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ABSTRACT

The loss functions of many learning problems contain multiple additive terms that
can disagree and yield conflicting update directions. For Physics-Informed Neural
Networks (PINNs), loss terms on initial/boundary conditions and physics equa-
tions are particularly interesting as they are well-established as highly difficult
tasks. To improve learning the challenging multi-objective task posed by PINNs,
we propose the ConFIG method, which provides conflict-free updates by ensuring
a positive dot product between the final update and each loss-specific gradient.
It also maintains consistent optimization rates for all loss terms and dynamically
adjusts gradient magnitudes based on conflict levels. We additionally leverage
momentum to accelerate optimizations by alternating the back-propagation of dif-
ferent loss terms. We provide a mathematical proof showing the convergence of
the ConFIG method, and it is evaluated across a range of challenging PINN sce-
narios. ConFIG consistently shows superior performance and runtime compared
to baseline methods. We also test the proposed method in a classic multi-task
benchmark, where the ConFIG method likewise exhibits a highly promising per-
formance. Source code will be made available upon acceptance.

1 INTRODUCTION

Efficiently solving partial differential equations (PDEs) is crucial for various scientific fields such
as fluid dynamics, electromagnetics, and financial mathematics. However, the nonlinear and high-
dimensional PDEs often present significant challenges to the stability and convergence of traditional
numerical methods. With the advent of deep learning, there is a strongly growing interest in using
this technology to solve PDEs (Han et al., 2018; Beck et al., 2023). In this context, Physics Informed
Neural Networks (PINNs) (Raissi et al., 2019; Cuomo et al., 2022) leverage networks as a continuous
and differentiable ansatz for the underlying physics.

PINNs use auto-differentiation of coordinate-based neural networks, i.e., implicit neural represen-
tation (INR), to approximate PDE derivatives. The residuals of the PDEs, along with boundary and
initial conditions, are treated as loss terms and penalized during training to achieve a physically plau-
sible solution. Despite their widespread use, training PINNs is a well-recognized challenge (Cuomo
et al., 2022; Lino et al., 2023; Wang et al., 2021; Krishnapriyan et al., 2021; Wang et al., 2022) due to
several possible factors like unbalanced back-propagated gradients from numerical stiffness (Wang
et al., 2021), different convergence rates among loss terms (Wang et al., 2022), PDE-based soft
constraints (Krishnapriyan et al., 2021), poor initialization (Wong et al., 2024), and suboptimal sam-
pling strategies (Daw et al., 2023). Traditional methods to improve PINN training typically involve
adjusting the weights for PDE residuals and loss terms for initial/boundary conditions (Liu & Wang,
2021; McClenny & Braga-Neto, 2023; Son et al., 2023). However, although these methods claim to
have better solution accuracy, there is currently no consensus on the optimal weighting strategy.

Meanwhile, methods manipulating the gradient of each loss term have become popular in Multi-
Task Learning (MTL) and Continual Learning (CL) (Riemer et al., 2019; Farajtabar et al., 2020; Yu
et al., 2020) to address conflicts between loss-specific gradients that induce negative transfer (Long
et al., 2017) and catastrophic forgetting (Kirkpatrick et al., 2017). Unlike weighting strategies that
adjust the final update direction solely by modifying each loss-specific gradient’s magnitude, these
methods take greater flexibility and often alter the directions of loss-specific gradients. We notice
that similar conflicts between gradients also arise in the training of PINNs. First, the gradient mag-
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nitude of PDE residuals typically surpasses that of initial/boundary conditions (Wang et al., 2021),
causing the final update gradient to lean heavily towards the residual term. Additionally, PDE resid-
uals often have many local minima due to the infinite number of PDE solutions without prescribed
initial/boundary conditions (Daw et al., 2023). Consequently, when the optimization process ap-
proaches local minima of the PDE residual, the combined update conflicts with the gradient of
initial/boundary conditions, severely impeding learning progress.

1

0

Adam Adam + ConFIG (Ours)

Figure 1: Visualization of toy example showing the
conflict between different losses during optimization.

To illustrate gradient conflicts in PINNs,
we show a toy case in Fig. 1 where L1 has
smaller gradients and L2 has larger gradi-
ents but multiple minima. Training with
L1 +λL2 using suboptimal λ values (e.g.,
λ = 1) leads to gradient conflicts and the
convergence to a local minima of L2.

In the following, we propose the Conflict-
Free Inverse Gradients (ConFIG) method
to mitigate the conflicts of loss-specific
gradients during PINNs training. Our ap-
proach provides an update gradient gConFIG
that reduces all loss terms to prevent the
optimization from being stuck in the local
minima of a specific loss term. With the ConFIG method, the optimization in Fig. 1 converges to
the shared minimum for both losses. Our method is provably convergent, and characterized by the
following properties:

• The final update direction does not conflict with any loss-specific gradients.
• The projection length of the final gradient on each loss-specific gradient is uniform, ensur-

ing that all loss terms are optimized at the same rate.
• The length of the final gradient is adaptively scaled based on the degree of conflict between

loss-specific gradients. This prevents the optimization from stalling in the local minima of
any specific loss term in high-conflict scenarios.

In addition, we introduce a momentum-based approach to expedite optimization. By leveraging
momentum, we eliminate the need to compute all gradients via backpropagation at each training
iteration. In contrast, we evaluate alternating loss-specific gradients, which significantly decreases
the computational cost and leads to more accurate solutions within a given computational budget.

2 RELATED WORK

Weighting Strategies for PINNs’ Training Some intuitive weighting strategies come from the
penalty method of constrained optimization problems, where higher weights are assigned to less-
optimized losses (Liu & Wang, 2021; Son et al., 2023). McClenny & Braga-Neto (2023) extended
this idea by directly setting weights to sample points with soft attention masks. On the contrary,
Bischof & Kraus (2021) advocated equalizing the reduction rates of all loss terms as it guides train-
ing toward Pareto optimal solutions from an MTL perspective. Meanwhile, Wang et al. (2021)
addressed numerical stiffness issues by determining the weight according to the magnitude of each
loss-specific gradient. Wang et al. (2022) explored training procedures via the Neural Tangent Ker-
nel (NTK) perspective, adaptively setting weights based on NTK eigenvalues. Xiang et al. (2022)
instead employed Gaussian probabilistic models for uncertainty quantification, estimating weights
through maximum likelihood estimation. Others have pursued specialized approaches. E.g., van
der Meer et al. (2022) derived optimal weight parameters for specific problems and devised heuris-
tics for general problems. de Wolff et al. (2022) use an evolutionary multi-objective algorithm to
find the trade-offs between individual loss terms in PINNs training. Shin et al. (2020) conducted
convergence analyses for PINNs solving linear second-order elliptic and parabolic type PDEs, em-
ploying Lipschitz regularized loss. In contrast to adaptive methods, Wight & Zhao (2021) proposed
a fixed weighting strategy for phase field models. They artificially elevated weights for the loss term
associated with initial conditions.
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Gradient Improvement Strategies in MTL and CL Gradient improvement strategies in MTL
and CL focus on understanding and resolving conflicts between loss-specific gradients. Riemer
et al. (2019) and Du et al. (2018) proposed using the dot product (cosine similarity) of two gradient
vectors to assess whether updates will conflict with each other. Riemer et al. (2019) introduced an
additional term in the loss to modify the gradient direction, maximizing the dot product of the gra-
dients. Conversely,Du et al. (2018) chose to discard gradients of auxiliary tasks if they conflict with
the main task. Another intuitive method to resolve conflicts is orthogonal projection. Farajtabar
et al. (2020) proposed the Orthogonal Gradient Descent (OGD) method for continual learning, pro-
jecting gradients from new tasks onto a subspace orthogonal to the previous task. Chaudhry et al.
(2020) proposed learning tasks in low-rank vector subspaces that are kept orthogonal to minimize
interference. Yu et al. (2020) introduced the PCGrad method that projects a task’s gradient onto the
orthogonal plane of other gradients. Liu et al. (2021b) designed the IMTL-G method to ensure that
the final gradient has the same projection length on all other vectors. Dong et al. (2022) utilized
the Singular Value Decomposition (SVD) on gradient vectors to obtain an orthogonal basis. Javaloy
& Valera (2022) introduces a method that jointly homogenizes gradient magnitudes and directions
for MTL. Few studies in the PINN community have utilized gradient-based improvement strategies.
Zhou et al. (2023) introduced the PCGrad method to PINN training for reliability assessment of
multi-state systems. Yao et al. (2023) developed a MultiAdam method where they apply Adam opti-
mizer for each loss term separately. Quinton & Rey (2024) propose a Jacobian descent method with
an aggregation step, which constrains the update gradient into the positive cone in the parameter
space to avoid conflicts during training.

3 METHOD

3.1 CONFLICT-FREE INVERSE GRADIENTS METHOD

Generically, we consider an optimization procedure with a set of m individual loss functions, i.e.,
{L1,L2, · · · ,Lm}. Let {g1, g2, · · · , gm} denote the individual gradients corresponding to each
of the loss functions. A gradient-descent step with gradient gc will conflict with the decrease of
Li if g⊤

i gc is negative (Riemer et al., 2019; Du et al., 2018). Thus, to ensure that all losses are
decreasing simultaneously along gc, all m components of [g1, g2, · · · , gm]⊤gc should be positive.
This condition is fulfilled by setting gc = [g1, g2, · · · , gm]−⊤w, where w = [w1, w2, · · · , wm] is a
vector with m positive components and M−⊤ is the pseudoinverse of the transposed matrix M⊤.

Although a positive w vector guarantees a conflict-free update direction for all losses, the specific
value of wi further influences the exact direction of gc. To facilitate determining w, we reformulate
gc as gc = k[U(g1),U(g2), · · · ,U(gm)]−⊤ŵ, where U(gi) = gi/(|gi| + ε) is a normalization
operator and k > 0. Now, k controls the length of gc and the ratio of ŵ’s components corresponds
to the ratio of gc’s projections onto each loss-specific gi, i.e., |gc|Sc(g, gi), where Sc(gi, gj) =
g⊤
i gj/(|gi||gj |+ ε) is the operator for cosine similarity:

|gc|Sc(gc, gi)
|gc|Sc(gc, gj)

=
Sc(gc, gi)
Sc(gc, gj)

=
Sc(gc, kU(gi))
Sc(gc, kU(gj))

=
[kU(gi)]⊤gc
[kU(gj)]⊤gc

=
ŵi

ŵj
∀i, j ∈ [1,m]. (1)

We call ŵ the direction weight. The projection length of gc on each loss-specific gradient serves
as an effective “learning rate” for each loss. Here, we choose ŵi = ŵj ∀i, j ∈ [1,m] to ensure a
uniform decrease rate of all losses, as it was shown to yield a weak form of Pareto optimality for
multi-task learning (Bischof & Kraus, 2021).

Meanwhile, we introduce an adaptive strategy for the length of gc rather than directly setting a fixed
value of k. We notice that the length of gc should increase when all loss-specific gradients point
nearly in the same direction since it indicates a favorable direction for optimization. Conversely,
when loss-specific gradients are close to opposing each other, the magnitude of gc should decrease.
We realize this by rescaling the length of gc to the sum of the projection lengths of each loss-specific
gradient on it, i.e., |gc| =

∑m
i=1 |gi|Sc(gi, gc).

The procedures above are summarized in the Conflict-Free Inverse Gradients (ConFIG) operator G
and we correspondingly denote the final update gradient gc with gConFIG:

gConFIG = G(g1, g1, · · · , gm) :=

(
m∑
i=1

g⊤
i gu

)
gu, (2)
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gu = U
[
[U(g1),U(g2), · · · ,U(gm)]−⊤1m

]
. (3)

Here, 1m is a unit vector with m components. A mathematical proof of ConFIG’s convergence in
convex and non-convex landscapes can be found in Appendix A.1. The ConFIG method utilizes
the pseudoinverse of the gradient matrix to obtain a conflict-free direction. In Appendix A.3, we
prove that such an inverse operation is always feasible as long as the dimension of parameter space
is larger than the number of losses. Besides, while calculating the pseudoinverse numerically could
involve additional computational cost, it is not significant compared to the cost of back-propagation
for each loss term. A detailed breakdown of the computational cost can be found in Appendix A.6.

3.2 TWO TERM LOSSES AND POSITIONING W.R.T. EXISTING APPROACHES

For the special case of only two loss terms, there is an equivalent form of ConFIG that does not
require a pseudoinverse:

G(g1, g2) = (g⊤
1 gv + g⊤

2 gv)gv (4)
gv = U [U(O(g1, g2)) + U(O(g2, g1))] (5)

where O(g1, g2) = g2 − g⊤
1 g2

|g1|2 g1 is the orthogonality operator. It returns a vector orthogonal to g1
from the plane spanned by g1 and g2. The proof of equivalence is shown in Appendix A.4.

PCGrad (Yu et al., 2020) and IMTL-G (Liu et al., 2021b) methods from multi-task learning studies
also have a similar simplified form for the two-loss scenario. PCGrad projects loss-specific gradients
onto the normal plane of others if their cosine similarity is negative, while IMTL-G rescales loss-
specific gradients to equalize the final gradient’s projection length on each loss-specific gradient, as
illustrated in Fig. 2a and 2b. Our ConFIG method in Fig. 2c employs orthogonal components of
each loss-specific gradient, akin to PCGrad. Meanwhile, it also ensures the same decrease rate of
all losses, similar to IMTL-G. As a result, these three methods share an identical update direction
but a different update magnitude in the two-loss scenario. This provides a valuable opportunity to
evaluate our adaptive magnitude strategy: for two losses, the PCGrad and IMTL-G methods can be
viewed as ConFIG variants with different magnitude rescaling strategies.

The above similarity between these three methods only holds for the two-loss scenario. With more
losses involved, the differences between them are more evident. In fact, the inverse operation in
Eq. 3 makes the ConFIG approach the only method that maintains a conflict-free direction when the
number of loss terms exceeds two. Detailed discussion can be found in A.2

3.3 CONFIG WITH MOMENTUM ACCELERATION

Gradient-based methods like PCGrad, IMTL-G, and the proposed ConFIG method require separate
backpropagation steps to compute the gradient for each loss term. In contrast, conventional weight-
ing strategies only require a single backpropagation for the total loss. Thus, gradient-based methods
are usually r =

∑m
i Tb(Li)/Tb (

∑m
i Li) times more computationally expensive than weighting

methods, where Tb is the computational cost of backpropagation. To address this issue, we intro-
duce an accelerated momentum-based variant of ConFIG: M-ConFIG. Our core idea is to leverage
the momentum of the gradient for the ConFIG operation and update momentum in an alternating
fashion to avoid backpropagating all losses in a single step. In each iteration, only a single momen-

(a) (b) (c)

Figure 2: Sketch of PCGrad (a), IMTL-G (b), and our ConFIG (c) method with two loss terms. The
PCGrad method directly sums two orthogonal components, and the IMTL-G method rescales the
two vectors to the same magnitude. Our ConFIG method sums the unit vector of the orthogonal
components and adjusts its magnitude with the projection length of each loss-specific gradient.
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Algorithm 1 M-ConFIG
Require: θ0 (network weights), γ (learning rate), β1, β2, ϵ (Adam coefficient), m0 (Pseudo first momentum),

[mg1,0,mg1,0, · · ·mgm,0]← [0,0, · · · ,0] (First momentum), v0 ← 0 (Second momentum),
[tg1 , tg2 , · · · , tgm ]← [0, 0, · · · , 0], All operations on vectors are element-wise except G.
for t← 1 to · · · do

i = t%m+ 1
tgi ← tgi + 1
mgi,tgi

← β1mgi,tgi−1 + (1− β1)∇θt−1Li ▷ Update the first momentum of gi

[m̂g1 , m̂g2 , · · · , m̂gm ]← [
mg1,tg1

1−β
tg1
1

,
mg2,tg2

1−β
tg2
1

, · · · , mgm,tgm

1−β
tgm
1

] ▷ Bias corrections for
first momentum terms

m̂g ← G(m̂g1 , m̂g2 , · · · , m̂gm) ▷ ConFIG update of momentums
gc ←

[
m̂g(1− βt

1)− β1mt−1

]
/(1− β1) ▷ Obtain the estimated gradient

mt ← β1mt−1 + (1− β1)gc ▷ Update the pseudo first momentum
vt ← β2vt−1 + (1− β2)g

2
c ▷ Update the second momentum

v̂ ← vt/(1− βt
2) ▷ Bias correction for the second momentum

θi ← θt−1 − γm̂g/(
√

v̂g + ϵ) ▷ Update weights of the neural network
end for

tum is updated with its corresponding gradient, while the others are carried over from previous steps.
This reduces the computational cost of the M-ConFIG method to 1/m of the ConFIG method.

Algorithm 1 details the entire procedure of M-ConFIG. It aligns with the fundamental principles of
the Adam algorithm, where the first momentum averages the local gradient, and the second momen-
tum adjusts the magnitude of each parameter. In this approach, we calculate only a single second
momentum using an estimated gradient based on the output of the ConFIG operation. An alterna-
tive could involve calculating the second momentum for every loss term, similar to the MultiAdam
method (Yao et al., 2023). However, we found this strategy to be inaccurate and numerically unstable
compared to Algorithm 1. A detailed discussion and comparison can be found in the Appendix 1.

Surprisingly, M-ConFIG not only catches up with the training speed of regular weighting strategies
but typically yields an even lower average computational cost per iteration. This stems from the
fact that backpropagating a sub-loss Li is usually faster than backpropagating the total loss

∑m
i Li.

Thus, r is usually smaller than m and r/m < 1. This is especially obvious for PINN training, where
a reduced number of sampling points are used for boundary/initial terms and are faster to evaluate
than the residual term. In our experiments, we observed an average value of r = 1.67 and a speed-up
of 1.67/3 ≈ 0.56 per iteration for PINNs trained with three losses using M-ConFIG.

4 EXPERIMENTS

In this section, we employ the proposed methods for training PINNs on several challenging PDEs.
We also explore the application of our method on a classical Multi-Task Learning (MTL) benchmark
as an outlook. Unless mentioned otherwise, every result is computed via averaging three training
runs initialized with different random seeds, each using the model with the best test performance
during the training. For detailed numerical values and standard deviations of the result in each ex-
periment, please refer to the Appendix A.9 and A.10. Training configurations and hyper-parameters
of each experiment can be found in the Appendix A.12. An additional ablation study on training
hyperparameters can be found in the Appendix A.13. It shows that the gains from ConFIG are robust
w.r.t. hyperparameter changes.

4.1 PHYSICS INFORMED NEURAL NETWORKS

Preliminaries of PINNs. Consider the initial boundary value problem of a general PDE for a
scalar function u(x, t): Rd+1 → R given by

N [u(x, t),x, t] := N [u(x, t),x, t] + f(x, t) = 0, x ∈ Ω, t ∈ (0, T ], (6)

B[u(x, t),x, t] := B[u(x, t),x, t] + g(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ], (7)

I[u(x, 0),x, 0] := u(x, 0) + h(x, 0) = 0, x ∈ Ω. (8)

5
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Figure 3: Examples of PINN predictions and squared error (SE) distributions on the test PDEs.

Here, Ω ⊂ Rd is a spatial domain with ∂Ω and Ω denotes its boundary and closure, respectively. N
and B are spatial-temporal differential operators, and f , g and h are source functions. To solve
this initial boundary value problem, PINNs introduce a neural network û(x, t,θ) for the target
function u(x, t), where θ is the weights of the neural networks. Then, spatial and temporal dif-
ferential operators can be calculated efficiently with auto-differentiation of N [û(x, t,θ),x, t] and
B[û(x, t,θ),x, t]. Solving Eq. 6-8 turns to the training of neural networks with a loss function of

L(θ) =
nN∑
i=1

N [û(xi, ti,θ),xi, ti]︸ ︷︷ ︸
LN

+

nB∑
i=1

B[û(xi, ti,θ),xi, ti]︸ ︷︷ ︸
LB

+

nI∑
i=1

I[û(xi, 0,θ),xi, 0]︸ ︷︷ ︸
LI

, (9)

where (xi,ti) are the spatial-temporal coordinates for the data samples in the Rd+1 domain, LN ,
LB and LI are the loss functions for the PDE residual, spatial and initial boundaries, respectively.
These three loss terms give us three corresponding gradients for optimization: gN , gB, and gI . In
the experiments, we consider four cases with three different PDEs: 1D unsteady Burgers equation,
1D unsteady Schrödinger equation, 2D Kovasznay flow (Navier-stokes equations), and 3D unsteady
Beltrami flow (Navier-stokes equations). Fig. 3 shows examples of the solution domain of each
PDEs. A more detailed illustration and discussion of the PDEs and corresponding solution domains
can be found in Appendix A.7 and A.8, respectively.

Focusing on two loss terms. As detailed above, the similarity between our ConFIG method and
the PCGrad/IMTL-G methods in the two-loss scenario offers a valuable opportunity to evaluate the
proposed strategy for adapting the magnitude of the update. Therefore, we begin with a two-loss
scenario where we introduce a new composite gradient, LBI , which aggregates the contributions
from both the boundary (LB) and initial (LI) conditions. This setup also provides better insights
into the conflicting updates between PDE residuals and other loss terms.

Fig. 4 compares the performance of PINNs trained with our ConFIG method and other existing
approaches. Specifically, we compare to PCGrad (Yu et al., 2020) and the IMTL-G method (Liu
et al., 2021b) from MTL studies as well as the LRA method (Wang et al., 2021), MinMax (Liu
& Wang, 2021), and ReLoBRaLo (Bischof & Kraus, 2021) as established weighting methods for
PINNs. The accuracy metric is the MSE between the predictions and the ground truth value on the

Figure 4: Relative improvements of PINNs trained with two loss terms using different methods.
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Figure 5: Training losses of PINNs trained with Adam baselines and ConFIG using two loss terms.

Figure 6: Relative improvements of PINNs trained with three loss terms using different methods.

new data points sampled in the computational domain that differ from the training data points. As
the central question for all these methods is how much improvement they yield in comparison to
the standard training configuration with Adam, we show the relative improvement (in percent) over
the Adam baseline. Thus, +50 means half, -100 twice the error of Adam, respectively. (Absolute
metrics are given in the Appendix A.9)

The findings reveal that only our ConFIG and PCGrad consistently outperform the Adam baseline.
In addition, the ConFIG method always performs better than PCGrad. While the IMTL-G method
performs slightly better than our methods in the Kovasznay and Beltrami flow cases, it performs
worse than the Adam baseline in the Schrödinger case. Fig. 5 compares the training loss of our
ConFIG method with the Adam baseline approach. The results indicate that ConFIG successfully
mitigates the training bias towards the PDE residual term. It achieves an improved overall test
performance by significantly decreasing the boundary/initial loss while sacrificing the PDE residual
loss slightly. This indicates that ConFIG succeeds in finding one of the many minima of the residual
loss that better adheres to the boundary conditions, i.e., it finds a better overall solution for the PDE.

Scenarios with three loss terms. Fig. 6 compares the performance for all three loss terms. While
the general trend persists, with ConFIG and PCGrad outperforming the other methods, these cases
highlight interesting differences between these two methods. As PCGrad performs better for the
Burgers and Schrödinger case, while ConFIG is better for the Beltrami flow, we analyze the training

Figure 7: Training losses of the Adam baseline, PCGrad, and ConFIG with three loss terms.
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(a) (b)

Figure 8: Relative improvements of the ConFIG method with different direction weights. (a) Two-
loss scenario. (b) Three-loss scenario.

(a)

(b)

Figure 9: Relative improvements of the PINNs trained with different methods with the same wall
time. (a) Two-loss scenario. (b) Three-loss scenario.

losses of both methods in comparison to Adam in Fig. 7. In the Burgers and Schrödinger equa-
tion experiment, ConFIG notably reduces the loss associated with initial conditions while the loss
of boundary conditions exhibits negligible change. Similarly, for PCGrad, minimal changes are
observed in boundary conditions. Furthermore, owing to PCGrad’s bias towards optimizing in the
direction of larger gradient magnitudes, i.e., the direction of the PDE residual, the reduction in its
PDE residual term is modest, leading to a comparatively slower decrease in the loss of initial condi-
tions compared to ConFIG. In the case of the Beltrami flow, our ConFIG method effectively reduces
both boundary and initial losses, whereas the PCGrad method slightly improves boundary and ini-
tial losses. These results underscore the intricacies of PINN training, where PDE residual terms
also play a pivotal role in determining the final test performance. In scenarios where the PDE resid-
ual does not significantly conflict with one of the terms, an increase in the PDE residual ultimately
reduces the benefits from the improvement on the boundary/initial conditions, resulting in a better
performance for PCGrad in the Burgers and Schrödinger scenario.

Adjusting direction weights. In our ConFIG method, we set equal components for the direction
weights ŵ = 1m to ensure a uniform decrease rate across all loss terms. In the following experi-
ments, we use the different weighting methods discussed above to calculate the components of ŵ
and compare the results with our ConFIG method. As demonstrated in Fig. 8, only our default strat-
egy (equal weights) and the ReLoBRaLo weights get better performance than the Adam baseline.
Moreover, our equal setup consistently outperforms the ReLoBRaLo method, except for a slight
inferiority in the Kovasznay flow scenario with two losses. These results further validate that the
equal weighting strategy is a good choice.

Evaluation of Runtime Performance While the evaluations in Fig. 4 and 6 have focused on
accuracy after a given number of training epochs, a potentially more important aspect for practical
applications is the accuracy per runtime. This is where the M-ConFIG method can show its full
potential, as its slight approximations of the update direction come with a substantial reduction in
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terms of computational resources (we quantify the gains per iteration in A.6). Fig. 9 compares the
test MSE for M-ConFIG and other methods with a constant budget in terms of wall-clock time. Here,
M-ConFIG outperforms all other methods, even PCGrad and the regular ConFIG method which
yielded a better per-iteration accuracy above. This is apparent for all cases under consideration.

Figure 10: Test MSE of Adam baseline, ConFIG,
and M-ConFIG as functions of wall time.

To shed more light on its behavior, Fig. 10
shows the test MSE of Adam, ConFIG, and M-
ConFig for the most challenging scenario, the
3D unsteady Beltrami flow, with an extended
training run. It shows that the advantage of M-
ConFIG does not just stem from a quick late or
early decrease but rather is the result of a con-
sistently improved convergence throughout the
full training. This graph additionally highlights
that the regular ConFIG method, i.e., without
momentum, still outperforms Adam despite its
higher computational cost for each iteration.

Additional Tests on Challenging PDEs Recently, several benchmark problems have been pro-
posed as challenging tasks for training PINNs (Hao et al., 2023). We have also tested our ConFIG
and M-ConFIG methods together with other methods on these challenging tasks. The results are
summarized in Appendix. A.11. They show that, although our methods do not resolve all inherent
difficulties of PINN training, our methods still consistently outperform the other methods. These
results shows the general appeal of the proposed methods for challenging, and high-dimensional
training scenarios.

4.2 MULTI-TASK LEARNING

While PINNs represent a highly challenging and relevant case, we also evaluate our ConFIG method
for traditional Multi-Task Learning (MTL) as an outlook. We employ the widely studied CelebA
dataset (Liu et al., 2015), comprising 200,000 face images annotated with 40 facial binary attributes,
making it suitable for MTL with m = 40 loss terms. Unlike PINNs, where each sub-task (loss term)
carries distinct significance, and the final test loss may not reflect individual subtask performance,
the CelebA experiment allows us to use the same metric to evaluate the performance for all tasks.

We compared the performance of our ConFIG method with ten popular MTL baselines. Besides
PCGrad and IMTL-G from before, we also compare to Linear scalarization baseline (LS) (Caruana,
1997), Uncertainty Weighting (UW) (Cipolla et al., 2018), Dynamic Weight Average (DWA) (Liu
et al., 2019), Gradient Sign Dropout (GradDrop) (Chen et al., 2020), Conflict-Averse Gradient De-
scent (CAGrad) (Liu et al., 2021a), Random Loss Weighting (RLW) (Lin et al., 2022), Nash bargain-
ing solution for MTL (Nash-MTL) (Navon et al., 2022), and Fast Adaptive Multitask Optimization
(FAMO) (Liu et al., 2023). We use two metrics to measure the performance of different methods: the
mean rank metric (MR, lower ranks being better) (Navon et al., 2022; Liu et al., 2023), represents
the average rank of across all tasks. An MR of 1 means consistently outperforming all others. In
addition, we consider the average F1 score (F1, larger is better) to measure the average performance
on all tasks.

Fig. 11 presents a partial summary of the results. Our ConFIG method or M-ConFIG method
emerges as the top-performing method for both MR and F1 metric. Unlike the PINN study, we
update 30 momentum variables rather than a single momentum variable for the M-ConFIG method,
as indicated by the subscript ‘30.’ This adjustment is necessary because a single update step is
insufficient to achieve satisfactory results in the challenging MTL experiments involving 40 tasks.

Varying Number of Tasks Fig. 12 illustrates how the performance of the M-ConFIG method
varies with different numbers of tasks and momentum-update steps in the CelebA MTL experi-
ments. The performance of M-ConFIG tends to degrade as the number of tasks increases. This
decline is attributed to longer intervals between momentum updates for each gradient, making it
difficult for the momentum to accurately capture changes in the gradient. When the number of tasks
becomes sufficiently large, this performance loss outweighs the benefits of M-ConFIG’s faster train-
ing speed. In our experiments, when the number of tasks reaches 10, the F 1 score of the ConFIG

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 11: Test evaluation in terms of F1 and MR for the CelebA experiments. ConFIG and M-
ConFIG 30 yield the best performance for both metrics, each of them favoring a different metric.

Figure 12: The relative F 1 value and training time of the M-Config method with a varying number
of tasks and gradient update steps in the CelebA experiment.

method (0.635) already surpasses that of M-ConFIG (0.536) with the same training time. However,
increasing the number of iterations can effectively mitigate this performance degradation. In the
standard 40-task MTL scenario, increasing the number of gradient update steps per iteration to 20
allows M-ConFIG to achieve a performance level comparable to ConFIG while reducing the training
time to only 56% of that required by ConFIG. Notably, alternating momentum updates can some-
times even outperform the ConFIG method with the same number of training epochs, as seen in the
nupdates = 30 case in the MTL experiment, as well as in the Burgers and Kovasznay cases in the
two-loss PINNs experiment.

Limitations A potential limitation of the proposed method is the potential performance degrada-
tion of the M-ConFIG method as the number of loss terms increases. Additionally, the memory
consumption required to store the momentum for each gradient grows with both the size of the pa-
rameter space and the number of loss terms. As discussed in the MTL experiment, one approach to
mitigate the performance degradation is to update not just a single gradient but a stochastic subset of
gradients during each iteration, albeit at the cost of an increased computational budget. Nonetheless,
further investigation and improvement of the M-ConFIG method’s performance in scenarios with a
large number of loss terms is a promising direction for future research, aiming to broaden the appli-
cability of the ConFIG approach. Meanwhile, we also notice that there are still many challenges in
the training of PINNs, e.g., chaotic problems, that can not be addressed by eliminating the conflicts
between different loss terms during the training. Future efforts, like improved network structures
and imposed causality, will be required to further improve PINN training.

5 CONCLUSIONS

In this study, we have presented ConFIG, a method designed to alleviate training conflicts between
loss terms with distinct behavior. The ConFIG method achieves conflict-free training by ensuring
a positive dot product between the final gradient and each loss-specific gradient. Additionally, we
introduce a momentum-based approach, replacing the gradient with alternately updated momentum
for highly efficient iterations. In our experiments the proposed methods have shown superior per-
formance compared with a wide range of existing training strategies for PINNs. The config variants
even outperform SOTA methods for challenging MTL scenarios.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Chandrajit Bajaj, Luke McLennan, Timothy Andeen, and Avik Roy. Recipes for when physics fails:
recovering robust learning of physics informed neural networks. Machine Learning: Science
and Technology, 4(1):015013, feb 2023. doi: 10.1088/2632-2153/acb416. URL https://dx.
doi.org/10.1088/2632-2153/acb416.

Christian Beck, Martin Hutzenthaler, Arnulf Jentzen, and Benno Kuckuck. An overview
on deep learning-based approximation methods for partial differential equations. Dis-
crete and Continuous Dynamical Systems - B, 28(6):3697–3746, 2023. ISSN 1531-3492.
doi: 10.3934/dcdsb.2022238. URL https://www.aimsciences.org/article/id/
639b367cb2114e413cb39c48.

Rafael Bischof and Michael Kraus. Multi-objective loss balancing for physics-informed deep learn-
ing, 2021.

R. Caruana. Machine Learning, chapter Multitask Learning. Springer, 1997. doi: 10.1023/A:
1007379606734.

Arslan Chaudhry, Naeemullah Khan, Puneet Dokania, and Philip Torr. Continual learning in low-
rank orthogonal subspaces. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin
(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 9900–9911. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/
paper/2020/file/70d85f35a1fdc0ab701ff78779306407-Paper.pdf.

Zhao Chen, Jiquan Ngiam, Yanping Huang, Thang Luong, Henrik Kretzschmar, Yuning Chai,
and Dragomir Anguelov. Just pick a sign: Optimizing deep multitask models with gra-
dient sign dropout. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin
(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 2039–2050. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/
paper/2020/file/16002f7a455a94aa4e91cc34ebdb9f2d-Paper.pdf.

Roberto Cipolla, Yarin Gal, and Alex Kendall. Multi-task learning using uncertainty to weigh losses
for scene geometry and semantics. In 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 7482–7491, 2018. doi: 10.1109/CVPR.2018.00781.

Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo, Gianluigi Rozza, Maziar Raissi,
and Francesco Piccialli. Scientific machine learning through physics–informed neural networks:
Where we are and what’s next. Journal of Scientific Computing, 92(3):88, 2022. doi: 10.1007/
s10409-021-01148-1.

Arka Daw, Jie Bu, Sifan Wang, Paris Perdikaris, and Anuj Karpatne. Mitigating propagation failures
in physics-informed neural networks using retain-resample-release (r3) sampling. In Proceedings
of the 40th International Conference on Machine Learning, ICML’23. JMLR.org, 2023.

Taco de Wolff, Hugo Carrillo Lincopi, Luis Martı́, and Nayat Sanchez-Pi. Mopinns: an evolutionary
multi-objective approach to physics-informed neural networks. In Proceedings of the Genetic
and Evolutionary Computation Conference Companion, GECCO ’22, pp. 228–231, New York,
NY, USA, 2022. Association for Computing Machinery. ISBN 9781450392686. doi: 10.1145/
3520304.3529071. URL https://doi.org/10.1145/3520304.3529071.

Xin Dong, Ruize Wu, Chao Xiong, Hai Li, Lei Cheng, Yong He, Shiyou Qian, Jian Cao, and
Linjian Mo. Gdod: Effective gradient descent using orthogonal decomposition for multi-task
learning. In Proceedings of the 31st ACM International Conference on Information & Knowledge
Management, CIKM ’22, pp. 386–395, New York, NY, USA, 2022. Association for Computing
Machinery. ISBN 9781450392365. doi: 10.1145/3511808.3557333. URL https://doi.
org/10.1145/3511808.3557333.

Yunshu Du, Wojciech M. Czarnecki, Siddhant M. Jayakumar, Mehrdad Farajtabar, Razvan Pascanu,
and Balaji Lakshminarayanan. Adapting auxiliary losses using gradient similarity, 2018.

11

https://dx.doi.org/10.1088/2632-2153/acb416
https://dx.doi.org/10.1088/2632-2153/acb416
https://www.aimsciences.org/article/id/639b367cb2114e413cb39c48
https://www.aimsciences.org/article/id/639b367cb2114e413cb39c48
https://proceedings.neurips.cc/paper_files/paper/2020/file/70d85f35a1fdc0ab701ff78779306407-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/70d85f35a1fdc0ab701ff78779306407-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/16002f7a455a94aa4e91cc34ebdb9f2d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/16002f7a455a94aa4e91cc34ebdb9f2d-Paper.pdf
https://doi.org/10.1145/3520304.3529071
https://doi.org/10.1145/3511808.3557333
https://doi.org/10.1145/3511808.3557333


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li. Orthogonal gradient descent for
continual learning. In Silvia Chiappa and Roberto Calandra (eds.), Proceedings of the Twenty
Third International Conference on Artificial Intelligence and Statistics, volume 108 of Pro-
ceedings of Machine Learning Research, pp. 3762–3773. PMLR, 26–28 Aug 2020. URL
https://proceedings.mlr.press/v108/farajtabar20a.html.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Yee Whye Teh and Mike Titterington (eds.), Proceedings of the Thirteenth Interna-
tional Conference on Artificial Intelligence and Statistics, volume 9 of Proceedings of Machine
Learning Research, pp. 249–256, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR.
URL https://proceedings.mlr.press/v9/glorot10a.html.

Lars Grasedyck. Hierarchical singular value decomposition of tensors. SIAM Journal on Matrix
Analysis and Applications, 31(4):2029–2054, 2010. doi: 10.1137/090764189.

I. Gromeka. Some cases of incompressible fluid motion. Technical report, Kazan Federal University,
1881.

Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial differential equa-
tions using deep learning. Proceedings of the National Academy of Sciences, 115(34):8505–
8510, 2018. doi: 10.1073/pnas.1718942115. URL https://www.pnas.org/doi/abs/
10.1073/pnas.1718942115.

Zhongkai Hao, Jiachen Yao, Chang Su, Hang Su, Ziao Wang, Fanzhi Lu, Zeyu Xia, Yichi Zhang,
Songming Liu, Lu Lu, et al. Pinnacle: A comprehensive benchmark of physics-informed neural
networks for solving pdes. arXiv preprint arXiv:2306.08827, 2023.

Philipp Holl, Nils Thuerey, and Vladlen Koltun. Learning to control pdes with differentiable
physics. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=HyeSin4FPB.

Adrián Javaloy and Isabel Valera. Rotograd: Gradient homogenization in multitask learning. In
International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=T8wHz4rnuGL.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A.
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Has-
sabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic for-
getting in neural networks. Proceedings of the National Academy of Sciences, 114(13):3521–
3526, 2017. doi: 10.1073/pnas.1611835114. URL https://www.pnas.org/doi/abs/
10.1073/pnas.1611835114.

L. I. G. Kovasznay. Laminar flow behind a two-dimensional grid. Mathematical Proceedings of the
Cambridge Philosophical Society, 44(1):58–62, 1948. doi: 10.1017/S0305004100023999.

Aditi S. Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney.
Characterizing possible failure modes in physics-informed neural networks. Advances in Neural
Information Processing Systems, 34, 2021.

Baijiong Lin, Feiyang YE, Yu Zhang, and Ivor Tsang. Reasonable effectiveness of random weight-
ing: A litmus test for multi-task learning. Transactions on Machine Learning Research, 2022.
ISSN 2835-8856. URL https://openreview.net/forum?id=jjtFD8A1Wx.

Mario Lino, Stathi Fotiadis, Anil A. Bharath, and Chris D. Cantwell. Current and emerging
deep-learning methods for the simulation of fluid dynamics. Proceedings of the Royal So-
ciety A: Mathematical, Physical and Engineering Sciences, 479(2275):20230058, 2023. doi:
10.1098/rspa.2023.0058. URL https://royalsocietypublishing.org/doi/abs/
10.1098/rspa.2023.0058.

Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gradient descent for
multi-task learning. Advances in Neural Information Processing Systems, 34, 2021a.

Bo Liu, Yihao Feng, Peter Stone, and Qiang Liu. Famo: Fast adaptive multitask optimization, 2023.

12

https://proceedings.mlr.press/v108/farajtabar20a.html
https://proceedings.mlr.press/v9/glorot10a.html
https://www.pnas.org/doi/abs/10.1073/pnas.1718942115
https://www.pnas.org/doi/abs/10.1073/pnas.1718942115
https://openreview.net/forum?id=HyeSin4FPB
https://openreview.net/forum?id=HyeSin4FPB
https://openreview.net/forum?id=T8wHz4rnuGL
https://openreview.net/forum?id=T8wHz4rnuGL
https://www.pnas.org/doi/abs/10.1073/pnas.1611835114
https://www.pnas.org/doi/abs/10.1073/pnas.1611835114
https://openreview.net/forum?id=jjtFD8A1Wx
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2023.0058
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2023.0058


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Dehao Liu and Yan Wang. A dual-dimer method for training physics-constrained neural networks
with minimax architecture. Neural Networks, 136:112–125, 2021. ISSN 0893-6080. doi: https:
//doi.org/10.1016/j.neunet.2020.12.028.

Liyang Liu, Yi Li, Zhanghui Kuang, Jing-Hao Xue, Yimin Chen, Wenming Yang, Qingmin Liao, and
Wayne Zhang. Towards impartial multi-task learning. In International Conference on Learning
Representations, 2021b. URL https://openreview.net/forum?id=IMPnRXEWpvr.

S. Liu, E. Johns, and A. J. Davison. End-to-end multi-task learning with attention. In 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1871–1880,
Los Alamitos, CA, USA, jun 2019. IEEE Computer Society. doi: 10.1109/CVPR.2019.00197.
URL https://doi.ieeecomputersociety.org/10.1109/CVPR.2019.00197.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
In Proceedings of International Conference on Computer Vision (ICCV), December 2015.

Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Philip S. Yu. Learning multiple tasks with
multilinear relationship networks. In Proceedings of the 31st International Conference on Neural
Information Processing Systems, NIPS’17, pp. 1593–1602, Red Hook, NY, USA, 2017. Curran
Associates Inc. ISBN 9781510860964.

Levi D. McClenny and Ulisses M. Braga-Neto. Self-adaptive physics-informed neural networks.
Journal of Computational Physics, 474:111722, 2023. ISSN 0021-9991. doi: https://doi.org/10.
1016/j.jcp.2022.111722.

Aviv Navon, Aviv Shamsian, Idan Achituve, Haggai Maron, Kenji Kawaguchi, Gal Chechik, and
Ethan Fetaya. Multi-task learning as a bargaining game. arXiv preprint arXiv:2202.01017, 2022.
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A APPENDIX

A.1 CONVERGENCE PROOF FOR THE CONFIG METHOD

In this section, we will give the proof for convergence for both convex (Theorem 1) and non-convex
landscapes (Theorem 2) for our ConFIG method.
Theorem 1. Assume that (a) m objectives L1,L2 · · · ,Lm are convex and differentiable; (b)The
gradient g = ∇θL =

∑m
i=1∇θLi is Lipschitz continuous with constant L > 0. Then, update

along ConFIG direction gConFIG with step size γ ≤ 2
L will converge to either a location where

|gConFIG| = 0 or the optimal solution.

Proof. A Lipschitz continuous g with constant L > 0 gives a negative semi-definite matrix∇2
θ−LI .

If we do a quadratic expansion of L around L(θ), we will get

L
(
θ+
)
≤ L(θ) +∇L(θ)T

(
θ+ − θ

)
+

1

2
∇2L(θ)

∣∣θ+ − θ
∣∣2

≤ L(θ) + gT
(
θ+ − θ

)
+

1

2
L
∣∣θ+ − θ

∣∣2 . (10)

The θ+ is obtained through an update as θ+ = θ − γgConFIG, resulting in

L
(
θ+
)
≤ L(θ)− γgTgConFIG +

1

2
Lγ2 |gConFIG|2

= L(θ)− γ(

m∑
i=1

gT
i )gConFIG +

1

2
Lγ2 |gConFIG|2

. (11)

Our gConFIG has following 2 features:

• An equal and positive projection on each loss-specific gradient: g⊤
i gConFIG

|gi||gConFIG| =
g⊤
j gConFIG

|gj ||gConFIG| >

0, i.e., Sc(gi, gConFIG) = Sc(gj , gConFIG) := Sc > 0;

• A magnitude equals to the sum of projection length of each loss-specific gradient on it:
|gConFIG| =

∑m
i=1 g

⊤
i U(gConFIG) =

∑ |gi|Sc.

Given these two conditions, we have

(

m∑
i=1

g⊤
i )gConFIG =

m∑
i=1

(g⊤
i gConFIG)

=

m∑
i=1

(|gi||gConFIG|Sc)

= |gConFIG|
m∑
i=1

(|gi|Sc)

= |gConFIG|2

, (12)

turning Eq.11 into

L
(
θ+
)
≤ L(θ)− γ|gConFIG|2 +

1

2
Lγ2 |gConFIG|2 (13)

If γ ≤ 2
L , we have 1

2Lγ
2 |gConFIG|2−γ|gConFIG|2 ≤ 0, which finally gives L (θ+) ≤ L (θ). Note that

when γ ≤ 2
L , the equality holds and only holds when |gConFIG| = 0 where conflict direction doesn’t

exist and optimization along any direction will results in at least one of the losses increases.

Theorem 2. Assume that (a) m objectives L1,L2 · · · ,Lm are differentiable and possibly non-
convex; (b)The gradient g = ∇θL =

∑m
i=1∇θLi is Lipschitz continuous with constant L > 0.

Then, update along ConFIG direction gConFIG with step size γ ≤ 2
L will converge to either a location

where |gConFIG| = 0 or the stationary point.
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Proof. Using the descent lemma, an update on gConFIG with a step size γ ≤ 2
L gives us

L
(
θk+1

)
≤ L

(
θk
)
− γ

2
|gk

ConFIG|2, (14)

where the superscript is the index of optimization iterations.

Due to |gConFIG| =
∑m

i=1 |gi|Sc, |g| = |∑m
i=1 gi| and the triangle inequality where

∑m
i=1 |gi| ≥

|∑m
i=1 gi|, we have

L
(
θk+1

)
≤ L

(
θk
)
− γ

2
|gk

ConFIG|2

= L
(
θk
)
− γ

2
(

m∑
i=1

|gk
i |)2Sk,2

c

≤ L
(
θk
)
− γ

2
|

m∑
i=1

gk
i |2Sk,2

c

= L
(
θk
)
− γ

2
|gk|2Sk,2

c

. (15)

Summing this inequality over k = 1, 2, · · · ,K results in

K∑
k=1

|gk|2 ≤ 2

γ

K∑
k=1

L
(
θk
)
− L

(
θk+1

)
Sk,2
c

. (16)

By defining min1≤k≤K(Sk
c ) = α > 0, we have

K∑
k=1

|gk|2 ≤ 2

γα2

[
L
(
θ0
)
− L

(
θK+1

)]
. (17)

Finally, averaging Eq.17 on each side leads to

min
1≤k≤K

|gk|2 ≤ 1

K

K∑
k=1

|gk|2 ≤ 2

γα2K

[
L
(
θ0
)
− L

(
θK+1

)]
. (18)

As K → ∞, either the |gConFIG| = 0 is obtained and the optimization stops, or the last term in
the inequality goes 0, implying that the minimal gradient norm also goes to zero, i.e., a stationary
point.

A.2 COMPARISON BETWEEN CONFIG, PCGRAD AND IMTL-G

Algorithm 2 PCGrad method
Require: θ (network weights), [L1,L2, · · · Lm] (loss functions)
[g1, g2, · · · , gm]← [∇θL1,∇θL2, · · · ,∇θLm]
[ĝ1, ĝ2, · · · , ĝm]← [g1, g2, · · · , gm]
for i← 1 to m do

for j
uniformly∼ [1, 2, · · ·m] in random order do

if i ̸= j & ĝ⊤
i gj < 0 then

ĝi = O(gj , ĝi)
end if

end for
gPCGrad =

∑j
i=1 ĝi

end for

PCGrad method. Algorithm 2 outlines the complete algorithm of the PCGrad method. The
core idea is to use O(g2, g1) to replace g1 when g1 conflicts with g2 i.e., g⊤

1 g2 < 0. Since
O(g2, g1)⊤g2 = 0, the conflict is resolved. In the simple case of two loss terms, this results in
the final gradient gPCGrad = O(g1, g2)+O(g2, g1). This final update gradient does not conflict with

16
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all loss-specific gradients, as [O(g1, g2) +O(g2, g1)]⊤ g1 = O(g2, g1)⊤g1 = |g1|2 − (g⊤
1 g2)

2

|g2
2 |
≥

|g1|2 − |g1|2|g2|2
|g2

2 |
= 0.

However, the PCGrad method can not guarantee a conflict-free update when there are more loss-
specific gradients. To illustrate this, let us consider the case of three vectors, g1, g2, g3, where each
vector conflicts with the other. According to the PCGrad method, we first replace g1 withO(g2, g1),
i.e., ĝ1 = O(g2, g1) so that ĝ⊤

1 g2 = 0. If the updated ĝ1 is still conflict with g3, we will then further
modify ĝ1 as ĝ1 = O(g3, ĝ1). However, now we can only guarantee that ĝ⊤

1 g3 = 0, but we can not
guarantee that ĝ1 is still not conflicting with g2.

The PCGrad method introduces random selection to mitigate this drawback, as shown in Al-
gorithm 2, but this does not fundamentally solve the problem. Fig. 13 illustrate a simple
case for the failure of the PCGrad method where g1 = [1.0, 0, 0.1], g2 = [−0.5,

√
3/2, 0.1],

and g3 = [−0.5,−
√
3/2, 0.1]. The final update vector for the PCGrad method is gPCGrad =

[−0.351,−0.203, 0.658], which conflicts with g1 while the update direction of our ConFIG method
is gConFIG = [0, 0, 0.3], which is not conflict with any loss-specific gradients.

Figure 13: A simple failure model for PCGrad method.

Another feature of the PCGrad method is that the projection length of the final update gradient
gPCGrad on each loss-specific gradient is not equal, i.e., g⊤

PCGradU(gi) ̸= g⊤
PCGradU(gj), and gPCGrad is

usually biased to the loss-specific gradient with higher magnitude. We can illustrate this point with
two gradient examples:

g⊤
PCGradU(g1) = (O(g1, g2) +O(g2, g1))⊤

g1
|g1|

= O(g2, g1)⊤
g1
|g1|

=

(
g1 −

g⊤
1 g2
|g2|2

g2

)⊤
g1
|g1|

= |g1| −
(g⊤

1 g2)
2

|g2|2|g1|
= |g1|[1− S2c (g1, g2)].

(19)

Similarly,
g⊤

PCGradU(g2) = |g2|[1− S2c (g1, g2)]. (20)

Thus,
g⊤

PCGradU(g1)
g⊤

PCGradU(g2)
=
|g1|
|g2|

(21)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A similar conclusion also holds for the case with more loss-specific gradients. The essence here
is the magnitude of the orthogonal operator which is proportional to the magnitude of loss-specific
gradients:

|O(gi, gj)| =
√
(gj −

g⊤
i gj
|gi|2

gi)2

=

√
(|gj |2 +

(g⊤
i gj)

2

|gi|2
− 2

g⊤
i gj
|gi|2

g⊤
i gj)

=

√
|gj |2 −

(g⊤
i gj)

2

|gi|2

=
√
|gj |2 − |gj |2S2c (gi, gj)

= |gj |
√

1− S2c (gi, gj).

(22)

When summing all these orthogonal values together, the final gradient will be biased to theO(gi, gj)
with a larger gradient. Meanwhile, since O(gi, gj) is biased towards gj rather than gi(due to
Sc(gi,O(gi, gj)) = 0), the final gradient will favor to the loss-specific gradient with larger magni-
tude.

IMTL-G method. In contrast to the PCGrad method the IMTL-G method is designed to guarantee
an equal projection length, i.e.,

gIMTL-G · U(gi)⊤ = gIMTL-G · U(gj)⊤ (23)
To achieve this goal, the IMTL-G method rescales the magnitude of each loss-specific gradient with
calculated weights:

gIMTL-G =

m∑
i=1

αigi (24)
[α2, α3 · · ·αm] = g1 ·U⊤ ·

(
D ·U⊤)−1

α1 = 1−∑m
i=2 αi

U⊤ = [U(g⊤
1 )− U(g⊤

2 ),U(g⊤
1 )− U(g⊤

3 ), · · · ,U(g⊤
1 )− U(g⊤

m)]

D⊤ = [g⊤
1 − g⊤

2 , g
⊤
1 − g⊤

3 , · · · , g⊤
1 − g⊤

m]

(25)

For the two gradient scenario, this will give [α1, α2] = [|g2|/(|g1| + |g2|), |g1|/(|g1| + |g2|)],
resulting in a same magnitude for two loss-specific gradients as (|g1||g2|)/(|g1| + |g2|). The final
gradient vector doesn’t conflict with g1 and g2, as

g⊤
IMTL-G(U)(g1) =

|g1||g2|
|g1|+ |g2|

(
g1
|g1|

+
g2
|g2|

)⊤
g1
|g1|

=
|g1||g2|
|g1|+ |g2|

(1 + Sc(g1, g2))

≥ 0

(26)

As mentioned in Appendix. 3.2, the direction of the final update gradient for IMTL-G and our
ConFIG is the same when there are only two vectors, but their magnitudes differ. For the Adam
optimizer, the gradient’s absolute magnitude is unimportant since it ultimately rescales the gradient
elements. The crucial aspect is how the gradient changes in both direction and magnitude. When
the gradient changes rapidly, Adam’s corresponding learning rate will decrease, as discussed in Ap-
pendix. A.5. Since the direction of the final gradient in IMTL-G and ConFIG is the same, how
their magnitudes change ultimately affects their performance with the Adam optimizer. The magni-
tude of the final gradient with two gradients are 2

√
[1 + Sc(g1), g2)] /2(|g1||g2|)/(|g1|+ |g2|) and√

[1 + Sc(g1), g2)] /2(|g1|+ |g2|) for IMTL-G and ConFIG method, respectively. Thus,

|gIMTL-G|
|gConFIG|

=
2(|g1||g2|)/(|g1|+ |g2|)

|g1|+ |g2|
(27)
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A significant difference arises when the magnitudes of g1 and g2 are different. For example, if
g1 >> g2, (|g1||g2|)/(|g1| + |g2|) ∼ g2 while |g1| + |g2| ∼ g1. This means that the magnitude
of gIMTL-G tracks the changes in the magnitude of the smaller vector, whereas our ConFIG method
tracks the magnitude of the larger vector. This causes the difference between IMTL-G and our
ConFIG methods in two loss-term vector situations.

Figure 14: A simple failure model for IMTL-G method.

Another major difference between IMTL-G and our ConFIG methods occurs when more gradi-
ent terms are involved. The coefficient αi of IMTL-G method might have negative values since
Eq. 25 only guarantees that gIMTL-G · U(gi)⊤ = gIMTL-G · U(gj)⊤ but not gIMTL-G · U(gi)⊤ =
gIMTL-G · U(gj)⊤ ≥ 0. It is easy to find such a situation where the negative coefficient will result in
a conflicting update. Fig. 14 illustrates such an example where g1 = [0.0412, 0.4295, 0.9394],
g2 = [0.3571, 0.5491, 0.1414], and [0.9823, 0.9361, 0.0552]. Although both our ConFIG and
IMTL-G ensure gIMTL-G ·U(gi)⊤ = gIMTL-G ·U(gj)⊤, they are in exactly opposite direction. The ob-
tained update direction for our ConFIG method is gConFIG = [1.5844, 0.4850, 1.4005] and the cosine
similarity between gConFIG and each loss-specific gradient is 0.7086 while IMTL-G method results
in a final update gradient of gIMTL-G = [−0.7429,−0.2274,−0.6566] with a cosine similarity of
-0.7086.

A.3 EXISTENCE OF SOLUTIONS FOR CONFIG

In Appendix A.2, we illustrate instances where the PCGrad and IMTL-G methods fail. This raises
the question of whether ConFIG likewise exhibits failure modes that could impede its performance.

Our ConFIG method is equivalent to solving the following system of linear equations:

[U(g1),U(g2), · · · ,U(gm)]⊤x = 1m, (28)

where the solution x is the conflict-free gradient that should be obtained. Our ConFIG method will
fail if Eq. 28 has no solution, i.e., if a conflict-free direction in the parameter space does not exist.
If we use A and b to denote [U(g1),U(g2), · · · ,U(gm)]⊤ and 1m, respectively, Eq. 28 will not
have a solution if R(A) < R[(A|b)] where R is the rank of a matrix and (A|b) is the augmented
matrix of A and b. Meanwhile, since R(b)=1, and R(A) ≤ R[(A|b)] ≤ R(A) + R(b), i.e.,
R(A) ≤ R[(A|b)] ≤ R(A) + 1, R[(A|b)] can only be either R(A) or R(A) + 1. Thus, Eq. 28
doesn’t have solutions when R[(A|b)] = R(A) + 1.

Assume that each loss-specific gradient has k elements, then the shape of A and b is m × k and
m× (k + 1), respectively. Thus, we have:

• If A is full rank:

– If m > k: R(A) = k;

* if (A|b) is full rank: R[(A|b)] = k + 1. Eq. 28 doesn’t have solutions.
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* if (A|b) is not full rank: R[(A|b)] = k. Eq. 28 has solutions.
– If m ≤ k: R(A) = m. Since R[(A|b)] ≤ min(m, k + 1) = m, thus R[(A|b)] ̸=
R(A) + 1 = m+ 1. Eq. 28 has solutions.

• If A is not full rank, i.e., R(A) = p < min(m, k), we will always have p + 1 ≤
min(m, k + 1). Thus, there is no guarantee that R[(A|b)] ̸= m+ 1. Thus Eq. 28 doesn’t
have solutions if R[(A|b)] = p+ 1, and it has solutions if R[(A|b)] = p.

In practice, the number of parameters in a neural network is always much larger than the number
of loss terms, i.e., k >> m. In this case, a full rank A means R(A) = m, i,e, all the loss-specific
gradients are linearly independent. This is true in most situations because if the loss-specific gradi-
ents were not linearly independent, we would have gj =

∑m
i=1,i̸=j αigi, where αi is the coefficient.

Since gi = ∂Li/∂θ, this would also implyLj =
∑m

i=1,i̸=j αiLi. However, the relationship between
loss functions is usually not linear in practice.

To summarize, during the training procedure, we almost always have k >> m and a full rank A, en-
suring the existence of a conflict-free direction. It is also worth pointing out that our ConFIG method
can still provide a good direction if a conflict-free direction does not exist since the Moore–Penrose
pseudoinverse will offer a least squares solution for Eq. 28, making it a “conflict-free” as possible.

A.4 PROOF OF THE EQUIVALENCE

To prove the equivalence between Eq. 2, 3 and Eq. 4, 5 is equivalent to prove that U [O(g1, g2)] +
U [O(g2, g1)] = k[U(g1),U(g2)]−⊤1m where k¿0. Thus, we can first calculate

[U(g1),U(g2)]⊤ [U [O(g1, g2)] + U [O(g2, g1)]] =
[
U(g1)⊤ [U [O(g1, g2)] + U [O(g2, g1)]]
U(g2)⊤ [U [O(g1, g2)] + U [O(g2, g1)]]

]
=

[
U(g1)⊤U [O(g2, g1)]
U(g2)⊤U [O(g1, g2)]

]
.

(29)
Then, from Eq. 19 we can obtain

U(g1)⊤O(g2, g1) = |g1|[1− S2c (g1, g2)]. (30)
Thus

U(g1)⊤U [O(g2, g1)] =
|g1|[1− S2c (g1, g2)]
|O(g2, g1)|

. (31)

From Eq. 22 we can get
|O(g2, g1)| = |g1|

√
1− S2c (g1, g2). (32)

Put Eq. 32 back to Eq. 31, we get

U(g1)⊤U [O(g2, g1)] =
√
1− S2c (g1, g2). (33)

Similarly, we can get
U(g2)⊤U [O(g1, g2)] =

√
1− S2c (g1, g2). (34)

Put Eq. 33 and Eq. 34 back to Eq. 29

[U(g1),U(g2)]⊤ [U [O(g1, g2)] + U [O(g2, g1)]] = [
√

1− S2c (g1, g2),
√
1− S2c (g1, g2)]⊤, (35)

which is
U [O(g1, g2)] + U [O(g2, g1)] =

√
1− S2c (g1, g2)[U(g1),U(g2)]−⊤1m. (36)

A.5 M-CONFIG AND MOMENTUM STRATEGIES

In the current study, we use the Adam optimizer to train baseline PINNs, as shown in Algorithm 3.
The green line in the algorithm can be replaced by other methods like PCGrad or the IMTL-G
method. The Adam optimizer uses the first momentum m to average the recent update direction
and the second momentum v to rescale the learning rate of each parameter. If we want to use the
momentum to replace the gradient for the ConFIG update, an intuitive approach could be to calculate
the first and second momentum for each loss-specific gradient and use the final rescaled momentum
to calculate the input for the ConFIG update, as shown in ”MA-ConFIG” in Algorithm 4. However,
this approach could result in several issues:
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Algorithm 3 ConFIG update with Adam optimizer
Require: θ0 (network weights), γ (learning rate), β1, β2, ϵ (Adam coefficient),

m0 ← 0 (first momentum), v0 ← 0 (Second momentum),
All operations on vectors are element-wise except G.
for t← 1 to · · · do

gc = G(∇θt−1L1,∇θt−1L2, · · · ,∇θt−1Lm) ▷ ConFIG update of gradients
mt ← β1mt−1 + (1− β1)gc ▷ Update the first momentum
vt ← β2vt−1 + (1− β2)g

2
c ▷ Update the second momentum

m̂←mt/(1− βt
1) ▷ Bias corrections for the first momentum

v̂ ← vt/(1− βt
2) ▷ Bias corrections for the second momentum

θi ← θt−1 − γm̂/(
√
v̂ + ϵ) ▷ Update weights of the neural network

end for

Algorithm 4 MA-ConFIG
Require: θ0 (network weights), γ (learning rate), β1, β2, ϵ (Adam coefficient),

[mg1,0,mg1,0, · · ·mgm,0]← [0,0, · · · ,0] (first momentum),
[vg1,0,vg1,0, · · ·vgm,0]← [0,0, · · · ,0] (Second momentum), [tg1 , tg2 , · · · , tgm ]← [0, 0, · · · , 0],
All operations on vectors are element-wise except G.
for t← 1 to · · · do

i = t%m+ 1
tgi ← tgi + 1
gi = ∇θt−1Li

mgi,tgi
← β1mgi,tgi−1 + (1− β1)gi ▷ Update the first momentum of gi

vgi,tgi
← β2vgi,tgi−1 + (1− β2)g

2
i ▷ Update the second momentum of gi

[m̂g1 , m̂g2 , · · · , m̂gm ]← [
mg1,tg1

1−β
tg1
1

,
mg2,tg2

1−β
tg2
1

, · · · , mgm,tgm

1−β
tgm
1

] ▷ Bias corrections for
first momentum terms

[v̂g1 , v̂g2 , · · · , v̂gm ]← [
vg1,tg1

1−β
tg1
2

,
vg2,tg2

1−β
tg2
2

, · · · , vgm,tgm

1−β
tgm
2

] ▷ Bias corrections for
first momentum terms

[ĝ1, ĝ2, · · · , ĝm] = [
m̂g1√
v̂g1+ε

,
m̂g2√
v̂g2+ε

, · · · , m̂gm√
v̂gm+ε

] ▷ Rescale the momentum.

θi ← θt−1 − γG(ĝ1, ĝ2, · · · , ĝm) ▷ Update weights of the neural network with ConFIG operator
end for

• Inappropriate learning rate. Ideally, the Adam method will rescale each element of the up-
date gradient to 1 (m ∼ g, v ∼ g2, m/

√
v ∼ 1). If one of the elements of the update

gradient repeatedly oscillates between positive and negative, then m becomes smaller while
v becomes larger, resulting in a small update step (learning rate) for the corresponding pa-
rameter. However, Adam’s neat adaptive learning rate adjustment feature will be destroyed
if we rescale the momentum before applying the ConFIG operator. This is because ConFIG
will alter each parameter’s learning rate again by changing the update gradient’s direction
and magnitude.

• Numerical instability. The current study uses singular value decomposition (SVD) to calcu-
late the pseudoinverse. Our experience shows that rescaling the momentum makes the input

Table 1: Test results of different momentum configurations. ”MA-ConFIG” refers to the strategy
with the second momentum inside the ConFIG operation, and ”NaN” means the training failed due
to numerical stability.

M-ConFIG MA-ConFIG

Burgers

[LN ,LBI ]

(1.277± 0.035)× 10−4 (1.549± 0.362)× 10−3

Schrödinger (4.292± 1.863)× 10−4 (2.625± 0.087)× 10−1

Kovasznay (9.777± 0.347)× 10−9 NaN
Beltrami (7.949± 0.384)× 10−5 (6.658± 0.435)× 10−3

Burgers
[LN ,LB,LI ]

(1.296± 0.013)× 10−4 (8.511± 7.835)× 10−3

Schrödinger (1.522± 0.581)× 10−3 NaN
Beltrami (9.103± 1.831)× 10−5 (5.783± 0.405)× 10−3
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matrix for SVD easily ill-conditioned or has too many repeated singular values, leading to
training failure.

Tab. 1 compares the performance of M-ConFIG and MA-ConFIG methods, where M-ConFIG is
always stable and significantly better than the MA-ConFIG method.

Note that the M-ConFIG method should not be implemented in combination with Adam, as it is
intended to replace Adam’s calculation of momentum. Hence, our M-ConFIG implementation uses
an SGD optimizer.

A.6 COMPUTATIONAL COST

To evaluate runtime performance, Fig. 15 compares the relative wall time of all methods w.r.t. the
Adam baseline, highlighting the significant advantage of the M-ConFIG on the training cost. The
average training cost of M-ConFIG is 0.712× that of the Adam baseline for the two-term case, and
0.557× for the three-term case.

It is also worth noting that the time cost of the ConFIG method is comparable to other gradient-
based methods, indicating that the pseudoinverse operation of the ConFIG method does not add
significant computational overhead. This study uses the PyTorch implementation, which utilizes
singular value decomposition (SVD) to calculate the pseudoinverse. Although the exact compu-
tational cost depends on the specific numerical algorithm, the general time complexity of SVD is
O(nm2) (Grasedyck, 2010) where n is the number of gradient elements (i.e., the number of neural
network’s parameter) and m is the number of gradients in the current study (n > m). This is favor-
able since the number of network parameters is usually much larger than the number of loss terms,
and the time complexity of SVD scales linearly with the former.

On the side of memory, all gradient-based methods, including PCGrad, IMTL-G, and our ConFIG
method, usually require more memory compared to the weighting method during training due to the
additional cost of storing loss-specific gradients for each loss term in each iteration. The complexity
of this additional memory is O(nm). Meanwhile, although momentum acceleration helps to in-
crease the training speed, it also introduces an increased memory cost with a complexity ofO(nm),
as it also needs to store the first and second momentum during the training procedure. This could be
a potential challenge when dealing with large-scale problems.
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Figure 15: Relative wall time of different methods w.r.t. the Adam baseline for one training iteration.
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A.7 PDE DETAILS

1D Burgers equation. Burgers equation is a non-linear and non-trivial model equation describing
shock formations. Considering a spatial-temporal field u(x, t), the Burgers equation in one space
dimension is

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, (37)

where ν is the viscosity and set as ν = 0.01/π in the current study. The spatial-temporal domain is
t ∈ [0, 1] and x ∈ [−1.0, 1.0] with the corresponding initial and boundary conditions of{

u(x, 0) = − sin(πx)

u(+1.0, t) = u(−1.0, t) = 0
. (38)

No analytical solution is available for Burgers equation with these given boundary conditions. In
the current study, we use numerical solutions from PhiFlow (Holl et al., 2020) as the ground truth
solution to evaluate the PINNs’ performance.

1D Schrödinger equation. 1D Schrödinger equation describes the evaluation of a complex field
h(x, t) = u(x, t) + iv(x, t) in one space dimension:

i
∂h

∂t
+

1

2

∂2h

∂x2
+ |h|2h = 0, (39)

x ∈ [−5.0, 5.0], t ∈ [0, π/2]. It follows a periodic boundary condition and a initial condition of
h(0, x) = 2 sech(x), (40)

Similarly, no analytical solution is available for the 1D Schrödinger equation with given boundary
conditions. We use the numerical solution provided by deepXDE (Bajaj et al., 2023) to evaluate the
performance of trained PINNs.

2D Kovasznay flow and 3D Beltrami flow. Kovasznay and Beltrami flow are special solutions
for Navier-Stokes equations which describe the fluid flow:

∂u

∂t
+ (u · ∇)u = −∇p+ 1

Re
∇2u

∇ · u = 0
(41)

where u is the velocity vector, p is the pressure and Re is the Reynolds number. Kovasznay flow
is a steady case in two space dimensions where the transient term ∂u/∂t equals 0. The analytical
solution of the velocity u(x, y) = [ux(x, y), uy(x, y)] and pressure p(x, y) is (Kovasznay, 1948;
Truesdell, 1954) 

ux(x, y) = 1− eλx cos(2πy),

uy(x, y) = λ
2π e

λx sin(2πy),

p(x, y) = 1
2

(
1− e2λx

)
,

(42)

where λ = 1
2ν −

√
1

4ν2 + 4π2, ν = 1
Re = 1

40 , x ∈ [−0.5, 1] and y ∈ [−0.5, 1.5]. Meanwhile,
Beltrami flow is an unsteady case in three space dimensions where the velocity u(x, y, z, t) =
[ux(x, y, z, t), uy(x, y, z, t), uz(x, y, z, t)] and pressure p(x, y, z, t) follows the analytical solution
of (Gromeka, 1881)

ux(x, y, z, t) = −a [eax sin(ay + dz) + eaz cos(ax+ dy)] e−d2t

uy(x, y, z, t) = −a [eay sin(az + dx) + eax cos(ay + dz)] e−d2t

uz(x, y, z, t) = −a [eaz sin(ax+ dy) + eay cos(az + dx)] e−d2t

p(x, y, z, t) = − 1
2a

2
[
e2ax + e2ay + e2az

+2 sin(ax+ dy) cos(az + dx)ea(y+z)

+2 sin(ay + dz) cos(ax+ dy)ea(z+x)

+2 sin(az + dx) cos(ay + dz)ea(x+y)
]
e−2d2t

, (43)

where a = d = 1 when Re = 1 in our configuration. The simulation domain size is x ∈ [−1, 1],
y ∈ [−1, 1], z ∈ [−1, 1], and t ∈ [0, 1]. The boundary conditions of Kovasznay and Beltrami flow
are Dirichlet type, which follows the values of analytical solutions. For Beltrami flow, the initial
condition also follows the values of the analytical solutions.
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A.8 PINN-BASED EXAMPLE SOLUTIONS

This section provides examples of the solution domain for each PINN case. Figures 16, 18, 23,
and 22 show the mean predictions of the networks compared to the ground truth, the standard devia-
tion, and the squared error distribution for each PINN case. Additionally, Figures 17, 19, and 21 offer
a detailed comparison of a sample line in the solution domain for the Burgers equation, Schrödinger
equation, and Kovasznay flow case.

Figure 16: The solution domain of Burgers Equation with corresponding standard deviation(σ) and
square error(SE) of the ConFIG method’s prediction.

Figure 17: The distribution of u in the solution domain of Burgers equation.
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Figure 18: The solution domain of Schrödinger Equation with corresponding standard deviation(σ)
and square error(SE) of the ConFIG method’s prediction.

Figure 19: The distribution of |h| in the solution domain of Schrödinger equation.

Figure 20: The solution domain of Kovasznay Flow with corresponding standard deviation(σ) and
square error(SE) of the ConFIG method’s prediction.
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Figure 21: The distribution of ux in the solution domain of Kovasznay Flow.
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Figure 22: The solution domain of Beltrami Flow when t = 0.5 with corresponding standard
deviation(σ) and square error(SE) of the ConFIG method’s prediction.
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A.9 PINN EVALUATIONS

The exact numerical values and corresponding standard deviations of the PINN experiments are
presented in this section. Tables 2 through 5 display the values obtained with the same number of
training epochs as depicted in Fig. 4 and Fig. 6. Additionally, Tables 6 through 9 showcase the
values obtained with identical wall time, corresponding to the data presented in Fig. 9.

Table 2: Test MSE of PINNs trained for Burgers equation. All values are scaled with 10−4.

[LN ,LBI ] [LN ,LB,LI ]

Adam 1.484± 0.061
PCGrad 1.344± 0.019 1.279± 0.008
IMTL-G 1.339± 0.024 22.478± 15.008
MinMax 1.889± 0.143 1.582± 0.051

ReLoBRaLo 1.419± 0.053 1.402± 0.034
LRA 353.796± 114.972 444.603± 16.695

ConFIG 1.308± 0.008 1.291± 0.039
M-ConFIG 1.277± 0.035 1.296± 0.013

Table 3: Test MSE of PINNs trained for Schrödinger equation. All values are scaled with 10−4.

[LN ,LBI ] [LN ,LB,LI ]

Adam 3.383± 1.178
PCGrad 1.621± 0.547 0.931± 0.028
IMTL-G 7.891± 3.008 2504.282± 588.560
MinMax 45.255± 1.535 45.068± 5.292

ReLoBRaLo 3.603± 2.165 2.756± 0.098

ConFIG 0.643± 0.227 1.455± 0.455
M-ConFIG 4.292± 1.863 15.217± 5.807

Table 4: Test MSE of PINNs trained for Kovasznay flow. All values are scaled with 10−7.

[LN ,LB]

Adam 1.044± 0.405
PCGrad 0.799± 0.083
IMTL-G 0.096± 0.012
MinMax 7.743± 1.197

ReLoBRaLo 1.148± 0.359
LRA 3.595± 3.582

ConFIG 0.126± 0.048
M-ConFIG 0.098± 0.003
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Table 5: Test MSE of PINNs trained for Beltrami flow. All values are scaled with 10−4.

[LN ,LBI ] [LN ,LB,LI ]

Adam 1.112± 0.119
PCGrad 1.037± 0.119 0.757± 0.082
IMTL-G 0.568± 0.078 0.932± 0.228
MinMax 1.851± 0.100 2.215± 0.192

ReLoBRaLo 1.197± 0.029 1.028± 0.107
LRA 0.708± 0.047 0.843± 0.146

ConFIG 0.617± 0.112 0.571± 0.090
M-ConFIG 0.795± 0.038 0.910± 0.183

Table 6: Test MSE of PINNs trained for Burgers equation. All values are collected after the same
wall time and scaled with 10−4.

[LN ,LBI ] [LN ,LB,LI ]

Adam 1.515± 0.079 1.546± 0.100
PCGrad 1.476± 0.022 1.300± 0.023
IMTL-G 1.356± 0.046 82.446± 76.016
MinMax 3.058± 0.379 2.030± 0.153

ReLoBRaLo 1.449± 0.033 1.492± 0.099
LRA 376.449± 100.599 470.108± 28.172

ConFIG 1.330± 0.015 1.665± 0.186
M-ConFIG 1.277± 0.035 1.296± 0.013

Table 7: Test MSE of PINNs trained for Schrödinger equation. All values are collected after the
same wall time and scaled with 10−3.

[LN ,LBI ] [LN ,LB,LI ]

Adam 2.169± 0.584 5.832± 1.421
PCGrad 1.505± 0.559 2.271± 0.205
IMTL-G 8.844± 4.263 291.037± 3.682
MinMax 28.195± 1.616 49.635± 2.888

ReLoBRaLo 2.369± 0.829 15.230± 7.691
LRA 316.549± 8.696 315.606± 8.969

ConFIG 0.586± 0.256 4.636± 0.932
M-ConFIG 0.429± 0.186 1.522± 0.581

Table 8: Test MSE of PINNs trained for Kovasznay flow. All values are scaled with 10−7.

[LN ,LB]

Adam 4.037± 1.078
PCGrad 2.723± 0.421
IMTL-G 0.419± 0.058
MinMax 261.628± 43.303

ReLoBRaLo 3.291± 0.847
LRA 13.554± 13.773

ConFIG 0.631± 0.194
M-ConFIG 0.098± 0.003
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Table 9: Test MSE of PINNs trained for Beltrami flow. All values are collected after the same wall
time and scaled with 10−4.

[LN ,LBI ] [LN ,LB,LI ]

Adam 2.318± 0.270 3.648± 0.244
PCGrad 2.206± 0.180 2.351± 0.212
IMTL-G 1.054± 0.156 2.194± 0.465
MinMax 5.422± 0.300 15.754± 1.546

ReLoBRaLo 2.605± 0.056 2.769± 0.202
LRA 1.194± 0.139 2.259± 0.812

ConFIG 1.130± 0.138 1.451± 0.181
M-ConFIG 0.795± 0.038 0.910± 0.183

Table 10: Test MSE of PINNs trained for Burgers equation with the ConFIG method using different
direction weights. All values are scaled with 10−4.

[LN ,LBI ] [LN ,LB,LI ]

MinMax 2.444± 0.312 45.068± 5.292
ReLoBRaLo 1.310± 0.007 1.315± 0.048

LRA 449.658± 42.392 657.258± 45.487

Equal 1.308± 0.008 1.291± 0.039

Table 11: Test MSE of PINNs trained for Schrodinger equation with the ConFIG method using
different direction weights. All values are scaled with 10−4.

[LN ,LBI ] [LN ,LB,LI ]

MinMax 2.444± 0.312 3.733± 1.351
ReLoBRaLo 1.048± 0.404 2.829± 1.444

LRA 25.417± 6.768 3118.378± 45.723

Equal 6.429± 2.269 1.455± 0.455

Table 12: Test MSE of PINNs trained for Kovasznay flow with the ConFIG method using different
direction weights. All values are scaled with 10−7.

[LN ,LBI ]

MinMax 7.487± 2.545
ReLoBRaLo 0.104± 0.008

LRA (9.047± 2.052)× 105

Equal 0.126± 0.048

Table 13: Test MSE of PINNs trained for Beltrami flow with the ConFIG method using different
direction weights. All values are scaled with 10−4.

[LN ,LBI ] [LN ,LB,LI ]

MinMax 1.903± 0.271 1.597± 0.039
ReLoBRaLo 0.658± 0.157 0.575± 0.059

LRA 155.617± 55.853 15.754± 5.049

Equal 0.617± 0.112 0.571± 0.090
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A.10 RESULTS OF CELEBA MTL EXPERIMENTS

Table 14- 19 presents the numerical values and corresponding standard deviations for the CelebA
MTL experiments, aligning with the results in Fig. 11 and Fig. 12. The best performance is deter-
mined by selecting the best average performance across different tasks during training, which is also
the value shown in Fig. 11. The average performance is calculated based on the results from the last
5 epochs, during which most methods have converged. For both best and average performance, our
ConFIG method surpasses all other methods in MR metrics. For the performance in F1, it tied for
first with the FAMO method in best performance and ranked second in the average performance.

Table 14: MR performance of different methods in CelebA MTL experiments

Best performance Average performance

PCGrad 6.425± 0.595 5.475± 0.575
IMTL-G 6.058± 0.671 5.475± 0.125
FAMO 6.233± 0.085 4.875± 0.100

NASHMTL 6.158± 0.242 5.612± 1.237
RLW 6.300± 0.602 4.850± 1.050

CAGrad 6.767± 0.274 7.387± 1.062
GRADDROP 6.733± 0.309 7.375± 0.000

DWA 6.908± 0.450 8.500± 0.000
LS 7.383± 0.112 8.675± 0.075
UW 7.692± 0.051 8.238± 0.438

M-ConFIG 30 5.833± 0.342 7.175± 0.525
ConFIG 5.508± 0.392 4.362± 0.812

Table 15: F1 performance of different methods in CelebA MTL experiments

Best performance Average performance

PCGrad 0.681± 0.003 0.665± 0.007
IMTL-G 0.680± 0.003 0.660± 0.003
FAMO 0.686± 0.004 0.673± 0.002

NASHMTL 0.683± 0.006 0.642± 0.026
RLW 0.680± 0.002 0.663± 0.006

CAGrad 0.672± 0.010 0.649± 0.008
GRADDROP 0.661± 0.005 0.644± 0.010

DWA 0.672± 0.003 0.644± 0.004
LS 0.676± 0.004 0.639± 0.004
UW 0.675± 0.009 0.641± 0.006

M-ConFIG 30 0.694± 0.005 0.655± 0.006
ConFIG 0.686± 0.006 0.671± 0.003

Table 16: The F 1 performance of the M-Config and ConFIG method with different numbers of tasks
in the CelebA experiment.

nupdates
Best performance Average performance

ConFIG M-ConFIG ConFIG M-ConFIG

5 0.697± 0.007 0.664± 0.005 0.645± 0.006 0.638± 0.003
10 0.695± 0.006 0.536± 0.057 0.668± 0.013 0.488± 0.055
20 0.684± 0.008 0.455± 0.032 0.660± 0.007 0.408± 0.015
30 0.667± 0.006 0.429± 0.023 0.648± 0.006 0.383± 0.025
40 0.686± 0.006 0.423± 0.026 0.671± 0.003 0.383± 0.037
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Table 17: The training time of the M-Config and ConFIG method with different numbers of tasks in
the CelebA experiment.

ntasks ConFIG M-ConFIG

5 180.333± 0.471 67.436± 0.267
10 288.000± 0.816 73.588± 1.262
20 561.000± 0.816 84.252± 0.919
30 861.000± 0.816 110.454± 0.487
40 1179.000± 2.449 167.423± 0.427

Table 18: The F 1 performance of the M-Config and ConFIG method with different numbers of
gradient updates in the CelebA experiment (40 tasks).

nupdates
Best performance Average performance

ConFIG M-ConFIG ConFIG M-ConFIG

1

0.686± 0.006

0.423± 0.026

0.671± 0.003

0.383± 0.037
5 0.458± 0.006 0.406± 0.008

10 0.570± 0.049 0.517± 0.049
20 0.681± 0.006 0.668± 0.008
30 0.694± 0.005 0.678± 0.006
40 0.682± 0.007 0.654± 0.015

Table 19: The training time of the M-Config and ConFIG method with different numbers of gradient
updates in the CelebA experiment (40 tasks).

nupdates ConFIG M-ConFIG

1

2090.618± 5.627

310.000± 0.000
5 492.667± 1.247

10 723.000± 0.816
20 1185.667± 6.018
30 1647.667± 7.587
40 2084.667± 24.635
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A.11 ADDITIONAL RESULTS ON CHALLENGING PDES

To evaluate the performance of our method for challenging and high-dimensional test cases, we ap-
ply it to three problems from a recent benchmark for PINNs (Hao et al., 2023). In the following, we
perform a comprehensive investigation of the performance of our method in solving these problems.

A.11.1 HIGH DIMENSIONAL PDES

We introduce the N-dimensional Poisson equation as the test case for high-dimensional problems.
The governing PDE is

−∇2u =
π2

4

n∑
i=1

sin(
π

2
xi), (44)

where n is the number of dimensionality. In the current experiment, we choose n = 5 and set the
spatial domain as x ∈ [0, 1]5 following the configuration of Hao et al. (2023). The ground truth
solution is

u =
n∑

i=1

sin(
π

2
xi). (45)

The PNd problem employs Dirichlet boundary conditions with the boundary value equal to the
analytical solution.

Tab. 20 and Fig. 23 summarize the test results of different methods. Our M-ConFIG method ranks
first among all methods, followed by the ConFIG methods, showing the superiority of our methods
in dealing with high-dimensional problems.

Table 20: Test MSE of PINNs trained for PNd equation. All values ×10−6.

[LN ,LB]

Adam 1.916± 0.284
PCGrad 1.313± 0.097
IMTL-G 0.520± 0.123
MinMax 4.604± 0.271

ReLoBRaLo 2.265± 0.263
LRA 0.639± 0.340

ConFIG 0.461± 0.141
M-ConFIG 0.415± 0.052

Figure 23: The solution domain of PNd problem on [x, y, 0.5, 0.5, 0.5] plane.

A.11.2 MULTI-SCALE PROBLEMS

We choose the multi-scale heat transfer (HeatMS) problem as a strongly anisotropic test case. We set
different heat-transfer coefficients in different spatial directions to give the solution different scales
in each direction. Following the configuration of Hao et al. (2023), the governing equation is

∂u

∂t
− 1

(500π)2
∂2u

∂x2
− 1

π2

∂2u

∂y2
= 0, (46)
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with the initial condition of u(x, y, 0) = sin(20πx) sin(πy) and boundary condition of u(x, y, t) =
0. The spatial time domain is x ∈ [0, 1], y ∈ [0, 1] and t ∈ [0, 5]. Fig. 24 illustrates a sample solution
of the ground truth when t = 3.0s.

Tab. 21 and Fig. 25 show the predictions by different methods. While all of the methods struggle
to fully resolve the anisotropic solutions, as shown in Fig. 25, our M-ConFIG method still ranks
first. This test case illustrates that the scaling issues of anisotropic PDEs can not be solved purely
by finding a better balance between different loss terms. Nonetheless, ConFIG fares on-par with
other methods, and the momentum terms of M-ConFIG help to partially address the scaling of the
HeatMS test case.

Table 21: Test MSE of PINNs trained for HeatMS problem. All values are scaled with 10−3.

[LN ,LBI ] [LN ,LB,LI ]

Adam 7.612± 0.004
PCGrad 7.600± 0.012 7.603± 0.012
IMTL-G 6.693± 0.241 38.529± 43.666
MinMax 7.595± 0.055 7.243± 0.458

ReLoBRaLo 7.585± 0.039 7.558± 0.041
LRA 7.654± 0.004 7.652± 0.000

ConFIG 7.529± 0.074 7.585± 0.020
M-ConFIG 5.978± 0.092 7.147± 0.001

−0.04

−0.02

0.00

0.02

0.04

Figure 24: The ground truth solution of HeatMS problem when t = 3.0s.

Figure 25: The predictions of PINNs for HeatMS problem when t = 3.0s (two-loss scenario, values
scaled with 10−2).

A.11.3 CHAOTIC PROBLEMS

To test the potential limitations of the proposed methods, we target the KS equation as a representa-
tive of chaotic problems. Starting from an analytic initial state, the solution of the KS equation will
gradually develop into a chaotic state due to the strong nonlinearity, dissipative, and destabilizing
effects. Following the configuration of Hao et al. (2023), the governing equation is
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∂u

∂t
+

100

16
u
∂u

∂x
+

100

162
∂2u

∂x2
+

100

164
∂4u

∂x4
= 0, (47)

with an initial condition of u(x, 0) = cos(x)(1 + sin(x)) and periodic boundary conditions. The
spatial time domain is x ∈ [0, 2π] and t ∈ [0, 1].

Table 22: Test MSE of PINNs for the KS equation.

[LN ,LBI ] [LN ,LB,LI ]

Adam 1.094± 0.002 1.094± 0.002
PCGrad 1.089± 0.008 1.061± 0.002
IMTL-G 1.110± 0.016 1.089± 0.031
MinMax 1.072± 0.000 1.084± 0.007

ReLoBRaLo 1.074± 0.019 1.080± 0.016
LRA 1.099± 0.039 1.098± 0.027

ConFIG 1.089± 0.004 1.062± 0.007
M-ConFIG 1.123± 0.011 1.118± 0.008

Tab. 22 shows the predictions by different methods. The evaluation shows that no methods succeeds
to capture the transition of chaos and generate smooth solutions. This agrees with the conclusions
in Hao et al. (2023)’s, where likewise no method under consideration manages to converge to an
accurate solution.

The inherent challenge of solving the KS equations is a combination of several factors. On the
one hand, the negative diffusion term ∂2u/∂x2 injects energy into the system, inducing instability
and complex structures. On the other hand, The dissipative term ∂4u/∂x4 removes energy at small
scales, formulating energy cascade across different scales. This energy cascade causes huge diffi-
culties for numerical methods since the fine-scale structures must be resolved accurately. From the
PINN side, this requires the network to have the ability to estimate the derivatives accurately on
different scales via auto differentiation. The balance between different loss terms, as all the bench-
mark methods are trying to achieve, is not helpful in addressing this fundamental issue. Hence,
this test case serves as a failure case, highlighting that improved optimizers alone do not suffice to
address these challenges. It will be an interesting topic of future work to evaluate their effectiveness
in combination with other changes, such as improvements on the architecture side.

A.12 TRAINING DETAILS

PINNs. The training of PINNs in the current research follows the established conventions. The
neural networks are fully connected with 4 hidden layers and 50 channels per layer. The activation
function is the tanh function, and all weights are initialized with Xavier initialization (Glorot &
Bengio, 2010). Data points are sampled using Latin-hypercube sampling and updated in each iter-
ation. The extended training run case shown in Fig. 10 uses a constant learning rate of 10−4. All
other cases follow a cosine decay strategy with the initial and final learning rate of 10−3 and 10−4,
respectively. We also add a learning rate warm-up of 100 epochs for each training. All the methods
except M-ConFIG use the Adam optimizer. The hyper-parameters of the Adam optimizer are set as
β1=0.9, β2 = 0.999, and ε = 10−8, respectively. The number of data points and training epochs for
each case are listed in Tab. 23.

MTL. Our experiments are based on the official test code of the FAMO method, and our ConFIG
method implemented in the corresponding framework. For the details of the configurations, please
refer to the original FAMO paper (Liu et al., 2023) and its official repository: https://github.
com/Cranial-XIX/FAMO (MIT License).

Compute resources. All the experiments in this study were conducted using an NVIDIA RTX
A5000 GPU with 24 GB of memory. Each PINN experiment completes training within a few hours
on a typical GPU with more than 4 GB of memory. For the CelebA MTL test, a GPU with more
than 12 GB of memory is required, and a single training run takes ca. 1-2 days.
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Table 23: The number of data points and training epochs for PINNs’ experiments.

Number of data points Epochs
nN nB nI

Burgers equation 10000 250 250 3× 104

Schrödinger equation 20000 500 500 105

Kovasznay flow 20000 1000 105

Beltrami flow 25000 5000 5000 105

PNd 20000 5000 105

HeatMS 20000 2000 2000 105

KS 20000 500 500 105

A.13 ABLATION STUDY ON TRAINING HYPERPARAMETER

Although we utilize a momentum-based optimizer for the training, the learning rate may still affect
the training process, especially considering that our ConFIG and M-ConFIG methods consistently
change the gradient vector during the training. Thus, we perform an ablation study on different
learning rates. As shown in Tab. 24 and Tab. 25, our methods consistently outperform other methods
with different learning rate configurations.

Table 24: The performance of different methods with different cosine decay learning rates in Burgers
two-loss test

10−3 → 10−4 10−4 → 10−5

Adam 1.484± 0.061 3.076± 1.201
PCGrad 1.344± 0.019 2.223± 0.355
IMTL-G 1.339± 0.024 1.688± 0.018
MinMax 1.889± 0.143 3.980± 0.798

ReLoBRaLo 1.419± 0.053 5.057± 1.821
LRA 353.796± 114.972 819.730± 56.925

ConFIG 1.308± 0.008 1.887± 0.283
M-ConFIG 1.277± 0.035 1.681± 0.106

Table 25: The performance of different methods with different constant learning rates in Burgers
two-loss test

γ = 10−3 γ = 10−4 γ = 10−5

Adam 1.398± 0.021 3.076± 1.201 420.511± 95.578
PCGrad 1.398± 0.018 2.223± 0.355 51.664± 7.753
IMTL-G 1.385± 0.042 1.688± 0.018 192.151± 123.903
MinMax 1.889± 0.120 3.980± 0.798 7.078± 1.672

ReLoBRaLo 1.477± 0.061 5.057± 1.821 10.333± 1.905
LRA 367.944± 98.322 819.730± 56.925 895.965± 1.671

ConFIG 1.373± 0.006 1.887± 0.283 103.239± 40.287
M-ConFIG 1.354± 0.019 1.681± 0.106 4.097± 1.310

In the current study, the points are sampled dynamically from the internal domain and boundaries
during training. Thus, the number of data samples represents the training batch size. Meanwhile,
each loss-specific gradient is evaluated through the data samples at the internal domain and bound-
aries. Thus, the number of sample points and the relative ratio between the number of points at the
boundary and the internal domain may affect the quality of the gradient, further affecting the final
training results. Here, we also perform an ablation study on the data samples, and the results are
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summarized in Fig. 26, Tab. 26 and Tab. 27. Our methods consistently outperform other methods
with different configurations of data samples, showing the robustness of our methods.

Figure 26: The relative improvements of different methods with different numbers and different
ratios of data samples during training

Table 26: The performance of different methods with different numbers of data samples during
training

nN = 5000
nB = nI = 125

nN = 10000
nB = nI = 250

nN = 20000
nB = nI = 500

Adam 1.494± 0.060 1.484± 0.061 1.438± 0.031
PCGrad 1.350± 0.015 1.344± 0.019 1.331± 0.037
IMTL-G 1.368± 0.012 1.339± 0.024 1.275± 0.003
MinMax 1.943± 0.212 1.889± 0.143 1.846± 0.135

ReLoBRaLo 1.478± 0.067 1.419± 0.053 1.381± 0.043
LRA 340.161± 135.263 353.796± 114.972 374.574± 84.340

ConFIG 1.307± 0.014 1.308± 0.008 1.295± 0.014
M-ConFIG 1.291± 0.017 1.277± 0.035 1.262± 0.004

Table 27: The performance of different methods with different ratios of data samples during training

nN = 5000
nB = nI = 250

nN = 10000
nB = nI = 250

nN = 20000
nB = nI = 250

Adam 1.470± 0.012 1.484± 0.061 1.455± 0.044
PCGrad 1.358± 0.026 1.344± 0.019 1.355± 0.013
IMTL-G 1.328± 0.036 1.339± 0.024 1.342± 0.027
MinMax 1.963± 0.133 1.889± 0.143 1.843± 0.152

ReLoBRaLo 1.469± 0.014 1.419± 0.053 1.393± 0.052
LRA 362.388± 110.455 353.796± 114.972 350.266± 127.639

ConFIG 1.298± 0.014 1.308± 0.008 1.300± 0.010
M-ConFIG 1.289± 0.015 1.277± 0.035 1.265± 0.026
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