529.77/ 100 439.29 /100 65.42/100 29.3/100 100/100
LLaVA-PruMerge+ 54.41/19.82 56.94/20.49 82.33/19.96 1501.84/20.24 435.64/20.24 65.70/20.79 28.8/20.5 96.43/20.29

Fast-V
PAR (Ours)

48.04/20.00 45.00/20.00 77.48/20.00
57.38/12.56 57.06/12.65 87.18/12.54

1424.70/20.00 405.00/20.00 60.64/20.00 24.3/20.00
1527.71/10.57 432.86/10.57

86.29 /20

64.33/895 27.2/13.44 97.03(12.97)/11.60(/88.4)

Table 1: Model performance comparison across various datasets. Each metric is shown as "Accuracy / Token
ratio". Compared to the baseline, our method results in a 2.97% decrease in accuracy, but achieves an 88.4%
reduction in token usage, striking a better balance between performance and efficiency.

Table 2: Performance Comparison of Different Mod-
ules. R is semantic retrieval, A is attention-based selec-
tion from LLaVA-PruMerge,T is token router.

POPE MMB
Module Acc Ratio Acc Ratio
LLaVA 85.3 100 65.42 100
+A 8233 1996 63.70 20.79
+R 83.02 20.00 64.13 20.00
+A+T 8448 1344 64.12 11.43
+R+T(PAR) 87.18 1254 6433 8.95

However, our semantic retrieval method combined
with token routing consistently outperforms the
attention-based counterpart in terms of accuracy
and overall performance. These results demon-
strate the effectiveness of each individual compo-
nent.

Token Router Threshold. Figure3 shows how
different routing thresholds affect performance.
The Token Router reduces internal redundancy by
filtering out semantically similar tokens from clus-
tering results. We test thresholds from 0.4 to 0.7
and observe that higher thresholds retain more to-
kens and generally yield better accuracy. However,
beyond 0.6, the performance gain slows, and exces-
sive tokens reduce efficiency. Thus, we select 0.6
as the optimal threshold to balance accuracy and
compression.

Clustering Rate. Figure 3 demonstrates the ef-
fect of varying semantic clustering rates on experi-
mental results. Selecting an appropriate clustering
rate is crucial for optimizing retrieval efficiency. If
the rate is set too high, it may fail to effectively
aggregate nearby semantic information, while a
rate set too low can introduce noise, diminishing
clustering effectiveness. To assess how different
clustering rates influence generation accuracy and
token retention, we tested four rates: 0.6, 0.7, 0.8,
and 0.9. The results show that for the first three
rates, our method follows a pattern similar to direct
retrieval, with accuracy increasing as more tokens

are retained. Based on these findings, we selected
0.8 as the optimal semantic clustering rate.

Distance Metric. Table 3a presents our investi-
gation into different distance-based retrieval algo-
rithms. In retrieval tasks, selecting an appropriate
distance function is critical for effective similar-
ity measurement. Different distance functions can
have a significant impact on similarity computa-
tion, thereby affecting the final retrieval results
and the model’s performance. We evaluated five
different distance functions: L1 distance, L2 dis-
tance, Lp distance, Linf distance, and Inner prod-
uct. Among these, Linf distance—highlighting the
maximum individual difference—yielded the best
results, demonstrating its suitability for tasks that
require sensitivity to distinct feature variations.

Query Condition. Table 3b investigates the
impact of different query structures on retrieval
performance. By comparing the original prompt,
keyword extraction, and template-based rewriting,
we explore how query optimization can enhance
retrieval. The original prompt serves as a base-
line, while keyword extraction improves semantic
clarity by eliminating redundancy. Template-based
rewriting further aligns text and visual embeddings,
boosting retrieval accuracy. Experimental results
show that the predefined query rewriting frame-
work significantly improves performance."

Retrieval Granularity. In table 3c we inves-
tigated the impact of four different retrieval ap-
proaches on the results.We first employ direct re-
trieval under different settings, and later explore a
semantic retrieval strategy. For direct retrieval, we
used token blocks of sizes 1x1, 2x2, and 3x3 as
the basic retrieval units. In contrast, for semantic
retrieval, we employed semantic clusters based on
semantic clustering as the retrieval units. Experi-
mental results show that our gragh-based semantic
retrieval methods effectively incorporate surround-
ing semantic information, thereby achieving the
highest benchmark accuracy.



Distance Metric  POPE  MMB Query Condition POPE MMB  Token number n POPE MMB
L1 84.18 64.24 Original Prompt 82.38 61.29 1*1 Token 83.91 63.86
L2 82.01 63.31 Key word Prompt ~ 84.25 63.57 2*2 Tokens 84.34 62.88
Lp 68.89 56.94 Prompt Rewriting ~ 87.18 64.33 3*3 Tokens 82.91 62.76
Linf 87.18 64.33 Semantic Tokens 87.18 64.33
Inner Product 83.20 62.07

(a) Distance Metric. (b) Query Prompt. (c) Retrieval Granularity.

Table 3: Ablation study of PAR on POPE and MMBench. We examine three key components: (a) distance metrics
for clustering, (b) prompt conditions for retrieval, (c) retrieval granularity. The best-performing configurations are
highlighted in gray , confirming the effectiveness of our design choices.

Method  FLOPs Total Memory Prefill Time Activation KV Cache
(TB) (GB) (ms) (GB) (MB)
LLaVA 8.2 21.8 59.1 39 323
PruMerge+ 2 14.8 19.3 0.68 81.8
PAR 14 14.2 18.5 0.43 54.5
(16.8) (1 7.6) (4 40.6) (4347 (1 268.5)

Table 4: Efficiency Analysis. We use LLaVA-v1.5-7B
as a baseline, the precision is fp16 and batchsize=1. All
the data are estimated using a theoretical model.

4.4 Efficiency Analysis

To efficiently evaluate the computational per-
formance of our method, we conducted a the-
oretical analysis of factors such as latency and
memory usage using the Roofline tool based on
LLMviewer(Yuan et al., 2024). Using the LLaVA-
1.5 7B model as an example, we analyzed the mul-
timodal large model inference process in typical
scenarios. This model processes images with a
resolution of 336x336 pixels, which are converted
into 576 visual tokens through the CLIP model,
combined with a prompt input of approximately 40
prompt tokens.

LLaVA-PruMerge+(Shang et al., 2024) achieved
a compression ratio of about 20 %, reducing the
visual tokens to 116. In contrast, our method,
while maintaining similar accuracy on VQA tasks,
achieved an 11% compression ratio, reducing the
visual tokens to around 64.

As shown in Table 4, our method significantly
improved model inference speed and reduced mem-
ory consumption. Specifically, for generating the
first token, prefill time was reduced to 31.3% of
the original, and the activation during inference
was reduced to 11%. This makes our method more
suitable for deploying large models in resource-
constrained environments.

Figure 4: Visualization of PAR.From left to right, we
change the ratio of retrieval and the visual tokens be-
come increasingly sparse. In the utmost right is the final
result of PAR.

5 Conclusions

In this paper, we introduced PAR (Prompt-Aware
Token Reduction), a lightweight and effective
framework for reducing computational and mem-
ory overhead in multimodal large language models
(MLLMs) by pruning redundant visual tokens. Mo-
tivated by an information-theoretic perspective on
external and internal redundancy, PAR first per-
forms semantic retrieval to identify task-relevant
visual clusters, and is then followed by a token rout-
ing mechanism to eliminate semantic duplication
while preserving representational diversity. Exper-
imental results demonstrate that PAR achieves a
superior trade-off between efficiency and perfor-
mance, reducing FLOPs by 83%, shortening prefill
latency to 31.3% of the original, and compressing
89% of the cache, while maintaining 97% of the
baseline accuracy across diverse visual question
answering and reasoning benchmarks.



Limitations

Currently, our work only supports the widely
adopted LLaVA architecture. In the future, we
plan to extend our approach to diverse model ar-
chitectures, covering a variety of visual encoders.
While PAR is training-free and plug-and-play, this
constraint may limit its ability to further optimize
token selection through learned parameters.
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