
PAR: Prompt-Aware Token Reduction Method
for Efficient Large Multimodal Models

Anonymous ACL submission

Abstract001

Multimodal large language models (MLLMs)002
demonstrate strong performance across visual003
tasks, but their efficiency is hindered by sig-004
nificant computational and memory demands005
from processing long contexts in multimodal006
inputs. To address this, we introduce PAR007
(Prompt-Aware Token Reduction), a novel and008
plug-and-play approach that reduces visual to-009
kens efficiently without compromising model010
performance. Unlike previous methods that011
rely heavily on attention mechanisms and over-012
looking cross-modal interactions , we uses a013
prompt-aware strategy to adpative identify and014
cluster essential visual tokens. PAR catego-015
rizes visual context redundancy into two types:016
external and internal. External redundancy is017
minimized through semantic retrieval, while018
internal redundancy is addressed using a to-019
ken routing mechanism. This method substan-020
tially reduces computational load without re-021
quiring additional training or complex archi-022
tectural modifications. Experimental results023
demonstrate that across various visual ques-024
tion answering tasks, PAR reduces FLOPs025
by 83% with a compression ratio of 89%,026
while retaining 97% of baseline accuracy.027
The adaptive design of PAR achieves a 2x token028
reduction ratio compared to prior approaches,029
enabling a better balance between performance030
and efficiency.031

1 Introduction032

Thanks to advanced architectures and large-033

scale training, large language models (LLMs) have034

achieved remarkable success in natural language035

understanding and generation tasks in a range036

of NLP domains(Touvron et al.; Ouyang et al.,037

2022; Chowdhery et al., 2023). While traditional038

LLMs operate on textual inputs, real-world data039

spans multiple modalities, including images, au-040

dio, and point clouds. To bridge this gap, re-041

cent research has extended LLM capabilities to042

Input Question 1：
What type of the animal in this 

image？

Input Question 2：
What the color of car in this 

image?
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Figure 1: Previous works relying on the attention mech-
anism, focus on global visual tokens and cause unnec-
essary redundancy. In contrast, our method is guided
by prompts and focuses more effectively on the task-
relevant visual tokens. Our approach achieves a token
reduction ratio about 2x of previous methods.

multimodal domains(Jin et al., 2024; Song et al., 043

2023), giving rise to multimodal large language 044

models (MLLMs) such as GPT-4(OpenAI, 2024), 045

Gemini(Team, 2024), LLaVA(Liu et al., 2024), 046

and MiniGPT-4(Zhu et al., 2023). These mod- 047

els leverage pre-trained modality-specific encoders 048

and alignment strategies to integrate information 049

across modalities efficiently, enabling broader ap- 050

plicability without the cost of training from scratch. 051

Despite their potential, MLLMs face significant 052

computational and memory challenges, particularly 053

in deployment and inference. MLLMs rely on vi- 054

sual encoders to convert image inputs into large sets 055

of visual tokens, concatenated with prompt tokens, 056

forming long input sequences. This increase in 057

sequence length raises storage and computational 058

demands. How to reduce the number of visual 059

tokens without significantly impacting generation 060

performance is a critical challenge that must be 061

addressed. 062

Traditional token reduction methods (Chen et al., 063

2023; Shang et al., 2024; Chen et al., 2025) typi- 064

cally rely on attention scores to remove unimpor- 065

tant tokens. However, these methods struggle to 066

adaptively balance efficiency and task relevance, 067

and often overlook the unique redundancy patterns 068
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of visual tokens. Some also require customized069

architectures (Chu et al., 2023; Cao et al., 2024;070

Haurum et al., 2023), adding extra complexity. In071

this work, we innovatively take an information-072

theoretic view and classify visual redundancy into073

two types: external redundancy, referring to task-074

irrelevant information, and internal redundancy, re-075

ferring to semantically repetitive yet task-relevant076

tokens. This formulation guides our design of a077

more efficient reduction method.078

Fully considering both external and internal re-079

dundancy observed in visual tokens, we introduce080

a simple yet effective training-free token reduc-081

tion method called PAR (Prompt-Aware Token082

Reduction). In this approach, we develop a prompt-083

aware strategy to identify and retrieve important084

visual tokens within the given context, effectively085

optimizing the selection of tokens based on their086

semantic relevance.087

Our method proceeds as follows. First, we apply088

predefined templates to rewrite the user prompt, en-089

hancing its semantic representation in future steps.090

Next, we use a graph-based clustering algorithm091

to partition visual tokens into meaningful semantic092

clusters based on similarity distribution. We then093

perform prompt-guided semantic retrieval, match-094

ing the most prompt-relevant visual tokens to elim-095

inate external redundancy. Finally, a token router096

simplifies the retained tokens by refining the final097

selection thus removing internal redundancy.098

In the design of the experiments, we fully con-099

sidered the balance between performance and effi-100

ciency. Our goal was to achieve the optimal trade-101

off by minimizing the final number of visual tokens102

used while ensuring a minimal loss in accuracy. Ex-103

perimental results show that PAR achieves an 83%104

reduction in FLOPs and an 89% compression ratio105

across diverse visual question-answering tasks, all106

while preserving 97% of the baseline accuracy. No-107

tably, in hallucination benchmarks(Li et al., 2023),108

PAR outperforms the original model under specific109

settings, indicating effective mitigation of hallu-110

cination phenomena in MLLMs through reduced111

external redundancy.112

In summary, our work makes three main contri-113

butions:114

• We conducted an in-depth analysis of the re-115

dundancy present in visual representations,116

categorizing it into external and internal redun-117

dancy. External redundancy refers to repre-118

sentations irrelevant to the task, while internal119

redundancy represents those that contribute 120

overlapping semantic information. 121

• Inspired by human cognition, we propose 122

PAR, a training-free method for reducing vi- 123

sual tokens. PAR leverages prompt semantics 124

to eliminate external redundancy, while a to- 125

ken router adaptively filters internal redundan- 126

cies, retaining only the most relevant tokens. 127

• Experimental results show that PAR not only 128

surpasses previous methods in accuracy but 129

also achieves a 2x token reduction, effectively 130

balancing efficiency and performance. 131

2 Related works 132

2.1 Multimodal Large Language Models 133

The development of Large Language Mod- 134

els (LLMs) such as GPT-3(Brown et al., 2020), 135

LLaMA(Touvron et al.), and GPT-4(OpenAI, 2024) 136

has seen substantial progress in recent years. These 137

advancements have inspired the evolution of Multi- 138

modal Large Language Models (MLLMs), which 139

extend the capabilities of LLMs to include images. 140

Notable examples of this progress are LLava(Liu 141

et al., 2024), MiniGPT-4(Zhu et al., 2023), Instruct- 142

BLIP(Dai et al., 2023),Qwen(Bai et al., 2023),and 143

Gemini(Team, 2024) . 144

These MLLMs primarily utilize a visual en- 145

coder(Radford et al., 2021) to process visual in- 146

put. They then align this visual data with text 147

through linear projection and concatenate the vi- 148

sual information with text tokens for generation 149

by a pre-trained LLM. By integrating data from 150

various modalities, MLLMs enhance contextual 151

understanding, thereby improving the accuracy of 152

information processing and generation. 153

Despite these advancements, MLLMs face sig- 154

nificant computational costs during inference and 155

deployment, highlighting the need for efficient to- 156

ken reduction techniques. Especially when dealing 157

with videos or high-resolution images, processing 158

thousands of tokens becomes necessary. 159

2.2 Visual token pruning 160

The quadratic complexity of Transformers 161

(Vaswani, 2017) is a significant challenge, espe- 162

cially for MLLMs where image inputs are con- 163

verted into numerous tokens. This process results 164

in substantial computational costs and limits scala- 165

bility due to the high memory demands of process- 166

ing long sequences. 167
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Recent research has sought to improve infer-168

ence efficiency by pruning visual tokens. LLaVA-169

PruMerge (Shang et al., 2024) employs an adaptive170

visual token reduction strategy that takes advan-171

tage of the sparsity in visual encoders, selectively172

retaining essential tokens and enhancing their infor-173

mational content through clustering and weighted174

averaging. FastV (Chen et al., 2025) reduces infer-175

ence costs by learning adaptive attention patterns176

in early layers and pruning tokens in later layers.177

However, these approaches still rely heavily on178

attention mechanisms and often overlook the cross-179

modal relevance of tokens. Due to the inherent180

properties of the attention mechanism, they strug-181

gle to adaptively reduce tokens within a task-aware182

context, making it difficult to maintain a balance183

between performance and efficiency.184

3 Methods185

3.1 Preliminaries186

Multimodal large language models(MLMMs)187

(Liu et al., 2024)(OpenAI, 2024) represent a sig-188

nificant advancement in artificial intelligence by189

integrating visual encoders with pre-trained large190

language models. This integration allows these191

models to jointly process and understand diverse192

modalities, such as images and text, enabling more193

comprehensive and contextually aware analyses.194

For a given image I , the visual encoder fvisual195

transforms it into a series of token representations196

V:197

V = fvisual(I) (1)198

Here, V denotes a set of visual tokens {vi}ni=1 ⊂199

Rd that capture essential visual features and se-200

mantic information from the image. This process201

allows image content to be encoded in a format202

compatible with the language model, facilitating203

the effective integration of visual and textual data.204

3.2 Redundancy Analysis and Motivation205

MLLMs typically handle lengthy sequences of206

visual tokens densely extracted from images. Due207

to the quadratic complexity of the attention mecha-208

nism(Vaswani, 2017), processing such long visual209

inputs imposes a significant computational burden,210

regardless of whether all tokens are necessary for211

the downstream task. While prior methods often212

rely on intrinsic model properties, such as attention213

mechanism for token selection or pruning, we take214

a different perspective. We propose an information- 215

theoretic framework to formally characterize and 216

eliminate redundancy in MLLMs’ visual inputs. 217

In this section, we provide a conceptual and 218

theoretical analysis of two prevalent forms of re- 219

dundancy: external redundancy, where tokens are 220

irrelevant to the task, and internal redundancy, 221

where tokens carry overlapping information. This 222

analysis serves as the motivation for our proposed 223

method, which explicitly addresses both redun- 224

dancy types to improve efficiency and preserve 225

semantic integrity. 226

3.2.1 External Redundancy: Task-Irrelevant 227

Tokens 228

External redundancy refers to visual tokens that 229

are semantically unrelated to the task objective. 230

These tokens often originate from uninformative 231

background regions or task-irrelevant objects. This 232

issue is particularly prominent in Visual Question 233

Answering (VQA) tasks, where the model is ex- 234

pected to attend only to task-relevant regions, rather 235

than uniformly processing all visual input. 236

From an information-theoretic perspec- 237

tive(Kraskov et al., 2004), the irrelevance of such 238

tokens can be formalized as: 239

I(ve; Y | T ) ≈ 0 (2) 240

where T denotes the task instruction, Y is the 241

model’s output, and ve ⊂ V is the subset of vi- 242

sual tokens deemed externally redundant. 243

Tokens with near-zero conditional mutual infor- 244

mation contribute minimally to the final output. Re- 245

taining such irrelevant content not only introduces 246

unnecessary computational overhead but may also 247

increase the risk of hallucination during genera- 248

tion, thereby compromising the faithfulness of the 249

model’s predictions. 250

3.2.2 Internal Redundancy: Repetitive or 251

Overlapping Tokens 252

Internal redundancy arises when multiple tokens 253

convey overlapping semantic content despite being 254

individually task-relevant. This commonly occurs 255

due to repeated textures or structures in the image. 256

With fixed patch-based vision encoders, a single 257

object may be split into multiple similar tokens, 258

producing duplicated representations. 259

Let V ′ = {v1, v2, . . . , vk} ⊂ V be a subset of 260

visual tokens. We characterize internal redundancy 261
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Figure 2: The framework of our method. Given an input of image and text, PAR processes each modality
separately: the text is structured using predefined templates, and the image undergoes semantic clustering. Prompt
tokens are then retrieval with visual tokens to select relevant ones, reducing external redundancy. Finally, the token
router refines these selections, removing internal redundancy.Finally, the prompt token is concatenated with the
refined visual tokens and fed into the large language model (LLM) to generate the final answer.

via mutual information as follows:262

∃ vi, vj ∈ V ′ : (3)263

I(vi; vj)≫ 0, (4)264

I(vi; Y | T ) ≈ I(vj ; Y | T ) (5)265

Equation (4) indicates a high degree of semantic266

similarity between tokens, suggesting duplication.267

Equation (5) implies that their influence on the final268

output Y , given the task instruction T , is nearly269

indistinguishable.270

Together, these conditions identify token sets271

that are semantically redundant and contribute272

repetitive information. Such redundancy not only273

offers limited information but also undermines in-274

ference efficiency. Moreover, this type of redun-275

dancy is unique to the visual domain and remains276

inadequately addressed by existing compression277

or pruning methods, thus motivating a dedicated278

solution.279

3.3 Semantic Retrieval for External280

Redundancy281

Building upon the analysis of external redun-282

dancy in Section 3.2.1, we propose a novel token283

reduction designed for external redundancy.284

We formulate external redundant token reduction285

as a mutual information maximization problem.286

Given a visual token set V and an task instruction287

T , the goal is to select a subset V ′ ⊂ V of size k288

that retains the most informative content:289

max
V ′⊂V, |V ′|=k

∑
vi∈V ′

I(vi; T ) (6)290

However, directly estimating mutual information291

I(vi; T ) is intractable in practice. To avoid this,292

we leverage the shared semantic embedding space293

in MLLMs, where both visual and textual inputs294

are encoded into a unified representation. Within 295

this space, semantic similarity naturally correlates 296

with mutual information and can thus be used as a 297

practical proxy. 298

We thus approximate I(vi; T ) using the similar- 299

ity between a visual token vi and the task instruc- 300

tion T , denoted as sim(vi, T ): 301

I(vi; T ) ∝ sim(vi, T ) (7) 302

In implementation, both vi and T are encoded 303

using the same multimodal encoder thus ensuring 304

alignment in the shared embedding space. 305

Based on this approximation, we formulate the 306

token reduction problem as a semantic retrieval 307

task—identifying a subset of visual tokens that are 308

most semantically aligned with the task prompt. 309

To enhance retrieval efficiency and mitigate the 310

effects of diverse visual appearances and prompt 311

styles, we introduce a query rewrite mechanism 312

and a graph-based semantic cluster algorithm. 313

Query Rewrite. It is not appropriate to use all 314

prompt tokens as the query for retrieval. Original 315

prompts may contain biases that inadequately repre- 316

sent certain semantic information in the embedding 317

space, thus impacting retrieval accuracy. 318

To address the issue of information asymme- 319

try between different modalities, we rewrite the 320

query prompts ahead of retrieval. By intentionally 321

controlling the structure and word choices of the 322

query, we ensure that the text embeddings more 323

accurately capture the semantic features relevant to 324

the target image, thus enhancing the performance 325

and retrieval precision. 326

We simply employ a text rewriting framework 327

based on predefined templates, as illustrated below: 328

< Prefix >< Main >< Info > (8) 329
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This framework systematically organizes differ-330

ent forms of text descriptions to ensure that the331

prompts effectively convey semantic information332

aligned with visual features. Additionally, key el-333

ements can be precisely adjusted based on task334

requirements to optimize the retrieval performance335

of the text prompts.336

Semantic Cluster. The semantic understanding337

of visual tokens is highly dependent on contextual338

information. If retrieval is conducted on a single-339

token level, it may result in the loss or blurring of340

higher-level semantic details.341

To address this issue, we propose a graph-based342

semantic clustering strategy that supports prompt-343

aware retrieval. The key insight is that by grouping344

semantically coherent tokens before retrieval, we345

can (1) aggregate local semantic context to form346

robust cluster representations and (2) reduce the347

number of retrieval candidates without losing se-348

mantic coverage.349

Formally, given a visual token set V =350

{v1, . . . , vn} ⊂ Rd, we construct a semantic sim-351

ilarity graph G = (V, E), where an undirected352

edge (vi, vj) ∈ E exists if the semantic similarity353

between vi and vj exceeds a predefined threshold354

ϵ. We then extract connected components from355

this graph as semantic clusters, each representing a356

locally consistent region in the image. The detail357

algorithm is depicted in Algorithm 1.358

Algorithm 1 Graph-Based Semantic Clustering

Require: Visual tokens: V = {vi}ni=1 ⊂ Rd; sim-
ilarity threshold ϵ

Ensure: Semantic clusters C = {Ck}mk=1; cluster
prototypes P = {ck}mk=1

1: procedure CLUSTERTOKENS(V, ϵ)
2: Compute cosine similarity matrix S ∈

Rn×n, where Sij = cos(vi, vj)
3: Construct graph G = (V, E), with edges

E = {(vi, vj) | Sij ≥ ϵ}
4: Identify connected components C =
{C1, . . . , Cm} from G cluster Ck ∈ C

5: Compute prototype ck = 1
|Ck|

∑
vi∈Ck

vi
6:

7: return C,P
8: end procedure

This clustering process transforms a dense vi-359

sual token sequence into a compact, semantically360

meaningful candidate set. The prototypes P are361

then used for prompt-aware semantic retrieval, en-362

suring that the model focuses on main visual con-363

cepts while discarding irrelevant or redundant back- 364

ground content. 365

To finalize the selection, we perform semantic 366

retrieval using the rewritten instruction prompt T ′ 367

against the set of semantic cluster prototypes {ck}. 368

We compute the similarity between each cluster 369

prototype and the rewritten prompt, and rank the 370

clusters accordingly to select the top-k candidates: 371

372
Top-k = arg topk sim(ck, T

′) (9) 373

where sim(·, ·) denotes the semantic similar- 374

ity between the cluster representation ck and the 375

rewritten prompt embedding T ′. 376

3.4 Token Router for Internal Redundancy 377

In the previous section, we addressed external 378

redundancy by constructing a compact set of task- 379

relevant tokens through semantic retrieval. How- 380

ever, the resulting token set V ′ may still contain 381

internal redundancy—tokens that are individually 382

relevant but semantically overlapping, thus con- 383

tributing redundant information to the final repre- 384

sentation. 385

To eliminate this redundancy, we propose a 386

lightweight yet effective post-retrieval pruning 387

mechanism called token router. The key idea is 388

to iteratively retain the most informative and se- 389

mantically distinct tokens while discarding those 390

with high pairwise similarity to already selected 391

ones. This ensures the final token set maintains 392

diversity and avoids unnecessary duplication.The 393

detail as illustrated in Algorithm 2 394

By routing semantically diverse tokens in this 395

way, our method reduces internal redundancy while 396

preserving the most informative content, ultimately 397

enhancing the efficiency and effectiveness of down- 398

stream generation. 399

4 Experiments 400

4.1 Experimental Setting 401

Datasets.To accurately assess the practical ef- 402

fectiveness of our method, we selected four types 403

of popular visual question-answering benchmarks, 404

including (1)General visual question answering 405

benchmark: GQA(Hudson and Manning, 2019) 406

(2)Hallucination benchmark: POPE(Li et al., 2023) 407

(3)Optical character-based visual question answer- 408

ing benchmark: TextVQA(Singh et al., 2019) 409

(4)Comprehensive benchmark:MME(Fu et al., 410

2024),MMBench(Liu et al., 2025), MMVet(Yu 411

et al., 2023). 412
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Algorithm 2 Token Routing Algorithm

Require: Retrieved visual tokens V = {vi}ki=1 ⊂
Rd, threshold τ ∈ [0, 1]

Ensure: Filtered token set V ′

1: function TOKENROUTER(V, τ )
2: Normalize all vectors: v̂i ← vi/∥vi∥
3: Compute similarity matrix Sij ← v̂i · v̂j
4: Set Sii ← 0, and Sij ← 0 if Sij ≤ τ
5: Initialize result setR ← ∅, candidate index

list Q← [1, ..., k]
6: while Q not empty do
7: Pop t from Q, add toR
8: Remove all j ∈ Q where Stj > 0 (i.e.,

similar to t)
9: end while

10: return V ′ ← {vi | i ∈ R}
11: end function

Model.We first applied our method to LLaVA-413

1.5(Liu et al., 2024), an open-sourced multimodal414

large model designed for tasks such as visual415

question answering and image captioning.LLaVA-416

1.5 uses CLIP(Radford et al., 2021) as the417

visual encoder and a LLaMA-based (Touvron418

et al.)backbone large language model. The encoder419

and model are connected with a linear projector. To420

ensure semantic consistency, we use the CLIP text421

encoder as a text feature extractor in our method.422

Notably, our approach does not require addi-423

tional training or fine-tuning, setting it apart from424

most mainstream methods. All experiments were425

conducted on an NVIDIA A100 80G GPU.426

4.2 Performance evaluation427

In Table 1, we present PAR’s performance on428

several visual question-answering benchmarks.429

Compared to the baseline LLaVA-1.5 model, our430

approach maintains approximately 97% of the orig-431

inal model’s accuracy across diverse datasets, using432

only around 11% of the visual tokens. This yields433

a tenfold increase in efficiency. Notably, on the434

multimodal hallucination benchmark POPE, PAR435

surpasses the original model in accuracy, under-436

scoring its effectiveness in handling hallucination437

issues.438

To further validate PAR’s efficiency, we bench-439

marked it against two state-of-the-art methods:440

LLaVA-PruMerge+ (Shang et al., 2024) and Fast-441

V (Chen et al., 2025). Using identical experimen-442

tal conditions and reproduced open-source code443

and weights, PAR consistently outperformed these444

POPE GQA MMB

(b) Token Router Threshold

(c) Semantic Cluster Rate

(a)  Hybrid Retrieval Ratio

Figure 3: Hyperparameters ablation results about Hy-
brid Retrieval Ratio ,Token Router Threshold and
Semantic Cluster Rate across three datasets. To illus-
trate the trade-off between performance and efficiency,
we use Token Ratio as the x-axis and Accuracy as the
y-axis. The red sign represents the selected parameters.

methods both in terms of accuracy and token prun- 445

ing efficiency. 446

These results highlight that our method, by ef- 447

fectively reducing redundancy in visual tokens, 448

achieves near-baseline performance with a frac- 449

tion of the computational cost. Furthermore, its 450

strong results on hallucination benchmarks illus- 451

trate PAR’s capability to minimize irrelevant con- 452

textual interference, demonstrating its robustness 453

and precision in multimodal inference. 454

4.3 Ablation Study 455

This section establishes the purpose and struc- 456

ture of the ablation study clearly, setting up an 457

in-depth examination of each component’s contri- 458

butions. 459

Effectiveness of Each Modules. Table 2 460

show the effectiveness of each module in our 461

method and attention based method. We first com- 462

pare the effectiveness of using only semantic re- 463

trieval versus using only attention-based selection. 464

Both approaches achieve comparable accuracy and 465

speedup under similar conditions. Subsequently, 466

we integrate the token router component with each 467

of the two methods. In both cases, this addition 468

leads to a notable reduction in the number of tokens. 469
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Method GQA VQAtext POPE MMEper MMEcog MMBench MMvet Avg

LLaVA-v1.5-7B 61.23 / 100 60.12 / 100 85.3 / 100 1529.77 / 100 439.29 / 100 65.42 / 100 29.3 / 100 100/100

LLaVA-PruMerge+ 54.41 / 19.82 56.94 / 20.49 82.33 / 19.96 1501.84 / 20.24 435.64 / 20.24 65.70 / 20.79 28.8 / 20.5 96.43 / 20.29

Fast-V 48.04 / 20.00 45.00 / 20.00 77.48 / 20.00 1424.70 / 20.00 405.00 / 20.00 60.64 / 20.00 24.3 / 20.00 86.29 / 20

PAR (Ours) 57.38 / 12.56 57.06 / 12.65 87.18 / 12.54 1527.71 / 10.57 432.86 / 10.57 64.33 / 8.95 27.2 / 13.44 97.03(↓2.97) / 11.60(↓88.4)

Table 1: Model performance comparison across various datasets. Each metric is shown as "Accuracy / Token
ratio". Compared to the baseline, our method results in a 2.97% decrease in accuracy, but achieves an 88.4%
reduction in token usage, striking a better balance between performance and efficiency.

Table 2: Performance Comparison of Different Mod-
ules. R is semantic retrieval, A is attention-based selec-
tion from LLaVA-PruMerge,T is token router.

POPE MMB

Module Acc Ratio Acc Ratio

LLaVA 85.3 100 65.42 100
+A 82.33 19.96 63.70 20.79
+R 83.02 20.00 64.13 20.00
+A+T 84.48 13.44 64.12 11.43
+R+T(PAR) 87.18 12.54 64.33 8.95

However, our semantic retrieval method combined470

with token routing consistently outperforms the471

attention-based counterpart in terms of accuracy472

and overall performance. These results demon-473

strate the effectiveness of each individual compo-474

nent.475

Token Router Threshold. Figure3 shows how476

different routing thresholds affect performance.477

The Token Router reduces internal redundancy by478

filtering out semantically similar tokens from clus-479

tering results. We test thresholds from 0.4 to 0.7480

and observe that higher thresholds retain more to-481

kens and generally yield better accuracy. However,482

beyond 0.6, the performance gain slows, and exces-483

sive tokens reduce efficiency. Thus, we select 0.6484

as the optimal threshold to balance accuracy and485

compression.486

Clustering Rate. Figure 3 demonstrates the ef-487

fect of varying semantic clustering rates on experi-488

mental results. Selecting an appropriate clustering489

rate is crucial for optimizing retrieval efficiency. If490

the rate is set too high, it may fail to effectively491

aggregate nearby semantic information, while a492

rate set too low can introduce noise, diminishing493

clustering effectiveness. To assess how different494

clustering rates influence generation accuracy and495

token retention, we tested four rates: 0.6, 0.7, 0.8,496

and 0.9. The results show that for the first three497

rates, our method follows a pattern similar to direct498

retrieval, with accuracy increasing as more tokens499

are retained. Based on these findings, we selected 500

0.8 as the optimal semantic clustering rate. 501

Distance Metric. Table 3a presents our investi- 502

gation into different distance-based retrieval algo- 503

rithms. In retrieval tasks, selecting an appropriate 504

distance function is critical for effective similar- 505

ity measurement. Different distance functions can 506

have a significant impact on similarity computa- 507

tion, thereby affecting the final retrieval results 508

and the model’s performance. We evaluated five 509

different distance functions: L1 distance, L2 dis- 510

tance, Lp distance, Linf distance, and Inner prod- 511

uct. Among these, Linf distance—highlighting the 512

maximum individual difference—yielded the best 513

results, demonstrating its suitability for tasks that 514

require sensitivity to distinct feature variations. 515

Query Condition. Table 3b investigates the 516

impact of different query structures on retrieval 517

performance. By comparing the original prompt, 518

keyword extraction, and template-based rewriting, 519

we explore how query optimization can enhance 520

retrieval. The original prompt serves as a base- 521

line, while keyword extraction improves semantic 522

clarity by eliminating redundancy. Template-based 523

rewriting further aligns text and visual embeddings, 524

boosting retrieval accuracy. Experimental results 525

show that the predefined query rewriting frame- 526

work significantly improves performance." 527

Retrieval Granularity. In table 3c we inves- 528

tigated the impact of four different retrieval ap- 529

proaches on the results.We first employ direct re- 530

trieval under different settings, and later explore a 531

semantic retrieval strategy. For direct retrieval, we 532

used token blocks of sizes 1×1, 2×2, and 3×3 as 533

the basic retrieval units. In contrast, for semantic 534

retrieval, we employed semantic clusters based on 535

semantic clustering as the retrieval units. Experi- 536

mental results show that our gragh-based semantic 537

retrieval methods effectively incorporate surround- 538

ing semantic information, thereby achieving the 539

highest benchmark accuracy. 540
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Distance Metric POPE MMB

L1 84.18 64.24
L2 82.01 63.31
Lp 68.89 56.94
Linf 87.18 64.33
Inner Product 83.20 62.07

(a) Distance Metric.

Query Condition POPE MMB

Original Prompt 82.38 61.29
Key word Prompt 84.25 63.57
Prompt Rewriting 87.18 64.33

(b) Query Prompt.

Token number POPE MMB

1*1 Token 83.91 63.86
2*2 Tokens 84.34 62.88
3*3 Tokens 82.91 62.76

Semantic Tokens 87.18 64.33

(c) Retrieval Granularity.

Table 3: Ablation study of PAR on POPE and MMBench. We examine three key components: (a) distance metrics
for clustering, (b) prompt conditions for retrieval, (c) retrieval granularity. The best-performing configurations are
highlighted in gray , confirming the effectiveness of our design choices.

Method FLOPs Total Memory Prefill Time Activation KV Cache

(TB) (GB) (ms) (GB) (MB)

LLaVA 8.2 21.8 59.1 3.9 323

PruMerge+ 2 14.8 19.3 0.68 81.8

PAR 1.4 14.2 18.5 0.43 54.5

(↓ 6.8) (↓ 7.6) (↓ 40.6) (↓ 3.47) (↓ 268.5)

Table 4: Efficiency Analysis. We use LLaVA-v1.5-7B
as a baseline, the precision is fp16 and batchsize=1. All
the data are estimated using a theoretical model.

4.4 Efficiency Analysis541

To efficiently evaluate the computational per-542

formance of our method, we conducted a the-543

oretical analysis of factors such as latency and544

memory usage using the Roofline tool based on545

LLMviewer(Yuan et al., 2024). Using the LLaVA-546

1.5 7B model as an example, we analyzed the mul-547

timodal large model inference process in typical548

scenarios. This model processes images with a549

resolution of 336×336 pixels, which are converted550

into 576 visual tokens through the CLIP model,551

combined with a prompt input of approximately 40552

prompt tokens.553

LLaVA-PruMerge+(Shang et al., 2024) achieved554

a compression ratio of about 20 %, reducing the555

visual tokens to 116. In contrast, our method,556

while maintaining similar accuracy on VQA tasks,557

achieved an 11% compression ratio, reducing the558

visual tokens to around 64.559

As shown in Table 4, our method significantly560

improved model inference speed and reduced mem-561

ory consumption. Specifically, for generating the562

first token, prefill time was reduced to 31.3% of563

the original, and the activation during inference564

was reduced to 11%. This makes our method more565

suitable for deploying large models in resource-566

constrained environments.567

Figure 4: Visualization of PAR.From left to right, we
change the ratio of retrieval and the visual tokens be-
come increasingly sparse. In the utmost right is the final
result of PAR.

5 Conclusions 568

In this paper, we introduced PAR (Prompt-Aware 569

Token Reduction), a lightweight and effective 570

framework for reducing computational and mem- 571

ory overhead in multimodal large language models 572

(MLLMs) by pruning redundant visual tokens. Mo- 573

tivated by an information-theoretic perspective on 574

external and internal redundancy, PAR first per- 575

forms semantic retrieval to identify task-relevant 576

visual clusters, and is then followed by a token rout- 577

ing mechanism to eliminate semantic duplication 578

while preserving representational diversity. Exper- 579

imental results demonstrate that PAR achieves a 580

superior trade-off between efficiency and perfor- 581

mance, reducing FLOPs by 83%, shortening prefill 582

latency to 31.3% of the original, and compressing 583

89% of the cache, while maintaining 97% of the 584

baseline accuracy across diverse visual question 585

answering and reasoning benchmarks. 586
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Limitations587

Currently, our work only supports the widely588

adopted LLaVA architecture. In the future, we589

plan to extend our approach to diverse model ar-590

chitectures, covering a variety of visual encoders.591

While PAR is training-free and plug-and-play, this592

constraint may limit its ability to further optimize593

token selection through learned parameters.594
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